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Abstract 

The term “obesogenic environment” refers to the overabundance of food rich in 

energy coupled with reduced physical activity. The potential role of brown adipose tissue 

(BAT) in the pathophysiology of obesity or as a target for therapeutic intervention has been 

considered for decades, as brown adipocytes seem to be healthier than white. It is well-known 

that n-3 polyunsaturated fatty acids (PUFA), as eicosapentaenoic (EPA, 20:5n-3) and 

docosahexaenoic (DHA, 22:6n-3) have weight-reducing properties, with physiological 

activity depending directly on their molecular form, that is, as triacylglycerols (TAG) or ethyl 

esters (EE). In addition, aquaporins are membrane protein channels recognized as important 

players in controlling fat metabolism, but their differential expression in white adipose tissue 

(WAT) and BAT as well as their modulation by dietary PUFA has never been investigated. In 

this project, adipose tissue samples from subcutaneous and visceral WAT as well as from 

BAT, from hamsters fed on diets enriched with different n-3 PUFA (EPA and DHA) lipid 

structures (TAG and EE) as fish oil (FO) and fish oil ethyl esters (FO-EE), respectively were 

used to evaluate aquaporins mRNA expression and correlate them with markers of lipid 

metabolism. Linseed oil (LSO) was taken as the reference group. Our main findings are: (i) 

the differential characterization of aquaporins expression across WAT (subcutaneous and 

visceral) and BAT, which might reflect adipose tissue depot’s own location and metabolic 

function; (ii) the modulation of aquaporins and lipid sensitive mediators transcriptional profile 

(adiponectin, leptin, glucose transporter type 4, peroxisome proliferator activated receptor α 

and peroxisome proliferator activated receptor ) upon dependence of n-3 PUFA molecular 

structures (TAG or EE); (iii) the higher sensitivity of BAT than WAT to n-3 PUFA molecular 

structures; (iv) the upregulation of the majority of genes expression by FO diet, in opposition 

to LSO and FO-EE, highlighting the benefits of EPA and DHA combined as TAG; (v) among 

aquaporins, the aquaglyceroporin-7 stands out as the best option as therapeutic molecular 

target due to its conservative role across WAT and BAT. 

 

Keywords: Aquaporins, n-3 PUFA, Brown adipose tissue, White adipose tissue, Hamster. 
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Resumo 

O aumento do consumo de alimentos energéticos ricos em açúcar e gorduras 

saturadas, combinado com pouca atividade física, tem originado um aumento exponencial e 

preocupante da incidência da obesidade nas sociedades ocidentais ou ditas industrializadas. 

Várias são as consequências decorrentes da obesidade como é o caso de resistência à insulina, 

diabetes, dislipidemia, doenças cardiovasculares e cancro. Em Portugal as taxas de obesidade 

têm atingido valores preocupantes com cerca de 54% dos indivíduos diagnosticados com 

excesso de peso ou obesos. Diante deste problema de saúde mundial, a comunidade científica 

luta pela descoberta de novas terapias e alvos moleculares, que possam minimizar ou mesmo 

reverter esse cenário.  

O tecido adiposo é um órgão multicelular que influencia profundamente a função de 

quase todos os órgãos do corpo humano através da produção de diversos metabolitos e de 

adipocinas. Os adipócitos denominados de células primárias do tecido adiposo têm como 

papel essencial manter a homeostase energética do organismo. O tecido adiposo classifica-se 

em tecido adiposo branco (WAT), tecido adiposo castanho (BAT) e tecido adiposo bege, com 

diferentes funções fisiológicas e localização. O WAT é composto por dois depósitos de 

gorduras distintos: o WAT subcutâneo (sWAT) e o WAT visceral (vWAT). A gordura 

subcutânea expande-se predominantemente por hiperplasia aparentando ser protetora dada a 

sua capacidade adipogénica aumentada, em contraste com a expansão da gordura visceral que 

ocorre principalmente por hipertrofia com grande infiltração de macrófagos e regulada por um 

elevado número de recetores de glicocorticóides e um reduzido número de recetores de 

insulina. Já a gordura castanha constitui um tecido metabolicamente responsável pela 

termogénese e pelo gasto do excesso de calorias. Em condições de excesso calórico, a gordura 

branca mantém a homeostase energética ao armazenar energia sob a forma de triacilgliceróis 

(TAG), enquanto em condições de necessidade energética os TAG são decompostos em 

glicerol e ácidos gordos livres para gerar energia sob a forma de adenosina trifosfato (ATP). 

Em contraste, o tecido adiposo castanho promove o gasto de energia através da oxidação da 

glicose e lípidos para gerar calor, através de uma respiração mitocondrial desacoplada 

mediada pela termogenina (UCP1) no processo chamado termogénese adaptativa.  

A ingestão continuada de uma dieta rica em ácidos gordos saturados e ácidos gordos 

polinsaturados (PUFA) ómega-6 (n-6) e pobre em PUFA ómega-3 (n-3), denominada dieta 

ocidental, é considerada um dos principais fatores que promovem o desenvolvimento da 

obesidade. Em contraste, os ácidos gordos eicosapentaenóico (EPA, 20:5n-3) e 
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docosahexaenóico (DHA, 22:6n-3) possuem propriedades anti-adipogénicas. Acresce o facto 

de que a atividade fisiológica dos n-3 PUFA depende da sua estrutura molecular. Embora não 

consensual, parece existir uma diferença na biodisponibilidade aparente dos n-3 PUFA, uma 

vez que a forma de TAG apresenta maior biodisponiblidade do que a forma de ésteres etílicos 

(EE). A maioria dos suplementos alimentares ricos em EPA e DHA industrialmente 

disponíveis estão na forma de ésteres de etilo, o que pode dever ao custo reduzido da sua 

produção.  

As aquaporinas (AQPs) são proteínas transmembranares que formam canais proteicos 

facilitando a passagem de água e pequenos solutos não carregados através das membranas 

celulares. De acordo com suas características de permeabilidade, as aquaporinas podem ser 

divididas em três subgrupos: aquaporinas clássicas ou ortodoxas (canais de água puros), 

aquagliceroporinas (canais permeados pela água e por glicerol, entre outros pequenos solutos) 

e as S-aquaporinas (de localização subcelular e permeabilidade ainda pouco conhecida). No 

tecido adiposo, o transporte alterado de glicerol mediado pela aquaporina-7 (AQP7) (uma 

aquagliceroporina) foi correlacionado positivamente com a acumulação de TAG nos 

adipócitos e com o aparecimento e desenvolvimento da obesidade. Mais recentemente, outras 

AQPs como a AQP3, AQP5, AQP9, AQP10 e a AQP11, foram também encontradas 

expressas no tecido adiposo. Contudo muito ainda há por descobrir em relação à função 

metabólica de cada uma AQP nos vários tipos de tecido adiposo.   

A presente tese de mestrado tem como principal objetivo a determinação da expressão 

dos genes das aquaporinas AQP3, AQP5 e AQP7, bem como de marcadores do metabolismo 

lipídico (adipocinas, adiponectina (ADIPO), leptina (LEP), transportador de glucose tipo 4 

(GLUT4), recetores ativados por proliferadores de peroxissomas alfa e gama (PPARα e 

PPARγ) em três depósitos de gordura distintos, o branco (sWAT e vWAT) e o castanho 

(BAT) provenientes de hamsters alimentados com três dietas distintas enriquecidas em n-3 

PUFA.  

O modelo animal selecionado para este estudo foi o hamster por dois motivos 

principais: i) a existência de gordura castanha neste animal por força da hibernação e ii) o 

reconhecimento de que metabolismo lipídico no hamster é mais semelhante ao do humano do 

que o dos modelos convencionais de laboratório como o rato e o ratinho. Assim, 24 hamsters 

foram divididos em três grupos (com 8 animais por grupo) e alimentados com três diferentes 

dietas ricas em ácidos gordos polinsaturados n-3 de diferentes origens: óleo de linhaça (grupo 

LSO, rico em ácido alfa linolénico), óleo de peixe (grupo FO rico em EPA e DHA na forma 

estrutural de TAG) e óleo de peixe na forma de EE (grupo FO-EE rico em EPA e DHA na 
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forma de EE). A dieta LSO foi considerada a dieta controlo por não ter EPA nem DHA na sua 

composição. Ao invés apresenta o ácido gordo polinsaturado 18:3n-3, denominado alfa 

linolénico, percursor do EPA e DHA. A determinação da expressão relativa dos genes em 

estudo foi efetuada por PCR quantitativo em tempo real (RT-qPCR). Como dados 

complementares apresenta-se ainda nesta tese a caracterização dos grupos em estudo por meio 

do perfil plasmático bioquímico e de adipocinas bem como a composição em ácidos gordos 

das diferentes gorduras, branca subcutânea e branca visceral, como também castanha. Estes 

dados foram obtidos através de um projeto em curso na FMV-ULisboa e facultados 

generosamente para correlação com os resultados deste trabalho. Após análise e tratamento 

estatístico dos dados, as principais conclusões apresentam-se sumariadas nos seguintes 

pontos: (i) a caracterização diferencial da expressão das aquaporinas, AQP3, AQP5 e AQP7 

nos depósitos de gordura WAT (subcutâneo e visceral) e BAT, o que certamente reflete a 

função metabólica do tecido adiposo em causa; (ii) a modulação do perfil de expressão das 

aquaporinas AQP3, AQP5 e AQP7 em função da estrutura molecular de n-3 PUFA (TAG ou 

EE) presente na dieta; (iii) a maior sensibilidade da gordura BAT (relativamente à WAT) às 

estruturas moleculares de n-3 PUFA presentes na dieta; (iv) o efeito positivo (com pequenas 

exceções) da dieta FO, em oposição à LSO e à FO-EE, que regulou positivamente a maioria 

dos genes, destacando os benefícios do EPA e DHA combinados em TAG; (v) entre as 

aquaporinas encontradas, a AQP7 destaca-se como a melhor opção para alvo molecular 

terapêutico dado o seu papel conservado no tecido adiposo branco e castanho. 

  

 

Palavras-chave: Aquaporinas, n-3 PUFA, Tecido adiposo castanho, Tecido adiposo branco, 

Hamster. 
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EE     Ethyl esters  

EPA     Eicosapentaenoic acid (20:5n-3)  

ETA     Eicosatetraenoic acid 

FAME    Fatty acid methyl esters  

FO     Fish oil  

FO-EE    Fish oil ethyl esters  

GADPH    Glyceraldehyde-3-phosphate dehydrogenase  

GLUT4    Glucose transporter type 4 

HDL    High density lipoproteins 

LA    Linoleic acid 

LDL    Low density lipoproteins  

LEP    Leptin 



 

 

 

xvi List of abbreviations 

LPL    Lipoprotein lipase 

LSO     Linseed oil  

mRNA    Messenger ribonucleic acid 

MUFA    Monounsaturated fatty acid 

ND    Not detected  

NS    Not significantly different 

PCA    Principal component analysis  

PPARα    Peroxisome proliferator activated receptor alpha 

PPARγ    Peroxisome proliferator activated receptor gamma 

PUFA     Polyunsaturated fatty acids  

QUICKI   Quantitative insulin sensitivity check index 

r    Pearson’s correlation coefficients  

RNA     Ribonucleic acid  

RNase     Ribonuclease  

RPL27    Ribosomal protein L27 

RT-qPCR    Real time quantitative polymerase chain reaction 

SA    Stearidonic acid 

SCD    Stearoyl-CoA desaturase 

SE     Standard error 

SFA    Saturated fatty acids 

sWAT     Subcutaneous white adipose tissue  

TAG     Triacylglycerols  

TBHQ    Tertiary butyl hydroquinone 

UCP1    Uncoupling protein 1 

VLDL    Very low density lipoproteins 

vWAT    Visceral white adipose tissue 

WAT     White adipose tissue  

β-actin    Beta actin 

γ-GT    Gamma glutamyl transferase 

 



 

 
 

 

1 
“Modulation of aquaporins gene expression by n-3 polyunsaturated fatty acids (PUFA) lipid structures in white and brown 

adipose tissue from hamsters” 
Rute Martins 

1. Introduction 

The most common adipose tissue disorder in humans is obesity, which can be defined 

as a chronic condition caused by excess energy intake relative to energy expenditure, resulting 

in a positive energy balance and weight gain (Spalding et al., 2008). The number of studies in 

the field of adipose tissue biology has increased exponentially since obesity is occurring at 

epidemic rates not only in developed countries, but also in developing countries (Swinburn et 

al., 2011). The increase of food consumption and fast food with high levels of sugar and 

saturated fats combined with a sedentary lifestyle has raised three-fold the obesity rates in 

industrialized societies.  

According to the World Health Organization (WHO) in 2016, nearly 2 billion adults 

with 18 years and older are overweight, and of these more than 500 million are obese; in 

addition, 18% of children aged 5-19 are overweight or obese. This statistics naturally 

increases the risk for developing insulin resistance, type 2 diabetes, cardiovascular diseases, 

metabolic syndrome and certain immune metabolic dysfunctions (Van Gaal et al., 2006).  

 

1.1 Adipose tissue 

Adipose tissue is an extremely plastic organ capable of reduction, expansion or 

alteration according to appropriate stimulations. Studies published over the last two decades 

have established that adipose tissue acts not only as repository for excess nutrients but also as 

integrator and regulator of the balance between food intake and energy output. Adipose tissue 

is composed by adipocytes, vascular tissue, and immune cells (Berry et al., 2013). 

Consequently, according to its metabolic, cellular and endocrine functions, the adipose tissue 

is divided into two major types, the white adipose tissue (WAT) and the brown adipose tissue 

(BAT) with different functions. While white fat stores energy, brown fat expends it (Lowell & 

Flier, 1997). The current classification of adipose tissue includes a third category, the beige 

adipose tissue (brown-like-in-white), which has been detected in humans when stimulated by 

cold stress or β3-adrenoceptor agonists that mimic cold stress and shows thermogenic 

properties similar to BAT (Wu et al., 2012). The three types of adipose tissue have different 

morphology, distribution, gene expression, and function (Saely et al., 2012).  

 

1.1.1 White adipose tissue 

The WAT in mammals is the major form of adipose tissue. Its development has 

evolved as a physiological adaptation to preserve energy. Excess WAT is linked to obesity-
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related health problems in nutritionally rich environments. WAT contains multiple cell types, 

mostly white adipocytes that have a single large cytoplasmatic lipid droplet with the nucleus 

located at the side of the cell (Figure 1A). Excess energy as triacylglycerols (TAG) is stored 

by white adipocytes, which provides a survival advantage in times of starvation.  

