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Abstract
Background and Objective: The performance of classical Jennrich (J) statistic using classical estimators suffers from masking effects. To
relieve the problem, robust estimators are recommended. In this study, a robust Jennrich statistic was proposed based on a S estimator
(JS) and M estimator  (JM) as alternative to the J statistic, which has good properties. Methodology: In the simulation study, the
performance of proposed test is assessed in terms of a type I error and the power of test. The performance comparison between classical
J, JS and JM statistics are conducted under several conditions. Results: The results of simulation study showed that JS statistic has a
competitive performance comparative to a JM statistic and the J statistic. Conclusion: It was concluded that JS statistic is robust for testing
the equality of two or more difference correlation matrices when the data contains outlier.
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INTRODUCTION

Since three decades ago testing the stability of correlation
matrices began receiving much attention in economic and
financial studies. For instance, Lee1 and Tang2 studied the
stability  of  correlation  matrices  among  stock  returns.
Goetzmann et al.3 studied global market correlation matrices,
Da Costa et al.4 showed that correlation stability is important
in estate management and risk market management and
Deblauwe and Le5 studied the stability of market risk and
credit over different periods by using the J statistic6.

The Jennrich statistic is one method for testing the
equality of two or more independent samples correlation
matrices. In the multivariate statistical process control
approach, when the data are in a time sequence, this test can
be presented using a control chart to show the stability (or
instability) of the correlation matrices. This test is computed
repeatedly to measure the differences between the i-th
sample and reference sample correlation matrices under the
normality assumptions. To implement the Jennrich statistic,
the Eq. 1 developed by Jennrich6 is as follows:
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Where:

                         is the i-th sample correlation
        The i-th sample covariance matrices 
         The average of all sample correlation matrices
                            the * is Hadamard product of two matrices
Zd, Sd = A diagonal for Zi, Si, respectively
Ip = The identity matrix of size (p×p)

When Σ is unknown, sample covariance matrix, S was
used  and  this  makes  the  classical  statistic  heavily  sensitive
to  outliers  because  it  depends  on  the  normality  of
distribution. If the distributional property cannot be met,
consequently, this will lead to imprecision in decisions on
testing  procedure7.  An  alternative  estimation  method  to
overcome  the  drawback is by applying the mahalanobis
distance (MD). The MD can help to remove outliers from the
data and then it can proceed with Jennrich statistic. However, 
a  single  or  group  of observations  far  from  the main   data 
 can   have   severe  impacts  upon  this  distance because  the 
scale  and  covariance   are   generally   estimated

in  a non-robust method8.  In  addition, data  sets  with  outliers
make this method subject to swamping and masking effects.
These effects play an important role in the adequacy of the
MD as a standard for finding outliers, masking effects might
decrease the MD of an outliers. On the other hand, swamping
might increase the MD of non-outlying observations9,10 and
MD suffers from the masking effect.

One way to reduce the sensitivity of distributional
assumptions is by using robust estimators in place of the
classical estimator.  In  this  paper,  the  authors  explore  S  and
M   estimators   because   the   computational   complexity   is
less.  The  M  estimator  suggested  by  Huber11  is  a  robust
estimator   and   has  a  breakdown  point  of  1/(1+p),  where
p  is  the  number  of   dimensions.  The  S  estimator  is  based
on Rousseeuw and Leory12. The S estimator is defined as a
solution  of  the  location  and  scatter  to  minimize  the
determinant of the covariance matrix and it has high as
breakdown13. This estimator highly resistant to outliers and
gives  the  same  values  when  there   are   no  outliers14.  The
M  and  S  estimators  seek  to  minimize  the  impact  of
outliers.  Because  these  two  estimators  are  highly resistant
to  outliers  and  have  high  robust  qualities,  they  are
considered appropriate replacements. The purpose of this
research is to suggest test used for testing the equality of two
difference correlation matrices or more when the data
contains outlier.

REVIEW ON ROBUST APPROACHES

When the assumption of normality is unfulfilled, some
researchers have sought other methods to overcome the
sensitivity to the violations of this assumptions, for example,
in nonparametric method and simple transformation. This
method has grown as a field of research and has become
extensively popular in applications. Moreover, the
nonparametric method is more suitable for non-normal
symmetric data. In addition, the nonparametric procedure is
less  powerful  than  the  parametric  procedure  and
consequently a large sample size is required to reject a false
hypothesis15. However, another method was recommended
by Wilcox16 to overcome the effects of non-normality is that of
simple transformations but these failed to deal effectively with
outliers.

All violations mentioned above helped to improve the
theory of robustness which opened the way to find the
solutions in statistics11. The robust procedures are useful and
viable  alternatives  to  classical   methods   for   increasing   the
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sensitivity  and  the  power  of  statistical  tests  and  to control
type I error rates at the nominal level15,17. This procedure is
used by calculating the estimator after removing the outliers
from the data and other procedures by using robust
estimators in place of traditional estimators. The use of this
procedure is a notable in identifying the deviation of data or
outliers18. Robust estimators are used to detect outliers and to
provide results resistant to the existence of outliers 19. The aim
of robustness in statistics is to provide tools not only to assess
the properties of robustness of classical procedures but also to
produce estimators and tests that are robust to model
deviations20.

Beside S and M estimators, there are some other
robustness estimators that have received attention from
several researchers, these estimators include the minimum
volume ellipsoid (MVE) and minimum covariance determinant
(MCD),  these  two  estimators  were  introduced  by
Rousseeuw21. The MVE is used widely in practice they have
affine equivariance and also approximately have a 50% high
breakdown  point22.  According  to  Yahaya  et  al.18,  the
computation of MVE may not be feasible and is very
expensive. In addition, MVE fails to overcome with large
sample size23.

To relieve the complexity of MVE, Rousseeuw in 1985
introduced MCD. These estimators minimize the determinant
of covariance matrices. The MCD has many advantages over
MVE, the statistical efficiency is better because of MCD has
convergence rates asymptotically normal. While MVE has
lower a convergence rate and MCD has better accuracy23. The
use of MCD in data that can be computationally laborious
when the data set is high dimension18.

To overcome with problems with MCD23 developed a new
algorithm called Fast MCD, but Fast MCS becomes less
efficient in high dimensions because it includes the covariance
matrix determinant and the inversion of covariance24. To cope
the weaknesses of FMCD, Herwindiati et al.25 suggested the
minimum vector variance (MVV). According to Yahaya et al.18,
MVV is effective and based on vector variance (VV) wherein
the MVV algorithm is simpler than FMCD because MVV has a
lower computational complexity26. The MVV is effective and
efficient  in  the  outliers  labeling  process  but  it  takes  a  few
more computations when the dimension is larger than 10027.
However,  although  those  estimators  are  good,  the
computational complexity is difficult.

