

$$
\begin{array}{r}
\text { Asian Journal of } \\
\text { Scientific Research }
\end{array}
$$

ISSN 1992-1454

Research Article Testing Several Correlation Matrices Using Robust Approach

Shamshuritawati Sharif and Tareq Ahmed Mahmoud Atiany

School of Quantitative Sciences, UUM-College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

Abstract

Background and Objective: The performance of classical Jennrich (J) statistic using classical estimators suffers from masking effects. To relieve the problem, robust estimators are recommended. In this study, a robust Jennrich statistic was proposed based on a S estimator $\left(J_{S}\right)$ and M estimator $\left(J_{M}\right)$ as alternative to the J statistic, which has good properties. Methodology: In the simulation study, the performance of proposed test is assessed in terms of a type l error and the power of test. The performance comparison between classical J, J_{S} and J_{M} statistics are conducted under several conditions. Results: The results of simulation study showed that J_{S} statistic has a competitive performance comparative to a J_{M} statistic and the J statistic. Conclusion: It was concluded that J_{S} statistic is robust for testing the equality of two or more difference correlation matrices when the data contains outlier.

Key words: Correlation matrix, hypothesis testing, M estimator, power of test, S estimator, type I error, outlier, data contamination

Received: July 06, 2017
Accepted: August 30, 2017
Published: December 15, 2017

Citation: Shamshuritawati Sharif and Tareq Ahmed Mahmoud Atiany, 2018. Testing several correlation matrices using robust approach. Asian J. Sci. Res., 11: 84-95.

Corresponding Author: Tareq Ahmed Mahmoud Atiany, School of Quantitative Sciences, UUM-College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia Tel: +972599335927

Copyright: © 2018 Shamshuritawati Sharif and Tareq Ahmed Mahmoud Atiany. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

INTRODUCTION

Since three decades ago testing the stability of correlation matrices began receiving much attention in economic and financial studies. For instance, Lee ${ }^{1}$ and Tang ${ }^{2}$ studied the stability of correlation matrices among stock returns. Goetzmann et al. ${ }^{3}$ studied global market correlation matrices, Da Costa et al. ${ }^{4}$ showed that correlation stability is important in estate management and risk market management and Deblauwe and Le ${ }^{5}$ studied the stability of market risk and credit over different periods by using the J statistic ${ }^{6}$.

The Jennrich statistic is one method for testing the equality of two or more independent samples correlation matrices. In the multivariate statistical process control approach, when the data are in a time sequence, this test can be presented using a control chart to show the stability (or instability) of the correlation matrices. This test is computed repeatedly to measure the differences between the i-th sample and reference sample correlation matrices under the normality assumptions. To implement the Jennrich statistic, the Eq. 1 developed by Jennrich ${ }^{6}$ is as follows:

$$
\begin{equation*}
J=\sum_{i=1}^{m}\left\{\frac{1}{2} \operatorname{Tr}\left(Z_{i}^{2}\right)-\left(Z_{d}\right)^{\prime} W^{-1} Z_{d}\right\} \tag{1}
\end{equation*}
$$

Where:
$Z_{i}=n_{i}^{\frac{1}{2}} R_{p}^{-1}\left(R_{i}-R_{p}\right)$
$\mathrm{R}_{\mathrm{i}}=\mathrm{S}_{\mathrm{d}, \mathrm{i}}^{-1 / 2} \mathrm{~S}_{\mathrm{i}} \mathrm{S}_{\mathrm{d}, \mathrm{i}}^{-1 / 2}$ is the i -th sample correlation
$S_{i}=$ The i-th sample covariance matrices
$R_{p}=$ The average of all sample correlation matrices
$\mathrm{W}=\mathrm{I}+\mathrm{R}_{\mathrm{p}}{ }^{*} \mathrm{R}_{\mathrm{p}}^{-1}$, the * is Hadamard product of two matrices
$Z_{d}, S_{d}=A$ diagonal for Z_{i}, S_{i}, respectively
$I_{p}=$ The identity matrix of size $(p \times p)$

When Σ is unknown, sample covariance matrix, S was used and this makes the classical statistic heavily sensitive to outliers because it depends on the normality of distribution. If the distributional property cannot be met, consequently, this will lead to imprecision in decisions on testing procedure ${ }^{7}$. An alternative estimation method to overcome the drawback is by applying the mahalanobis distance (MD). The MD can help to remove outliers from the data and then it can proceed with Jennrich statistic. However, a single or group of observations far from the main data can have severe impacts upon this distance because the scale and covariance are generally estimated
in a non-robust method ${ }^{8}$. In addition, data sets with outliers make this method subject to swamping and masking effects. These effects play an important role in the adequacy of the MD as a standard for finding outliers, masking effects might decrease the MD of an outliers. On the other hand, swamping might increase the MD of non-outlying observations ${ }^{9,10}$ and MD suffers from the masking effect.

One way to reduce the sensitivity of distributional assumptions is by using robust estimators in place of the classical estimator. In this paper, the authors explore S and M estimators because the computational complexity is less. The M estimator suggested by Huber ${ }^{11}$ is a robust estimator and has a breakdown point of $1 /(1+p)$, where p is the number of dimensions. The S estimator is based on Rousseeuw and Leory ${ }^{12}$. The S estimator is defined as a solution of the location and scatter to minimize the determinant of the covariance matrix and it has high as breakdown ${ }^{13}$. This estimator highly resistant to outliers and gives the same values when there are no outliers ${ }^{14}$. The M and S estimators seek to minimize the impact of outliers. Because these two estimators are highly resistant to outliers and have high robust qualities, they are considered appropriate replacements. The purpose of this research is to suggest test used for testing the equality of two difference correlation matrices or more when the data contains outlier.

REVIEW ON ROBUST APPROACHES

When the assumption of normality is unfulfilled, some researchers have sought other methods to overcome the sensitivity to the violations of this assumptions, for example, in nonparametric method and simple transformation. This method has grown as a field of research and has become extensively popular in applications. Moreover, the nonparametric method is more suitable for non-normal symmetric data. In addition, the nonparametric procedure is less powerful than the parametric procedure and consequently a large sample size is required to reject a false hypothesis ${ }^{15}$. However, another method was recommended by Wilcox ${ }^{16}$ to overcome the effects of non-normality is that of simple transformations but these failed to deal effectively with outliers.

All violations mentioned above helped to improve the theory of robustness which opened the way to find the solutions in statistics ${ }^{11}$. The robust procedures are useful and viable alternatives to classical methods for increasing the
sensitivity and the power of statistical tests and to control type I error rates at the nominal level ${ }^{15,17}$. This procedure is used by calculating the estimator after removing the outliers from the data and other procedures by using robust estimators in place of traditional estimators. The use of this procedure is a notable in identifying the deviation of data or outliers ${ }^{18}$. Robust estimators are used to detect outliers and to provide results resistant to the existence of outliers ${ }^{19}$. The aim of robustness in statistics is to provide tools not only to assess the properties of robustness of classical procedures but also to produce estimators and tests that are robust to model deviations ${ }^{20}$.

Beside S and M estimators, there are some other robustness estimators that have received attention from several researchers, these estimators include the minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD), these two estimators were introduced by Rousseeuw ${ }^{21}$. The MVE is used widely in practice they have affine equivariance and also approximately have a 50% high breakdown point ${ }^{22}$. According to Yahaya et al. ${ }^{18}$, the computation of MVE may not be feasible and is very expensive. In addition, MVE fails to overcome with large sample size ${ }^{23}$.

To relieve the complexity of MVE, Rousseeuw in 1985 introduced MCD. These estimators minimize the determinant of covariance matrices. The MCD has many advantages over MVE, the statistical efficiency is better because of MCD has convergence rates asymptotically normal. While MVE has lower a convergence rate and MCD has better accuracy ${ }^{23}$. The use of MCD in data that can be computationally laborious when the data set is high dimension ${ }^{18}$.