 

 

Figure 1. Main morphological characteristics of white, beige and brown adipocytes. A: White 

adipocytes are generally spherical with over 90% of the cell volume taken up by a single fat 

droplet. The few small mitochondria and the nucleus are compressed to the very edge of the 

white adipocyte. Mitochondria within white adipocytes are few and smaller. B: Brown 

adipocytes are smaller in overall size, have a polygonal shape, contain several small lipid 

droplets and high numbers of large mitochondria, which are responsible for the brown color. 

C: Beige adipocytes have mixed characteristics of both white and brown adipose cells. 

 

Nowadays, it is known that WAT functions not only an energy reservoir but also as an 

insulator preventing heat loss and providing a physical protection to the organism. WAT is 

distributed throughout the body and is composed by two representative anatomical depots: 

subcutaneous WAT (sWAT) and visceral WAT (vWAT) (Figure 2). sWAT represents >80% 

of total adipose tissue in the body and is located inside the abdominal cavity and underneath 

the skin and scattered among skeletal muscles. The vWAT constitutes 6-20% of total body 

fat, with higher values in males than females (Seidell et al., 1988; Thomas et al., 1998; 

Ludescher et al., 2007; Haupt et al., 2010). It is located inside the peritoneum and distributed 

around internal organs (stomach, kidney, liver and intestine). Depending on the location, 

vWAT is subclassified into mesenteric, retroperitoneal, perigonadal, and omental (Park et al., 

2014). Subcutaneous fat expands predominantly by hyperplasia (increase in the total fat cell 

number) and appears protective through enhanced adipogenic capacity, in contrast to visceral 

fat expansion that occurs mainly by hypertrophy (enlargement of the existing fat cells) with 

great infiltration of macrophages and regulated by a higher number of glucocorticoid 

receptors and a lower number of insulin receptors (Capurso & Capurso, 2012; Park et al., 

2012; Laforest et al., 2015). 
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Figure 2. Locations of adipose tissue depots in adult human (A) and hamster (B). 

Hamster has a major interscapular brown adipose tissue (BAT) depot, as illustrated. BAT is 

highly vascularized so that it can efficiently dissipate chemical energy as heat. White adipose 

tissue (WAT) is dispersed in various subcutaneous and intra-abdominal depots, and contains 

mostly white adipocytes. WAT is a major organ for the storage and release of energy (Saely 

et al., 2012).  

vWAT, visceral white adipose tissue; sWAT, subcutaneous white adipose tissue; BAT, brown 

adipose tissue. 

 

1.1.2 Brown adipose tissue 

BAT is so-called because it is darkly pigmented owing to the high density of 

mitochondria rich in cytochromes. The lipid droplets in BAT are small and organized in 
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multilocular shape, and the nucleus appears roundish (Figure 1C). Until very recently, it was 

thought that adult humans do not have significant depots of brown fat, and that BAT exists 

only in hibernating mammals (like hamsters, see Figure 2) and newborns. This idea was 

changed when Nedergaard and Cannon, reported in 2007, that some adult human fat exhibits 

BAT characteristics (Nedergaard et al., 2007). Later on, this finding was confirmed by several 

scientific teams (Cypess et al., 2009; Saito et al., 2009; Virtanen et al., 2009; Zingaretti et al., 

2009). Nowadays, it is known that BAT is located at the upper trunk, including the cervical, 

supraclavicular, paravertebral, and pericardial regions (Figure 2A). Healthy humans (around 

70 Kg) have about 50 g of active BAT, approximately ~0.1% of body mass (Rothwell & 

Stock, 1979; van Marken Lichtenbelt & Schrauwen, 2011). 

The thermogenic ability of brown adipocytes derives from the presence of uncoupling 

protein-1 (UCP1), an inner mitochondrial membrane protein that induces heat production by 

uncoupling respiration from ATP synthesis, a process termed non-shivering thermogenesis 

(Cannon & Nedergaard, 2004). Active BAT imports glucose and fatty acids to provide 

additional fuel for sustained thermogenesis (Labbe et al., 2015). Whether BAT has crucial 

functions beyond thermal regulation is also not clear, although BAT can secrete adipokines 

such as interleukin-6, fibroblast growth factor 21, and chemerin (Villarroya et al., 2013; 

Hansen et al., 2014). Although these adipokines are not BAT specific, their occurrence 

suggests that BAT has additional endocrine functions. 

 

1.1.3 Beige adipose tissue 

Beige adipocytes are found in various WAT depots and are especially prominent in 

sWAT. Beige fat cells develop in response to cold exposure and β-adrenergic stimulation 

(Harms & Seale, 2013; Ye et al., 2013). However, several addition factors capable of regulate 

fat browning have been discovered recently, such as irisin, fibroblast growth factor 21, 

follistatin, meteorin-like, among others (Braga et al., 2014; Rao et al., 2014; Zhang et al., 

2014; Douris et al., 2015). Like brown adipocytes, beige cells have multilocular lipid droplets 

and densely packed UCP1-positive mitochondria (Figure 1B). Compared with brown 

adipocytes, beige adipocytes have more phenotypic flexibility, and can acquire a thermogenic 

or storage phenotype, depending on environmental cues (Wang & Seale, 2016). During basal 

state, beige fat displays unilocular morphology as white adipocyte, but upon stimulation, its 

appearance acquires features of intermediate morphology ultimately resulting in a 

transformation of stored fat into the small lipid droplets typical for brown adipocytes (Harms 

& Seale, 2013).  
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1.1.4 Adipose tissue biology  

 In situations of reduced energy expenditure or increased food intake which are 

characterized as positive energy balance, the mature adipocytes expand by hyperplasia 

(increase in number) and by hypertrophy (increase in size) changing their morphology to 

accommodate excess lipid due to increased free fatty acids (FFA) uptake and TAG synthesis. 

The extracellular matrix is adjusted to allow adipocyte enlargement by the action of proteases 

that hydrolyze the excess of collagen to allow adipose hypertrophy (Corvera & Gealekman, 

2014). Besides of simple fat storage, adipose tissue is also a secretory and endocrine organ 

that produces hormones, such as adiponectin (ADIPO) and leptin (LEP), and has an important 

role in metabolic and vascular homeostasis, and inflammatory processes (Trayhurn & Beattie, 

2001). ADIPO acts in adipocytes by increasing glucose transporter type 4 (GLUT4)-mediated 

glucose uptake while enhancing adipogenesis and adipocyte lipid storage (Fu et al., 2005). 

GLUT4 is a facilitative diffusion glucose transporter and is the major insulin-regulated 

glucose transporter in skeletal muscle, heart, and adipocytes. GLUT4 translocates from 

intracellular storage vesicles to the plasma membrane in adipocytes and muscle in response to 

increased insulin secretion (Shepherd & Kahn, 1999). Circulating levels of ADIPO increase 

while fat mass decreases. In turn the levels of LEP are often proportional to fat mass 

(Fantuzzi, 2005). LEP prevents lipogenesis by activating fatty acids β-oxidation (Cohen et al., 

2005).   

Facing weight gain and fat mass increase, the adipose tissue expands till a point where 

it no longer accumulates more fat. At this point, lipids start to deposit in other non-adipose 

tissues such as liver and muscle, leading to lipid-induced toxicity (lipotoxicity) and resulting 

in inflammation and insulin resistance (Hardy et al., 2012). vWAT is more closely related to 

liver through the portal vein than sWAT. This fact together with its diminished expansion 

capability, supports the increase risk of metabolic syndrome which is strongly associated with 

visceral obesity (Lee et al., 2012).  

Recent data suggest that adipocyte mitochondria might play an important role in the 

development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation 

of adipocyte differentiation, apoptosis, efficiency of oxidative phosphorylation, and regulation 

of conversion of white adipocytes into brown-like adipocytes (De Pauw et al., 2009; Yin et 

al., 2014). Adipocyte differentiation appears to be controlled mainly by a major factor: the 

peroxisome proliferator-activated receptor gamma (PPAR) (Rosen et al., 1999; Rosen & 

MacDougald, 2006). PPAR is a regulator of all adipose tissue and is essential for WAT 
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development. Therefore, therapeutic intervention targeting these cellular processes could be a 

useful approach to reduce adiposity (Peschechera & Eckel, 2013). 

 

1.3 Fatty acid general characterization 

Fatty acids (FA) are carboxylic acids with long aliphatic tail chains. Natural FA 

commonly have a chain of 4 to 28 carbons, which according to its saturated state and 

structural and functional groups present can be classified as saturated fatty acids (SFA), 

monounsaturated fatty acids (MUFA) or polyunsaturated fatty acids (PUFA) (Crupi et al., 

2013) 

Fatty acids in the form of TAG are a principal source of energy and are also 

fundamental mediators of multiple signaling pathways and part of the structure and function 

of cell membranes (Kremmyda et al., 2011; Orsavova et al., 2015). On the other hand, some 

FA can be responsible for the expression of pro-inflammatory cytokines with negative effects 

for the human body (Kremmyda et al., 2011). The potential health effect of a specific fatty 

acid depends both on its structure and administration form (Bandarra et al., 2016). The level 

of saturation in a FA is responsible for the distinctive functions and interactions in all living 

beings. The more insaturated a fatty acid is, the more beneficial effects it has, being long-

chain polyunsaturated fatty acid considered the most beneficial for lipid metabolism in 

humans (Grosso et al., 2014).  

Fatty acid can have cis or trans configuration, based on the configuration of the 

double bonds, being the trans form a result of hydrogenation process from the food industry 

to create more stable solid fats from liquid oils (Estadella et al., 2013; Orsavova et al., 2015). 

Trans fats, however, are considered unhealthy, because they raise LDL cholesterol, lower 

HDL cholesterol, promote insulin resistance and are associated with systemic inflammation 

and endothelial dysfunction (Imran & Nadeem, 2015; Hinrichsen, 2016). 

 

1.3.1 Saturated fatty acids  

SFA are linear chain carboxylic acids that usually have 12 to 24 carbon atoms with no 

double bonds; instead SFA are saturated with hydrogen (Crupi et al., 2013). Palmitic acid 

(16:0) is the most common SFA and is usually found in palm oil (Hinrichsen, 2016). SFA can 

be also found in coconut oil (Orsavova et al., 2015), processed meat, milk, butter and other 

dairy products, salmon, egg yolks and chocolate (O'Sullivan et al., 2013; de Souza et al., 

2015).  
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SFA are commonly associated with cardiovascular diseases, dyslipidemia, chronic 

inflammation, insulin resistance (Estadella et al., 2013), obesity and morphologic alterations 

(Campos-Silva et al., 2015), atherogenic potential and increased cholesterol levels (Hunter, 

2001; Mensink et al., 2003), however other studies questioned these adverse effects, as no 

clear correlation was found between SFA and negative outcomes (Micha & Mozaffarian, 

2010; Huth & Park, 2012; O'Sullivan et al., 2013; de Souza et al., 2015; Siri-Tarino et al., 

2015). 

 

1.3.2 Monounsaturated fatty acids  

MUFA contain only a single double bond. An example of a common monounsaturated 

fatty acid is oleic acid (18:1n-9) that accounts for more than 92% of all MUFA consumed 

(Joris & Mensink, 2016). Oleic acid is mainly found in olive, rapeseed and sunflower oils, but 

MUFA are also generally found in red meat, whole fat milk products, nuts and canola oil 

(Lewinska et al., 2015; Orsavova et al., 2015).  

The effects of MUFA are less studied than SFA and PUFA. Their positive role on 

cardiovascular disease is not very clear yet, though no harmful effects of MUFA-rich diets are 

known (Joris & Mensink, 2016). One study points out the beneficial effects of MUFA 

consumption along with fish oil (FO), rich in long-chain PUFA, on cardiovascular diseases, as 

MUFA can potentiate those benefit effects of FO (Kondreddy et al., 2016). Other studies state 

that oleic acid rich in MUFA appears to reduce low density lipoprotein (LDL) cholesterol 

level and also protects against oxidative modification of high-density lipoprotein cholesterol 

(HDL), but those effects are considered less beneficial when compared to PUFA role (Hunter, 

2001; Lewinska et al., 2015).  

 

1.3.3 Polyunsaturated fatty acids  

PUFA contain two or more carbon-to-carbon double bonds in a hydrophobic 

hydrocarbon chain, not saturated with hydrogen atoms (Grosso et al., 2014). There are two 

main classes of PUFA, omega-3 (n-3) fatty acids and omega-6 (n-6) fatty acids, which differ 

in the position of their final carbon double bond and the fatty acid from which they are 

synthesized (Crupi et al., 2013). 18:3n-3 and 18:2n-6 are considered essential fatty acids since 

they play an important role in maintaining homeostatic conditions. Mammalian cells lack the 

desaturase enzymes required for their production, therefore these fatty acids must be obtained 

through the diet (Grosso et al., 2014).  
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The main sources of PUFA are mostly vegetable oils (soy, linseed, corn, sunflower, 

among others), fish flesh, liver and oil (codfish, salmon, tuna, sardines), and also seafood and 

marine algae (Crupi et al., 2013; Wibrand et al., 2013; Lewinska et al., 2015). 

 

1.3.4 Biosynthesis and biological effects of PUFA  

1.3.4.1 Omega-6 PUFA  

The n-6 series derive from linoleic acid (LA, 18:2n-6) with the double bond starting at 

the sixth carbon atom from the end of the carbon chain. n-6 PUFA can be converted into 

arachidonic acid (AA, 20:4n-6) and then metabolized into the n-6 eicosanoids: lipoxins (LXs), 

prostaglandins (PGs), thromboxanes (TXs) and leukotrienes (LTs) (Grosso et al., 2014) 

(Figure 3).  

 

1.3.4.2 Omega-3 PUFA  

The n-3 series derive from a shorter-chained n-3 fatty acid, α-linolenic acid (ALA, 

18:3n-3) with the double bond starting at the third carbon atom from the end of the carbon 

chain (Grosso et al., 2014) (Figure 3). n-3 synthesis forms the most important PUFA 

metabolites: eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) 

(Das, 2003). The health effects of n-3 fatty acids come mostly from EPA and DHA (Molfino 

et al., 2014; Dyall, 2015), which will be detailed further.  