MATERIALS AND METHODS

This section showed the robust approaches to test the
equality  of  correlation  matrices  by  using  S  and  M
estimators.

Robust control chart based on S and M estimation: In this
section, the authors want  to  introduce  robust  control  charts
based on two robust  estimates,  namely,  M  and  S  estimators
for  identifying  the  outliers.  The  M  estimator  seeks  to
minimize the impact of the outliers. In multivariate analysis,
choosing this estimator is important because it has a
breakdown point. Maronna  and  Yohai28  defined  a  solution 
of  µ  and  E  as  a positive definite symmetric matrix Vn in R
satisfying equations:
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where, i = 1, 2,…, n, µ1 and µ2 real value function [0, 4). Our
interest  in  the  M  estimator  is  due  to  its  robust  qualities.
M estimators come from generalized maximum likelihood29

and a M estimator of multivariate location and scatter are
affine equivariante.

It was defined a robust J control chart by using M
estimator as follows:
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Equation 5 represents the robust Jennrich statistic by
using M estimators, SM is the robust M estimator. The sample
correlation matrix by using M estimator .1/2 1/2
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Let ρ: R+÷R+ the function ρ is non-decreasing in positive
values and has  ρ(0) = 0 and is constant at ρ(x) = ρ(c) for all x>c.
The S estimator is based on the ρ function. This function is
chosen because of its Gaussian efficiency and robustness:
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The choice of c depends on the desired (BP) for the
estimate. Rocke30 introduced translated bi weight (t-bi weight)
to  provide  the  lowest  sensitivity  to  outliers  for  a  given
(BP):
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The   basic   criterion   for   a   good   robust   estimators  is
the  high  breakdown  and  equally  behavior  with
uncontaminated data sets14. The BP is the percentage of
outliers  in  the  sample  that  the  estimators  can  handle,  it
was shown at 50%31. However, the BP of estimators take
different values subject to the contaminated data set by which
it is evaluated32.

It  was  defined  that  a  robust  J  control  chart  by  using
S estimator as follows:
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The Eq. 7 represents the robust the Jennrich statistic by
using S estimators, SS is the robust S estimator. The sample
correlation matrix by using S estimator is .1/2 1/2

S, i S, d S S, d
R = S S S 

Simulation study: To illustrate the performance of JS and JM,
the authors need to get achieve a better understanding of its
distribution to obtain appropriates of the control limits. The
authors apply uses a simulation study to estimate the
quantiles of JS and JM. This study focus on values of sample size
and the number of dimensions as in Table 1. The authors
generate R = 5000 sample of size N (N = n1, n2 = n1, n = n1+ n2)
from    the    standard    multivariate    normal    distribution
MVNp (0, Ip). The algorithm of test for estimating the type I
error is as follows:

C Generate data based on nature characteristics from
distribution MVNp (0, Ip)

C Calculate the statistic to each one robust and traditional
C Compute the critical value (CV) under significance level

0.05  the  value  of  test  which  is  number  4750  (0.05*
5000 = 250, now 5000-250 = 4750)

C Repeat steps i-iii for 5000 replications

Table 1: Analysis of type I error rate for small variable
p = 3 p = 5
-------------------------------------------------------------- ----------------------------------------------------------------

n ξ µ J JS JM J JS JM
10 0.0 0 0.0462 0.0484 0.0520 0.0496 0.0538 0.0478

0.1 3 0.0212 0.0404 0.0232 0.0252 0.0330 0.0214
5 0.0208 0.1016 0.0194 0.0202 0.0356 0.0180

0.2 3 0.0170 0.0288 0.0182 0.0214 0.0272 0.0190
5 0.1016 0.0222 0.0186 0.0178 0.0254 0.0228

20 0.0 0 0.0464 0.0486 0.0444 0.0500 0.0490 0.0434
0.1 3 0.0228 0.0406 0.0208 0.0266 0.0290 0.0254

5 0.0214 0.0868 0.0164 0.0220 0.0258 0.0234
0.2 3 0.0212 0.0258 0.0232 0.0274 0.0324 0.0270

5 0.0184 0.0182 0.0182 0.0244 0.0272 0.0244
30 0.0 0 0.0478 0.0464 0.0510 0.0448 0.0492 0.0496

0.1 3 0.0272 0.0524 0.0208 0.0248 0.0334 0.0352
5 0.0242 0.0100 0.0206 0.0248 0.0270 0.0272

0.2 3 0.0234 0.0252 0.0236 0.0280 0.0282 0.0286
5 0.0216 0.0258 0.0180 0.0286 0.0266 0.0256

50 0.0 0 0.0552 0.0504 0.0476 0.0482 0.0468 0.0536
0.1 3 0.0318 0.0658 0.0262 0.0278 0.0308 0.0348

5 0.0242 0.1612 0.0258 0.0290 0.0278 0.0360
0.2 3 0.0282 0.0278 0.0268 0.0298 0.0280 0.0342

5 0.0264 0.0302 0.0220 0.0284 0.0254 0.0400
100 0.0 0 0.0488 0.0476 0.0520 0.0478 0.0606 0.0456

0.1 3 0.0302 0.0310 0.0320 0.0336 0.0454 0.0330
5 0.2620 0.2044 0.0254 0.0324 0.0508 0.0324

0.2 3 0.0284 0.0258 0.0258 0.0296 0.0334 0.0306
5 0.0220 0.0278 0.0246 0.0322 0.0358 0.0286
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C If the type I error is equal or large than the CV divided by
number of replications

This study is conducted in research laboratory at
Universiti Utara Malaysia started from mid of 2016 until end of
the year to get the best and accurate results.

PERFORMANCE EVALUATION

To  evaluate  the  performance  of  the  test,  different
conditions were generated manipulating the number of
variables (p), the number of observation (n) and various
proportions of outliers (ξ) to add  a  level  of  contamination 
data and 0, 3 and 5 shifts values of mean. In this section, the
authors compared the performance of three tests in terms of
type I error rate and power of test respectively.