To overcome with problems with MCD ${ }^{23}$ developed a new algorithm called Fast MCD, but Fast MCS becomes less efficient in high dimensions because it includes the covariance matrix determinant and the inversion of covariance ${ }^{24}$. To cope the weaknesses of FMCD, Herwindiati et al. ${ }^{25}$ suggested the minimum vector variance (MVV). According to Yahaya et al. ${ }^{18}$, MVV is effective and based on vector variance (VV) wherein the MVV algorithm is simpler than FMCD because MVV has a lower computational complexity ${ }^{26}$. The MVV is effective and efficient in the outliers labeling process but it takes a few more computations when the dimension is larger than 100^{27}. However, although those estimators are good, the computational complexity is difficult.

MATERIALS AND METHODS

This section showed the robust approaches to test the equality of correlation matrices by using S and M estimators.

Robust control chart based on S and M estimation: In this section, the authors want to introduce robust control charts based on two robust estimates, namely, M and S estimators for identifying the outliers. The M estimator seeks to minimize the impact of the outliers. In multivariate analysis, choosing this estimator is important because it has a breakdown point. Maronna and Yohai ${ }^{28}$ defined a solution of μ and E as a positive definite symmetric matrix V_{n} in R satisfying equations:

$$
\begin{gather*}
\frac{1}{n} \sum_{\mathrm{i}} \mathrm{u}_{1} \mathrm{~d}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)=0 \tag{2}\\
\frac{1}{\mathrm{n}} \sum_{\mathrm{i}} \mathrm{u}_{2} \mathrm{~d}_{\mathrm{i}}^{2}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{\mathrm{t}}=\sum \tag{3}\\
\mathrm{d}_{\mathrm{i}}=\left(\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{\mathrm{t}} \sum^{-1}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)\right)^{1 / 2} \tag{4}
\end{gather*}
$$

where, $\mathrm{i}=1,2, \cdots, \mathrm{n}, \mu_{1}$ and μ_{2} real value function $[0, \infty)$. Our interest in the M estimator is due to its robust qualities. M estimators come from generalized maximum likelihood ${ }^{29}$ and a M estimator of multivariate location and scatter are affine equivariante.

It was defined a robust J control chart by using M estimator as follows:

$$
\begin{equation*}
\mathrm{J}_{\mathrm{M}}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left\{\frac{1}{2} \operatorname{Tr}\left(\mathrm{Z}_{\mathrm{M}, \mathrm{i}}^{2}\right)-\left(\mathrm{Z}_{\mathrm{Md}}\right)^{\prime} \mathrm{W}_{\mathrm{M}}^{-1} \mathrm{Z}_{\mathrm{M} . \mathrm{d}}\right\} \tag{5}
\end{equation*}
$$

Equation 5 represents the robust Jennrich statistic by using M estimators, S_{M} is the robust M estimator. The sample correlation matrix by using M estimator $R_{M, i}=S_{M, d}^{-1 / 2} S_{M} S_{M, d}^{-1 / 2}$.

Let $\rho: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}$the function ρ is non-decreasing in positive values and has $\rho(0)=0$ and is constant at $\rho(x)=\rho(c)$ for all $x \geq c$. The S estimator is based on the ρ function. This function is chosen because of its Gaussian efficiency and robustness:

$$
\begin{equation*}
\mathrm{b}_{0}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}}^{\mathrm{n}} \rho\left(\mathrm{~d}_{\mathrm{i}}\right) \tag{6}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}}= \sqrt{\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{t} \sum^{-1}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)} \\
& \mathrm{b}_{0}=\mathrm{E}\left[\rho\left(\mathrm{~d}_{\mathrm{i}}\right)\right] \\
&= \frac{v \chi^{2}\left(\mathrm{v}+2, c^{2}\right)}{2}-\frac{\mathrm{v}(\mathrm{v}+2) \chi^{2}\left(\mathrm{v}+4, c^{2}\right)}{2 c^{2}}+\frac{v(v+2)(v+4) \chi^{2}\left(v+6, c^{2}\right)}{6 c^{4}} \\
&+\frac{\mathrm{c}^{2}}{6}\left[1-\chi^{2}\left(v, c^{2}\right)\right] \\
& \mathrm{d}_{\mathrm{i}} \sim N(0,1)
\end{aligned}
$$

The choice of c depends on the desired (BP) for the estimate. Rocke ${ }^{30}$ introduced translated bi weight (t-bi weight) to provide the lowest sensitivity to outliers for a given (BP):

$$
\rho\left(\mathrm{d}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
\frac{\mathrm{d}_{\mathrm{i}}^{2}}{2}-\frac{\mathrm{d}_{\mathrm{i}}^{4}}{2 \mathrm{c}^{2}}+\frac{\mathrm{d}_{\mathrm{i}}^{6}}{6 \mathrm{c}^{4}}\left|\mathrm{~d}_{\mathrm{i}}\right| \leq \mathrm{c} \\
\frac{\mathrm{c}^{2}}{6}\left|\mathrm{~d}_{\mathrm{i}}\right| \leq \mathrm{c}
\end{array}\right.
$$

The basic criterion for a good robust estimators is the high breakdown and equally behavior with uncontaminated data sets ${ }^{14}$. The BP is the percentage of outliers in the sample that the estimators can handle, it was shown at $50 \% \%^{31}$. However, the BP of estimators take different values subject to the contaminated data set by which it is evaluated ${ }^{32}$.

It was defined that a robust J control chart by using S estimator as follows:

$$
\begin{equation*}
\mathrm{J}_{\mathrm{S}}=\sum_{\mathrm{i}=1}^{\mathrm{m}}\left\{\frac{1}{2} \operatorname{Tr}\left(\mathrm{Z}_{\mathrm{s}, \mathrm{i}}{ }^{2}\right)-\left(\mathrm{Z}_{\mathrm{s}, \mathrm{~d}}\right)^{\prime} \mathrm{W}_{\mathrm{s}}^{-1} \mathrm{Z}_{\mathrm{d}}\right\} \tag{7}
\end{equation*}
$$

The Eq. 7 represents the robust the Jennrich statistic by using S estimators, S_{S} is the robust S estimator. The sample correlation matrix by using S estimator is $R_{\mathrm{S}, \mathrm{i}}=\mathrm{S}_{\mathrm{s}, \mathrm{d}}^{-1 / 2} \mathrm{~S}_{\mathrm{s}} \mathrm{S}_{\mathrm{s}, \mathrm{d}}^{-1 / 2}$.

Simulation study: To illustrate the performance of J_{S} and J_{M} the authors need to get achieve a better understanding of its distribution to obtain appropriates of the control limits. The authors apply uses a simulation study to estimate the quantiles of J_{S} and J_{M}. This study focus on values of sample size and the number of dimensions as in Table 1. The authors generate $R=5000$ sample of size $N\left(N=n_{1}, n_{2}=n_{1}, n=n_{1}+n_{2}\right)$ from the standard multivariate normal distribution $M V N_{p}\left(0, I_{p}\right)$. The algorithm of test for estimating the type I error is as follows:

- Generate data based on nature characteristics from distribution $\mathrm{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)$
- Calculate the statistic to each one robust and traditional
- Compute the critical value (CV) under significance level 0.05 the value of test which is number 4750 (0.05^{*} $5000=250$, now $5000-250=4750$)
- Repeat steps i-iii for 5000 replications