 

1.3.5 PUFA synthesis  

Essential fatty acids have important effects for human normal function but their full 

benefit comes from their long-chain metabolites that can be synthesized by a series of linked 

desaturation, chain elongation and β-oxidation reactions (Calder, 2012). Figure 3 shows the 

conversion scheme of n-6 and n-3 to their final metabolites and the enzymes involved in each 

step.  

The synthesis of n-6 starts with the conversion of LA to γ-linolenic acid (18:3n-6) by 

the enzyme Δ6 desaturase. Synthesis of n-3 involves, starting with the conversion of ALA to 

stearidonic acid (SA, 18:4n-3) by Δ6-desaturase and SA to eicosatetraenoic acid (ETA, 20:4n-

3) by the action of elongase. ETA is then converted to EPA by the action of the enzyme Δ5 

desaturase. EPA can be converted to DHA by the action of an elongase, desaturase and β-

oxidation reactions, with docosapenatenoic acid (DHA, 22:5n-3) being an intermediate in the 

pathway. ALA conversion to EPA is referred to be generally poor and as a result, DHA 

conversion is considered especially limited (Calder, 2012). 
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Figure 3. Biosynthesis of n-6 and n-3 fatty acids to their metabolites (adapted from (Grosso et 

al., 2014). 

 

Both n-6 and n-3 series are metabolized by the same set of enzymes, desaturases and 

elongases. As a result, conversion of ALA to EPA competes with the conversion of LA to 

AA, being Δ6 desaturase the rate limiting factor in the pathway. Δ6 and Δ5 desaturases prefer 

n-3 to n-6, but their activities are regulated by a series of factors, such as nutritional status, 

hormones and end products feedback inhibition. While insulin activates Δ6 desaturase, 

glucose rich diets reduce it. Age also reduces the activity of Δ6 desaturase. A fat free diet and 

partial caloric restriction enhance Δ6 desaturase (Grosso et al., 2014).  

n-3 derived eicosanoids are less active and their anti-inflammatory action can partially 

oppose the pro-inflammatory actions of n-6 eicosanoids. Therefore, to prevent a deregulation 

of inflammatory processes, a homeostatic balance between n-3 and n-6 fatty acid must be 

obtained (Grosso et al., 2014).  
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The concentration of n-3 in FO can be increased through ethylation. During this 

process, the glycerol backbone of TAG is removed from EPA and DHA and some of the 

shorter chain fatty acid are also taken out. DHA and EPA free fatty acids are then esterified to 

form ethyl esters (EE) (Figure 4). In EE, the fatty acids are esterified to an ethanol backbone, 

while in TAG the fatty acids are esterified to a glycerol alcohol backbone (Bezard et al., 

1994). The majority of concentrated EPA and DHA products industrially available are in the 

ethyl ester form, which may be due to this lower cost of production. 

Much remains to be discovered in relation to the effects of ethyl-ester -EPA and -DHA 

formulas compared to TAG-EPA and -DHA formulas. 

 

 1.3.6 Biological effects of n-6 and n-3  

Since EPA competes with AA for enzymatic conversion, the increase of n-6 fatty 

acids will lead to a higher production of pro-inflammatory eicosanoids that cannot be 

neutralized by the anti-inflammatory effects of n-3 PUFA, which can be harmful to human 

body (Simopoulos, 2008). Lowering the ingestion of n-6 PUFA will increase the 

bioavailability of n-3 PUFA and, therefore, increase the concentration of EPA and DHA, 

which have beneficial anti-inflammatory properties (Taha et al., 2014).  

Some of the n-6 eicosanoids, such as prostaglandins, thromboxanes, leukotrienes, 

hydroxyl fatty acids and lipoxins, are biologically active in very small quantities and, when 

formed in large amounts, can have a pro-inflammatory and pro-thrombotic action, which 

increases blood viscosity, causes vasospasm and vasoconstriction and decreases bleeding time 

(Simopoulos, 2008). An increase in n-6 eicosanoids can lead to the formation of thrombus, 

atheromas and to allergic and inflammatory disorders, potentiating pathological processes and 

chronic conditions, such as diabetes, cancer, obesity, autoimmune diseases and rheumatoid 

arthritis (Simopoulos, 2006). Pro-thrombotic and pro-inflammatory eicosanoids can also lead 

to cardiovascular events, elevate blood lipids and blood pressure levels (Khandelwal et al., 

2013) and have a negative role on endothelial function, oxidative stress and even depression 

disorders (Husted & Bouzinova, 2016; Yang et al., 2016).  

Long-chain PUFA are an important constituent of cell membranes and determine 

membranes properties, such as fluidity. Thus, the ratio between n-6 to n-3 fatty acid is 

important to avoid imbalance of membrane fluidity (Das & Fams, 2003). In 2008, a study 

from Griffin proposes that the n-6/n-3 ratio has no value as health risk. Instead, it can be used 
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Figure 4. Structure of different forms of EPA (20:5n-3) and DHA (22:6n-3): free fatty acid 

(FFA, non-esterified fatty acids circulating in the plasma), triacylglycerols (TAG, an ester 

derived from glycerol and three fatty acids accumulated in the cytoplasm of adipose tissue 

(fish oil)), and ethyl esters (EE, only produced through chemical synthesis). EE form is 

created by reacting FFA with ethanol in a process called trans-esterification, when the 

glycerol backbone is removed of triacylglycerols fish oil resulting in FFA and a free glycerol 

molecule. The molecule of ethanol is then attached to each of the FFA (EPA and DHA) 

creating ethyl esters. 

 

as a health indicator, but not determinant or prompter of disease (Griffin, 2008). Also, it states 

that the major contributors for health promotion are the n-3 metabolites, EPA and DHA, and 

the absolute amount of dietary PUFA are of relevance to the efficiency of the conversion of 

ALA to EPA and consequently of EPA to DHA. Therefore, a decrease in LA consumption 
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and an increase in ALA consumption will promote the endogenous synthesis of PUFA and 

increase health.  

 The therapeutic options for the treatment of obesity include dietary management, drug 

therapy, and bariatric surgery. Despite the wide range of treatments, the dietary intervention is 

the cornerstone of managing obesity and related morbidities. Numerous dietary supplements 

are being marketed as slimming aids. The efficacy of these food supplements has not been 

proven, yet they are sold. One such supplement is n-3 PUFA. Humans acquire n-3 PUFA 

from FO, which are obtained from the human diet or by consuming FO supplements or cod 

liver oil. 

 

1.2 Aquaporins 

Aquaporins are transmembrane protein channels that facilitate the transport of water 

and small solutes (such as glycerol) through the plasma membrane driven by osmotic or 

solute gradients (Agre, 2004; Carbrey & Agre, 2009). Adipose aquaporins (AQPs) are 

essential players in adipose tissue biology (Madeira et al., 2015b). In mammals, thirteen 

AQPs have been described. According to their primary sequence and permeability 

characteristics, aquaporins can be divided in three sub-groups: (i) orthodox or classical AQPs 

(AQP0, AQP1, AQP2, AQP4, AQP5, AQP6 and AQP8), primarily water selective facilitating 

water movement across cell membranes in response to osmotic or pressure gradients; (ii) 

aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) which transport some small uncharged 

solutes such as glycerol and urea in addition to water and; (iii) S-aquaporins or non-orthodox 

(AQP11 and AQP12) found mostly intracellularly, with lower sequence similarity to the other 

mammalian AQPs and with permeability features still uncertain  (Figure 5) (Benga, 2012). 

 

1.2.1 Aquaporin structure  

AQPs are composed by around 320 amino acid residues with approximately 28kDa, 

architected in membranes as tetramers. Each monomer is formed by six transmembrane 

domains and behaves as an independent pore. The pore size is closely related to the channel 

selectivity (Figure 6). The three-dimensional structures of several AQPs enabled the 

conceptualization of a general structure, revealing the structural determinants that are 

essential for AQPs selectivity and extraordinary permeation rates. The atomic model of 
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Figure 5. Phylogenetic tree of the human Aquaporin gene family (adapted from Ishibashi et 

al., 2014). Water permeable AQPs (AQP0, 1, 2, 4, 5, 6, 8) are shown in purple background. 

Glycerol permeable aquaglyceroporins (AQP3, 7, 9, 10) are in pink background. S-aquaporins 

(AQP11 and 12) are placed on the bottom right with green background. The scale bar 

represents genetic distance between homologues.  

 

mammalian AQP1 derived from a 3.8 Å resolution potential map obtained by electron 

crystallography was the first atomic structure of a human membrane protein to be solved, and 

gave the first insight into AQP’s water specificity (Murata et al., 2000). Medium and high-

resolution structures of several AQPs belonging to different subfamilies have been 

determined from bacteria, yeast, plants, mammals, and others (Fu et al., 2000; Sui et al., 2001; 

Savage et al., 2003; Gonen et al., 2005; Tornroth-Horsefield et al., 2006; Horsefield et al., 

2008; Fischer et al., 2009). More recently, molecular dynamics simulations have 

complemented the experimental data by providing the progression of the biomolecular system 

at atomic resolution (Hub et al., 2009). The reported structures have revealed that AQPs are 

grouped as homotetramers embedded in the bilayer, consisting of four independent 

monomers, each behaving as an independent channel (Figure 6) and sharing a conserved 

overall typical hourglass fold (Jung et al., 1994; Murata et al., 2000). Each monomer interacts 

with two of its neighbors, forming the tetramer central pore. It has been suggested that this 

pore, which is not involved in water conductance, may permeate gases and function as a gated 
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cation channel (Murata et al., 2000; Wang et al., 2007; Hub & de Groot, 2008; Wang & 

Tajkhorshid, 2010).   

 

 

Figure 6. Tridimensional structure of hAQP5 (Homo sapiens). Homotetramer representation 

of the human AQP5 determined in 2008 by X-Ray Diffraction Method (2.0 Å resolution). 

Side (A), top (B1) and down (B2) view of the tetramer. Picture edited in UCSF Chimera 

software (PDB code: 3D9S). 

    

1.2.2 Aquaporins in adipose tissue 

Adipocytes hydrolyze TAG and rapidly liberate FFA and glycerol into the circulation. 

It is presumed that glycerol channels in adipocytes prevent acute rise in intracellular osmotic 

pressure when glycerol production is rapidly increased during lipolysis. Impaired glycerol 

transport through the aquaglyceroporin AQP7 has been correlated to TAG accumulation and 

obesity development (Madeira et al., 2015b). Recently, other AQPs, namely AQP3, AQP5, 

AQP9, AQP10 and AQP11 were reported in adipose tissue (Madeira et al., 2014; Madeira et 

al., 2015a; Madeira et al., 2015b; da Silva & Soveral, 2017), although their involvement in 

obesity mechanisms and divergent expression in BAT and WAT is still unclear. The first 

aquaporin that was detected in sWAT and vWAT was AQP7, which is the most representative 

glycerol channel.  

AQP7 has been localized in a wide range of different tissues in both rodents and 

humans. The hypothesis on AQP7 as a facilitator of glycerol transport in adipose tissue was 

based on the assumption that AQP7 is expressed in the adipocyte plasma membrane 

(Fruhbeck, 2005; Fruhbeck et al., 2006; Maeda et al., 2008). The putative presence of other 

aquaglyceroporins in adipose tissue has been investigated with variable outcomes. Neither 

AQP3 or AQP9 mRNA were detected by northern blotting in WAT or BAT from mice 

(Kishida et al., 2000), and although not supported by all studies, similar results have been 

obtained for human WAT (Miranda et al., 2010; Lebeck, 2014). Some literature suggests the 
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presence of AQP10 in human WAT with localization only in the adipocyte; however, again 

this observation is disputed by others unable to detect AQP10 mRNA in adipose tissue 

(Miranda et al., 2010).  
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2. Aims  

AQPs are emerging as important players in adipose tissue homeostasis and insulin 

response with possible implications in metabolic obesity-related disorders. 

Taking advantage of a research project in development at FMV-ULisboa, we used fat 

tissues obtained from hamsters fed n-3 PUFA-enriched diets, and data from plasma lipid 

analysis obtained at FMV and from fatty acids determination in adipose tissue at IPMA, that 

were incorporated in this thesis to better correlate with gene expression results. In this study:  

1) we postulated on the variability of aquaporins (AQP3, AQP5 and AQP7) gene 

expression across subcutaneous WAT, visceral WAT and BAT, which might reflect adipose 

tissue depot’s own location and metabolic function; 

2) we hypothesized that different patterns of aquaporins expression exist between WAT 

(subcutaneous and visceral) and BAT when hamsters are fed on specific n-3 PUFA molecular 

structures: FO (rich in EPA and DHA in the TAG form) and FO-EE (rich in EPA and DHA in 

the EE form) versus linseed oil (LSO rich in ALA, 18:3n-3); 

3) we further complemented this study with the transcriptional profile of lipid sensitive 

mediators, namely adiponectin (ADIPO), leptin (LEP), glucose transporter type 4 (GLUT4), 

peroxisome proliferator activated receptor alpha (PPARα) and peroxisome proliferator 

activated receptor gamma (PPARγ) across subcutaneous WAT, visceral WAT and BAT; 

4) ultimately, the goal was to set novel molecular (such as aquaporins) and nutritional 

(such as n-3 PUFA) targets for developing new anti-obesity drugs and to translate mammals’ 

successful evolutionary strategy, which is BAT, into a promising therapy to counteract 

obesity. 
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3. Materials and Methods 

3.1 Ethics statement 

The experimental procedures were reviewed by the Ethics Commission of 

CIISA/FMV and approved by the Animal Care Committee of the National Veterinary 

Authority (Direcção Geral de Alimentação e Veterinária, Portugal), following the appropriate 

European Union guidelines (2010/63/EU Directive). The experimental assay and euthanasia 

procedures were performed by project members certified for animal handling (category C by 

FELASA). In order to minimize animal suffering, the minimum number of animals and 

duration of observation were employed to gain reliable data. 

 

3.2 Animals and diets 

Besides having BAT in considerable amounts due to hibernation, the lipid metabolism 

of hamsters is more similar to humans than mice and rats (Yin et al., 2012; Dalboge et al., 

2015), thus making it possible to fairly extrapolate results to humans.  