Type I error rate: The performance of the robust statistic is
judged based on the type I error rate. To investigate the effect
of contamination on the statistic performance the authors
have to consider a contaminated model, used by Alfaro and
Ortega33 as follows:

(1-ξ) MVNp(0, Ip)+ξ MVNp(µ, Ip) (8)

where, ξ is the proportion of contamination data µ, the shift in
mean and Ip is the identity matrix. It was assumed that
contamination with the shift in the mean but no changes in
the covariance matrix and consider levels of ξ = 0, 0.1, 0.2. The
data was generated by using multivariate normal for
independent variables. To examine the performance of the
test in terms of type I error rates and the power of test, it was
used the level of contaminations for the independent
variables including no contamination, mild, moderate and
extreme contamination the levels as follows:

C MVNp (0, Ip) no contamination
C (0.9) MVNp (0, Ip)+(0.1) MVNp (3, Ip) Mild contamination
C (0.8) MVNp (0, Ip)+(0.2) MVNp (3, Ip) Moderate

contamination
C (0.9) MVNp (0, Ip)+(0.1) MVNp (5, Ip) Moderate

contamination
C (0.8) MVNp (0, Ip)+(0.2) MVNp (5, Ip) Extreme contamination

The part of robustness in the hypothesis context is the
ability of  the  procedures  to  control  the  type  I  error  rate  to

close to the significance level ". Robust statisticians are
searching for test proceedings, which are fit to control the
type I error at the significance value. The authors can consider
a procedure robust if its empirical value of type I error is
between 0.5"<"8<1.5", for the nominal level " = 0.05; the
empirical of the type I error rate should be in the interval
0.025<"8<0.07534. Type I errors of less than 0.025 are
considered conservative and, if the empirical is above 0.075
type I errors are considered liberal. However, if the significance
level is 0.05, the test is considered robust if the empirical level
of the type I error does not exceed the value 0.075. The data
were generated by using Matlab 7.10.0.499 (R2010a). Table 1-3
which recorded the type I error for each condition are
arranged based on the ascending number of variables, namely
small (p = 3 and 5), medium (p = 10 and 15) and large number
variables (p = 20). 

In Table 1, type I error rate for the J statistic, the JS statistic
and the JM statistic are recorded. The overall results from the
table show that the JS statistic is more robust compared to the
J statistic and the JM statistic. For p = 3, the value of the type I
error of the JS statistic falls within the robust interval except
when µ = 5. On the other hand, the JM statistic for sample size
n = 10, 20 and 30 is robust only under the condition when
there are no outliers (µ = 0). For the cases of n = 50 and 100
are  not  robust  only  when  (µ  =  5)  and   the   percentage   of
outliers 20%. The J statistic in the cases in which the sample
size n = 10, 20 performs well under the condition no outliers.
However, for the J statistic for sample size n = 30, 50 and 100
the type I error falls within robust interval for 9 conditions of
the 15 conditions. Furthermore, for the dimension p = 5, the
JS statistic performs well in all conditions. On the other hand,
the J statistic and the JM statistic are robust in all conditions
when  the   sample  n  =  50   and   100.   For   the   sample   size
n = 10, 20 and 30, the J statistic falls within interval of robust
for 8 of the 15 conditions while JM statistic falls within the
interval for robust for 9 conditions of the 15 conditions. Overall
results in Table 1, show that JS statistic under most conditions
are well controlled.

The  case  of  p = 10  is  presented  in  Table  2  and  the
overall  results  on  type  I  error  show  that  the  JS  statistic
performs  well  and  the  results  fall  within  the  robust 
interval for all sample size under all conditions. On the other
hand, the J statistic failed to control the type I error under
conditions in which the percentage  of  outliers  was  20%  and
µ = 5.  The  performance  of  the  JM  statistic  is  much  better
than   the   J   statistic   and   the    JM    statistic    performs   well
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Table 2: Analysis of type I error rate for medium variable
p = 10 p = 15
-------------------------------------------------------------- ----------------------------------------------------------------

n ξ µ J JS JM J JS JM
20 0.0 0 0.0468 0.0524 0.0460 0.0506 0.0458 0.0502

0.1 3 0.0268 0.0352 0.0290 0.0286 0.0356 0.0274
5 0.0272 0.0270 0.0270 0.0324 0.0358 0.0282

0.2 3 0.0242 0.0306 0.0272 0.0248 0.0338 0.0266
5 0.0210 0.0286 0.0242 0.0246 0.0346 0.0245

30 0.0 0 0.0518 0.0560 0.0578 0.0454 0.0520 0.0568
0.1 3 0.0328 0.0298 0.0390 0.0286 0.0358 0.0396

5 0.0342 0.0334 0.0346 0.0282 0.0336 0.0320
0.2 3 0.0226 0.0312 0.0372 0.0246 0.0348 0.0356

5 0.0246 0.0332 0.0245 0.0244 0.0342 0.0232
50 0.0 0 0.0462 0.0476 0.0486 0.0470 0.0468 0.0538

0.1 3 0.0326 0.0358 0.0328 0.0412 0.0326 0.0340
5 0.0318 0.0342 0.0264 0.0356 0.0330 0.0368

0.2 3 0.0218 0.0348 0.0318 0.0380 0.0326 0.0334
5 0.0202 0.0360 0.0237 0.0247 0.0344 0.0245

100 0.0 0 0.0466 0.0462 0.0464 0.0454 0.0468 0.0500
0.1 3 0.0360 0.0378 0.0336 0.0374 0.0376 0.0424

5 0.0386 0.0398 0.0358 0.0392 0.0332 0.0432
0.2 3 0.0244 0.0364 0.0340 0.0326 0.0324 0.0450

5 0.0248 0.0372 0.0247 0.2400 0.0320 0.0249

Table 3: Analysis of type I error rate for large variable
p = 20
----------------------------------------------------------------------------------------------------

n ξ µ J JS JM
30 0.0 0 0.0542 0.0586 0.0522

0.1 3 0.0298 0.0354 0.0326
5 0.0332 0.0368 0.0304

0.2 3 0.0257 0.0356 0.0310
5 0.0237 0.0340 0.0236

40 0.0 0 0.0498 0.0448 0.0432
0.1 3 0.0344 0.0316 0.0302

5 0.0330 0.0338 0.0270
0.2 3 0.0346 0.0334 0.0296

5 0.0236 0.0336 0.0234
50 0.0 0 0.0550 0.0476 0.0484

0.1 3 0.0340 0.0378 0.0344
5 0.0336 0.0362 0.0348

0.2 3 0.0324 0.0344 0.0389
5 0.0230 0.0398 0.0372

100 0.0 0 0.0480 0.0528 0.0522
0.1 3 0.0320 0.0492 0.0346

5 0.0304 0.0408 0.0410
0.2 3 0.0318 0.0336 0.0354

5 0.0249 0.0364 0.0386

except  for  the  percentage   of   outliers  20%  and  µ = 5.  For
the  case  of  p = 15  all  the  values  of   the JS  statistic  fall
within  the  interval.  On  the  other  hand,  the J statistic for the
sample size n = 20 and 30, 6 the 10 conditions fall within  the 
interval.  When  the  sample  size  is n = 50 and 100, 8 of the 10
conditions of the JM statistic still perform as well as the case of
p = 10.