n	ξ	μ	$p=3$			$p=5$		
			J	J_{5}	$J_{\text {M }}$	J	J_{5}	J_{M}
10	0.0	0	0.0462	0.0484	0.0520	0.0496	0.0538	0.0478
	0.1	3	0.0212	0.0404	0.0232	0.0252	0.0330	0.0214
		5	0.0208	0.1016	0.0194	0.0202	0.0356	0.0180
	0.2	3	0.0170	0.0288	0.0182	0.0214	0.0272	0.0190
		5	0.1016	0.0222	0.0186	0.0178	0.0254	0.0228
20	0.0	0	0.0464	0.0486	0.0444	0.0500	0.0490	0.0434
	0.1	3	0.0228	0.0406	0.0208	0.0266	0.0290	0.0254
		5	0.0214	0.0868	0.0164	0.0220	0.0258	0.0234
	0.2	3	0.0212	0.0258	0.0232	0.0274	0.0324	0.0270
		5	0.0184	0.0182	0.0182	0.0244	0.0272	0.0244
30	0.0	0	0.0478	0.0464	0.0510	0.0448	0.0492	0.0496
	0.1	3	0.0272	0.0524	0.0208	0.0248	0.0334	0.0352
		5	0.0242	0.0100	0.0206	0.0248	0.0270	0.0272
	0.2	3	0.0234	0.0252	0.0236	0.0280	0.0282	0.0286
		5	0.0216	0.0258	0.0180	0.0286	0.0266	0.0256
50	0.0	0	0.0552	0.0504	0.0476	0.0482	0.0468	0.0536
	0.1	3	0.0318	0.0658	0.0262	0.0278	0.0308	0.0348
		5	0.0242	0.1612	0.0258	0.0290	0.0278	0.0360
	0.2	3	0.0282	0.0278	0.0268	0.0298	0.0280	0.0342
		5	0.0264	0.0302	0.0220	0.0284	0.0254	0.0400
100	0.0	0	0.0488	0.0476	0.0520	0.0478	0.0606	0.0456
	0.1	3	0.0302	0.0310	0.0320	0.0336	0.0454	0.0330
		5	0.2620	0.2044	0.0254	0.0324	0.0508	0.0324
	0.2	3	0.0284	0.0258	0.0258	0.0296	0.0334	0.0306
		5	0.0220	0.0278	0.0246	0.0322	0.0358	0.0286

- If the type I error is equal or large than the CV divided by number of replications

This study is conducted in research laboratory at Universiti Utara Malaysia started from mid of 2016 until end of the year to get the best and accurate results.

PERFORMANCE EVALUATION

To evaluate the performance of the test, different conditions were generated manipulating the number of variables (p), the number of observation (n) and various proportions of outliers (ξ) to add a level of contamination data and 0,3 and 5 shifts values of mean. In this section, the authors compared the performance of three tests in terms of type I error rate and power of test respectively.

Type I error rate: The performance of the robust statistic is judged based on the type I error rate. To investigate the effect of contamination on the statistic performance the authors have to consider a contaminated model, used by Alfaro and Ortega ${ }^{33}$ as follows:

$$
\begin{equation*}
(1-\xi) \operatorname{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)+\xi \operatorname{MVN}_{\mathrm{p}}\left(\mu, \mathrm{I}_{\mathrm{p}}\right) \tag{8}
\end{equation*}
$$

where, ξ is the proportion of contamination data μ, the shift in mean and I_{p} is the identity matrix. It was assumed that contamination with the shift in the mean but no changes in the covariance matrix and consider levels of $\xi=0,0.1,0.2$. The data was generated by using multivariate normal for independent variables. To examine the performance of the test in terms of type I error rates and the power of test, it was used the level of contaminations for the independent variables including no contamination, mild, moderate and extreme contamination the levels as follows:

- $\mathrm{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)$ no contamination
- (0.9) $\mathrm{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)+(0.1) \mathrm{MVN}_{\mathrm{p}}\left(3, \mathrm{I}_{\mathrm{p}}\right)$ Mild contamination
- (0.8) $\mathrm{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)+(0.2) \quad \mathrm{MVN}_{\mathrm{p}}\left(3, \mathrm{I}_{\mathrm{p}}\right)$ Moderate contamination
- (0.9) $\mathrm{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)+(0.1) \quad \mathrm{MVN}_{\mathrm{p}}\left(5, \mathrm{I}_{\mathrm{p}}\right) \quad$ Moderate contamination
- (0.8) $\mathrm{MVN}_{\mathrm{p}}\left(0, \mathrm{I}_{\mathrm{p}}\right)+(0.2) \mathrm{MVN}_{\mathrm{p}}\left(5, \mathrm{I}_{\mathrm{p}}\right)$ Extreme contamination

The part of robustness in the hypothesis context is the ability of the procedures to control the type I error rate to
close to the significance level α. Robust statisticians are searching for test proceedings, which are fit to control the type I error at the significance value. The authors can consider a procedure robust if its empirical value of type I error is between $0.5 \alpha \leq \hat{\alpha} \leq 1.5 \alpha$, for the nominal level $\alpha=0.05$; the empirical of the type I error rate should be in the interval $0.025 \leq \hat{\alpha} \leq 0.075^{34}$. Type I errors of less than 0.025 are considered conservative and, if the empirical is above 0.075 type l errors are considered liberal. However, if the significance level is 0.05 , the test is considered robust if the empirical level of the type I error does not exceed the value 0.075. The data were generated by using Matlab 7.10.0.499 (R2010a). Table 1-3 which recorded the type I error for each condition are arranged based on the ascending number of variables, namely small ($p=3$ and 5), medium ($p=10$ and 15) and large number variables ($p=20$).

In Table 1, type I error rate for the J statistic, the J_{S} statistic and the J_{M} statistic are recorded. The overall results from the table show that the J_{S} statistic is more robust compared to the J statistic and the J_{M} statistic. For $p=3$, the value of the type I error of the J_{S} statistic falls within the robust interval except when $\mu=5$. On the other hand, the J_{M} statistic for sample size $\mathrm{n}=10,20$ and 30 is robust only under the condition when there are no outliers ($\mu=0$). For the cases of $\mathrm{n}=50$ and 100 are not robust only when ($\mu=5$) and the percentage of outliers 20%. The J statistic in the cases in which the sample size $n=10,20$ performs well under the condition no outliers. However, for the J statistic for sample size $n=30,50$ and 100 the type I error falls within robust interval for 9 conditions of the 15 conditions. Furthermore, for the dimension $p=5$, the J_{S} statistic performs well in all conditions. On the other hand, the J statistic and the J_{M} statistic are robust in all conditions when the sample $\mathrm{n}=50$ and 100 . For the sample size $n=10,20$ and 30 , the J statistic falls within interval of robust for 8 of the 15 conditions while J_{M} statistic falls within the interval for robust for 9 conditions of the 15 conditions. Overall results in Table 1, show that J_{S} statistic under most conditions are well controlled.

The case of $p=10$ is presented in Table 2 and the overall results on type I error show that the J_{S} statistic performs well and the results fall within the robust interval for all sample size under all conditions. On the other hand, the J statistic failed to control the type I error under conditions in which the percentage of outliers was 20% and $\mu=5$. The performance of the J_{M} statistic is much better than the J statistic and the J_{M} statistic performs well

Table 2: Analysis of type I error rate for medium variable

			$\mathrm{p}=10$			$\mathrm{p}=15$		
n	ξ	μ	J	J_{5}	J_{M}	J	J_{5}	J_{M}
20	0.0	0	0.0468	0.0524	0.0460	0.0506	0.0458	0.0502
	0.1	3	0.0268	0.0352	0.0290	0.0286	0.0356	0.0274
		5	0.0272	0.0270	0.0270	0.0324	0.0358	0.0282
	0.2	3	0.0242	0.0306	0.0272	0.0248	0.0338	0.0266
		5	0.0210	0.0286	0.0242	0.0246	0.0346	0.0245
30	0.0	0	0.0518	0.0560	0.0578	0.0454	0.0520	0.0568
	0.1	3	0.0328	0.0298	0.0390	0.0286	0.0358	0.0396
		5	0.0342	0.0334	0.0346	0.0282	0.0336	0.0320
	0.2	3	0.0226	0.0312	0.0372	0.0246	0.0348	0.0356
		5	0.0246	0.0332	0.0245	0.0244	0.0342	0.0232
50	0.0	0	0.0462	0.0476	0.0486	0.0470	0.0468	0.0538
	0.1	3	0.0326	0.0358	0.0328	0.0412	0.0326	0.0340
		5	0.0318	0.0342	0.0264	0.0356	0.0330	0.0368
	0.2	3	0.0218	0.0348	0.0318	0.0380	0.0326	0.0334
		5	0.0202	0.0360	0.0237	0.0247	0.0344	0.0245
100	0.0	0	0.0466	0.0462	0.0464	0.0454	0.0468	0.0500
	0.1	3	0.0360	0.0378	0.0336	0.0374	0.0376	0.0424
		5	0.0386	0.0398	0.0358	0.0392	0.0332	0.0432
	0.2	3	0.0244	0.0364	0.0340	0.0326	0.0324	0.0450
		5	0.0248	0.0372	0.0247	0.2400	0.0320	0.0249