Ten-week old Golden Syrian male hamsters were purchased from Charles River 

(Charles River Laboratories, L’Arbresle, France). Hamsters were housed one per cage, in 

standard cages (33 × 23 × 12 cm) under a 14/10 hour light/dark cycle schedule, synchronized 

with natural daylight, with controlled temperature of 20ºC-24ºC in a certified facility at the 

Faculty of Veterinary, University of Lisbon. During the first week, all animals were fed on a 

standard diet to minimize stress and stabilize all metabolic conditions. After this period, 24 

hamsters were assigned to three body weight-matched groups, with eight animals each: the 

LSO group, rich in ALA (18:3n-3) without DHA or EPA, taken as the control group; the FO 

group, a commercial available oil rich in TAG with DHA and EPA and the FO-EE group. The 

final sum of DHA and EPA was identical across FO and FO-EE dietary treatments (Table1) 

(Bandarra et al., 2016; Lopes et al., 2017). 

Throughout the trial, hamsters had free access to water and food. Body weight and 

feed intake were recorded twice a week. After 12 weeks of feeding trial, hamsters were fasted 

for 12 hours, weighted before and after the fasting period, and euthanized by a mechanical-

physical method. Hamsters were placed in a chamber and anesthetized using a mixture of 

20% of isofluorane in propylene glycol (v/v) for 30 seconds (Itah et al., 2004) followed by 

decapitation with a small animal guillotine, in certified ethical conditions to minimize animal 

suffering. Blood was collected into lithium heparin tubes and centrifuged at 1500g, room 

temperature, for 10 min, to isolate plasma, and stored at -80ºC for future biochemical 
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analysis. Subcutaneous and visceral WAT from hamsters pelvic and retroperitoneal 

anatomical regions, respectively as well as BAT from hamsters interscapular region were 

excised, weighed and stored at -80°C for subsequent fatty acid and gene expression 

determination. 

 

3.3 Diets 

Diets were manufactured by the Experimental Diets Unit from the University of 

Almeria. The proximate chemical composition of the diets was determined according to 

Association of Official Agricultural Chemists (AOAC, 1995), and fatty acid composition was 

assessed as described by Bandarra et al (2001) (Table 1). All diets were based on the AIN-

93M formulation with modified lipid fractions. Each diet contained the following (g/100 g 

feed): casein (14.0), corn starch (46.6), maltodextrin (15.5), sucrose (10.0), cellulose (5.0), 

soybean oil (4.0), L-cystine (0.18), AIN-93 mineral mix (3.5), AIN-93M vitamin mix (1.0), 

choline bitartrate (0.25), and tert-butylhydroquinone (0.0008). 

 

3.4 Determination of plasma metabolites and hormones 

  The concentrations of total cholesterol, high-density lipoprotein cholesterol (HDL-

Cholesterol), low-density lipoprotein cholesterol (LDL-Cholesterol), TAG, glucose, 

creatinine, urea, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 

phosphatase (ALP) and gamma-glutamyl transpeptidase (γ-GT) in plasma were analyzed 

using standard diagnostic test kits from Roche Diagnostics (Mannheim, Germany) in a 

Modular Hitachi Analytical Systems (Roche Diagnostics). Very low-density lipoprotein 

cholesterol (VLDL-cholesterol) and total lipids were determined according to the formulas by 

Friedewald et al. (1972) and Covaci et al. (2006), respectively. 

Plasma concentrations of the adipokines, LEP (R&D Systems, Minneapolis, USA) and 

ADIPO (R&D Systems) were measured by ELISA following the supplier recommendations. 

Insulin levels were measured in plasma using a commercial enzyme-linked immunosorbent 

assay kit (Mercodia, Uppsala, Sweden). The quantitative insulin sensitivity check index 

(QUICKI) was calculated using the inverse sum of the logarithms for fasting insulin and 

fasting glucose (Katz et al., 2000). 

 

3.5 Determination of fatty acids in adipose tissue   

The fatty acid methyl esters (FAME) were determined in the sWAT, vWAT and BAT, 

according to Bandarra et al. (Bandarra et al., 1997). All samples were lyophilized at -60ºC and 
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Table 1. Chemical composition (g/100g) and fatty acid profile (g/100g of total fatty acids) of 

the experimental diets. 

 
LSO FO FO-EE 

Ingredients (g/100 g) 
   

Casein 14.0 14.0 14.0 

Corn starch 46.6 46.6 46.6 

Maltodextrin 15.5 15.5 15.5 

Sucrose 10.0 10.0 10.0 

Cellulose 5.0 5.0 5.0 

Soybean oil 4.0 4.0 4.0 

Linseed oil 0.335 - - 

Fish oil - 0.796 - 

Fish oil ethyl esters - - 0.796 

L-Cysteine 0.18 0.18 0.18 

Mineral AIN-93M mix 3.5 3.5 3.5 

Vitamin AIN-93M mix 1.0 1.0 1.0 

Choline bitartrate 0.25 0.25 0.25 

TBHQ (antioxidant) 0.0008 0.0008 0.0008 

Chemical composition (g/100 g) 
  

Gross energy (kcal/100 g) 337 341 345 

Crude protein 11.5 11.1 11.5 

Crude fat 1.3 1.8 1.8 

Carbohydrates 69.7 70.2 70.7 

Crude ash 2.9 2.9 2.9 

Fatty acid profile (g/100 g of total fatty acids) 
 

10:0 4.43 1.87 2.09 

12:0 4.76 3.00 2.30 

14:0 0.300 1.00 1.40 

16:0 10.2 12.0 11.4 

16:1n-7 0.100 1.20 2.10 

18:0 3.44 3.70 3.60 

18:1n-9 22.1 22.9 23.4 

18:2n-6 41.6 41.2 38.9 

18:3n-3 7.88 5.80 5.54 

18:4n-3 0.800 0.300 0.500 

20:1n-9 ND 1.20 1.30 

20:4n-3 ND 1.10 1.62 

20:5n-3 ND 1.20 0.770 

22:1n-11 ND 1.30 1.20 

22:6n-3 ND 1.70 1.80 

LSO, the linseed oil group (the control group); FO, the fish oil group; FO-EE, the fish oil ethyl esters group. 

TBHQ, tertiarybutylhydroquinone. ND, not detected. 
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2.0 hPa to a constant weight. FAME were obtained by adding 1 mL of anhydrous methanol, 

0.5 mL of sodium methoxide (1 mol/L in methanol), swirling for 5 min, and 1 h reaction in 

the dark, according to Christie (Christie, 1989). The separation of the layer was enhanced 

through 10 min in ultrasonic bath and centrifuged (1500g, 5 min). The n-hexane layer was 

obtained, and the aqueous phase was re-extracted with 2.5 mL of n-hexane and centrifuged 

once more. FAME was concentrated to a final volume of 25 µL in n-hexane. 2 µL of sample 

was injected on a capillary DB-Wax capillary column (30 m, 0.25 mm internal diameter and 

0.25 µm film thickness, J&W Scientific, Agilent, USA) in a Varian CP-3800 gas 

chromatograph (Varian, Palo Alto, USA) equipped with flame ionization detector. The 

temperatures were set at 250ºC in the injector and detector. Adequate separation was collected 

over 40 min, with 5 min at 180ºC, followed by an increase of 4ºC per minute until 220ºC, and 

kept at this temperature during 25 min. The identification of fatty acids was based on 

authentic standards and expressed as mol% of total fatty acids.      

 

3.6 Adipocyte RNA extraction 

Total RNA was isolated and purified from sWAT, vWAT and BAT using a Qiagen 

RNeasy lipid tissue mini kit (Qiagen, Hilden, Germany), and stored at -80ºC. To exclude 

possible DNA contamination, on-column DNA digestion with the RNase-free DNase set 

(Qiagen) was performed. All procedures were based on the manufacturer’s protocol.  

 

3.7 Measurement of RNA concentration and quality 

The RNA concentration was determined spectrophotometrically at 260 nm using the 

NanoDrop1 ND-2000c (ThermoFisher Scientific, Waltham, USA). The ratios 260/280 nm 

and 260/230 nm were also determined to assess the purity of RNA samples and the presence 

of contaminants. Only samples that fulfill the established quality parameters (260/280 nm and 

260/230 nm ratios were used as purity measurements for protein and solvent presence, 

respectively, considering ratios between 1.8-2.2) proceeded to complementary (cDNA) 

synthesis step. 

 

3.8 cDNA synthesis 

The synthesis of cDNA was performed using 750 ng of RNA and the 

retrotranscription reaction was carried out with a First-strand cDNA synthesis kit (NZYtech, 

Lisboa, Portugal) according to the manufacturer instructions. The final cDNA samples were 

diluted to 1:3 in water molecular biology grade (NZYtech) and stored at -20°C.  
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3.9 Primers design  

Specific primers for real time quantitative PCR (RT-qPCR) were designed for seven 

genes (AQP3, AQP5, AQP7, ADIPO, GLUT4, PPARα and PPARγ). The DNA sequences of 

the golden hamster (Mesocricetus auratus) genes were obtained from GenBank (accession 

numbers listed in Table 2) and then submitted to the Primer3 software (http://primer3.ut.ee/) 

to generate the primers. Primer3 parameters were set in order to obtain the best pair of 

primers in size (20-27 bp), melting temperature (50-65ºC), % GC (50-60%) and product size 

range (75-200 bp). The characterization of the selected genes used in real-time quantitative 

PCR is described in Table 2. 

 

3.10 RT-qPCR primers validation and optimization 

To run a RT-qPCR assay is essential to validate each pair of primers to achieve 

accurate template quantification, each reaction must efficiently amplify a single product, and 

amplification efficiency must be independent of template concentration and amplification of 

other templates. The validation of primers was performed by assessing the efficiency (90-

110%) and specificity (a single melting temperature) of the amplification. Primer optimization 

was performed, when the previous parameters were not fulfilled, by varying the annealing 

temperature (55-65ºC) and the primers forward and reverse concentration (100-300 nM) 

individually. Tables 3, 4 and 5 depict the optimized amplification conditions for the genes 

targeted in this project.  

 

3.11 Real time Quantitative PCR (RT-qPCR)  

Real time quantitative PCR was performed using PowerUp™ SYBR® Green Master 

Mix (Life Technologies, California, USA) which was prepared for a final reaction volume of 

20 μL, using 3 μL of template cDNA, 2 μL of forward and reverse primers (Table 5.) and 3 

μL of molecular biology grade water. The reaction was performed on a CFX96™ Real-Time 

PCR Detection System C1000 (BioRad, California, USA) consisting of an initial denaturation 

step at 95 °C for 3 minutes, 45 cycles of denaturation at 95 °C for 10 seconds and 

annealing/extension for 30 seconds; annealing temperatures are described in Table 3 and 4. A 

dissociation stage was added to determine the melting temperature (Tm) of a single nucleic 

acid target sequence as a quality and specificity measure. Relative expression levels were 

normalized to reference genes (GAPDH and β-actin for AQP3, AQP5 and AQP7; RPL27 for 

ADIPO, LEP, GLUT4, PPARα and PPARγ) and calculated using a variation of the Livak 

 

http://primer3.ut.ee/
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Table 2. Gene specific primer sequences used for RT-qPCR. 

Gene 

symbol 
Full gene name 

GenBank acession 

no. 
Forward/reverse primers 

Product 

size (bp) 

AQP3 Aquaporin-3 XM_005078855.2 F: 5’ CCAACAATGAGCTTATCGTCTCCG 3’ 137 

   R: 5’ CAGAACACACACGATGAGGGAG 3’  

AQP5 Aquaporin-5 XM_005067227.2 F: 5’ GGTGGTCATGGATCGGTTCAG 3’ 100 

   R: 5’ GAAGAGCAGGTAGAAGTAGAGCAG 3’  

AQP7 Aquaporin-7 XM_013119574.1 F: 5’ GCAGAGGGAGATGGTACGAGAG 3’ 100 

   R: 5’ GTCTCCTAGAACCATATGAGCCAC 3’  

β-Actin Beta actin NM_001281595.1 F: 5’ GCCAACCGTGAAAAGATGACC 3’ 104 

   R: 5’ GTACGACCAGAGGCATACAGG 3’  

GAPDH 
Glyceraldehyde-3-phosphate 
dehydrogenase 

DQ403055.1 F: 5’ CAGTATGACTCTACCCATGGCAAG 3’ 157 

   R: 5’ CAGTAGACTCCACAACATACTCGG 3’  

ADIPO Adiponectin GQ355976.1 F: 5’ CTCTTCACCTTCGACCAGTATCAG 3’ 139 

   R: 5’ CTGCATAGAGTCCACTGTAATCCC 3’  

RPL27 Ribosomal protein L27 XM_005070132.2 F: 5’ CATGGGCAAGAAGAAAATCGCC 3’ 155 

   R: 5’ GTTTCAGGGCTGGGTCTCTAAAG 3’  

LEP Leptin XM_005078071.2 F: 5’ CCAAAACCCTCATCAAGACCA 3’ 106 

   R: 5’ AGCCCAGGAATGAAGTCCAA 3’  

GLUT4 
Solute carrier family 2 (facilitated 
glucose transporter),  member 4 

XM_005067520.2 F: 5’ ATGGCTGTCGCTGGTTTCTC 3’ 117 

 
 

 R: 5’ AAGCAGGAGGACGGCAAATA 3’  

PPARα 
Peroxisome proliferator-activated 
receptor alpha 

NM_001281543.1 F: 5’ TGAGGAAGCCGTTCTGTGAC 3’ 221 

 
 

 R: 5’ GGTGTCATCTGGATGGTTGC 3’  

PPARγ 
Peroxisome proliferator-activated 
receptor gamma 

XM_013110341.1 F: 5’ GAGGGCGATCTTGACAGGAA 3’ 139 

   R: 5’ GATGGCCACCTCTTTGCTCT 3’  

 

 

Table 3. Optimized conditions to quantify AQP3, AQP5, AQP7, β-actin and GAPDH mRNA 

expression levels by RT-qPCR. 

 Temperature (ºC) Duration Cycles 

Initial denaturation 95 3 minutes 1 

Denaturing 95 10 seconds 
45 

Annealing/extension 59 30 seconds 

 

 

Table 4. Optimized conditions to quantify ADIPO, LEP, GLUT4, PPARα, PPARγ and RPL27 

mRNA expression levels by RT-qPCR. 

 Temperature (ºC) Duration Cycles 

Initial denaturation 95 3 minutes 1 

Denaturing 95 10 seconds 
45 

Annealing/extension 62 30 seconds 
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Table 5. Optimized concentration of forward and reverse primers for each target gene. 

