
METHODS PAPER

Measuring the complexity of social associations using mixture models
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Abstract
We propose a method for examining and measuring the complexity of animal social networks that are characterized using
association indices. The method focusses on the diversity of types of dyadic relationship within the social network. Binomial
mixture models cluster dyadic relationships into relationship types, and variation in the preponderance and strength of these
relationship types can be used to estimate association complexity using Shannon’s information index. We use simulated data to
test the method and find that models chosen using integrated complete likelihood give estimates of complexity that closely reflect
the true complexity of social systems, but these estimates can be downwardly biased by low-intensity sampling and upwardly
biased by extreme overdispersion within components. We also illustrate the use of the method on two real datasets. The method
could be extended for use on interaction rate data using Poisson mixture models or on multidimensional relationship data using
multivariate mixture models.

Significance statement
Animals from many species interact socially with multiple individuals, and these interactions form a social network. Pairs of
individuals have social relationships that differ in their strength and type. This social complexity has long interested behavioural
biologists, particularly in the context of social cognition.Measuring social complexity, however, presents challenges.We propose
a new method for measuring the complexity of animal social networks. Our approach is based on quantifying variation in the
strengths of social connections (measured using association indices) which we use to classify different types of pairwise
relationships. We, then, use the number, strength and prevalence of these different types of relationships to measure association
complexity. Our approach can be used to compare association complexity between populations and/or species. We provide code
that researchers can use with their own datasets.
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Introduction

Social complexity is a much used concept in behavioural ecol-
ogy (Kappeler 2019, Topical collection on Social complexity).
However, definitions vary widely and, often, are not opera-
tionalized. Measures of social complexity have been sought
and used for a variety of reasons, perhaps most notably to test
the social intelligence hypothesis for the evolution of cogni-
tion (Kwak et al. 2018; Kappeler 2019, Topical collection on
Social complexity) and the social complexity hypothesis for
the evolution of communication (Freeberg et al. 2012).

In studies of non-human societies, the term social complex-
ity has primarily been used in two broad ways. First, social
complexity is used to describe the number of different types
(roles) of individuals that make up a social group (e.g.,
Blumenstein and Armitage 1998; Groenewoud et al. 2016).
Second, social complexity is used to describe the complexity
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of social relationships among individuals within a social
group or population (e.g., Fischer et al. 2017). Recent work
has highlighted the importance of considering these two as-
pects of social complexity separately. These two types of com-
plexity appear to evolve under different patterns of local relat-
edness (Lukas and Clutton-Brock 2018). In social mammals,
complex social relationships are associated with groups that
have low relatedness, while members of groups composed of
close relatives are more likely to show a diversity of roles
(Lukas and Clutton-Brock 2018). While both aspects of social
complexity have important implications, it is the measurement
of the complexity of social relationships that we attempt to
address here.

To have utility, measures of social complexity should be
comparable across populations within species, as well as
across species, perhaps within some higher taxon. This is
challenging. Populations are typically of different sizes, de-
mographics and may use space and interact socially in differ-
ent ways. Furthermore, they are studied with different proto-
cols and with differing intensities. Ideally, we seek a measure
that is as follows: (a) unaffected by network size, so the social
complexity calculated from a full social network is similar to
that calculated from any substantial random portion of it; (b)
little influenced by the addition of distantly connected indi-
viduals into the study network; (c) not biased high (suggesting
false complexity) by sampling issues; and (d) not biased low
(obscuring complexity) by low-intensity sampling. Measures
of social complexity can potentially bemultidimensional, with
different dimensions capturing elements of the concept (e.g.,
Whitehead 2008; Fischer et al. 2017).

There have been two general perspectives to measuring
social complexity using network data. The top-down ap-
proach looks at complexity as a network property, using mea-
sures such as size, diameter, modularity, dimensional cou-
pling, disparity and computational complexity (Butts 2001;
Whitehead 2008). These measures tend to be affected by net-
work delineation, thus causing problems with issues (a) and
(b) outlined previously. Indeed, these problems are common
to many attempts to develop measures to compare the struc-
ture of social networks (Faust 2006).