For large number of variables p = 20, all the values of the
type I error for the JS statistic that fall within the interval and it
still performs well under all conditions. On the other hand, the
JM statistic performs well and all the values are within the
interval when the sample size n = 50 and 100 but when the
sample size n = 30 and 40 it is robust except under the
conditions the percentage of outliers 20% and µ = 5. All the
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values of the type I error for J statistic fall within the interval
except the outliers 20% and µ = 5 in Table 3.

Power of test: The investigation on the robustness of the
improved  the J statistic   which   is   the   JS   statistic   and   the
JM statistic has been shown in the previous section. The results
showed that  the  JS  statistic  performs  well  compared  to  the
JM  statistic  in  terms  of  type  I  errors.  In  this   study
investigated the sensitivity analysis between the traditional
statistic J statistic, the JS statistic and the JM statistic based on
the power of test.

The power of test is defined as the probability of correctly
rejecting the null hypothesis when it is false35. Generally, the
value of the power is between 0 and 1. The minimum value
accepted is greater than 0.536. A value smaller than 0.5 is
unexceptional. Usually, the desired power value is 0.8 and
above35. In this research, the statistic is considered to be
powerful when the value is 0.8 and above and acceptable
from 0.5-0.79. The values that were 0.5 and above are shaded
in Table 4-8.

The results of examination are presented in Table 4-6.
Each  table  represents  the  ascending  number  of  variables
p = 3, 5, 10, 15 and 20. The first column in each table displays
the  percentage  of  outliers  (ξ)  and  followed  by  shift  in   the

matrix ρ and the mean shift; the following two columns
present the power of J and JS, respectively. The analysis is
performed repeatedly for different sample sizes.

Table 4 and 5 display the power of test for p = 3 and 5.
According to Table 4, for each  sample  size  from  n = 10-100
the power value for the J statistic and the JM statistic were
always smaller than the JS statistic.

When  p = 3,  there  are  67,  59  and  53  values  that  fall
within the interval of the power of test for the JS statistic, the
JM satistic and the J statistic, respectively. When p = 5 there are
51, 25 and 37 values that fall within the interval of the power
of test for the JS statistic, the JM statistic and the J statistic,
respectively, in all conditions. We conclude that JS statistic is
more powerful compared to the two statistics.

For Table 6, for p = 10, there were 16, 10 and 14 values
that  fall  within  the  interval  of  the  power  of   test   for   the
JS statistic, the JM statistic and the J statistic, respectively.
According to Table 5, all the values fall within the interval
when the sample size is large n = 100. When p = 15, from
Table 7, there were 94, 0 and 1 values that fall within the
interval of the power of test for the JS statistic, the JM statistic
and  the  J  statistic,  respectively.  It  was  concluded  that  the 
JS statistic dominates the other two statistics. According to
Table  8,  for  p = 20  (a  large  number  of  variables),  there  are

Table 4: Analysis of power of test for p = 3
n = 10 n = 20 n = 30 n = 50 n = 100
--------------------------------- ---------------------------------- ---------------------------------- --------------------------------- -----------------------------------

ξ ρ µ J JM JS J JM JS J JM JS J JM JS J JM JS
0 0.0 0 0.040 0.0500 0.0512 0.0494 0.0500 0.0482 0.0528 0.0500 0.0812 0.0536 0.0502 0.0548 0.0578 0.0500 0.0500

0.1 0.073 0.0648 0.0878 0.1108 0.1004 0.1574 0.1694 0.1156 0.2432 0.2454 0.1644 0.5404 0.4856 0.3290 0.6134
0.2 0.142 0.1188 0.2272 0.3194 0.2400 0.5334 0.4992 0.3410 0.7678 0.7646 0.5560 0.9254 0.9816 0.8900 0.9966
0.3 0.282 0.2084 0.4474 0.6450 0.4764 0.8894 0.8638 0.6748 0.9848 0.9852 0.9056 0.9996 0.9998 0.9982 1
0.4 0.468 0.3393 0.6758 0.8936 0.7256 0.7902 0.9864 0.9090 0.9994 0.9998 0.9922 1 1 1 1
0.5 0.661 0.4966 0.8362 0.9838 0.9084 0.9920 0.9996 0.9807 1 1 1 1 1 1 1
0.6 0.826 0.6502 0.9226 0.9986 0.9810 0.9996 1.0000 0.9992 1 1 1 1 1 1 1
0.7 0.941 0.7756 0.9744 1 0.9840 1 1 1 1 1 1 1 1 1 1

0.1 0.0 3 0.018 0.032 0.047 0.025 0.035 0.034 0.026 0.031 0.052 0.029 0.034 0.067 0.031 0.034 0.106
0.1 0.019 0.035 0.036 0.026 0.050 0.040 0.038 0.063 0.108 0.052 0.097 0.090 0.083 0.209 0.143
0.2 0.016 0.046 0.031 0.037 0.114 0.048 0.091 0.175 0.225 0.185 0.314 0.187 0.310 0.638 0.740
0.3 0.017 0.077 0.038 0.083 0.237 0.089 0.251 0.434 0.554 0.493 0.749 0.893 0.656 0.986 0.794
0.4 0.019 0.115 0.039 0.257 0.437 0.590 0.618 0.736 0.777 0.932 0.962 0.967 1 1 0.959
0.5 0.024 0.171 0.043 0.460 0.619 0.696 0.912 0.928 0.967 0.999 0.999 0.996 1 1 1
0.6 0.049 0.249 0.053 0.878 0.884 0.981 0.998 0.994 0.999 1 1 1 1 1 1
0.7 0.106 0.323 0.177 0.987 0.988 0.926 1 1 1 1 1 1 1 1 1
0.0 5 0.016 0.033 0.111 0.025 0.038 0.092 0.025 0.035 0.109 0.026 0.040 0.157 0.028 0.04 0.198
0.1 0.021 0.036 0.085 0.023 0.057 0.070 0.027 0.070 0.105 0.036 0.116 0.146 0.045 0.242 0.215
0.2 0.017 0.05 0.085 0.022 0.123 0.074 0.041 0.198 0.115 0.094 0.451 0.174 0.287 0.388 0.292
0.3 0.018 0.055 0.077 0.028 0.253 0.089 0.105 0.469 0.174 0.363 0.782 0.508 0.876 0.991 0.551
0.4 0.009 0.076 0.083 0.063 0.450 0.119 0.258 0.762 0.597 0.818 0.965 0.874 0.997 1 0.854
0.5 0.006 0.166 0.071 0.145 0.695 0.593 0.754 0.939 0.646 0.988 1 0.989 1 1 0.979
0.6 0.002 0.235 0.090 0.246 0.885 0.678 0.981 0.996 0.989 1 1 1 1 1 0.999
0.7 0.001 0.341 0.076 0.647 0.979 0.712 1 0.999 1 1 1 1 1 1 1
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Table 4: Continue
n = 10 n = 20 n = 30 n = 50 n = 100
--------------------------------- --------------------------------- --------------------------------- -------------------------------- -----------------------------------