 Concentration (nM) 

 Forward Reverse 

AQP3 100 100 

AQP5 300 300 

AQP7 300 300 

ADIPO 300 300 

LEP 300 300 

GLUT4 150 150 

PPARα 300 300 

PPARγ 300 300 

β-actin 150 150 

GAPDH 150 150 

RPL27 300 300 

 

 

method (Livak & Schmittgen, 2001), corrected for variation in amplification efficiency, as 

described by Fleige and Pfaffl (Fleige & Pfaffl, 2006; Fleige et al., 2006): 

Relative expression = 
                       

                 
 , E = 1 + efficiency of the reaction  

 

3.12 Statistical analyses 

Statistical analyses were carried out with the Statistical Analysis System (SAS) 

software, version 9.4 (SAS Institute, Cary, NC, USA). All data were checked for normal 

distribution by Kolmogorov–Smirnov test and variance homogeneity using Proc MIXED of 

the SAS software package, with a model including the fat depot and diet as fixed effects and 

the repeated statement considering the group option to accommodate the variance 

heterogeneity. This analysis was followed by Tukey’s multiple comparisons test. The Proc 

CORR method was used to obtain Pearson’s correlation coefficients among genes expression 

and fatty acids. P<0.05 was considered to be statistically significant. Results are expressed as 

mean ± standard error (SE).  

The principal component analysis (PCA) is a multivariate technique that reduces the 

dimensionality of data by transforming a number of related variables into a set of uncorrelated 

variables, which the maximum variability of the data was explained in a reduced variable set 

(Kadegowda et al., 2008), using the proportion of fatty acids common to all three tissues 

(subcutaneous WAT, visceral WAT and interscapular BAT) and gene expression levels. The 
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PCA was carried out using STATISTICA software, with the variables standardized to a mean 

of zero and a variance of one. 
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4. Results 

4.1 Animal body composition 

Body composition parameters of hamsters fed with different n-3 PUFA diets are 

shown in Table 6. The consumption of LSO, FO and FO-EE diets did not affect animal’s 

daily feed intake, growth parameters or final body and tissue (liver and muscle) weights of 

hamsters (P>0.05). 

 

4.2 Adipose tissue weight and plasma hormones 

The variations in fat depots mass are illustrated in Figure 7. The subcutaneous WAT 

was the heaviest, the visceral WAT was the intermediate, and the interscapular BAT was the 

lightest (P<0.05), regardless the dietary group. Subcutaneous WAT, visceral WAT and 

interscapular BAT weights were unchanged by dietary treatments (P>0.05). 

In line with this, Figure 8 presents the non-variations of plasma hormones across 

dietary groups, leptin (P>0.05; Figure 8A) and adiponectin (P>0.05; Figure 8B).  

 

4.2 Plasma metabolites profile  

Plasma metabolites from hamsters fed n-3 PUFA diets are also shown in Table 6. 

Hamsters fed FO-EE diet had lower HDL-Cholesterol, LDL-Cholesterol and total Cholesterol 

concentrations while FO had higher (P<0.001). VLDL-Cholesterol and TAG presented the 

lowest values in the LSO group than the other two experimental groups (P<0.001). Total 

lipids levels were different between the three dietary groups (P<0.001), being higher in FO 

group and lower in LSO group. FO and FO-EE diets reduced glucose concentration in 

comparison to the LSO dietary treatment (P<0.001). Moreover, the dietary treatments did not 

induce any significant change in insulin and insulin resistance marker (QUICKI) (P>0.05). 

Associated with renal function, creatinine levels were higher in LSO group and lower in FO-

EE group (P<0.001). Urea parameter was lower in FO-EE in comparison with both FO and 

LSO groups (P<0.001). In relation to the hepatic markers, AST was decreased in the FO-EE 

group in relation to the other two groups (P<0.001). Higher concentrations of circulating ALT 

were found the LSO group and lower in the FO-EE group (P<0.001). ALP did not differ 

among the three groups (P>0.05). The gamma-glutamyl transferase (γ-GT) remained similar 

across dietary treatments (P>0.05).  
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Table 6. Body composition parameters and plasma metabolites. 

 

LSO FO FO-EE 
P value Significance 

 

Mean SE Mean SE Mean SE 

Growth parameters and tissues weight (g)  

Initial body weight 137 3.93 136 4.24 142 3.89 0.497 NS 

Final body weight 144 3.78 151 3.98 155 4.19 0.170 NS 

Total body weight gain 7.15 2.96 14.5 2.81 12.5 3.60 0.210 NS 

Daily feed intake 6.62 0.224 7.45 0.505 6.67 0.171 0.328 NS 

Liver 4.54 0.401 5.45 0.291 5.12 0.269 0.205 NS 

Muscle (Longissimus dorsi) 2.71 0.074 2.91 0.161 2.83 0.290 0.545 NS 

Subcutaneous white adipose tissue 2.31 0.456 3.49 0.718 3.26 0.531 0.270 NS 

Visceral white adipose tissue 1.60 0.167 2.07 0.137 2.18 0.100 0.162 NS 

Interscapular brown adipose tissue 0.397 0.021 0.446 0.025 0.487 0.035 0.082 NS 

Plasma biochemistry profile   

Total Cholesterol (mg/L) 126b 2.70 144a 3.45 113c 2.71 <.001 *** 

HDL-Cholesterol (mg/L) 81.8b 1.72 92.9a 2.33 72.1c 1.74 <.001 *** 

LDL-Cholesterol (mg/L) 24.9b 0.581 28.1a 1.01 22.1c 0.515 <.001 *** 

VLDL-Cholesterol (mg/L) † 16.0b 0.474 25.5a 0.727 25.9a 0.681 <.001 *** 

LDL-C/HDL-C 0.304 0.002 0.303 0.007 0.307 0.005 0.852 NS 

TAG (mg/L) 80.1b 2.37 127.4a 3.64 129.3a 3.41 <.001 *** 

Total lipids (mg/L) ‡ 482c 6.55 565a 9.07 505b 4.87 <.001 *** 

Glucose (mg/L) 98.4a 2.49 78.9b 1.45 84.6b 2.46 <.001 *** 

Insulin (pg/mL) 341 78.0 449 122 438 46.5 0.437 NS 

QUICKI (mmol/L × mU/mL) § 0.336 0.010 0.336 0.009 0.342 0.010 0.879 NS 

Creatinine (mg/L) 0.355a 0.014 0.303b 0.006 0.221c 0.013 <.001 *** 

Urea (mg/L) 40.8a 1.33 38.7a 1.21 29.8b 0.796 <.001 *** 

Plasma hepatic markers 

AST (U/L) 101a 2.92 104a 2.53 72.4b 1.73 <.001 *** 

ALT (U/L) 105a 2.39 61.9b 1.70 51.1c 1.30 <.001 *** 

ALP (U/L) 105 2.82 94.7 3.09 100 3.01 0.075 NS 

-GT (U/L) 4.25 0.620 4.57 0.649 5.63 0.706 0.342 NS 

LSO, the linseed oil group (the control group); FO, the fish oil group; FO-EE, the fish oil ethyl esters group. n=8 

per group. Statistical significance: NS = not significantly different, P>0.05; *, P<0.05; **, P<0.01; ***, 

P<0.001. Values are means ± SE. 
a,b,c

 Means in the same row with different superscripts are significantly 

different (Tukey’s post hoc, P < 0.05).  

†VLDL-cholesterol = 1/5 [triacylglycerols]. 

‡Total lipids = [total cholesterol] × 1.12 + [triacylglycerols] × 1.33 + 148. 

§QUICKI, quantitative insulin sensitivity check index = 1 / (log fasting plasma glucose + fasting plasma insulin). 

 

4.3 Fatty acid profile in subcutaneous white adipose tissue 

The fatty acid profile of sWAT across dietary groups is shown in Table 7. The 

distribution pattern of the main fatty acid classes across dietary treatments showed a highest 

occurrence of MUFA (54%), followed by total PUFA (23 to 24%), SFA (22 to 24%), and 

lastly n-6 PUFA with a prevalence around 20 to 22%. SFA were unchanged under this 

experimental design (P>0.05), due to the non-variations of the main SFA, 14:0, 15:0, 16:0, 

17:0, 18:0 and 19:0 (P>0.05). In a similar trend, the MUFA sum presented no differences 

(P>0.05) among groups, although small changes were found for the 20:1n-9 (P<0.05), 
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Figure 7. Subcutaneous WAT (white bars), visceral WAT (gray bars) and interscapular BAT 

(black bars) weight from hamsters fed on LSO, FO and FO-EE diets. Means (± SE) with 

different letters are significantly different (Tukey’s post hoc, P<0.05). 

 

 
Figure 8. Plasma hormones (means ± SE), leptin (A) and adiponectin (B) from hamsters fed 

on LSO, FO and FO-EE diets. 

 

16:1n-7 (P<0.05), and 16:1n-9 (P<0.01) fatty acids. Even if total PUFA did not change 

(P>0.05), the n-3 PUFA sum was increased in the LSO group in comparison to the others 

(P<0.001), at the expenses of ALA (18:3n-3) (P<0.001). EPA and DHA were not found. For 
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the n-6 PUFA sum, the non-variations observed reflect the ones of the LA (18:2n-6) (P>0.05). 

AA (20:4n-6), the most prevalent PUFA from the n-6 family was not found in any dietary 

treatment. While the stearoyl-CoA desaturase (SCD) ratio presented similar values across 

dietary groups (P>0.05), the n-3/n-6 ratio was increased in hamsters fed LSO diet relative to 

FO and FO-EE (P<0.001). 

 

4.4 Fatty acid profile in visceral white adipose tissue 

The fatty acid composition of vWAT is presented in Table 8. The distribution pattern 

of the main fatty acid classes across dietary groups showed a highest occurrence of MUFA 

(51 to 52%), followed by SFA (26 to 27%), closely followed by total PUFA (21 to 23%), and 

lastly by n-6 PUFA (19 to 20%). The main SFA, 14:0, 15:0, 16:0, 17:0, 18:0 and 19:0, as well 

as total SFA, presented no variations across dietary groups (P>0.05). The sum of MUFA did 

not vary (P>0.05), but 18:1n-9 was identically lower in FO and FO-EE but higher in LSO 

(P<0.05). Moreover, the 16:1n-7 percentage was higher in the FO and FO-EE groups when 

compared to the LSO group (P<0.001). 16:1n-9 was higher in the LSO and lower in the FO 

and FO-EE dietary groups (P<0.05). In turn, higher percentages of the 20:1n-9 were observed 

in the FO and FO-EE groups whereas lower percentages were observed in the LSO 

(P<0.001). Total and n-6 PUFA percentages presented no-variations across dietary groups 

(P>0.05), whereas n-3 PUFA sum was higher in the LSO group (P<0.001) at the expenses of 

ALA (P<0.001). In resemblance to the sWAT, AA was not found in any dietary treatment. 

EPA and DHA were, once again, not found in WAT. SCD ratio did not vary (P>0.05). The n-

3/n-6 ratio reached the highest value in the LSO being the values similar for FO and FO-EE 

(P<0.001) groups. 

 

4.5 Fatty acid profile in brown adipose tissue 

The fatty acid profile of interscapular BAT is presented in Table 9. The distribution 

pattern of the main fatty acid classes across dietary groups showed a highest occurrence of 

MUFA (48 to 49%), followed by SFA (26 to 29%) and total PUFA (22 to 25%), and lastly by 

n-6 PUFA (20 to 22%). In opposition to the large variations described previously for visceral 

white  fat,  interscapular  BAT  presented  fewer  changes  for  fatty  acids  deposition  across 

dietary treatments. The SFA sum was higher in FO and FO-EE groups relative to LSO 

(P<0.05). Except for 16:0 that reached the highest percentage in the FO and FO-EE (P<0.05) 

diets relative to LSO, no additional variations were found for the remaining SFA (P>0.05). 



 

 
 

 

31 
“Modulation of aquaporins gene expression by n-3 polyunsaturated fatty acids (PUFA) lipid structures in white and brown 

adipose tissue from hamsters” 
Rute Martins 

Table 7. Fatty acid composition (mol% of total fatty acids) of subcutaneous white adipose 

tissue. 

  
LSO FO FO-EE 

P value Significance 

  
Mean SE Mean SE Mean SE 

11:0 
 

0.078 0.011 0.090 0.020 0.066 0.015 0.611 NS 

14:0 
 

1.36 0.128 1.65 0.199 1.31 0.148 0.367 NS 

15:0 
 

0.554 0.047 0.572 0.040 0.494 0.045 0.434 NS 

16:0 
 

18.6 0.568 19.6 0.780 18.5 0.748 0.532 NS 

16:1n-9 
 

0.622a 0.026 0.442b 0.062 0.517b 0.015 0.004 ** 

16:1n-7 
 

9.31b 0.397 12.9a 1.14 10.7a,b 0.600 0.013 * 

17:0 isobr 0.073 0.002 0.066 0.010 0.077 0.005 0.497 NS 

17:0 
 

0.327 0.015 0.298 0.022 0.291 0.014 0.220 NS 

16:3n-4 
 

0.534 0.026 0.601 0.030 0.529 0.033 0.189 NS 

18:0 
 

1.47 0.073 1.27 0.076 1.37 0.055 0.205 NS 

18:1n-9 
 

42.1 0.732 38.7 1.18 41.1 1.07 0.082 NS 

18:1n-7 
 

1.57 0.160 1.57 0.139 1.40 0.164 0.690 NS 

18:2n-6 
 

21.0 0.359 20.1 0.731 21.5 0.457 0.282 NS 

19:0 
 

0.074 0.022 0.058 0.016 0.084 0.009 0.376 NS 

18:3n-4 
 

0.208 0.011 0.197 0.017 0.206 0.012 0.863 NS 

18:3n-3 
 

1.89a 0.057 1.48b 0.054 1.42b 0.031 <0.001 *** 

18:4n-3 
 

0.106 0.013 0.080 0.013 0.120 0.013 0.104 NS 

20:1n-9 
 

0.198b 0.022 0.271a 0.023 0.276a 0.025 0.042 * 

20:2n-6 
 

ND - ND - ND - - - 

20:4n-6 
 

ND - ND - ND - - - 

20:5n-3 
 

ND - ND - ND - - - 

22:6n-3 
 

ND - ND - ND - - - 

Partial sums and ratios 
      

 
 

Total SFA 
 

22.5 0.708 23.6 1.01 22.2 0.922 0.578 NS 

Total MUFA 53.8 0.538 53.9 0.412 54.0 0.713 0.956 NS 

Total PUFA 23.7 0.372 22.5 0.763 23.8 0.456 0.305 NS 

Total n-3 
 

2.00a 0.048 1.57b 0.058 1.55b 0.030 <0.001 *** 

Total n-6 
 

21.0 0.359 20.1 0.731 21.5 0.457 0.282 NS 

SCD 
 

2.66 0.096 2.58 0.111 2.70 0.128 0.750 NS 

n-3/n-6 
 

0.095a 0.003 0.079b 0.004 0.072b 0.002 <0.001 *** 

LSO, the linseed oil group (the control group); FO, the fish oil group; FO-EE, the fish oil ethyl esters group. n=8 

per group. ND, not detected. Total SFA = 11:0 + 15:0 + 15:0 + 16:0 + 17:0 isobr + 17:0 + 18:0 + 19:0; Total 

MUFA = 16:1n-9 + 16:1n-7 + 18:1n-9 + 18:1n-7 + 20:1n-9; Total PUFA = 16:3n-4 + 18:2n-6 + 18:3n-4 + 

18:3n-3 + 18:4n-3 + 20:2n-6 + 20:4n-6 + 22:6n-3; Total n-3 = 18:3n-3 + 18:4n-3 + 22:6n-3; Total n-6 = 18:2n-6 

+ 20:2n-6 + 20:4n-6; SCD ratio = (18:1n-7 + 18:1n-9 + 16:1n-7)/(16:0 + 18:0). Values are means ± SE. 