An alternative, bottom-up, perspective, is to consider social
complexity from the perspective of the members of a social
network. Hinde (1976) defined social structure as the Bnature,
quality, and patterning of relationships^. Then, social com-
plexity can be thought of as the complexity of dyadic relation-
ships. If we operationalize relationships using Brelationship
measures^, such as interaction rates and association indices
(Whitehead 2008), these can be used to estimate social com-
plexity. Bergman and Beehner (2015) suggest a simple defi-
nition of social complexity as Bthe number of differentiated
relationships that individuals have^. A good example of this
relationship-based approach to social complexity, which
builds on Bergman and Beehner’s (2015) ideas, is Fischer

et al.’s (2017) method. Using detailed observations of
affiliative and agonistic interactions, each dyadic relationship
is quantified, and, then, these are clustered into one of four
relationship classes. Social complexity is quantified using the
diversity of relationships experienced by an individual, and
individual-level complexities are aggregated into measures
of group complexity. While Fischer et al.’s (2017) method is
an appealing and rich approach, it depends on the availability
of detailed data on direct social interactions (e.g., grooming
and aggression), which are often difficult to observe in studies
of the social structure of wild animals.

Many studies of social structure employ association indi-
ces, estimates of the proportion of time that a dyad is associ-
ated (Cairns and Schwager 1987). These association indices
are used to infer the structure of social relationships within the
population. Association indices (the Bsimple ratio index^, the
Bhalf-weight index^, etc.) are typically calculated as ratios: the
number of times that the dyad was observed associating di-
vided by the number of times that they could have been ob-
served associating—a binomial process. Using this attribute of
association indices, we introduce a method, which in some
respects, parallels that of Fischer et al. (2017), for deriving a
measure of social complexity, which we call association com-
plexity, from association indices. We use binomial mixture
models on association data to model the distribution of rela-
tionships within a population (see Fig. 1). The mixture models
represent the associations as belonging to several classes, each
with a mean strength of association and rate of occurrence
within the population (McNicholas 2016). The mixture
modelling finds how many classes are best supported by the
data and, then, estimates these parameters. These are then
input to a Shannon index of entropy (Shannon and Weaver
1949) to give a measure of diversity among the associations
experienced by individuals, which we use to measure
complexity.

Here, we first explain the method and, then, test it against
simulated data. We explore the effects of sampling rate as well
as within-class variability on our estimates of association com-
plexity. Finally, we illustrate the process with real data and
discuss potential extensions.

Methods

Binomial mixture models

We assume that each dyad, ij, has a real association index, Rij,
that is the actual proportion of time that they are in association
and that each Rij belongs to one of K relationship classes,
though which class is unknown. So, for instance, there might
be some tight Bbonded^ relationships with Rij = μ1 = 0.75,
some pairs of Bfriends^ with Rij = μ2 = 0.20 and some Bcasual
acquaintances^ with Rij = μ3 = 0.03.
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Then, if the relationship between individual i and individ-
ual j is of class k (ij) (the classes, the ks, are labelled 1, 2, 3,…,
K; each class with a real association index μk) and there are dij
observation occasions, the number of observed associations,
xij, is binomially distributed with sample size dij and probabil-
ity μk(ij). Thus:

xij∼binomial dij;μk ijð Þ
� �

ð1Þ

We do not know K, the number of classes of relationship,
the means for each class, {μk}, or the proportion of relation-
ships in each class, {αk} [Σαk = 1]. However, mixture models
allow us to estimate these parameters. Mixture models assume
that an observed distribution is a mixture of several unknown
distributions and estimate the nature and importance of these
different components (McNicholas 2016). In our case, we are
trying to dissect a distribution of relationship measures into its
components, with each of the components representing a dif-
ferent class of relationship. The parameters [{μk}, {αk}] of the
binomial mixture model are estimated using maximum likeli-
hood via an expectation-maximization (EM) algorithm (see
the Supplementary material for algorithm details). The num-
ber of classes, K, is estimated by fitting a set of candidate
models with different values of K and choosing the best one

based on criteria, such as the Bayesian Information Criteria
(BIC), Akaike Information Criterion (AIC), or the Integrated
Completed Likelihood (ICL) (McNicholas 2016). We calcu-
late ICL as BIC + 2E, where E is the entropy of the classifica-
tion matrix. Thus, ICL penalizes models in which the relation-
ship class of dyads is uncertain.