Table 3: Analysis of type I error rate for large variable

			$\mathrm{p}=20$		
n	ξ	μ	J	J_{5}	J_{M}
30	0.0	0	0.0542	0.0586	0.0522
	0.1	3	0.0298	0.0354	0.0326
		5	0.0332	0.0368	0.0304
	0.2	3	0.0257	0.0356	0.0310
		5	0.0237	0.0340	0.0236
40	0.0	0	0.0498	0.0448	0.0432
	0.1	3	0.0344	0.0316	0.0302
		5	0.0330	0.0338	0.0270
	0.2	3	0.0346	0.0334	0.0296
		5	0.0236	0.0336	0.0234
50	0.0	0	0.0550	0.0476	0.0484
	0.1	3	0.0340	0.0378	0.0344
		5	0.0336	0.0362	0.0348
	0.2	3	0.0324	0.0344	0.0389
		5	0.0230	0.0398	0.0372
100	0.0	0	0.0480	0.0528	0.0522
	0.1	3	0.0320	0.0492	0.0346
		5	0.0304	0.0408	0.0410
	0.2	3	0.0318	0.0336	0.0354
		5	0.0249	0.0364	0.0386

except for the percentage of outliers 20% and $\mu=5$. For the case of $p=15$ all the values of the J_{S} statistic fall within the interval. On the other hand, the J statistic for the sample size $n=20$ and 30,6 the 10 conditions fall within the interval. When the sample size is $n=50$ and 100,8 of the 10 conditions of the J_{M} statistic still perform as well as the case of $\mathrm{p}=10$.

For large number of variables $p=20$, all the values of the type I error for the J_{5} statistic that fall within the interval and it still performs well under all conditions. On the other hand, the J_{M} statistic performs well and all the values are within the interval when the sample size $\mathrm{n}=50$ and 100 but when the sample size $\mathrm{n}=30$ and 40 it is robust except under the conditions the percentage of outliers 20% and $\mu=5$. All the
values of the type I error for J statistic fall within the interval except the outliers 20% and $\mu=5$ in Table 3.

Power of test: The investigation on the robustness of the improved the Jstatistic which is the J_{S} statistic and the J_{M} statistic has been shown in the previous section. The results showed that the J_{S} statistic performs well compared to the J_{M} statistic in terms of type I errors. In this study investigated the sensitivity analysis between the traditional statistic J statistic, the J_{S} statistic and the J_{M} statistic based on the power of test.

The power of test is defined as the probability of correctly rejecting the null hypothesis when it is false ${ }^{35}$. Generally, the value of the power is between 0 and 1 . The minimum value accepted is greater than 0.5^{36}. A value smaller than 0.5 is unexceptional. Usually, the desired power value is 0.8 and above ${ }^{35}$. In this research, the statistic is considered to be powerful when the value is 0.8 and above and acceptable from 0.5-0.79. The values that were 0.5 and above are shaded in Table 4-8.

The results of examination are presented in Table 4-6. Each table represents the ascending number of variables $p=3,5,10,15$ and 20 . The first column in each table displays the percentage of outliers (ξ) and followed by shift in the
matrix ρ and the mean shift; the following two columns present the power of J and J_{S}, respectively. The analysis is performed repeatedly for different sample sizes.

Table 4 and 5 display the power of test for $p=3$ and 5 . According to Table 4, for each sample size from $n=10-100$ the power value for the J statistic and the J_{M} statistic were always smaller than the J_{S} statistic.

When $p=3$, there are 67,59 and 53 values that fall within the interval of the power of test for the J_{S} statistic, the J_{M} satistic and the J statistic, respectively. When $p=5$ there are 51,25 and 37 values that fall within the interval of the power of test for the J_{S} statistic, the J_{M} statistic and the J statistic, respectively, in all conditions. We conclude that J_{S} statistic is more powerful compared to the two statistics.

For Table 6, for $p=10$, there were 16,10 and 14 values that fall within the interval of the power of test for the J_{S} statistic, the J_{M} statistic and the J statistic, respectively. According to Table 5, all the values fall within the interval when the sample size is large $n=100$. When $p=15$, from Table 7, there were 94,0 and 1 values that fall within the interval of the power of test for the J_{S} statistic, the J_{M} statistic and the J statistic, respectively. It was concluded that the J_{S} statistic dominates the other two statistics. According to Table 8, for $\mathrm{p}=20$ (a large number of variables), there are

			$\mathrm{n}=10$			$\mathrm{n}=20$			$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
ξ	ρ	μ	J	$J_{\text {M }}$	J_{5}	J	J_{M}	J_{5}	J	J_{M}	J_{5}	J	$J_{\text {M }}$	J_{5}	J	J_{M}	J_{5}
0	0.0	0	0.040	0.0500	0.0512	0.0494	0.0500	0.0482	0.0528	0.0500	0.0812	0.0536	0.0502	0.0548	0.0578	0.0500	0.0500
	0.1		0.073	0.0648	0.0878	0.1108	0.1004	0.1574	0.1694	0.1156	0.2432	0.2454	0.1644	0.5404	0.4856	0.3290	0.6134
	0.2		0.142	0.1188	0.2272	0.3194	0.2400	0.5334	0.4992	0.3410	0.7678	0.7646	0.5560	0.9254	0.9816	0.8900	0.9966
	0.3		0.282	0.2084	0.4474	0.6450	0.4764	0.8894	0.8638	0.6748	0.9848	0.9852	0.9056	0.9996	0.9998	0.9982	1
	0.4		0.468	0.3393	0.6758	0.8936	0.7256	0.7902	0.9864	0.9090	0.9994	0.9998	0.9922	1	1	1	1
	0.5		0.661	0.4966	0.8362	0.9838	0.9084	0.9920	0.9996	0.9807	1	1	1	1	1	1	1
	0.6		0.826	0.6502	0.9226	0.9986	0.9810	0.9996	1.0000	0.9992	1	1	1	1	1	1	1
	0.7		0.941	0.7756	0.9744	1	0.9840	1	1	1	1	1	1	1	1	1	1
0.1	0.0	3	0.018	0.032	0.047	0.025	0.035	0.034	0.026	0.031	0.052	0.029	0.034	0.067	0.031	0.034	0.106
	0.1		0.019	0.035	0.036	0.026	0.050	0.040	0.038	0.063	0.108	0.052	0.097	0.090	0.083	0.209	0.143
	0.2		0.016	0.046	0.031	0.037	0.114	0.048	0.091	0.175	0.225	0.185	0.314	0.187	0.310	0.638	0.740
	0.3		0.017	0.077	0.038	0.083	0.237	0.089	0.251	0.434	0.554	0.493	0.749	0.893	0.656	0.986	0.794
	0.4		0.019	0.115	0.039	0.257	0.437	0.590	0.618	0.736	0.777	0.932	0.962	0.967	1	1	0.959
	0.5		0.024	0.171	0.043	0.460	0.619	0.696	0.912	0.928	0.967	0.999	0.999	0.996	1	1	1
	0.6		0.049	0.249	0.053	0.878	0.884	0.981	0.998	0.994	0.999	1	1	1	1	1	1
	0.7		0.106	0.323	0.177	0.987	0.988	0.926	1	1	1	1	1	1	1	1	1
	0.0	5	0.016	0.033	0.111	0.025	0.038	0.092	0.025	0.035	0.109	0.026	0.040	0.157	0.028	0.04	0.198
	0.1		0.021	0.036	0.085	0.023	0.057	0.070	0.027	0.070	0.105	0.036	0.116	0.146	0.045	0.242	0.215
	0.2		0.017	0.05	0.085	0.022	0.123	0.074	0.041	0.198	0.115	0.094	0.451	0.174	0.287	0.388	0.292
	0.3		0.018	0.055	0.077	0.028	0.253	0.089	0.105	0.469	0.174	0.363	0.782	0.508	0.876	0.991	0.551
	0.4		0.009	0.076	0.083	0.063	0.450	0.119	0.258	0.762	0.597	0.818	0.965	0.874	0.997	1	0.854
	0.5		0.006	0.166	0.071	0.145	0.695	0.593	0.754	0.939	0.646	0.988	1	0.989	1	1	0.979
	0.6		0.002	0.235	0.090	0.246	0.885	0.678	0.981	0.996	0.989	1	1	1	1	1	0.999
	0.7		0.001	0.341	0.076	0.647	0.979	0.712	1	0.999	1	1	1	1	1	1	1