Statistical significance: NS = not significantly different, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001.  
a,b,c

 Means in the same row with different superscripts are statistically different (Tukey’s post hoc, P<0.05). 

 

Even if total MUFA was kept similar across dietary groups (P>0.05), 20:1n-9 was lower in 

the LSO group in comparison to the others (P<0.01). Total PUFA, as well as the n-6  family, 

showed no variations across dietary groups (P>0.05), including LA (P>0.05) and AA 

(P>0.05). In contrast, the LSO group had the highest percentage of n-3 PUFA and n-3/n-6 

ratio in comparison to FO and FO-EE groups (P<0.001). Contrarily to subcutaneous and 

visceral WAT, DHA was found in interscapular BAT, but not EPA. SCD ratio was kept 

unchanged across diets (P>0.05). 
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Table 8. Fatty acid composition (mol% of total fatty acids) of visceral white adipose tissue. 

  
LSO FO FO-EE 

P value Significance 

  
Mean SE Mean SE Mean SE 

11:0 
 

0.115 0.008 0.114 0.011 0.120 0.007 0.839 NS 

14:0 
 

1.82 0.109 1.95 0.157 2.02 0.075 0.341 NS 

15:0 
 

0.693 0.031 0.683 0.054 0.690 0.032 0.986 NS 

16:0 
 

20.9 0.675 22.1 0.764 22.5 0.386 0.157 NS 

16:1n-9 
 

0.683a 0.023 0.559b 0.052 0.596b 0.025 0.024 * 

16:1n-7 
 

8.65b 0.347 12.1a 0.978 10.6a 0.311 <0.001 *** 

17:0 isobr 0.104 0.004 0.093 0.008 0.105 0.003 0.334 NS 

17:0 
 

0.405 0.016 0.389 0.046 0.364 0.019 0.291 NS 

16:3n-4 
 

0.552 0.024 0.613 0.035 0.542 0.031 0.272 NS 

18:0 
 

1.76 0.064 1.53 0.124 1.57 0.047 0.070 NS 

18:1n-9 
 

40.9a 0.752 37.5b 0.813 38.2b 0.568 0.011 * 

18:1n-7 
 

1.08 0.126 1.42 0.140 1.20 0.176 0.234 NS 

18:2n-6 
 

19.8 0.266 18.9 0.602 19.5 0.218 0.443 NS 

19:0 
 

0.106 0.009 0.086 0.008 0.082 0.004 0.069 NS 

18:3n-4 
 

0.220a 0.013 0.170b 0.008 0.166b 0.009 0.006 ** 

18:3n-3 
 

1.97a 0.065 1.48b 0.049 1.36b 0.042 <0.001 *** 

18:4n-3 
 

0.098 0.010 0.087 0.011 0.110 0.003 0.119 NS 

20:1n-9 
 

0.176b 0.011 0.292a 0.031 0.263a 0.009 <0.001 *** 

20:2n-6 
 

ND - ND - ND - - - 

20:4n-6 
 

ND - ND - ND - - - 

20:5n-3 
 

ND - ND - ND - - - 

22:6n-3 
 

ND - ND - ND - - - 

Partial sums and ratios 
        

Total SFA 
 

25.9 0.778 26.9 0.949 27.4 0.508 0.285 NS 

Total MUFA 51.5 0.520 51.8 0.561 50.9 0.548 0.504 NS 

Total PUFA 22.6 0.332 21.3 0.621 21.7 0.221 0.065 NS 

Total n-3 
 

2.06a 0.066 1.57b 0.050 1.47b 0.040 <0.001 *** 

Total n-6 
 

19.8 0.266 18.9 0.602 19.5 0.218 0.443 NS 

SCD 
 

2.25 0.085 2.18 0.098 2.09 0.056 0.274 NS 

n-3/n-6 
 

0.104a 0.003 0.083b 0.003 0.075b 0.002 <0.001 *** 

LSO, the linseed oil group (the control group); FO, the fish oil group; FO-EE, the fish oil ethyl esters group. n=8 

per group. ND, not detected. Total SFA = 11:0 + 15:0 + 15:0 + 16:0 + 17:0 isobr + 17:0 + 18:0 + 19:0; Total 

MUFA = 16:1n-9 + 16:1n-7 + 18:1n-9 + 18:1n-7 + 20:1n-9; Total PUFA = 16:3n-4 + 18:2n-6 + 18:3n-4 + 

18:3n-3 + 18:4n-3 + 20:2n-6 + 20:4n-6 + 22:6n-3; Total n-3 = 18:3n-3 + 18:4n-3 + 22:6n-3; Total n-6 = 18:2n-6 

+ 20:2n-6 + 20:4n-6; SCD ratio = (18:1n-7 + 18:1n-9 + 16:1n-7)/(16:0 + 18:0). Values are means ± SE. 

Statistical significance: NS = not significantly different, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001.  
a,b,c

 Means in the same row with different superscripts are statistically different (Tukey’s post hoc, P<0.05). 

 

4.6 Effect of fat depot on gene expression levels of aquaporins and lipid sensitive 

mediators 

The effect of fat depot (sWAT, vWAT and BAT) on the relative expression levels of 

AQP3, AQP5 and AQP7, as well as lipid sensitive mediators (ADIPO, LEP, GLUT4, PPARγ 

and PPARα) per dietary treatment, LSO, FO and FO-EE is illustrated in Figures 9, 10 and 11.  

 



 

 
 

 

33 
“Modulation of aquaporins gene expression by n-3 polyunsaturated fatty acids (PUFA) lipid structures in white and brown 

adipose tissue from hamsters” 
Rute Martins 

Table 9. Fatty acid composition (mol% of total fatty acids) of interscapular brown adipose 

tissue. 

 
  LSO FO FO-EE 

P value Significance 
    Mean SE Mean SE Mean SE 

11:0 
 

0.076 0.007 0.074 0.008 0.078 0.003 0.870 NS 

14:0 
 

1.32 0.089 1.59 0.075 1.44 0.030 0.074 NS 

15:0 
 

0.386 0.032 0.356 0.021 0.353 0.010 0.609 NS 

16:0 
 

19.4b 0.491 21.2a 0.550 20.7a 0.332 0.039 * 

16:1n-9 0.591 0.014 0.534 0.033 0.569 0.017 0.250 NS 

16:1n-7 5.69 0.436 7.40 0.864 6.03 0.396 0.231 NS 

17:0 isobr 0.096 0.007 0.098 0.006 0.101 0.005 0.815 NS 

17:0 
 

0.449 0.017 0.440 0.040 0.461 0.023 0.881 NS 

16:3n-4 0.420 0.032 0.471 0.014 0.433 0.024 0.204 NS 

18:0 
 

4.546 0.333 4.73 0.264 4.82 0.242 0.806 NS 

18:1n-9 41.4 0.717 39.5 0.689 39.9 0.600 0.152 NS 

18:1n-7 1.08 0.047 1.15 0.070 1.14 0.091 0.656 NS 

18:2n-6 21.4 0.414 19.7 0.789 21.0 0.372 0.193 NS 

19:0 
 

0.155 0.012 0.129 0.009 0.131 0.017 0.243 NS 

18:3n-4 0.230 0.010 0.208 0.013 0.218 0.009 0.412 NS 

18:3n-3 1.96a 0.057 1.37b 0.029 1.30b 0.033 <0.001 *** 

18:4n-3 0.080 0.010 0.057 0.009 0.072 0.012 0.224 NS 

20:1n-9 0.293b 0.028 0.424a 0.029 0.402a 0.018 0.005 ** 

20:2n-6 0.111 0.014 0.121 0.011 0.134 0.008 0.060 NS 

20:4n-6 0.451 0.062 0.374 0.023 0.434 0.023 0.167 NS 

20:5n-3 ND - ND - ND - - - 

22:6n-3 ND - 0.242 0.032 0.236 0.013 0.873 NS 

Partial sums and ratios 
       

Total SFA 26.3b 0.663 28.6a 0.445 28.1a 0.400 0.031 * 

Total MUFA 49.0 0.727 49.0 0.802 48.1 0.681 0.567 NS 

Total PUFA 24.6 0.444 22.4 0.846 23.8 0.399 0.083 NS 

Total n-3 2.02a 0.053 1.56b 0.067 1.58b 0.043 <0.001 *** 

Total n-6 21.9 0.438 20.2 0.799 21.6 0.396 0.178 NS 

SCD 
 

2.03 0.078 1.86 0.045 1.85 0.050 0.141 NS 

n-3/n-6 0.092a 0.002 0.078b 0.003 0.073b 0.002 <0.001 *** 

LSO, the linseed oil group (the control group); FO, the fish oil group; FO-EE, the fish oil ethyl esters group. n=8 

per group. ND, not detected. Total SFA = 11:0 + 15:0 + 15:0 + 16:0 + 17:0 isobr + 17:0 + 18:0 + 19:0; Total 

MUFA = 16:1n-9 + 16:1n-7 + 18:1n-9 + 18:1n-7 + 20:1n-9; Total PUFA = 16:3n-4 + 18:2n-6 + 18:3n-4 + 

18:3n-3 + 18:4n-3 + 20:2n-6 + 20:4n-6 + 22:6n-3; Total n-3 = 18:3n-3 + 18:4n-3 + 22:6n-3; Total n-6 = 18:2n-6 

+ 20:2n-6 + 20:4n-6; SCD ratio = (18:1n-7 + 18:1n-9 + 16:1n-7)/(16:0 + 18:0). Values are means ± SE. 

Statistical significance: NS = not significantly different, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. 
a,b,c

 

Means in the same row with different superscripts are statistically different (Tukey’s post hoc, P<0.05).  

 

Except for AQP7, a clear effect of fat depot was observed for AQP3, AQP5 and lipid  

sensitive mediators (P<0.05). This effect is most certainly associated with the lower 

transcriptional profile level of AQP3, ADIPO, LEP, GLUT4 and PPARγ in BAT. LEP is 

almost exclusively produced by white adipocytes in proportion to their TAG storage. ADIPO 

and TAG accumulation are also strictly associated and may be foreseen as indicators of 

adequate differentiation and proper functioning of adipocyte cells. Conversely, PPARα is 
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highly expressed in BAT in comparison with residual levels of mRNA expression found in 

subcutaneous and visceral WAT depots (P<0.05), which certainly relates to fatty acid β-

oxidation occurring in brown adipocytes, as a thermogenic organ. The same trend applies to 

AQP5 (P<0.001), a water channel protein. The variation pattern between subcutaneous and 

visceral WAT is similar for some genes, including AQP3, AQP5, AQP7, LEP and GLUT4 

(P>0.05). 

In both LSO (Figure 9A) and FO (Figure 9B) dietary treatments non-variations 

occurred across fat depots, although in FO-EE (Figure 9C) it is clear that AQP5 mRNA levels 

in BAT were much higher than in the two WAT. For AQP7, no variations were obtained in 

the three fat depots, regardless the dietary group (P>0.05) (Figure 9). GLUT4 was found 

down-regulated in brown fat in comparison to white (P<0.05).  

 

4.7 Effect of dietary treatment on gene expression levels of aquaporins and lipid 

sensitive mediators 

Figure 12 illustrates the variations of AQP3, AQP5 and AQP7 per adipose tissue, 

white subcutaneous (panel A), white visceral (panel B) and brown (panel C), according to 

LSO, FO and FO-EE diets. The main finding is that the thermogenic BAT is more sensitive to 

n-3 PUFA molecular structures than both WAT depots.  

In fact, all three AQPs (AQP3, AQP5 and AQP7) did not vary according to dietary 

treatment in subcutaneous and visceral WAT (P>0.05). An inverse pattern of variation was 

found for AQP3 and AQP5 (P<0.05) between FO and FO-EE diets (P<0.05) in BAT 

suggesting that these AQPs might act as complementary.  

The variations of mRNA expression levels of adipokines, ADIPO and LEP per adipose 

tissue, white subcutaneous (panel A) white visceral (panel B) and brown (panel C), according 

to LSO, FO and FO-EE diets are presented in Figure 13. In sWAT, the relative levels of 

ADIPO were higher in FO group comparing to FO-EE (P<0.05) (Figure 13A). The inverse 

occurred in vWAT with higher ADIPO expression in FO-EE relative to FO (P<0.01) (Figure 

13B). With a 10-fold lower expression in relation to both WAT, the gene expression of 

ADIPO in BAT was up-regulated in FO diet compared to the other dietary treatments 

(P<0.05) (Figure 13C). In what LEP concerns, only BAT was affected by diet with higher 

mRNA levels in the LSO group compared to FO-EE (P<0.05) (Figure 13C). 

The gene expression levels of the remaining lipid sensitive mediators, GLUT4, PPARα 

and PPARγ controlling fat metabolism per adipose tissue (subcutaneous WAT, visceral WAT 

and BAT), according to LSO, FO and FO-EE diets are presented in Figure 14.  
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Figure 9. Effect of fat depot on the relative expression levels of aquaporin-3 (AQP3), 

aquaporin-5 (AQP5) and aquaporin-7 (AQP7) per dietary treatment, LSO (A), FO (B) and 

FO-EE (C) from hamsters. Means ± standard error (SE). Means with different letters are 

significantly different (Tukey’s post hoc, P<0.05).  