Quantifying complexity

The mixture models suggest that relationships of class k occur
with frequencyαk and these dyads associate at a rate of μk (the
strength of the association index). Thus, the frequency of as-
sociations in the population between two individuals with re-
lationship class k is:

qk ¼ μk :αk=∑μk :αk ð2Þ

Then, the diversity in association can be expressed by
Shannon and Weaver’s (1949) entropy index:

S ¼ −∑qk :In qkð Þ ð3Þ

And, this is our proposed measure of association
complexity.

Fig. 1 Illustration of our dyadic
concept of association
complexity, illustrated for
societies of low (a), medium (b)
and high (c) complexities. Social
networks (left) contain different
numbers of relationship types
(represented by edge colors), each
with a unique distribution of true
association indices (centre). We
measure complexity as the
uncertainty that an association is
of a particular relationship type,
visualised here as the sum of
association indices of each type
(right). A more even distribution
of sums across more classes of
association leads to greater un-
certainty, resulting in higher
values of S
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This measure has the desirable quality that, in general, so-
cial structures with more relationship classes will have a
higher value of S. In addition, this measure also quantifies
differences in the diversity of associations between social
structures with the same number of relationship classes. A
society will have higher complexity when the frequency with
which classes occur decreases as the strength of association
increases. Maximal complexity for a given number of classes
is achieved when

αk ¼ μ−1
k

.
∑μ−1

k

ð4Þ

As under these conditions, associations of all classes are
equally frequent. Deviations from Eq. (4) lead to differences
in the frequency of associations of each class, which results in
less diversity in association types. Societies with the same
value of K can have very different values of S, and difference
in values of K will not always reflect differences in S. Stated
another way, S indicates the degree of uncertainty in the rela-
tionship class of a given association. As an example, consider
three hypothetical societies, one with K = 5 and q = {0.2, 0.2,
0.2, 0.2, 0.2}, another with K = 5 and q = {0.9, 0.025, 0.025,
0.025, 0.025}, and a third with K = 2 and q = {0.5, 0.5}. The
first two societies have the same number of relationship clas-
ses, but in the first, the frequency of associations of each class
is the same, and thus, the diversity of associations is extremely
high (S = 1.61), while in the second, one class dominates,
reducing the association complexity (S = 0.47). Furthermore,
while the third society has only two relationship classes, as-
sociations of both class are equally likely, leading to an esti-
mate of complexity higher than the second society (S = 0.69).
We illustrate the variation in Swithin and between values ofK
in our simulations (see subsequent texts).

Testing the method

We used simulated data to test our proposed method. We were
particularly interested in which criterion to use for selecting
the number of components (AIC, BIC, ICL), as well as how
the sampling effort, indicated by the denominator of the asso-
ciation index (dij) might affect estimates of the number of
classes of social relationship (K) and association complexity
(S). In addition, we sought to more closely simulate real world
data by including overdispersion within relationship classes.
Overdispersion represents how much more variable observa-
tions are than a particular model assumes. In practice,
overdispersion from a theoretical distribution could be caused
by a variety of behavioural, psychological, environmental or
measurement issues. Overdispersion in binomial data is often
modelled via beta-binomial distributions. The beta-binomial
distribution results from binomial trials in which the

probability of success is not constant but follows a beta distri-
bution with shape parameters β1 and β2. In this context, we
have found it more useful to consider an alternate parameter-
ization based on the mean, μ = β1/(β1 + β2), and the
overdispersion parameter ρ = 1/(β1 +β2 + 1).

The simulations used Poisson and beta-binomial distribu-
tions to produce sets of dij and xij, respectively. These simula-
tions were parameterized to reflect the characteristics of real
world datasets. We examined six real association datasets (two
of which are used as examples, in the subsequent texts) from
individually identified wild cetaceans, calculating mean(dij)
and estimating overdispersion, ρ, for each. Overdispersion,
ρ, was estimated using maximum likelihood assuming the
number of components (K), as well as values of {μk} and
{αk} are as estimated by the binomial mixture models (using
ICL; see subsequent texts). These suggested reasonable
ranges of mean(dij) from 15 to 100 and ρ from 0 to 0.01.