		$\mathrm{n}=10$				$\mathrm{n}=20$			$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
ξ	ρ	μ	J	$\mathrm{J}_{\text {M }}$	J_{5}	J	$J_{\text {M }}$	J_{5}	J	J_{M}	J_{5}	J	J_{M}	J_{5}	J	$J_{\text {M }}$	J_{5}
0.2	0.0	3	0.021	0.017	0.023	0.022	0.023	0.022	0.024	0.022	0.024	0.026	0.029	0.027	0.030	0.031	0.038
	0.1		0.02	0.016	0.016	0.021	0.023	0.018	0.029	0.024	0.026	0.045	0.039	0.054	0.032	0.065	0.045
	0.2		0.014	0.015	0.024	0.034	0.023	0.022	0.037	0.035	0.040	0.132	0.092	0.253	0.331	0.328	0.157
	0.3		0.012	0.014	0.015	0.060	0.027	0.026	0.093	0.08	0.094	0.485	0.302	0.647	0.523	0.809	0.598
	0.4		0.010	0.011	0.012	0.156	0.047	0.058	0.160	0.242	0.254	0.895	0.692	0.947	0.96	0.992	0.962
	0.5		0.007	0.007	0.012	0.421	0.14	0.564	0.490	0.550	0.627	0.997	0.949	0.998	0.999	1	0.999
	0.6		0.011	0.006	0.017	0.795	0.377	0.839	0.853	0.873	0.923	1	0.999	1	1	1	1
	0.7		0.024	0.006	0.025	0.977	0.753	0.996	1	0.992	0.998	1	1	1	1	1	1
	0.0	5	0.021	0.020	0.021	0.019	0.029	0.020	0.026	0.026	0.028	0.026	0.033	0.027	0.023	0.036	0.03
	0.1		0.017	0.020	0.015	0.022	0.026	0.017	0.021	0.025	0.021	0.032	0.039	0.044	0.031	0.036	0.035
	0.2		0.013	0.018	0.019	0.017	0.021	0.018	0.025	0.028	0.025	0.069	0.073	0.13	0.27	0.063	0.302
	0.3		0.014	0.015	0.014	0.019	0.018	0.016	0.041	0.045	0.042	0.302	0.228	0.546	0.834	0.267	0.921
	0.4		0.01	0.012	0.012	0.041	0.017	0.014	0.150	0.132	0.161	0.770	0.603	0.869	0.998	0.754	0.999
	0.5		0.008	0.008	0.010	0.161	0.039	0.325	0.265	0.402	0.361	0.989	0.929	0.996	1	0.989	1
	0.6		0.002	0.003	0.005	0.524	0.165	0.640	0.765	0.795	0.807	,	0.999	1	1	1	1
	0.7		0.001	0.001	0.002	0.929	0.523	0.954	0.822	0.986	0.922	1	1	1	1	1	1

Table 5: Analysis of Power of test for $p=5$

		$\mathrm{n}=10$				$\mathrm{n}=20$			$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
ξ	ρ	μ	J	J_{M}	J_{5}												
0	0.0	0	0.0500	0.0500	0.0470	0.0474	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500
	0.1		0.0644	0.0724	0.0986	0.1164	0.1118	0.1204	0.0470	0.1696	0.1840	0.3878	0.2816	0.3970	0.0460	0.6110	0.0480
	0.2		0.1278	0.1206	0.2214	0.3756	0.3408	0.5770	0.1990	0.5786	0.6270	0.9530	0.8492	0.9992	0.7468	0.9974	0.8088
	0.3		0.2442	0.1970	0.1994	0.7264	0.6742	0.7294	0.7012	0.9104	0.9502	1	0.9968	1	1	1	1
	0.4		0.3984	0.2904	0.5080	0.9404	0.8964	0.9456	0.9702	0.9948	0.9976	1	1	1	1	1	1
	0.5		0.5452	0.4030	0.64462	0.9944	0.9820	0.9960	1	1	1	1	1	1	1	1	1
	0.6		0.6938	0.5294	0.7868	0.9999	0.9980	1	1	1	1	1	1	1	1	1	1
	0.7		0.8108	0.6430	0.8200	1	1	1	1	1	1	1	1	1	1	1	1
0.1	0.0	3	0.022	0.028	0.028	0.033	0.03	0.035	0.031	0.031	0.032	0.033	0.036	0.0354	0.056	0.022	0.055
	0.1		0.020	0.029	0.027	0.024	0.034	0.028	0.035	0.046	0.030	0.040	0.044	0.0440	0.089	0.020	0.088
	0.2		0.023	0.031	0.033	0.028	0.048	0.032	0.039	0.095	0.042	0.100	0.103	0.1022	0.299	0.023	0.298
	0.3		0.026	0.033	0.032	0.033	0.067	0.031	0.055	0.233	0.071	0.388	0.579	0.5786	0.891	0.026	0.890
	0.4		0.025	0.032	0.031	0.032	0.108	0.035	0.088	0.430	0.171	0.886	0.929	0.9286	0.999	0.025	0.998
	0.5		0.020	0.026	0.036	0.036	0.212	0.037	0.253	0.847	0.512	0.998	1	0.9999	1	0.02	1
	0.6		0.013	0.017	0.024	0.080	0.406	0.083	0.662	0.979	0.893	1	1	1	1	0.013	1
	0.7		0.005	0.015	0.021	0.242	0.647	0.545	0.964	1	0.996	1	1	1	1	0.005	1
0.1	0.0	5	0.016	0.032	0.038	0.026	0.032	0.030	0.029	0.035	0.035	0.031	0.040	0.0400	0.057	0.016	0.056
	0.1		0.020	0.028	0.029	0.028	0.033	0.030	0.029	0.042	0.031	0.035	0.037	0.0364	0.068	0.02	0.067
	0.2		0.016	0.028	0.035	0.026	0.034	0.028	0.031	0.058	0.031	0.048	0.049	0.0484	0.138	0.016	0.137
	0.3		0.020	0.025	0.036	0.023	0.035	0.039	0.023	0.105	0.029	0.109	0.298	0.2980	0.502	0.020	0.501
	0.4		0.024	0.023	0.029	0.020	0.033	0.021	0.034	0.267	0.037	0.415	0.735	0.7350	0.939	0.024	0.938
	0.5		0.013	0.014	0.031	0.012	0.042	0.019	0.079	0.595	0.604	0.926	0.991	0.9908	1	0.013	0.999
	0.6		0.010	0.008	0.030	0.009	0.089	0.070	0.450	0.899	0.980	1	1	1	1	0.01	1
	0.7		0.006	0.004	0.028	0.006	0.205	0.016	0.962	0.994	1	1	1	1	1	0.006	1
0.2	0.0	3	0.021	0.017	0.038	0.024	0.026	0.032	0.024	0.028	0.030	0.032	0.037	0.0366	0.038	0.021	0.037
	0.1		0.021	0.016	0.056	0.024	0.025	0.025	0.033	0.025	0.034	0.038	0.040	0.0394	0.047	0.021	0.047
	0.2		0.019	0.015	0.157	0.025	0.025	0.026	0.027	0.025	0.030	0.067	0.114	0.1132	0.142	0.019	0.141
	0.3		0.021	0.014	0.653	0.021	0.021	0.022	0.04	0.023	0.043	0.229	0.501	0.5001	0.626	0.021	0.725
	0.4		0.018	0.014	0.989	0.023	0.015	0.029	0.05	0.019	0.052	0.718	0.921	0.9202	0.989	0.018	1
	0.5		0.012	0.011	1	0.016	0.010	0.017	0.105	0.023	0.147	0.989	1	0.9996	1	0.012	1
	0.6		0.011	0.008	1	0.008	0.006	0.009	0.362	0.104	0.563	1	1	1	1	0.011	1
	0.7		0.006	0.004	1	0.01	0.001	0.011	0.851	0.497	0.960	1	1	1	1	0.006	1
0.2	0.0	5	0.018	0.017	0.041	0.026	0.027	0.033	0.026	0.028	0.030	0.032	0.040	0.0396	0.037	0.018	0.036
	0.1		0.022	0.015	0.024	0.025	0.026	0.027	0.030	0.026	0.034	0.034	0.040	0.0392	0.044	0.022	0.043
	0.2		0.018	0.016	0.026	0.021	0.023	0.026	0.025	0.024	0.027	0.040	0.044	0.0434	0.092	0.018	0.091
	0.3		0.023	0.015	0.026	0.022	0.019	0.024	0.029	0.018	0.032	0.068	0.103	0.1022	0.290	0.023	0.289
	0.4		0.017	0.014	0.027	0.015	0.014	0.017	0.029	0.013	0.024	0.264	0.502	0.5015	0.884	0.017	0.883
	0.5		0.013	0.012	0.029	0.012	0.009	0.022	0.016	0.008	0.017	0.843	0.977	0.9762	1	0.013	0.999
	0.6		0.013	0.009	0.025	0.003	0.005	0.012	0.037	0.003	0.039	0.999	1	1	1	0.013	1
	0.7		0.007	0.005	0.019	0.002	0.001	0.008	0.184	0.019	0.36	1	1	1	1	0.007	1