 

Concerning the mRNA levels of GLUT4 and PPARγ, the pattern and the values were 

similar in sWAT, with an up-regulation occurring in hamsters fed on FO relative to FO-EE 

(P<0.05, P<0.01, respectively) (Figure 14A). The gene expression levels of PPARγ in BAT 

were equally higher in FO and FO-EE comparing to the control (P<0.01) (Figure 14C). No 

changes in PPARα expression levels were obtained across dietary groups per fat depot 

(P>0.05). 
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Figure 10. Effect of fat depot on the relative expression levels of adipokines, adiponectin 

(ADIPO) and leptin (LEP) per dietary treatment, LSO (A), FO (B) and FO-EE (C) from 

hamsters. Means ± standard error (SE). Means with different letters are significantly different 

(Tukey’s post hoc, P<0.05). 

 

In vWAT and BAT, no variations in GLUT4 mRNA levels were observed (P>0.05) 

(Figures 14B, 14C). The same occurred with PPARγ in vWAT (P>0.05) (Figure 14B). 

Once again, BAT appears more sensitive to n-3 PUFA diets, followed by 

subcutaneous and visceral WAT, in this specific order. The molecular structure of combined 

EPA and DHA as EE reduced the majority of mRNA levels. It is the case of ADIPO, GLUT4 

and PPARγ in subcutaneous WAT (P<0.05) as well as ADIPO and LEP in BAT (P<0.05).   

The only exception that is worth noticing is ADIPO, whose mRNA levels were found 

increased in the FO-EE diet relative to FO in visceral WAT (P<0.05). The other lipid 

sensitive mediators remained unchanged in visceral WAT (P>0.05). 
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Figure 11. Effect of fat depot on the relative expression levels of glucose transporter type 4, 

(GLUT4), peroxisome proliferator activator receptor alpha (PPARα) and peroxisome 

proliferator activator receptor gamma (PPAR) per dietary treatment, LSO (A), FO (B) and 

FO-EE (C) from hamsters. Means ± standard error (SE). Means with different letters are 

significantly different (Tukey’s post hoc, P<0.05). 

 

4.8 Interaction effect of fat depot × diet on gene expression levels of aquaporins and lipid 

sensitive mediators  

At last, Figures 15, 16 and 17 integrate in the same statistical model the effects of fat 

depot (subcutaneous WAT, visceral WAT and BAT), diet (LSO, FO, FO-EE) and diet × fat 

depot interaction on gene expression levels of aquaporins and lipid sensitive mediators.  
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Figure 12. Effect of dietary treatments on the relative expression levels of aquaporin-3 

(AQP3), aquaporin-5 (AQP5) and aquaporin-7 (AQP7) in the subcutaneous white adipose 

tissue (A), in the visceral white adipose tissue (B) and in the interscapular brown adipose 

tissue (C) from hamsters fed on LSO, FO and FO-EE diets. Means ± standard error (SE). 

Means with different letters are significantly different (Tukey’s post hoc, P<0.05). 

 

Most of the variations found regarding fat depot and diet effects reflect the ones already 

described above and represented from Figure 1 to Figure 14. 

In AQP3 expression, it was found a clear effect of fat depot (P<0.001), meaning that 

regardless the dietary treatment the values of expression of this gene were distinct among 

adipose tissues. In this case, both WAT had higher AQP3 mRNA levels comparing to BAT 

(P<0.001). An interaction between diet and fat depot (P=0.031) was found for the expression 

level of AQP5, and also a fat depot effect (P=0.001). The reason for this is that BAT 

presented higher mRNA levels of AQP5 than subcutaneous and visceral WAT for the FO-EE 

diet.  AQP7 was only affected  by  
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Figure 13. Effect of dietary treatments on the relative expression levels of adipokines, 

adiponectin (ADIPO) and leptin (LEP) in the subcutaneous white adipose tissue (A), in the 

visceral white adipose tissue (B) and in the interscapular brown adipose tissue (C) from 

hamsters fed on LSO, FO and FO-EE diets. Means ± standard error (SE). Means with 

different letters are significantly different (Tukey’s post hoc, P<0.05). 

 

diet (P=0.005) with higher levels of mRNA found in the FO dietary treatment in comparison 

to LSO and FO-EE suggesting a beneficial effect of EPA and DHA combined as TAG (Figure 

15).  

For ADIPO gene, a clear effect of fat depot was depicted (P<0.001) being the mRNA 

levels of this adipokine lower in BAT than in sWAT and vWAT. It was also observed an 

interaction between diet and fat depot justified by the occurrence of higher mRNA levels in 

FO diet relative to FO-EE in sWAT and BAT, but the inverse was found for vWAT 

(P<0.001). The LEP gene exhibited also a fat depot effect (P<0.001) with residual levels of 

mRNA found in BAT in comparison to both WAT (Figure 16).  

In GLUT4, it was observed a fat depot effect (P<0.001) with BAT having once again 

lower expression levels than sWAT and vWAT. In addition, GLUT4 was affected by an 

interaction between diet and fat depot (P=0.022) which is explained by decreased mRNA 

levels in the FO-EE diet in subcutaneous WAT, not verified in BAT and visceral WAT. A fat 

depot effect (P<0.001) was observed for PPARα gene with BAT having much higher 

expression levels than subcutaneous and visceral WAT for which the mRNA levels found 

were almost undetected. 
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Figure 14. Effect of dietary treatments on the relative expression levels of glucose transporter 

type 4 (GLUT4), peroxisome proliferator activated receptor alpha (PPARα) and peroxisome 

proliferator activated receptor gamma (PPARγ) in the subcutaneous white adipose tissue (A), 

in the visceral white adipose tissue (B) and in the interscapular brown adipose tissue (C) from 

hamsters fed on LSO, FO and FO-EE diets. Means ± standard error (SE). Means with 

different letters are significantly different (Tukey’s post hoc, P<0.05). 

 

For PPARγ, a fat depot effect (P<0.001) was found with visceral WAT exhibiting 

higher expression levels relative to subcutaneous WAT and BAT. Still for PPARγ, FO-EE fed 

hamsters had lower mRNA levels than FO in subcutaneous WAT but identical in visceral 

WAT and BAT justifying the interaction detected between diet and fat depot (P=0.004) 

(Figure 17). 

In summary, the lowest values of mRNA levels were consistently found for AQP3, ADIPO, 

LEP and GLUT4 in BAT relative to both WAT, and the opposite was clearly observed for 

PPARα (Figures 15, 16 and 17). 
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Figure 15. Effect of fat depot, diet and diet × fat depot interaction on the relative expression 

levels of aquaporin-3 (AQP3), aquaporin-5 (AQP5) and aquaporin-7 (AQP7) in the 

subcutaneous white adipose tissue (sWAT, white bars), visceral white adipose tissue (vWAT, 

gray bars) and brown adipose tissue (BAT, black bars) from hamsters fed on LSO, FO and 

FO-EE. Means ± standard error (SE). Means with different letters are significantly different 

(Tukey’s post hoc, P<0.05).  
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The statistical tool of interaction (diet × fat depot) allowed us to validate our initial 

hypothesis that different patterns of aquaporins and lipid sensitive mediators expression exist 

between  WAT (subcutaneous and visceral) and  BAT  when  hamsters are fed on specific n-3 

 

 

Figure 16. Effect of fat depot, diet and diet × fat depot interaction on the relative expression 

levels of adiponectin (ADIPO) and leptin (LEP) in the subcutaneous white adipose tissue 

(sWAT, white bars), visceral white adipose tissue (vWAT, gray bars) and brown adipose 

tissue (BAT, black bars) from hamsters fed on LSO, FO and FO-EE. Means ± standard error 

(SE). Means with different letters are significantly different (Tukey’s post hoc, P<0.05). 

 

PUFA molecular structures: FO (rich in EPA and DHA in the TAG form) and FO-EE (rich in 

EPA and DHA in the EE form) versus LSO (rich in ALA, 18:3n-3, taken as the reference 

group). 

 

4.9 Correlation between fatty acids and gene expression levels per fat depot 

Table 10 presents the Pearson’s correlation coefficients (r) for fatty acids, partial sums 

of fatty acids and ratios, and gene expression levels in sWAT (A), vWAT (B) and BAT (C).  
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Figure 17. Effect of fat depot, diet and diet × fat depot interaction on the relative expression 

levels of glucose transporter type 4 (GLUT4), peroxisome proliferator receptor alpha (PPARα) 

and peroxisome proliferator receptor gamma (PPAR) in the subcutaneous white adipose 

tissue (sWAT, white bars), visceral white adipose tissue (vWAT, gray bars) and brown 

adipose tissue (BAT, black bars) from hamsters fed on LSO, FO and FO-EE. Means ± 

standard error (SE). Means with different letters are significantly different (Tukey’s post hoc, 

P<0.05). 
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In sWAT, AQP3 was positively correlated with ADIPO (P<0.01) and AQP7 (P<0.01). 

ADIPO was positively correlated with PPARγ (P<0.01), PPARα (P<0.01), and LEP (P<0.01). 

A positive correlation was observed between GLUT4 and PPARγ (P<0.001), GLUT4 and 

PPARα (P<0.05), and between PPARα and PPARγ (P<0.01) (Table 10A).  

In vWAT, AQP3 was positively correlated with AQP7 (P<0.05) and AQP5 (P<0.05). 

PPARα was negatively correlated with total PUFA (P<0.01) and n-6 PUFA (P<0.01). 

Moreover, a negative correlation was also found between PPARγ and total MUFA (P<0.05) 

(Table 10B). 

 In BAT, AQP7 correlated positively with 22:6n-3 fatty acid (P<0.05), PPARγ 

(P<0.05) and LEP (P<0.05). ADIPO was correlated with both PPARγ (P<0.01) and LEP 

(P<0.05). PPARα correlated with both GLUT4 (P<0.05) and PPARγ (P<0.01) (Table 10C). It 

is worth notice that all correlations found, either positive or negative, were moderate (0.7≥ r 

≥0.3) (Tables 10A, 10B and 10C). 

 

4.10 PCA on adipose tissues’ fatty acids and gene expression levels  

Figure 18A displays the projection of the first (PC1) and second (PC2) principal 

components in the plane using the gene expression levels of aquaporins (AQP3, AQP5 and 

AQP7) and lipid sensitive mediators (ADIPO, LEP, GLUT4, PPARα and PPARγ) and the 

percentage of fatty acids common to all three fat depots (sWAT, vWAT and BAT). Both PC 

combined explained 32.89% of the total variance. The PC1 was characterized by variables 

with positive loadings, such as 14:0 (0.85), 16:1n-7 (0.81), 15:0 (0.75), 16:0 (0.73), and 

16:3n-4 (0.55), and by variables with negative loadings, 18:1n-9 (-0.78), 18:2n-6 (-0.73), 

18:3n-4 (-0.70) and 18:0 (-0.58) (Figure 18A). The PC2 was positively defined by 18:1n-7 

(0.72), and negatively by 17:0 (-0.75) and 16:1n-9 (-0.59) (Figure 18A). All genes were 

unrelated to PC1 and PC2. AQP3, AQP5 and AQP7 were clustered in quadrant (b) of Figure 

18A. ADIPO and LEP were positioned in the right side of the plane (Figure 18A). n-3 PUFA, 

18:3n-3 and 18:4n-3 appeared very close to each other in quadrant (d) of Figure 18A. SFA 

were dispersed across quadrants (a), (c) and (d) while MUFA were located in quadrants (a), 

(b) and (c) of Figure 18A. 

The projection of scores in the PC1 × PC2 plane set apart three clusters matching the 

three analyzed fat depots: BAT was nearly individualized in quadrant (d), the sWAT was 

mostly positioned in quadrants (a) and (b), and the vWAT was largely located in quadrant (c) 

of Figure 18B. The clusters of subcutaneous and visceral WAT showed more dispersion that 

the one deliminated for BAT (Figure 18B). Thus, the PCA on adipose tissue’ fatty acids and 
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gene expression levels discriminated all fat depots. However, the discrimination of dietary 

treatments (LSO, FO and FO-EE) within each adipose tissue was unattainable (Figure 18B). 
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Table 10. Pearson’s correlations coefficients among fatty acids, partial sums of fatty acids and ratios, and gene expression levels in subcutaneous 

white adipose tissue (A), visceral white adipose tissue (B) and brown adipose tissue (C). 