We simulated a population of N associating individuals
(Ndyad = (N(N − 1)) / 2). We simulated social structure by set-
ting the number of relationship classes, choosing frequencies
and distributions of association probabilities for each type,
assigning dyads to types and then generating true dyadic as-
sociation probabilities. We then simulated observational sam-
pling of associations from this social structure. More specifi-
cally, in a given simulation run withK relationship classes, we

1. Drew relative αk from a uniform distribution on [0, 1],
with the constraint that min (αk) > 0.1/K

2. Drew μk from a uniform distribution on [0, 1], with the
constraint that they were at least 0.1 apart

3. Drew ρk from a uniform distribution on [0, 0.015]
4. Assigned k (ij) to dyads with probability αk

5. Generated Rij for each dyad from a beta distribution with
mean μk(ij) and overdispersion parameter ρk(ij)

6. Generated dij from a Poisson distribution with mean D
7. Generated xij from a binomial distribution with probabil-

ity Rij and dij trials

From these simulated social structures, we measured real-
ized association complexity from the k (ij) and Rij and then fit
a series of binomial mixture models withK= 1, 2, 3, 4, 5, 6, 7,
8, and 9 to the xij and dij. We chose a best value of K based on
BIC, ICL, and AIC and recorded estimates of S based on the
models chosen by each of these criteria.

We systematically varied the values of N, K, and D across
simulations to test the method under different population
sizes, social structures, and sampling effort. We ran 20 simu-
lation runs for every combination of the following parameters:
N = 20, 50; K = 1, 2, 3, 4, 5; D = 20, 40, 60, 80, 100.

To examine model performance at estimating S and K, we
analysed the mean error in model estimates under different
conditions. This gave us a measure of the degree to which
our model accurately reflects actual complexity under
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different conditions, as well as allowing us to examine the
model output for bias. We also estimated the correlation be-
tween true and estimated values of S for each criterion and
under different conditions, to determine the degree to which
we can expect the output of the model to reflect differences in
complexity between societies.

We also tested our model for sensitivity to systematic in-
creases in overdispersion. Using N = 20, K = 1, 2, 3, 4, 5 and
D = 20, 40, 60, 80, 100, we ran simulations in which we
defined a common overdispersion parameter ρ for all compo-
nents. We used ρ = 0.005, 0.01, 0.015, 0.02, running 20 sim-
ulations for each combination of parameters. We examined
our model for biases introduced by increased overdispersion
by analysing the mean error in estimates of S and K in rela-
tionship to overdispersion, social structure and sampling.

Illustration using real data

We used two real datasets to illustrate the method. These anal-
yses are illustrative only and are not necessarily optimal anal-
yses of these data. Photoidentification data on 30 northern
bottlenose whales (Hyperoodon ampullatus) were collected
off Nova Scotia, Canada, between 1988 and 2003, as in
Gowans et al. (2001) with some extra data from later years.
Photoidentification data on 77 female sperm whales (Physeter
macrocephalus) were collected off Dominica, West Indies,
between 1984 and 2015, as in Gero et al. (2013a), again, with
some extra data. In both studies, sampling periods were days,
only individuals identified on more than 10 days were includ-
ed, association of a dyad was defined as identified within
10 min on the same day, and association indices were calcu-
lated using the simple ratio index. For each dataset, we used
the binomial mixture model together with the ICL criterion to
estimate the number of relationship classes and the character-
istics of each, as well as an estimate of association complexity
(from Eq. (3)).

Computer code

This work was carried out in parallel and largely independent-
ly using the packages R (by MW) and MATLAB (by HW).
Functions for using binomial mixture models on association
data in both languages are given in the Supplemental material.

