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Abstract 

Amyotrophic Lateral Sclerosis (ALS) is the third most common neurodegenerative 

disease, mostly sporadic, with limited identified targets, biomarkers and therapeutic options. 

The most widely used animal model and experimental cellular models to study ALS 

pathological mechanisms are based on mutations in the anti-oxidant protein SOD1, particularly 

that of G93A. ALS affects mainly motor neurons, but it is widely accepted that immune 

unbalance plays a crucial role in the ALS disease, and microglial dysfunction is described to 

be associated with neuronal injury influencing disease onset and progression. As the immune 

cells of the central nervous system, microglia produce inflammatory responses towards an 

insult by secreting pro-inflammatory mediators to the extracellular milieu in the form of soluble 

factors, or in membrane-bound vesicles called exosomes, an important component in 

intercellular communication and in disease dissemination.  

In this thesis we aimed to better understand the role of microglia in ALS disease using 

the mutant SOD1G93A microglia, and assessing their reactivity upon the immunostimulation by 

lipopolysaccharide (LPS), and immunomodulation by glycoursodeoxycholic acid (GUDCA) and 

vinyl sulfone (VS), having in mind the goal of fighting ALS neurodegeneration. For that, we 

assessed microglia function/dysfunction and reactivity after human SOD1 overexpression in 

the N9 cell line, either wild type (hSOD1WT) or mutated in G93A (hSOD1G93A), alone or treated 

with LPS, and when exposed to GUDCA and VS, known for their potential anti-inflammatory 

effects. 

         Data showed that overexpression of hSOD1WT in N9 cells leads to a decrease in all 

analyzed pro- and anti-inflammatory markers, whereas hSOD1G93A increases both pro-

inflammatory TNF-α, IL-1β, MHCII and HMGB1 gene expression levels, together with anti-

inflammatory Arg1 and SOCS1 indicators, and reduces iNOS, Fizz1, IL-10, TLR4, miR-125b 

and miR-21. Interestingly we found an elevated cargo of miR-155 and miR-146a in 

hSOD1G93A microglia-derived exosomes. Upon LPS exposure, all cells switched from ramified 

into amoeboid morphology. LPS-treated transgenic microglia showed equivalent pro-

inflammatory markers, when compared to LPS-treated naïve cells. However, they revealed 

decreased levels of the anti-inflammatory Arg1, Fizz1 and IL-10, thus reducing the ability to 

later balance the microglia reactivity to the insult. Surprisingly, cells also evidenced reduced 

miR-155 expression, what may even compromise an adequate pro-inflammatory response. In 

contrast with hSOD1WT cells, SOD1G93A microglia displayed decreased gene expression of 

S100B and equal of TNF-α mRNA, when compared to naïve cells. Additionally, the ability of 

ingesting a high number of beads (≥ 11) was found diminished. Treatment with GUDCA or VS 

decreased the cell body area of reactive microglia, and SOCS1 and Arg1 mRNA expression. 

Nevertheless, both immunomodulators increased TLR4, as well as reduced IL-1β and S100B 



 
 

xx 
 

gene expression, which may represent benefits for response to selected insults, while 

protecting from destructive secondary damage, respectively. In addition, though it decreased 

cellular MFG-E8 and enhanced miR-125b in exosomes, GUDCA markedly increased the 

cellular gene expression of the anti-inflammatory IL-10. On the other hand, VS was the only 

one able to reduce the pro-inflammatory MMP-9 activity and to elevate the exosomal cargo in 

the anti-inflammatory miR-21. 

In conclusion, this work demonstrates the advantageous hSOD1WT overexpression in 

balancing pro- and anti-inflammatory mediators in microglial cells, but overall that upregulation 

of hSOD1G93A increases their reactivity and may have a detrimental role in reducing their wound 

repair ability after insult, thus causing homeostatic imbalance between anti-inflammatory and 

pro-inflammatory gene expression mediators. In addition, the study also highlights that, 

although with different potential roles, both VS and GUDCA may have benefits over specific 

hSOD1G93A polarized microglia subtypes. 