Table 6: Analysis of power of test for $p=10$

			$\mathrm{n}=20$			$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
ξ	ρ	μ	J	J_{M}	J_{5}									
0	0.0	0	0.0552	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0468
	0.1		0.1456	0.1304	0.1510	0.2482	0.2102	0.2538	0.5434	0.4828	0.5570	0.9474	0.9196	0.9468
	0.2		0.2854	0.2200	0.2948	0.6772	0.5508	0.6858	0.9299	0.9714	0.9866	1	1	1
	0.3		0.2730	0.2002	0.3516	0.9238	0.7996	0.9950	1	1	1	1	1	1
	0.4		0.2010	0.1186	0.2670	0.9944	0.9478	0.9998	1	1	1	1	1	1
	0.5		0.1136	0.0468	0.1872	0.9996	0.9906	1	1	1	1	1	1	1
	0.6		0.1188	0.0108	0.1668	1	0.9994	1	1	1	1	1	1	1
	0.7		0.2632	0.0038	0.3284	1	1	1	1	1	1	1	1	1
0.1	0.0	3	0.030	0.028	0.039	0.032	0.03	0.036	0.036	0.033	0.036	0.04	0.033	0.0416
	0.1		0.029	0.026	0.022	0.03	0.027	0.03	0.038	0.035	0.043	0.053	0.050	0.0582
	0.2		0.024	0.017	0.014	0.023	0.017	0.024	0.03	0.031	0.032	0.123	0.117	0.1996
	0.3		0.013	0.008	0.005	0.01	0.006	0.02	0.021	0.02	0.022	0.507	0.457	0.5968
	0.4		0.005	0.003	0.012	0.004	0.002	0.014	0.009	0.007	0.012	0.988	0.950	0.9932
	0.5		0.001	0.001	0.008	0.001	0.001	0.011	0.003	0.002	0.018	1	1	1
	0.6		0	0	0.004	0	0	0.021	0.01	0.007	0.013	1	1	1
	0.7		0.001	0	0.002	0.034	0	0.009	0.002	0.066	0.012	1	1	1
0.1	0.0	5	0.031	0.025	0.03	0.027	0.029	0.029	0.035	0.033	0.04	0.035	0.038	0.0410
	0.1		0.024	0.021	0.027	0.016	0.025	0.029	0.032	0.032	0.042	0.041	0.039	0.0488
	0.2		0.021	0.015	0.021	0.002	0.016	0.019	0.023	0.022	0.029	0.044	0.043	0.0514
	0.3		0.012	0.008	0.014	0.001	0.006	0.009	0.01	0.01	0.013	0.063	0.049	0.1100
	0.4		0.003	0.003	0.006	0.001	0.001	0.003	0.003	0.003	0.003	0.173	0.111	0.6500
	0.5		0.002	0.001	0.01	0.001	0.001	0.008	0.001	0.001	0.002	0.865	0.636	1
	0.6		0	0	0.006	0.001	0	0.001	0	0	0.002	1	0.997	1
	0.7		0	0	0.003	0	0	0.002	0	0	0.001	1	1	1
0.2	0.0	3	0.033	0.029	0.03	0.033	0.025	0.034	0.031	0.031	0.04	0.038	0.033	0.0444
	0.1		0.028	0.026	0.031	0.029	0.021	0.031	0.032	0.029	0.036	0.037	0.032	0.0420
	0.2		0.023	0.018	0.02	0.021	0.016	0.024	0.025	0.023	0.034	0.073	0.034	0.0770
	0.3		0.009	0.01	0.013	0.01	0.007	0.011	0.013	0.012	0.014	0.152	0.037	0.1938
	0.4		0.004	0.003	0.017	0.003	0.002	0.034	0.004	0.003	0.011	0.786	0.059	0.8508
	0.5		0.001	0.001	0.014	0.001	0	0.031	0.001	0.001	0.002	0.999	0.381	0.9999
	0.6		0	0	0.011	0	0	0.024	0	0	0.003	1	0.990	1
	0.7		0	0	0.008	0	0	0.011	0	0	0.04	1	1	1
0.2	0.0	5	0.033	0.027	0.029	0.03	0.027	0.035	0.032	0.03	0.041	0.035	0.033	0.0380
	0.1		0.034	0.026	0.029	0.032	0.023	0.028	0.032	0.029	0.041	0.037	0.032	0.0370
	0.2		0.022	0.019	0.023	0.017	0.016	0.02	0.022	0.022	0.039	0.036	0.027	0.0408
	0.3		0.014	0.01	0.011	0.009	0.008	0.009	0.01	0.011	0.012	0.038	0.021	0.0384
	0.4		0.007	0.004	0.015	0.003	0.002	0.024	0.002	0.003	0.006	0.036	0.013	0.0406
	0.5		0.001	0.001	0.012	0.001	0	0.002	0	0.002	0.001	0.412	0.008	0.5498
	0.6		0	0	0.011	0	0	0.002	0	0	0.001	0.998	0.074	0.9996
	0.7		0	0	0.002	0	0	0.002	0	0	0.001	1	0.982	1

Table 7: Analysis of power of test for $p=15$

ξ	ρ	μ	J	J_{M}	J_{5}	J	J_{M}	J_{5}	J	J_{M}	J_{5}	J	$J_{\text {M }}$	J_{5}
0	0.0	0	0.0500	0.0500	0.0500	0.050	0.050	0.050	0.050	0.050	0.050	0.056	0.05	0.056
	0.1		0.1074	0.0914	0.1896	0.138	0.175	0.243	0.366	0.471	0.2116	0.048	0.95	0.274
	0.2		0.0996	0.0784	0.2248	0.214	0.170	0.827	0.5270	0.816	0.7656	0.984	1	1
	0.3		0.0372	0.0284	0.3883	0.059	0.043	0.996	0.903	0.888	0.9911	1	1	1
	0.4		0.0166	0.0052	0.5276	0.014	0.002	1	0.980	0.957	1	1	1	1
	0.5		0.0066	0.0002	0.6078	0.012	0	1	0.999	0.997	1	1	1	1
	0.6		0.0014	0.0000	0.6404	0.008	0	1	1	0.999	1	1	1	1
	0.7		0.0004	0.0000	0.7696	0.006	0	1	1	1	1	1	1	1
0.1	0.0	3	0.031	0.020	0.090	0.033	0.028	0.095	0.042	0.034	0.0943	0.042	0.0380	0.050
	0.1		0.027	0.018	0.187	0.030	0.024	0.264	0.035	0.026	0.2640	0.038	0.0348	1
	0.2		0.016	0.012	0.444	0.021	0.012	0.676	0.014	0.012	0.6755	0.031	0.0196	1
	0.3		0.006	0.005	0.791	0.02	0.002	0.962	0.008	0.001	0.9612	0.008	0.0030	1
	0.4		0.002	0.002	0.970	0.012	0.001	0.999	0.003	0	0.9986	0.001	0.0000	1
	0.5		0.001	0.001	0.999	0.008	0	1	0.002	0	1	0	0.0000	1
	0.6		0.001	0	1	0.004	0	1	0.001	0	1	0.013	0.0000	1
	0.7		0	0	1	0.001	0	1	0.001	0	1	0.691	0.0090	1