Results

Testing the method

As expected, most variation in S in our simulations was driven
by differences in the number of relationship classes, as dem-
onstrated by a high correlation between true values of S and K
(r = 0.93, Fig. 2). However, when only considering cases in

whichK > 1 (as whenK = 1, S is always 0), the correlation was
much lower (r = 0.67), and a significant degree of overlap in
values of S between different values of K was apparent (Fig.
2). While the number of relationship classes greatly affects the
complexity of associations, the frequency and strength of re-
lationship classes are also an important factor.

The results of our simulation study largely suggest that ICL
is the best criterion to use for these models. The correlation
between the estimates of S via ICL and true complexities across
all parameters was 0.9, while AIC and BIC had overall corre-
lations of 0.79 and 0.78, respectively. This high correlation for
ICL across sampling efforts, network sizes, and social struc-
tures indicates that estimates of S based on models chosen via
ICL are highly comparable between networks. At low sampling
efforts (D < 40), ICL does give estimates of S less correlated
with true complexities than AIC or BIC, but it rapidly tends
towards a perfect correlation with increased sampling effort. In
contrast, the correlations between true and estimated complex-
ities obtained by AIC and BIC do not increase with sampling
effort and are consistently below 0.9 (Fig. 3, left).

AIC and BIC were both likely to overestimate the com-
plexity of a social structure, and this overestimation was ex-
acerbated by increased sampling effort. In contrast, the esti-
mates obtained by ICL are downward biased at low sampling
rates, but the bias decreases as sampling effort increases. This
indicates that ICL estimates are unlikely to be overestimates of
true complexity, but large amounts of data (D > 80) are likely
needed to ensure accurate estimates. However, even at low
sampling rates, the bias is less than 0.5 (Fig. 3, right).

In addition, both AIC and BIC provide estimates that are
sensitive to network size in our simulations, with larger networks
having added positive bias. In contrast, ICL did not give esti-
mates biased by network size (Fig. 3) and, thus, provide an
estimate of complexity that is comparable between social net-
works of different sizes and levels of completeness (a reasonable,
roughly random subset of a larger network should provide a
similar estimate as the full network).

Fig. 2 Distributions of realized complexity values (S) between societies
with different numbers of relationship classes (K). Violin plots represent
density estimates and quartiles of true S values for each value of K used.
Simulation runs forK = 1 are not plotted as these runs, by definition, have
S = 0. Blue points represent the maximum possible entropy for each value
of K. Each distribution represents the results of 500 simulation runs
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ICL was prone to underestimating both S and K at low
sampling rates. This tendency was exacerbated by social
structures with more relationship classes. This bias was re-
lieved with increased sampling effort. In addition, ICL rarely
found multiple relationship classes in social structures in
which there was only one class of dyad (Fig. 4). Therefore,
while we suggest the use of ICL to choose the number of
components in these models, as it gives good estimates that
are comparable between networks, we caution that these esti-
mates will likely be underestimated with low sampling inten-
sity, particularly for complex social structures.

All criteria were somewhat sensitive to systematic in-
creases in overdispersion. High levels of overdispersion led

to overestimates of complexity, particularly under high sam-
pling intensity. However, ICL was far less sensitive to
overdispersion than AIC or BIC. At values of ρ < 0.015, ICL
converged towards zero bias as sampling effort increased to-
wards D = 100, and even at ρ = 0.015, upward bias at high
sampling intensity was small. At ρ = 0.02, upward bias at high
sampling intensities became more pronounced (Fig. 5).

Illustration using real data

The distributions of simple ratio association indices for the
northern bottlenose whale and sperm whale datasets are
shown in Fig. 5. Mixture models suggested 2 relationship

Fig. 4 Relationship between
input value of K and error in
estimates of S and K obtained
from models chosen via ICL.
Colors indicate simulated
sampling effort (as expressed by
mean denominator of association
indices, D). Results are presented
based on runs with N = 20, and
each data point represents the
mean of 50 simulation runs.
Dotted black line indicates a mean
error of 0

Fig. 3 Correlation between real
and estimated S (left) and mean
error in estimates of S (right) for
each criterion under different
levels of sampling effort
(expressed as mean denominator,
D) and network sizes (in number
of individuals,N). Each data point
is based on 250 simulation runs
(50 runs for each value of K).
Dotted black line indicates a mean
error of 0
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classes for the northern bottlenose whales with an association
complexity of S = 0.69 and 3 relationship classes for the sperm
whales with an association complexity of S = 0.91. The mean
denominators of the association indices and estimates of
overdispersion were D = 34.6 and ρ = 0.010 for the northern
bottlenose whales and D = 59.9 and ρ = 0.007 for the sperm
whales. Using the simulation data in Fig. 4, these suggest that
our model estimates may have small (< 0.2) downward biases.