ξ ρ µ J JM JS J JM JS J JM JS J JM JS J JM JS
0.2 0.0 3 0.021 0.017 0.023 0.022 0.023 0.022 0.024 0.022 0.024 0.026 0.029 0.027 0.030 0.031 0.038

0.1 0.02 0.016 0.016 0.021 0.023 0.018 0.029 0.024 0.026 0.045 0.039 0.054 0.032 0.065 0.045
0.2 0.014 0.015 0.024 0.034 0.023 0.022 0.037 0.035 0.040 0.132 0.092 0.253 0.331 0.328 0.157
0.3 0.012 0.014 0.015 0.060 0.027 0.026 0.093 0.08 0.094 0.485 0.302 0.647 0.523 0.809 0.598
0.4 0.010 0.011 0.012 0.156 0.047 0.058 0.160 0.242 0.254 0.895 0.692 0.947 0.96 0.992 0.962
0.5 0.007 0.007 0.012 0.421 0.14 0.564 0.490 0.550 0.627 0.997 0.949 0.998 0.999 1 0.999
0.6 0.011 0.006 0.017 0.795 0.377 0.839 0.853 0.873 0.923 1 0.999 1 1 1 1
0.7 0.024 0.006 0.025 0.977 0.753 0.996 1 0.992 0.998 1 1 1 1 1 1
0.0 5 0.021 0.020 0.021 0.019 0.029 0.020 0.026 0.026 0.028 0.026 0.033 0.027 0.023 0.036 0.03
0.1 0.017 0.020 0.015 0.022 0.026 0.017 0.021 0.025 0.021 0.032 0.039 0.044 0.031 0.036 0.035
0.2 0.013 0.018 0.019 0.017 0.021 0.018 0.025 0.028 0.025 0.069 0.073 0.13 0.27 0.063 0.302
0.3 0.014 0.015 0.014 0.019 0.018 0.016 0.041 0.045 0.042 0.302 0.228 0.546 0.834 0.267 0.921
0.4 0.01 0.012 0.012 0.041 0.017 0.014 0.150 0.132 0.161 0.770 0.603 0.869 0.998 0.754 0.999
0.5 0.008 0.008 0.010 0.161 0.039 0.325 0.265 0.402 0.361 0.989 0.929 0.996 1 0.989 1
0.6 0.002 0.003 0.005 0.524 0.165 0.640 0.765 0.795 0.807 1 0.999 1 1 1 1
0.7 0.001 0.001 0.002 0.929 0.523 0.954 0.822 0.986 0.922 1 1 1 1 1 1

Table 5: Analysis of Power of test for p = 5
n = 10 n = 20 n = 30 n = 50 n = 100
--------------------------------- --------------------------------- --------------------------------- -------------------------------- -----------------------------------

ξ ρ µ J JM JS J JM JS J JM JS J JM JS J JM JS
0 0.0 0 0.0500 0.0500 0.0470 0.0474 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500  0.0500 0.0500 0.0500 0.0500

0.1 0.0644 0.0724 0.0986 0.1164 0.1118 0.1204 0.0470 0.1696 0.1840 0.3878 0.2816 0.3970 0.0460 0.6110 0.0480
0.2 0.1278 0.1206 0.2214 0.3756 0.3408 0.5770 0.1990 0.5786 0.6270 0.9530 0.8492 0.9992 0.7468 0.9974 0.8088
0.3 0.2442 0.1970 0.1994 0.7264 0.6742 0.7294 0.7012 0.9104 0.9502 1 0.9968 1 1 1 1
0.4 0.3984 0.2904 0.5080 0.9404 0.8964 0.9456 0.9702 0.9948 0.9976 1 1 1 1 1 1
0.5 0.5452 0.4030 0.64462 0.9944 0.9820 0.9960 1 1 1 1 1 1 1 1 1
0.6 0.6938 0.5294 0.7868 0.9999 0.9980 1 1 1 1 1 1 1 1 1 1
0.7 0.8108 0.6430 0.8200 1 1 1 1 1 1 1 1 1 1 1 1

0.1 0.0 3 0.022 0.028 0.028 0.033 0.03 0.035 0.031 0.031 0.032 0.033 0.036 0.0354 0.056 0.022 0.055
0.1 0.020 0.029 0.027 0.024 0.034 0.028 0.035 0.046 0.030 0.040 0.044 0.0440 0.089 0.020 0.088
0.2 0.023 0.031 0.033 0.028 0.048 0.032 0.039 0.095 0.042 0.100 0.103 0.1022 0.299 0.023 0.298
0.3 0.026 0.033 0.032 0.033 0.067 0.031 0.055 0.233 0.071 0.388 0.579 0.5786 0.891 0.026 0.890
0.4 0.025 0.032 0.031 0.032 0.108 0.035 0.088 0.430 0.171 0.886 0.929 0.9286 0.999 0.025 0.998
0.5 0.020 0.026 0.036 0.036 0.212 0.037 0.253 0.847 0.512 0.998 1 0.9999 1 0.02 1
0.6 0.013 0.017 0.024 0.080 0.406 0.083 0.662 0.979 0.893 1 1 1 1 0.013 1
0.7 0.005 0.015 0.021 0.242 0.647 0.545 0.964 1 0.996 1 1 1 1 0.005 1