Table 7: Continue

			$\mathrm{n}=20$			$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
ξ	ρ	μ	J	J_{M}	J_{S}	J	J_{M}	J_{5}	J	J_{M}	J_{5}	J	J_{M}	J_{5}
0.1	0.0	5	0.034	0.020	0.273	0.029	0.026	0.336	0.039	0.034	0.3353	0.040	0.0410	0.060
	0.1		0.029	0.018	0.29	0.023	0.024	0.371	0.033	0.027	0.3709	0.038	0.0340	0.189
	0.2		0.017	0.013	0.501	0.014	0.013	0.655	0.014	0.014	0.6542	20.015	0.0130	0.658
	0.3		0.01	0.008	0.742	0.013	0.004	0.921	0.009	0.002	0.9204	0.008	0.0014	0.768
	0.4		0.004	0.003	0.937	0.011	0.001	0.995	0.003	0.001	0.9948	- 0.004	0.0000	0.896
	0.5		0.002	0.001	0.994	0.009	0.001	1	0.002	0	0.9999	0.002	0.0000	0.980
	0.6		0.001	0.001	1	0.003	0	1	0.001	0	1	0.001	0.0000	1
	0.7		0.001	0	1	0.001	0	1	0.001	0	1	0.001	0.0000	1
0.2	0.0	3	0.03	0.025	0.067	0.028	0.026	0.071	0.044	0.037	0.0702	20.043	0.0410	0.058
	0.1		0.023	0.023	0.162	0.027	0.023	0.241	0.034	0.029	0.2408	-0.038	0.0366	0.236
	0.2		0.018	0.016	0.38	0.011	0.003	0.607	0.014	0.012	0.6070	0.02	0.0166	0.671
	0.3		0.01	0.007	0.725	0.004	0.001	0.919	0.007	0.003	0.9189	-0.009	0.0018	0.789
	0.4		0.003	0.004	0.939	0.002	0	0.996	0.004	0	0.9959	90.005	0.0000	0.9876
	0.5		0.002	0.001	0.997	0.003	0	1	0.002	0	0.9998	80.003	0.0000	0.9999
	0.6		0.001	0	1	0.001	0	1	0.001	0	1	0.002	0.0000	1.0000
	0.7		0.001	0	1	0.001	0	1	0.001	0	1	0.001	0.0000	1.0000
0.2	0.0	5	0.031	0.027	0.066	0.03	0.027	0.078	0.044	0.037	0.0772	20.04	0.0418	0.0675
	0.1		252	0.026	0.162	0.025	0.022	0.235	0.034	0.03	0.2341	10.034	0.0340	0.2126
	0.2		0.021	0.019	0.345	0.016	0.015	0.542	0.015	0.014	0.5416	$6 \quad 0.013$	0.0152	0.6754
	0.3		0.011	0.01	0.632	0.015	0.004	0.874	0.003	0.004	0.8733	30.008	0.0016	0.8754
	0.4		0.005	0.005	0.896	0.01	0.002	0.986	0.002	0.001	0.9860	0.002	0.0000	0.9756
	0.5		0.002	0.002	0.987	0.004	0	1	0.001	0	0.9999	90.002	0.0000	0.9999
	0.6		0.001	0.001	1	0.002	0	1	0.001	0	1	0.001	0.0000	1.0000
	0.7		0.001	0	1	0.001	0	1	0.001	0	1	0	0.0000	1.0000
Table 8: Analysis of power of test for $p=20$														
				$\mathrm{n}=30$				$\mathrm{n}=50$			$\mathrm{n}=100$			
ξ	ρ		μ	J	J_{M}	J_{5}		J	J_{M}	J_{S}		J	J_{M}	J_{5}
0	0.0		0	0.050	0.050	0.050		0.050	0.050	0.050		0.056	0.05	0.056
	0.1			0.138	0.131	0.243		0.366	0.355	0.243		0.048	0.95	0.274
	0.2			0.059	0.042	0.827		0.225	0.192	0.827		0.984	1	1
	0.3			0.036	0.001	0.996		0.008	0.006	0.996		1	1	1
	0.4			0.014	0	1		0.003	0	1		1	1	1
	0.5			0.012	0	1		0.002	0	1		1	1	1
	0.6			0.008	0	1		0.001	0	1		1	1	1
	0.7			0.006	0	1		0.001	0	1		1	1	1
0.1	0.0		3	0.034	0.030	0.093		0.035	0.032	0.045		0.045	0.038	0.050
	0.1			0.028	0.026	0.284		0.024	0.022	0.294		0.029	0.027	0.230
	0.2			0.017	0.011	0.740		0.005	0.004	0.788		0.006	0.004	0.675
	0.3			0.008	0.002	0.977		0	0	0.989		0.003	0	0.876
	0.4			0.006	0.001	1		0	0	1		0.002	0	0.898
	0.5			0.004	0	1		0	0	1		0.002	0	0.955
	0.6			0.003	0	1		0	0	1		0.001	0	1
	0.7			0.001	0	1		0	0	1		0	0	1
0.1	0.0		5	0.028	0.029	0.046		0.036	0.05	0.550		0.043	0.038	0.065
	0.1			0.028	0.026	0.353		0.024	0.032	0.346		0.031	0.028	0.253
	0.2			0.013	0.015	0.681		0.006	0.022	0.690		0.006	0.006	0.743
	0.3			0.008	0.004	0.943		0.002	0.006	0.910		0.004	0	0.855
	0.4			0.002	0.001	0.997		0.002	0.001	0.950		0.002	0	0.899
	0.5			0.002	0	1		0.001	0	1		0.001	0	0.944
	0.6			0.001	0	1		0.001	0	1		0.001	0	0.979
	0.7			0.001	0	1		0	0	1		0	0	1
0.2	0.0		3	0.036	0.029	0.087		0.034	0.034	0.049		0.044	0.043	0.058
	0.1			0.025	0.024	0.252		0.022	0.024	0.259		0.029	0.028	0.263
	0.2			0.013	0.009	0.609		0.007	0.007	0.605		0.014	0.005	0.601
	0.3			0.009	0.003	0.905		0.002	0	0.910		0.009	0	0.915
	0.4			0.005	0.001	0.993		0.002	0	0.950		0.003	0	0.996
	0.5			0.002	0	1		0.001	0	1		0.002	0	1
	0.6			0.001	0	1		0	0	1		0.001	0	1
	0.7			0.001	0	1		0	0	1		0	0	1

ξ	ρ	μ	$\mathrm{n}=30$			$\mathrm{n}=50$			$\mathrm{n}=100$		
			J	J_{M}	J_{5}	J	J_{M}	J_{5}	J	J_{M}	J_{5}
0.2	0.0	5	0.035	0.031	0.039	0.038	0.033	0.040	0.045	0.042	0.068
	0.1		0.028	0.026	0.045	0.024	0.026	0.029	0.037	0.028	0.125
	0.2		0.016	0.014	0.035	0.010	0.010	0.049	0.029	0.007	0.354
	0.3		0.009	0.005	0.041	0.003	0.001	0.066	0.013	0.001	0.833
	0.4		0.009	0.001	0.145	0.002	0	0.151	0.008	0	0.895
	0.5		0.004	0	0.959	0.001	0	0.959	0.003	0	1
	0.6		0.003	0	1	0	0	1	0.001	0	1
	0.7		0.001	0	1	0	0	1	0	0	1

65,0 and 0 values that fall within the interval of the power of test for the J_{S} statistic, the J_{M} statistic and the J statistic, respectively. The J_{S} statistic still dominates the other two statistics.