Figure 6 shows the estimated distribution of real associa-
tion indices from the binomial mixture models and estimates
of overdispersion. While they roughly match the distribution
of measured association indices, the matching is not too good,
but it is must be remembered that the measured association
indices include sampling error while the estimated real asso-
ciation indices do not.

Both species have a preponderance of extremely low associ-
ation relationships (μ1 = 0.017 and α1 = 0.88 for the northern
bottlenose whales; μ1 = 0.002 and α1 = 0.90 for the sperm
whales), as well as some low association relationships (μ2 =
0.125 and α2 = 0.12 for the northern bottlenose whales; μ2 =
0.072 and α2 = 0.07 for the sperm whales). The sperm whales
additionally have amuch smaller class of fairly strong association
relationships (μ3 = 0.252 andα3 = 0.03). The latter correspond to
relationships within social units (Gero et al. 2013a).

Discussion

We have presented a method for quantifying the complexity of
association networks based on dyadic sighting histories. We
use binomial mixture models to estimate the number of differ-
ent classes of relationship and the association frequencies of
each class and take the diversity of these frequencies as our
measure of association complexity. Our results show that this
approach can generally be used to effectively model the dy-
adic associations and measure network complexity and is
comparable between networks.

Hinde (1976) defined social structure as the Bnature, qual-
ity, and patterning of relationships^. Ideally, we would mea-
sure complexity from all three of these elements. However, it
is well-known that measures of the global patterning of
relationships—such as metrics from network analysis—are
not comparable between networks, due to the dependency of
these measures on network size and density (Faust 2006; Rito
et al. 2010; vanWijk et al. 2010). This is a significant problem
for the field of animal social networks because it makes the
comparative approach difficult. Our method instead examines
social complexity through the nature and quality of dyadic
relationships—providing a bottom-up measure of complexity
that can be fairly compared between association networks.

Fig. 5 Results of overdispersion
simulation. Values shown are
mean error in estimates of S for all
runs with a given overdispersion
parameter. Colors indicate criteria
used to estimate the number of
components. Dotted black line
indicates a mean error of 0
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Our method can therefore be used with a comparative ap-
proach to examine drivers of social complexity across popu-
lations, species and potentially taxa.

A previous approach to measuring dyadic complexity
(Fischer et al. 2017) is a promising way forward for many
systems, but it is not appropriate for association data, because
it requires classes of interaction to be known and pre-defined
in the complexity measure. The researcher needs data more
detailed than just who was with whom (associations) and on
whether an interaction is of the class aggressive or the class
affiliative. Our approach instead seeks to automatically iden-
tify different classes of dyad based on the patterns of associ-
ations. The same limitations that apply to any analysis using
association indices apply to our method. Since all that is being
measured and modelled is the proportion of time individuals
spend together, the nuances of social relationships are perhaps
not captured by these measures. For example, our method
would not be able to distinguish between two relationship
classes that associate with the same probability but interact

in different ways while associated. We suggest that our model
will be a useful comparative tool when the collection of de-
tailed interaction data is impractical, such as in studies of wild
cetaceans.

Our complexity measure is unaffected by network size;
since our measure is based on dyads, the association com-
plexity of a reasonably well-sampled social network will be
similar to that of the full network. Our measure is also fairly
robust to the existence of individuals that are distantly con-
nected to the network and thus observed infrequently.
Although our method rarely estimates a higher level of
complexity than that of the true network, low-intensity
sampling biases it towards artificially low estimates of
complexity. It is a common feature of social network anal-
ysis that low-intensity sampling produces metrics that are
unreliable (Whitehead 2008; Franks et al. 2010; Farine and
Whitehead 2015), and we, therefore, suggest that caution is
taken when interpreting results from this model on sparsely
sampled data.