 

A 

 

20:4n-6 18:3n-3 22:6n-3 
Total 

SFA 

Total 

MUFA 

Total 

PUFA 

n-3 

PUFA 

n-6 

PUFA 
n-3/n-6 PPARγ PPARα GLUT4 LEP ADIPO AQP7 AQP5 

AQP3 - 0.289 - 0.217 -0.255 -0.090 0.219 -0.146 0.282 0.329 0.053 -0.108 0.087 0.570** 0.660** 0.310 

AQP5 - 0.078 - 0.189 -0.272 -0.034 0.057 -0.058 0.062 0.036 -0.182 -0.173 -0.018 0.045 0.122   

AQP7 - -0.188 - 0.220 -0.330 0.026 -0.222 0.040 -0.229 0.335 0.059 0.084 -0.048 0.340 

 

  

ADIPO - 0.193 - 0.308 -0.229 -0.253 0.166 -0.314 0.309 0.630** 0.573** 0.311 0.562** 

  

  

LEP - 0.006 - 0.208 -0.221 -0.107 -0.012 -0.103 0.029 0.269 0.036 0.035 

   

  

GLUT4 - 0.151 - -0.026 -0.078 0.113 0.140 0.089 0.073 0.672*** 0.489* 

    

  

PPARα - 0.042 - 0.155 -0.073 -0.165 0.053 -0.192 0.148 0.574** 

     

  

PPARγ - 0.183 - 0.292 -0.292 -0.169 0.150 -0.217 0.243               

 

B 

 

20:4n-6 18:3n-3 22:6n-3 
Total 

SFA 

Total 

MUFA 

Total 

PUFA 

n-3 

PUFA 

n-6 

PUFA 
n-3/n-6 PPARγ PPARα GLUT4 LEP ADIPO AQP7 AQP5 

AQP3 - 0.055 - 0.125 -0.285 0.116 0.027 0.094 -0.017 0.072 -0.028 -0.198 -0.166 0.018 0.500* 0.438* 

AQP5 - -0.052 - 0.157 -0.134 -0.114 -0.068 -0.164 -0.034 0.097 0.351 -0.014 0.149 0.199 0.077   

AQP7 - -0.058 - -0.026 0.022 0.019 -0.096 0.045 -0.121 0.361 -0.044 -0.089 0.380 -0.024 

 

  

ADIPO - -0.060 - -0.127 0.037 0.170 -0.039 0.203 -0.132 0.240 -0.218 -0.197 0.223 

  

  

LEP - 0.107 - 0.089 -0.040 -0.103 0.083 -0.142 0.124 0.119 -0.078 0.015 

   

  

GLUT4 - 0.147 - -0.051 -0.098 0.199 0.166 0.172 0.104 -0.063 -0.053 

    

  

PPARα - -0.273 - 0.368 -0.041 -0.576** -0.287 -0.616** -0.066 -0.049 

     

  

PPARγ - 0.014 - 0.303 -0.444* 0.013 0.004 0.019 -0.009               

 

 

C 



 

 
 

 

47 
“Modulation of aquaporins gene expression by n-3 polyunsaturated fatty acids (PUFA) lipid structures in white and brown 

adipose tissue from hamsters” 
Rute Martins 

 
20:4n-6 18:3n-3 22:6n-3 

Total  

SFA 

Total  

MUFA 

Total  

PUFA 

n-3 

PUFA 

n-6 

PUFA 
n-3/n-6 PPARγ PPARα GLUT4 LEP ADIPO AQP7 AQP5 

AQP3 -0.174 0.147 0.592 0.189 -0.142 -0.018 0.177 -0.069 0.237 0.012 -0.182 -0.420 -0.194 0.192 0.332 -0.133 

AQP5 -0.196 -0.256 -0.219 -0.013 -0.003 0.015 -0.139 0.025 -0.177 -0.151 0.057 0.095 -0.327 -0.386 -0.048 
 

AQP7 0.360 0.227 0.494* 0.951 0.989 0.943 0.518 0.906 0.408 0.503* 0.796 0.667 0.137* 0.069 
  

ADIPO -0.126 -0.114 -0.039 0.218 -0.184 0.002 -0.123 0.008 -0.160 0.574** 0.302 0.015 0.530* 
   

LEP 0.220 0.296 0.255 -0.099 -0.041 0.129 0.252 0.101 0.222 0.129 0.244 0.280 
    

GLUT4 0.358 -0.102 0.100 0.042 -0.277 0.262 -0.030 0.301 -0.206 -0.069 0.500* 
     

PPARα -0.132 -0.252 0.324 0.100 -0.072 -0.013 -0.167 0.012 -0.183 0.594** 
      

PPARγ -0.235 -0.356 0.126 0.378 -0.227 -0.093 -0.202 -0.080 -0.185 
       

*, P<0.05; **, P<0.01; ***, P<0.001. 
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Figure 18. Loadings plot of the first and second principal components (PC) of the pooled 

FAME and mRNA levels of genes (A) and component’s score vectors (B) of sWAT (white 

markers), vWAT (gray markers) and BAT (black markers) from hamsters fed on LSO (), 

FO () and FO-EE () diets. 
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5. Discussion and conclusion 

Over the last decades, many studies established the beneficial effects of diets 

supplemented with n-3 PUFA, notably EPA and DHA, which are believed to have anti-

adipogenic properties among their multiple protective actions (Buckley & Howe, 2010). 

Since all diets contained the same amount of fat, it was expected that hamsters weight 

gain and final body weight did not vary among dietary groups, as well as adipose tissue 

weights from subcutaneous WAT, visceral WAT and BAT. These findings agree with the 

non-variation of the appetite-suppressing hormone leptin in plasma across n-3 PUFA diets 

(Murphy et al., 2013), and consequently with similar values on hamsters’ daily feed intake.  

 Plasma glucose levels were found decreased in hamsters fed FO and FO-EE diets, 

which concurs with previous findings (Holness et al., 2003). Actually, EPA and DHA are 

considered a valuable nutritional tool for preventing insulin resistance in humans associated 

with obesity. Insulin stimulates fatty acid synthesis in the adipose tissue and liver, as well as 

formation and storage of TAG in both tissues (Wilcox, 2005). Similar to the results obtained 

for plasma insulin concentrations, the insulin resistance marker, QUICKI, was identical across 

dietary treatments, without affecting insulin homeostasis.  

Hamsters fed FO-EE diet were the ones with the lowest values of LDL-Cholesterol. 

However, Mori et al. (2000) and Geppert et al. (2006) studies showed the opposite, stating 

that highly purified DHA enriched diets increased LDL-Cholesterol (Li et al., 1997; Mori et 

al., 2000). Also with a positive note is the increment of HDL-Cholesterol in hamsters fed FO 

diet, even if Ishida et al. (2013) reported a reduction on this parameters in hamsters fed a 

high-fat diet containing n-3 PUFA oils with EPA and DHA (Ishida et al., 2013).  

ADIPO and LEP are adipokines responsible for normal adipocyte phenotype and 

function (Cowherd et al., 1999; Cao, 2014). LEP is almost exclusively produced by 

adipocytes in proportion to their TAG storage and it is known to regulate lipolysis by 

controlling the level of hormone sensitive-lipase (Stern et al., 2016). Therefore, the non-

variation of systemic adiponectin and leptin agrees with similar fat depots weight found 

across dietary treatments. 

The fatty acid composition of adipose tissue is considered the gold standard for dietary 

fatty acids (Beynen et al., 1980; Hodson et al., 2008; Abbott et al., 2012). In fact, 

approximately 99% of fat tissue contains TAG with 0.3% of cholesterol and less than 0.1% of 

phospholipids (Hirsch et al., 1960). Common to all fat depots (subcutaneous WAT, visceral 

WAT and BAT), palmitic acid (16:0) was the main SFA while oleic acid (18:1n-9) was the 
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main representative of MUFA. Both 15:0 and 17:0 fatty acids were found in low 

concentrations, as previously described by other authors (Biong et al., 2006). Oleic and 

linoleic (18:2n-6) acids combined formed the highest proportion of fatty acids. The deposition 

of 18:2n-6 and 18:3n-3 fatty acids in TAG adipose tissue consists primarily of those provided 

by n-3 PUFA diets. DHA and EPA were not detected in subcutaneous and visceral WAT. The 

same trend was verified also in BAT for EPA, but not for DHA, reaching the highest 

percentage of incorporation in FO-EE fed hamsters. As previously reported (Bandarra et al., 

2016) the absence of EPA and DHA in white fat depots is due to the preferably incorporation 

of these n-3 PUFA in the brain and liver (Ross et al., 2015). Of note are the very low 

proportions of very long chain (20 or more carbons) PUFA in subcutaneous WAT, as the fatty 

acids in this tissue are primarily less than 18 carbons in length. 

EPA and DHA display several beneficial effects, such as the ability to lower 

lipogenesis, increase lipolysis and reduce inflammation, which are advantageous for adipose 

tissue biology (Todorcevic & Hodson, 2015). Higher proportions of MUFA are found in 

subcutaneous fat depot when compared to visceral, which appears to be at the expense of 

SFA. The abundance of EPA and DHA in humans fat does not increase notably even after 

supplementation. This suggests that EPA and DHA are not preferentially long-term stored in 

TAG from adipose tissue, rather they may be partitioned to oxidation pathways or storage in 

other lipid fractions, such as plasma phospholipids, cell phospholipids and red blood cells, all 

of them having a notably higher abundance of both EPA and DHA than adipose tissue (Lopes 

et al., 2017). 

BAT thermogenesis is influenced by dietary fatty acids, as fatty acids provide the 

major fuel in brown fat (Williamson, 1970; Mercer & Trayhurn, 1987). n-6 and n-3 PUFA 

have been shown to have a stimulatory effect on BAT thermogenesis concomitant with 

improved insulin sensitivity and glucose metabolism by reducing fat deposition and weight 

gain in rodents, and preventing obesity (Nedergaard et al., 1983; Cannon & Nedergaard, 

2004; Nedergaard & Cannon, 2010).  

AQP5 is a selective water channel while AQP3 is an aquaglyceroporin which 

facilitates permeation of glycerol in addition to water (Madeira et al., 2015b). So, it was 

expected that AQP3 would be upregulated in WAT in relation to BAT since white fat is 

responsible for the deposition of energy in form of TAG. In BAT, the gene expression of 

AQP3 decreased when hamsters were fed FO-EE diet, which probably means that the EE 

molecular form promotes less glycerol flux in brown adipocytes in comparison to FA 

available as TAG. An inverse pattern of variation was found for AQP3 and AQP5 between FO 
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and FO-EE diets in BAT suggesting that these AQPs might act as complementary. Among the 

various mammalian aquaglyceroporins, AQP7 is the most representative glycerol channel and 

was the first to be detected in the adipose tissue (Fruhbeck et al., 2006; da Silva & Soveral, 

2017). In the overall picture, AQP7 was only affected by diet with higher levels of mRNA 

found in the FO dietary treatment in comparison to LSO and FO-EE suggesting a beneficial 

effect of EPA and DHA combined as TAG. This finding suggests that EPA and DHA activate 

the efflux of glycerol from the cells which leads to a decrease in lipid droplets size. Curiously, 

the gene expression of AQP7 was kept unchanged in all three adipose tissues (there was no fat 

depot effect) confirming the conservative role in glycerol release from adipocytes that ensure 

lipid homeostasis. 

ADIPO has emerged as the most abundant adipocyte product, thereby redefining 

adipose tissue as a key component of the endocrine system (Cao, 2014). In obesity, the 

circulating levels of ADIPO fall while LEP levels rise, suggesting that the regulation of these 

two adipocyte derived hormones may be simultaneously influenced by common obesity 

related factors (Bastard et al., 2006). The regulation pattern of gene expression of these two 

adipokines in subcutaneous and visceral WAT were similar, perhaps subjective to common 

control of energy balance. This interpretation is in line with the positive correlation found 

between these adipokines in subcutaneous WAT, but not in visceral WAT. However, in BAT 

both ADIPO and LEP were down-regulated indicating that ADIPO and LEP have in WAT 

their major contributor.  

Conversely, PPARα is highly expressed in BAT which certainly relates to fatty acid β-

oxidation (Kersten et al., 2000) occurring in brown adipocytes since BAT is primarily a 

thermogenic organ. In turn, PPARγ stimulates glycerol transport, and glycerol 

phosphorylation (Guan et al., 2002; Tordjman et al., 2003). AQP7 is a direct PPARγ target 

gene in adipocytes (Kishida et al., 2001; Guan et al., 2002). This evidence is supported by the 

moderate positive correlation found between AQP7 and PPAR mRNA levels in BAT, but not 

in WAT. Furthermore, we have demonstrated that PPARα and PPARγ expression correlate 

significantly in subcutaneous WAT, with the expression of GLUT4, an essential gene in the 

lipogenesis pathway. These findings demonstrate a relationship between PPARs expression 

and the expression of others genes of lipid metabolism, and support the hypothesis that 

PPARα and PPARγ activators may regulate fatty acid metabolism in adipose tissue.  

Variations of response across fat depots (subcutaneous WAT, visceral WAT and BAT) 

suggest that the features of adipose tissue responsible for adipocyte cells and differentiation 

may not be homogenous, both in nature and distribution, as proven by the discriminant 
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analysis (PCA) herein presented. Visceral fat accumulation, as supported by PPARγ 

upregulation which is the key regulator of adipocytes differentiation, is important in clinical 

terms because it is more closely linked to the metabolic syndrome due to its inflammatory 

features. Conversely, brown adipocytes constitute a metabolically active tissue responsible for 

non-shivering thermogenesis, depletion of excess calories being less inflammatory than WAT. 

These features are in line with PPARα, ADIPO and LEP genes variations. BAT is associated 

with metabolic health due to its oxidative capacity and appears to be effective in the 

protection against metabolic disorders associated with obesity and diabetes.  

Moreover, the structure of combined EPA and DHA as EE reduced most of mRNA 

expression. It is the case of ADIPO, GLUT4 and PPARγ in subcutaneous WAT as well as 

ADIPO and LEP in BAT. Based on current research, the physiological activity of n-3 PUFA 

and in particular, the potential effect of a specific fatty acid depends both on its structure and 

administration form. There seems to be a difference in the apparent bioavailability of n-3 

PUFA, such that the TAG form is more bioavailable than the EE form (Lawson & Hughes, 

1988a; Lawson & Hughes, 1988b). This interpretation is in line with our own findings. TAG 

define three fatty acid esterified (bonded) to a glycerol backbone and is the natural molecular 

form that make up virtually all fats and oils in both animal and plants species, devoided of 

toxicological effects and more chemically stable than EE. The EE form lacks the glycerol 

backbone needed to reassemble the TAG structure. Some experts have postulated that the lack 

of glycerol backbone is the major obstacle to the efficient absorption of EE form EPA and 

DHA. 

In summary, in this work: 

1) we found differential AQP3, AQP5 and AQP7 gene expression across subcutaneous 

WAT, visceral WAT and BAT, which might reflect adipose tissue depot’s own location and 

metabolic function; 

2) we found different patterns of aquaporins expression between WAT (subcutaneous 

and visceral) and BAT when hamsters were fed on specific n-3 PUFA molecular structures: 

FO (rich in EPA and DHA in the TAG form) and FO-EE (rich in EPA and DHA in the EE 

form) versus linseed oil (LSO rich in ALA, 18:3n-3); 

3) we further complemented this study with the transcriptional profile of lipid sensitive 

mediators, namely ADIPO, LEP, GLUT4, PPARα and PPARγ across subcutaneous WAT, 

visceral WAT and BAT and concluded the same outcome as described in point 2; 

4) we established that BAT is more sensitive to n-3 PUFA molecular lipid structures than 

WAT (both subcutaneous or visceral); 
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5) with minor exceptions, the FO diet, in opposition to LSO and FO-EE, upregulated 

almost all players (aquaporins and lipid sensitive mediators) of fat balance and energy 

homeostasis, highlighting the nutritional benefits of EPA and DHA combined as TAG; 

6) we concluded, that among the tested aquaporins isoforms, the aquaglyceroporin AQP7 

stands out as the more promising target for developing new anti-obesity drugs due to its 

conservative role across WAT and BAT. 
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