0.1 0.0 5 0.016 0.032 0.038 0.026 0.032 0.030 0.029 0.035 0.035 0.031 0.040 0.0400 0.057 0.016 0.056
0.1 0.020 0.028 0.029 0.028 0.033 0.030 0.029 0.042 0.031 0.035 0.037 0.0364 0.068 0.02 0.067
0.2 0.016 0.028 0.035 0.026 0.034 0.028 0.031 0.058 0.031 0.048 0.049 0.0484 0.138 0.016 0.137
0.3 0.020 0.025 0.036 0.023 0.035 0.039 0.023 0.105 0.029 0.109 0.298 0.2980 0.502 0.020 0.501
0.4 0.024 0.023 0.029 0.020 0.033 0.021 0.034 0.267 0.037 0.415 0.735 0.7350 0.939 0.024 0.938
0.5 0.013 0.014 0.031 0.012 0.042 0.019 0.079 0.595 0.604 0.926 0.991 0.9908 1 0.013 0.999
0.6 0.010 0.008 0.030 0.009 0.089 0.070 0.450 0.899 0.980 1 1 1 1 0.01 1
0.7 0.006 0.004 0.028 0.006 0.205 0.016 0.962 0.994 1 1 1 1 1 0.006 1

0.2 0.0 3 0.021 0.017 0.038 0.024 0.026 0.032 0.024 0.028 0.030 0.032 0.037 0.0366 0.038 0.021 0.037
0.1 0.021 0.016 0.056 0.024 0.025 0.025 0.033 0.025 0.034 0.038 0.040 0.0394 0.047 0.021 0.047
0.2 0.019 0.015 0.157 0.025 0.025 0.026 0.027 0.025 0.030 0.067 0.114 0.1132 0.142 0.019 0.141
0.3 0.021 0.014 0.653 0.021 0.021 0.022 0.04 0.023 0.043 0.229 0.501 0.5001 0.626 0.021 0.725
0.4 0.018 0.014 0.989 0.023 0.015 0.029 0.05 0.019 0.052 0.718 0.921 0.9202 0.989 0.018 1
0.5 0.012 0.011 1 0.016 0.010 0.017 0.105 0.023 0.147 0.989 1 0.9996 1 0.012 1
0.6 0.011 0.008 1 0.008 0.006 0.009 0.362 0.104 0.563 1 1 1 1 0.011 1
0.7 0.006 0.004 1 0.01 0.001 0.011 0.851 0.497 0.960 1 1 1 1 0.006 1

0.2 0.0 5 0.018 0.017 0.041 0.026 0.027 0.033 0.026 0.028 0.030 0.032 0.040 0.0396 0.037 0.018 0.036
0.1 0.022 0.015 0.024 0.025 0.026 0.027 0.030 0.026 0.034 0.034 0.040 0.0392 0.044 0.022 0.043
0.2 0.018 0.016 0.026 0.021 0.023 0.026 0.025 0.024 0.027 0.040 0.044 0.0434 0.092 0.018 0.091
0.3 0.023 0.015 0.026 0.022 0.019 0.024 0.029 0.018 0.032 0.068 0.103 0.1022 0.290 0.023 0.289
0.4 0.017 0.014 0.027 0.015 0.014 0.017 0.029 0.013 0.024 0.264 0.502 0.5015 0.884 0.017 0.883
0.5 0.013 0.012 0.029 0.012 0.009 0.022 0.016 0.008 0.017 0.843 0.977 0.9762 1 0.013 0.999
0.6 0.013 0.009 0.025 0.003 0.005 0.012 0.037 0.003 0.039 0.999 1 1 1 0.013 1
0.7 0.007 0.005 0.019 0.002 0.001 0.008 0.184 0.019 0.36 1 1 1 1 0.007 1
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Table 6: Analysis of power of test for p = 10
n = 20 n = 30 n = 50 n = 100
----------------------------------------- ----------------------------------------- --------------------------------------- ----------------------------------------

ξ ρ µ J JM JS J JM JS J JM JS J JM JS
0 0.0 0 0.0552 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0468

0.1 0.1456 0.1304 0.1510 0.2482 0.2102 0.2538 0.5434 0.4828 0.5570 0.9474 0.9196 0.9468
0.2 0.2854 0.2200 0.2948 0.6772 0.5508 0.6858 0.9299 0.9714 0.9866 1 1 1
0.3 0.2730 0.2002 0.3516 0.9238 0.7996 0.9950 1 1 1 1 1 1
0.4 0.2010 0.1186 0.2670 0.9944 0.9478 0.9998 1 1 1 1 1 1
0.5 0.1136 0.0468 0.1872 0.9996 0.9906 1 1 1 1 1 1 1
0.6 0.1188 0.0108 0.1668 1 0.9994 1 1 1 1 1 1 1
0.7 0.2632 0.0038 0.3284 1 1 1 1 1 1 1 1 1

0.1 0.0 3 0.030 0.028 0.039 0.032 0.03 0.036 0.036 0.033 0.036 0.04 0.033 0.0416
0.1 0.029 0.026 0.022 0.03 0.027 0.03 0.038 0.035 0.043 0.053 0.050 0.0582
0.2 0.024 0.017 0.014 0.023 0.017 0.024 0.03 0.031 0.032 0.123 0.117 0.1996
0.3 0.013 0.008 0.005 0.01 0.006 0.02 0.021 0.02 0.022 0.507 0.457 0.5968
0.4 0.005 0.003 0.012 0.004 0.002 0.014 0.009 0.007 0.012 0.988 0.950 0.9932
0.5 0.001 0.001 0.008 0.001 0.001 0.011 0.003 0.002 0.018 1 1 1
0.6 0 0 0.004 0 0 0.021 0.01 0.007 0.013 1 1 1
0.7 0.001 0 0.002 0.034 0 0.009 0.002 0.066 0.012 1 1 1

0.1 0.0 5 0.031 0.025 0.03 0.027 0.029 0.029 0.035 0.033 0.04 0.035 0.038 0.0410
0.1 0.024 0.021 0.027 0.016 0.025 0.029 0.032 0.032 0.042 0.041 0.039 0.0488
0.2 0.021 0.015 0.021 0.002 0.016 0.019 0.023 0.022 0.029 0.044 0.043 0.0514
0.3 0.012 0.008 0.014 0.001 0.006 0.009 0.01 0.01 0.013 0.063 0.049 0.1100
0.4 0.003 0.003 0.006 0.001 0.001 0.003 0.003 0.003 0.003 0.173 0.111 0.6500
0.5 0.002 0.001 0.01 0.001 0.001 0.008 0.001 0.001 0.002 0.865 0.636 1
0.6 0 0 0.006 0.001 0 0.001 0 0 0.002 1 0.997 1
0.7 0 0 0.003 0 0 0.002 0 0 0.001 1 1 1