CONCLUSION

The Jennrich statistic is known as a popular test for testing two or several correlation matrices, however, under conditions of non-normality, this test is known to under perform. Alternative test statistics are recommended to produce active methods regardless of the conditions. In this study, we proposed alternative methods to the Jennrich statistic by using a robust estimator known as the S estimator for scatter matrix. The S estimator not only has the properties of the well-known M estimator such as the affine equivariant and a high breakdown point and has a better computational. The performance of the proposed robust test by using the S estimator $\left(J_{S}\right)$ and by using the M estimator (J_{M} was compared with the J statistic in terms of the type I error rate and the power of test. The simulation study showed that statistic performs well in terms of controlling type I errors and the power of test.

SIGNIFICANCE STATEMENTS

The study discovers the robust approach that can be beneficial for testing the equality of two or more difference correlation matrices at the time when the data contains outlier. This study will help the researcher to uncover the critical areas of multivariate outlier that many researchers were not able to explore. The new theory on robust J statistic may be arrived.

REFERENCES

1. Lee, S.L., 1998. The inter-temporal stability of real estate returns: An empirical investigation. Proceedings of the International Real Estate Conference, June 10-13, 1998, Maastricht The Netherlands.
2. Tang, G.Y.N., 1998. The intertemporal stability of the covariance and correlation matrices of Hong Kong stock returns. Applied Financial Econ., 8: 359-365.
3. Goetzmann, W.N., L. Li and K.G. Rouwenhorst, 2005. Long-term global market correlations. J. Bus., 78: 1-38.
4. Da Costa, Jr. N., S. Nunes, P. Ceretta and S. da Silva, 2005. Stockmarket comovements revisited. Econ. Bull., 7: 1-9.
5. Deblauwe, F. and H.Le, 2000. Stability of correlation between credit and market risk over different holding periods. http://users.telenet.be/rik.deblauwe/2\ artikelen_hier_g epubliceerd/Stability\%20of\%20correlation\%20between\%2 Ocredit\%20and\%20market\%20risk\%20over\%20different\% 20holding\%20periods\%20(FRD-LH).pdf
6. Jennrich, R.I., 1970. Test for the equality of two correlation matrices. J. Am. Stat. Assoc., 65: 904-912.
7. Tavakol,M. and R.R. Wilcox, 2013. Medical education research: The application of robust statistical methods. Int. J. Med. Educ., 4: 93-95.
8. Filzmoser, P., 2004. A multivariate outlier detection method. Proceedings of the 7th International Conference on Computer Data Analysis and Modeling, December 13-15, 2004, IEEE, Belarusian State University, Minsk, Belarus, pp: 18-22.
9. Penny, K.I. and I.T. Jolliffe, 2001. A comparison of multivariate outlier detection methods for clinical laboratory safety data. J. R. Stat. Soc.: Ser. D (Statistician), 50: 295-307.
10. Ben-Gal, I., 2005. Outlier Detection. In: Data Mining and Knowledge Discovery Handbook, Maimon, O. and L. Rokach (Eds.). Kluwer Academic Publishers, USA., ISBN: 978-0-387-24435-8, pp: 131-146.
11. Huber, P.J., 1964. Robust estimation of a location parameter. Ann. Math. Stat., 35: 73-101.
12. Rousseeuw, P.J. and A.M. Leory, 1987. Robust Regression and Outlier Detection. 1st Edn., Wiley, New York, USA., ISBN-10: 0471852333, Pages: 352.
13. Croux, C. and G. Haesbroeck, 2000. Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika, 87: 603-618.
14. Aslam, S. and D.M. Rocke, 2005. A robust testing procedure for the equality of covariance matrices. Comput. Stat. Data Anal., 49: 863-874.
15. Yahaya, S.S.S., A.R. Othman and H.J. Keselman, 2004. Testing the Equality of Location Parameters for Skewed Distributions Using S_{1} with High Breakdown Robust Scale Estimators. In: Theory and Applications of Recent Robust Methods, Hubert, M., G. Pison, A. Struyf and S. van Aelst (Eds.). Birkhauser, Basel, Switzerland, ISBN: 978-3-0348-7958-3, pp: 319-328.
16. Wilcox, R.R., 2005. Introduction to Robust Estimation and Hypothesis Testing. 2nd Edn., Elsevier Academic Press, USA., ISBN: 0-12-751542-9.
17. Othman, A.R., H.J. Keselman, A.R. Padmanabhan, R.R. Wilcox and K. Fradette, 2004. Comparing measures of the 'typical' score across treatment groups. Br. J. Math. Stat. Psychol., 57: 215-234.
18. Yahaya, S.S.S., H. Ali and Z. Omar, 2011. An alternative hotelling T^{2} control chart based on Minimum Vector Variance (MVV). Mod. Applied Sci., 5: 132-151.
19. Alma, O.G., 2011. Comparison of robust regression methods in linear regression. Int. J. Contemp. Math. Sci., 6: 409-421.
20. Copt, S. and M.P. Victoria-Feser, 2004. Fast Algorithms for Computing High Breakdown Covariance Matrices with Missing Data. In: Theory and Applications of Recent Robust Methods, Hubert, M., G. Pison, A. Struyfand S. van Aelst (Eds.). Birkhauser, Basel, Switzerland, ISBN: 978-3-0348-7958-3, pp: 71-82.
21. Rousseeuw, P.J., 1984. Least median of squares regression. J. Am. Stat. Assoc., 79: 871-880.
22. Lopuhaa, H.P.andP.J. Rousseeuw, 1991. Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Stat., 19: 229-248.
23. Rousseeuw, P.J.and K. van Driessen, 1999. A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41: 212-223.
24. Djauhari, M.A., 2008. A robust estimation of location and scatter. Malaysia J. Math. Sci., 2: 1-24.
25. Herwindiati, D.E., S.M. Isa and D. Arisandi, 2011. The robust classification for large data (Case: Classification of Jakarta vegetation area by using remote sensing data). Proceedings of the World Congress on Engineering, Vol. 3, July 6-8, 2011, London, UK., pp: 1895-1900.
26. Herwindiati, D.E., M.A. Djauhari and M. Mashuri, 2007. Robust multivariate outlier labeling. Commun. Stat.-Simul. Comput., 36: 1287-1294.
27. Herwindiati, D.E. and S.M. Isa, 2009. The robust principal component using minimum vector variance. Proceedings of the World Congress on Engineering, Vol. 1, July 1-3, 2009, London, UK., pp: 325-329.
28. Maronna, R.A. and V.J. Yohai, 1998. Robust Estimation of Multivariate Location and Scatter. In: Encyclopedia of Statistical Sciences, Kotz, S., C. Read and D. Banks (Eds.). Wiley-Interscience, New York, ISBN-10: 0471118362, pp: 589-596.
29. Hampel, F.R., E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, 1986. Linear Models: Robust Estimation. In: Robust Statistics: The Approach Based on Influence Functions, Hampel, F.R. (Ed.). John Wiley Sons, New York, USA., ISBN-13: 9780471829218, pp: 307-341.
30. Rocke, D.M., 1996. Robustness properties of \mathcal{S}-estimators of multivariate location and shape in high dimension. Ann. Stat., 24: 1327-1345.
31. Lopuhaa, H.P., 1989. On the relation between S-estimators and M-estimators of multivariate location and covariance. Ann. Stat., 17: 1662-1683.
32. Sakata, S. and H. White, 1995. An alternative definition of finite-sample breakdown point with applications to regression model estimators. J. Am. Stat. Assoc., 90: 1099-1106.
33. Alfaro, J.L. and J.F. Ortega, 2009. A comparison of robust alternatives to Hotelling's T^{2} control chart. J. Applied Stat., 36: 1385-1396.
34. Bradley, J.V., 1978. Robustness? Br. J. Math. Stat. Psychol., 31: 144-152.
35. Cohen, J., 1977. Statistical Power Analysis for the Behavioral Sciences. Academic Press, New York, ISBN: 0-12-179060-6.
36. Murphy, K.R., B. Myors and A. Wolach, 2014. Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothesis Tests. 4th Edn., Routledge, New York, USA., ISBN-13: 9781317680574, Pages: 244.