Fig. 6 Distribution of measured
association indices for northern
bottlenose (above) and sperm
(below) whales together with
estimated relationship classes
from binomial mixture models
with ICL, with intra-class
dispersion estimated using
maximum likelihood
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Because the complexity measure is partly based on uneven-
ness of dyadic weights, we might expect a network sampled
with the gambit of the group to have a higher level of com-
plexity than a network sampled by observing pairwise associ-
ations (e.g., by focal sampling). This is because there will be
more casual acquaintances in the network as an artefact of the
gambit sampling method. For example, both individuals A
and B might only be observed together because they are both
associating with individual C. Thus, when adopting a compar-
ative approach, differences in sampling protocol will need to
be considered.

Finally, the driver of association complexity needs to be
considered for each social system, because complex social
structures can arise through a number of mechanisms.
Complex social structures, such as multilevel societies, can
arise from cognitively demanding behavioural processes, such
as cultural transmission (Cantor et al. 2015). However, com-
plexity can also be driven by simple differences between in-
dividuals in their social behaviours (Firth et al. 2017).
Furthermore, there is increasing recognition of the role that
features of the physical environment play in shaping social
structures (He et al. 2019, Topical collection on Social
complexity). Therefore, it could be that the social decisions
of individuals do not produce a complex network, but instead
social complexity is driven by patterns of space use or the
complexity of the environment (Titcomb et al. 2015; Leu
et al. 2016). Complex patterns of overlapping space use could
lead to higher estimates of social complexity with our method.
It is therefore important that our proposed metric not be
interpreted as a measure of the complexity of individuals’
social decision-making but rather as a feature of the social
structure of the population.

If our measure of association complexity is to be widely
used, it needs some measure of confidence. We suggest the
temporal jackknife, in which different temporal segments of
data are omitted in turn. This method is appropriate with be-
havioural association data when the nonparametric bootstrap
cannot be used (as randomizing identities produces self-
associations) (Whitehead 2008). Additionally, it would be
helpful to give analytic estimates of the bias due to sampling
rates and overdispersion that are indicated by our sensitivity
analyses. There also could be more robust measures of asso-
ciation complexity from mixture model data that perform bet-
ter than the Shannon index, but we have not yet found any.

The method that we have proposed could be varied or
extended in several potentially productive ways. Using the
same dataset, two or more measures of association could be
defined, based on different behavioural states or ways of as-
sociating (e.g., Gero et al. 2005, 2013b). These, then, consti-
tute multivariate relationship measures, which could be clus-
tered using multivariate mixture models (McNicholas 2016).
To obtain our univariate measure of association complexity,
using Eqs. (2) and (3), we need someway of compounding the

now vector-valued centroids of the clusters (μs), perhaps
using principal components analysis. However, we could also
calculate separate measures of complexity for each association
measure, so that, for instance, complexity could be compared
between behavioural states or modes of communication. Our
association complexity measure(s) could also be used in par-
allel with other network or relationship measures, such as
modularity (Newman 2006), to give a more nuanced compar-
ison between social networks.

Many social network data are in the form of interaction
rates (Farine and Whitehead 2015). Poisson mixture models
would be appropriate in these cases, perhaps with offset var-
iables indicating effort. These interaction rate data could be
combined with each other, or with association data, in a mul-
tivariate mixture analysis. Offset variables may be useful more
generally. For instance, generalized affiliation indices are the
residuals from a regression of the measures of association or
interaction on structural predictor variables, such as gregari-
ousness or spatiotemporal overlap (Whitehead and James
2015). Inputting generalized affiliation indices into mixture
models, either directly into Gaussian mixtures or as offsets
in binomial or Poissonmixtures, could control for use of space
and other confounds.

We have attached R and Matlab code for deriving associa-
tion complexity using mixture models, and the method will
also be incorporated in the next release of SOCPROG, a pack-
age for analysing animal social structures using individual
identification data (Whitehead 2009).
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