0.2 0.0 3 0.033 0.029 0.03 0.033 0.025 0.034 0.031 0.031 0.04 0.038 0.033 0.0444
0.1 0.028 0.026 0.031 0.029 0.021 0.031 0.032 0.029 0.036 0.037 0.032 0.0420
0.2 0.023 0.018 0.02 0.021 0.016 0.024 0.025 0.023 0.034 0.073 0.034 0.0770
0.3 0.009 0.01 0.013 0.01 0.007 0.011 0.013 0.012 0.014 0.152 0.037 0.1938
0.4 0.004 0.003 0.017 0.003 0.002 0.034 0.004 0.003 0.011 0.786 0.059 0.8508
0.5 0.001 0.001 0.014 0.001 0 0.031 0.001 0.001 0.002 0.999 0.381 0.9999
0.6 0 0 0.011 0 0 0.024 0 0 0.003 1 0.990 1
0.7 0 0 0.008 0 0 0.011 0 0 0.04 1 1 1

0.2 0.0 5 0.033 0.027 0.029 0.03 0.027 0.035 0.032 0.03 0.041 0.035 0.033 0.0380
0.1 0.034 0.026 0.029 0.032 0.023 0.028 0.032 0.029 0.041 0.037 0.032 0.0370
0.2 0.022 0.019 0.023 0.017 0.016 0.02 0.022 0.022 0.039 0.036 0.027 0.0408
0.3 0.014 0.01 0.011 0.009 0.008 0.009 0.01 0.011 0.012 0.038 0.021 0.0384
0.4 0.007 0.004 0.015 0.003 0.002 0.024 0.002 0.003 0.006 0.036 0.013 0.0406
0.5 0.001 0.001 0.012 0.001 0 0.002 0 0.002 0.001 0.412 0.008 0.5498
0.6 0 0 0.011 0 0 0.002 0 0 0.001 0.998 0.074 0.9996
0.7 0 0 0.002 0 0 0.002 0 0 0.001 1 0.982 1

Table 7: Analysis of power of test for p = 15
n = 20 n = 30 n = 50 n = 100
------------------------------------------ -------------------------------------- --------------------------------------- ---------------------------------------

ξ ρ µ J JM JS J JM JS J JM JS J JM JS
0 0.0 0 0.0500 0.0500 0.0500 0.050 0.050 0.050 0.050 0.050 0.050 0.056 0.05 0.056

0.1 0.1074 0.0914 0.1896 0.138 0.175 0.243 0.366 0.471 0.2116 0.048 0.95 0.274
0.2 0.0996 0.0784 0.2248 0.214 0.170 0.827 0.5270 0.816 0.7656 0.984 1 1
0.3 0.0372 0.0284 0.3883 0.059 0.043 0.996 0.903 0.888 0.9911 1 1 1
0.4 0.0166 0.0052 0.5276 0.014 0.002 1 0.980 0.957 1 1 1 1
0.5 0.0066 0.0002 0.6078 0.012 0 1 0.999 0.997 1 1 1 1
0.6 0.0014 0.0000 0.6404 0.008 0 1 1 0.999 1 1 1 1
0.7 0.0004 0.0000 0.7696 0.006 0 1 1 1 1 1 1 1

0.1 0.0 3 0.031 0.020 0.090 0.033 0.028 0.095 0.042 0.034 0.0943 0.042 0.0380 0.050
0.1 0.027 0.018 0.187 0.030 0.024 0.264 0.035 0.026 0.2640 0.038 0.0348 1
0.2 0.016 0.012 0.444 0.021 0.012 0.676 0.014 0.012 0.6755 0.031 0.0196 1
0.3 0.006 0.005 0.791 0.02 0.002 0.962 0.008 0.001 0.9612 0.008 0.0030 1
0.4 0.002 0.002 0.970 0.012 0.001 0.999 0.003 0 0.9986 0.001 0.0000 1
0.5 0.001 0.001 0.999 0.008 0 1 0.002 0 1 0 0.0000 1
0.6 0.001 0 1 0.004 0 1 0.001 0 1 0.013 0.0000 1
0.7 0 0 1 0.001 0 1 0.001 0 1 0.691 0.0090 1
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Table 7: Continue
n = 20 n = 30 n = 50 n = 100
------------------------------------------ -------------------------------------- --------------------------------------- ---------------------------------------

ξ ρ µ J JM JS J JM JS J JM JS J JM JS
0.1 0.0 5 0.034 0.020 0.273 0.029 0.026 0.336 0.039 0.034 0.3353 0.040 0.0410 0.060

0.1 0.029 0.018 0.29 0.023 0.024 0.371 0.033 0.027 0.3709 0.038 0.0340 0.189
0.2 0.017 0.013 0.501 0.014 0.013 0.655 0.014 0.014 0.6542 0.015 0.0130 0.658
0.3 0.01 0.008 0.742 0.013 0.004 0.921 0.009 0.002 0.9204 0.008 0.0014 0.768
0.4 0.004 0.003 0.937 0.011 0.001 0.995 0.003 0.001 0.9948 0.004 0.0000 0.896
0.5 0.002 0.001 0.994 0.009 0.001 1 0.002 0 0.9999 0.002 0.0000 0.980
0.6 0.001 0.001 1 0.003 0 1 0.001 0 1 0.001 0.0000 1
0.7 0.001 0 1 0.001 0 1 0.001 0 1 0.001 0.0000 1

0.2 0.0 3 0.03 0.025 0.067 0.028 0.026 0.071 0.044 0.037 0.0702 0.043 0.0410 0.058
0.1 0.023 0.023 0.162 0.027 0.023 0.241 0.034 0.029 0.2408 0.038 0.0366 0.236
0.2 0.018 0.016 0.38 0.011 0.003 0.607 0.014 0.012 0.6070 0.02 0.0166 0.671
0.3 0.01 0.007 0.725 0.004 0.001 0.919 0.007 0.003 0.9189 0.009 0.0018 0.789
0.4 0.003 0.004 0.939 0.002 0 0.996 0.004 0 0.9959 0.005 0.0000 0.9876
0.5 0.002 0.001 0.997 0.003 0 1 0.002 0 0.9998 0.003 0.0000 0.9999
0.6 0.001 0 1 0.001 0 1 0.001 0 1 0.002 0.0000 1.0000
0.7 0.001 0 1 0.001 0 1 0.001 0 1 0.001 0.0000 1.0000

0.2 0.0 5 0.031 0.027 0.066 0.03 0.027 0.078 0.044 0.037 0.0772 0.04 0.0418 0.0675
0.1 252 0.026 0.162 0.025 0.022 0.235 0.034 0.03 0.2341 0.034 0.0340 0.2126
0.2 0.021 0.019 0.345 0.016 0.015 0.542 0.015 0.014 0.5416 0.013 0.0152 0.6754
0.3 0.011 0.01 0.632 0.015 0.004 0.874 0.003 0.004 0.8733 0.008 0.0016 0.8754
0.4 0.005 0.005 0.896 0.01 0.002 0.986 0.002 0.001 0.9860 0.002 0.0000 0.9756
0.5 0.002 0.002 0.987 0.004 0 1 0.001 0 0.9999 0.002 0.0000 0.9999
0.6 0.001 0.001 1 0.002 0 1 0.001 0 1 0.001 0.0000 1.0000
0.7 0.001 0 1 0.001 0 1 0.001 0 1 0 0.0000 1.0000

Table 8: Analysis of power of test for p = 20
n = 30 n = 50 n = 100
---------------------------------------------- ------------------------------------------------ -------------------------------------------------

ξ ρ µ J JM JS J JM JS J JM JS
0 0.0 0 0.050 0.050 0.050 0.050 0.050 0.050 0.056 0.05 0.056

0.1 0.138 0.131 0.243 0.366 0.355 0.243 0.048 0.95 0.274
0.2 0.059 0.042 0.827 0.225 0.192 0.827 0.984 1 1
0.3 0.036 0.001 0.996 0.008 0.006 0.996 1 1 1
0.4 0.014 0 1 0.003 0 1 1 1 1
0.5 0.012 0 1 0.002 0 1 1 1 1
0.6 0.008 0 1 0.001 0 1 1 1 1
0.7 0.006 0 1 0.001 0 1 1 1 1

0.1 0.0 3 0.034 0.030 0.093 0.035 0.032 0.045 0.045 0.038 0.050
0.1 0.028 0.026 0.284 0.024 0.022 0.294 0.029 0.027 0.230
0.2 0.017 0.011 0.740 0.005 0.004 0.788 0.006 0.004 0.675
0.3 0.008 0.002 0.977 0 0 0.989 0.003 0 0.876
0.4 0.006 0.001 1 0 0 1 0.002 0 0.898
0.5 0.004 0 1 0 0 1 0.002 0 0.955
0.6 0.003 0 1 0 0 1 0.001 0 1
0.7 0.001 0 1 0 0 1 0 0 1

0.1 0.0 5 0.028 0.029 0.046 0.036 0.05 0.550 0.043 0.038 0.065
0.1 0.028 0.026 0.353 0.024 0.032 0.346 0.031 0.028 0.253
0.2 0.013 0.015 0.681 0.006 0.022 0.690 0.006 0.006 0.743
0.3 0.008 0.004 0.943 0.002 0.006 0.910 0.004 0 0.855
0.4 0.002 0.001 0.997 0.002 0.001 0.950 0.002 0 0.899
0.5 0.002 0 1 0.001 0 1 0.001 0 0.944
0.6 0.001 0 1 0.001 0 1 0.001 0 0.979
0.7 0.001 0 1 0 0 1 0 0 1

0.2 0.0 3 0.036 0.029 0.087 0.034 0.034 0.049 0.044 0.043 0.058
0.1 0.025 0.024 0.252 0.022 0.024 0.259 0.029 0.028 0.263
0.2 0.013 0.009 0.609 0.007 0.007 0.605 0.014 0.005 0.601
0.3 0.009 0.003 0.905 0.002 0 0.910 0.009 0 0.915
0.4 0.005 0.001 0.993 0.002 0 0.950 0.003 0 0.996
0.5 0.002 0 1 0.001 0 1 0.002 0 1
0.6 0.001 0 1 0 0 1 0.001 0 1
0.7 0.001 0 1 0 0 1 0 0 1
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Table 8: Continue
n = 30 n = 50 n = 100
---------------------------------------------- ------------------------------------------------ -------------------------------------------------

ξ D µ J JM JS J JM JS J JM JS
0.2 0.0 5 0.035 0.031 0.039 0.038 0.033 0.040 0.045 0.042 0.068

0.1 0.028 0.026 0.045 0.024 0.026 0.029 0.037 0.028 0.125
0.2 0.016 0.014 0.035 0.010 0.010 0.049 0.029 0.007 0.354
0.3 0.009 0.005 0.041 0.003 0.001 0.066 0.013 0.001 0.833
0.4 0.009 0.001 0.145 0.002 0 0.151 0.008 0 0.895
0.5 0.004 0 0.959 0.001 0 0.959 0.003 0 1
0.6 0.003 0 1 0 0 1 0.001 0 1
0.7 0.001 0 1 0 0 1 0 0 1

65, 0 and 0 values that fall within the interval of the power of
test for the JS statistic, the JM statistic and the J statistic,
respectively. The JS statistic still dominates the other two
statistics.

CONCLUSION

The Jennrich statistic is known as a popular test for testing
two or several correlation matrices, however, under conditions
of non-normality, this test is known to under perform.
Alternative test statistics are recommended to produce active
methods regardless of the conditions. In this study, we
proposed alternative methods to the Jennrich statistic by
using a robust estimator known as the S estimator for scatter
matrix. The S  estimator  not  only  has  the  properties  of  the
well-known M estimator such as the affine equivariant and a
high breakdown point and has a better computational. The
performance of the proposed robust test by using the S
estimator (JS) and by using the M estimator (JM was compared
with the J statistic in terms of the type I error rate and the
power of test. The simulation study showed that  statistic
performs well in terms of controlling type I errors and the
power of test.

SIGNIFICANCE STATEMENTS

The study discovers the robust approach that can be
beneficial for testing the equality of two or more difference
correlation matrices at the time when the data contains
outlier. This study will help the researcher to uncover the
critical areas of multivariate outlier that many researchers were
not able to explore. The new theory on robust J statistic may
be arrived.
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