  

Keywords: hSOD1G93A-microglia activation; glycoursodeoxycholic acid; vinyl sulfone; 

miRNAs; lipopolysaccharide. 
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Resumo 

 A Esclerose Lateral Amiotrófica (ELA) é a terceira doença neurodegenerativa mais comum, 

sendo maioritariamente esporádica, e limitada em termos de alvos, biomarcadores e opções 

terapêuticas. Os modelos animais e celulares mais usados no estudo dos mecanismos 

envolvidos na patogénese da ELA consideram mutações na enzima antioxidante SOD1, 

particularmente, a mutação G93A. A ELA afeta maioritariamente neurónios motores. No entanto, 

é considerado que existe uma desregulação inflamatória nesta doença que contribui para a sua 

progressão. A disfunção de células microgliais é associada ao dano neuronal, o que 

consequentemente leva ao início e progressão da doença. No Sistema Nervoso Central (CNS), 

as células da microglia são responsáveis pela produção da resposta inflamatória em 

consequência da presença de moléculas estranhas no ambiente extracelular. Esta resposta 

baseia-se na secreção de mediadores pro-inflamatórios para o meio extracelular sob a forma de 

fatores solúveis ou incorporados em vesículas membranares denominadas de exossomas, um 

importante meio de comunicação intercelular na disseminação da patologia.  

 Na presente tese, pretendeu-se compreender melhor o papel da microglia na ELA, 

utilizando células da microglia sobreexpressando SOD1G93A, e avaliando a sua reatividade após 

estimulação com lipopolissacárido (LPS), e após tratamento com os imunomoduladores ácido 

glicoursodesoxicólico (GUDCA) e vinil sulfona (VS), com o objetivo de combater a 

neurodegeneração na ELA. Para isso, avaliámos a função/disfunção e reatividade microglial 

após a sobreexpressão da enzima SOD1 na linha celular N9, na conformação WT (hSOD1WT) 

ou mutada em G93A (hSOD1G93A) da enzima, em células sem tratamento ou tratadas com LPS. 

Adicionalmente, avaliámos o potencial anti-inflamatório dos compostos GUDCA e VS nas células 

sobreexpressando hSOD1G93A. 

 Os nossos resultados demonstraram que a sobreexpressão de hSOD1WT em células N9 

leva a uma diminuição de todos os parâmetros pro- e anti-inflamatórios analisados, enquanto 

que da sobreexpressão de hSOD1G93A leva a um aumento da expressão génica dos marcadores 

pro-inflamatórios TNF-α, IL-1β, MHCII e HMGB1 em conjunto com os marcadores anti-

inflamatórios Arg1 e SOCS1, reduzindo iNOS, Fizz1, IL-10, TLR4, miR-125b e miR-21. 

Curiosamente, exossomas derivados de microglia sobreexpressando hSOD1G93A revelaram 

transportar maiores quantidades de miR-155 e miR-146a. Após exposição ao LPS, todas as 

células modificaram a sua morfologia ramificada para uma forma ameboide. Células N9 

hSOD1G93A tratadas com LPS demonstraram marcadores pro-inflamatórios com níveis 

equivalentes ao das células controlo. No entanto, revelaram também uma diminuição dos 

marcadores pró-inflamatórios Arg1, Fizz1 e IL-10, reduzindo assim a capacidade da microglia de 

resposta ao insulto. Surpreendentemente, estas células demonstraram ainda uma diminuição de 

miR-155, o que pode sugerir uma resposta pró-inflamatória adequada. Ao contrário de células 
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sobreexpressando hSOD1WT, microglia SOD1G93A apresentou uma diminuição nos níveis de 

expressão génica de S100B e igual expressão de TNF-α quando comparadas ao controlo. 

Adicionalmente, estas células evidenciaram uma diminuição da capacidade de ingestão de um 

elevado número de beads [≥11]. O tratamento com GUDCA ou VS demonstrou diminuir a área 

do corpo celular das células reativas da microglia, em conjunto com uma diminuição da 

expressão génica de SOCS1 e Arg1. Contudo, ambos os imunomoduladores aumentaram a 

expressão de TLR4, diminuindo a expressão de IL-1β e S100B, o que pode sugerir o efeito 

benéfico destes compostos na resposta a insultos, protegendo contra efeitos secundários 

destrutivos, respetivamente. Adicionalmente, apesar da diminuição da expressão de MFG-E8 e 

aumento da expressão de miR-125b em exossomas, o composto GUDCA evidenciou um 

aumento significativo da expressão do marcador anti-inflamatório IL-10. Por outro lado, apenas 

o tratamento com VS foi bem-sucedido na diminuição da atividade da MMP-9 e aumento do 

transporte do anti-inflamatório miR-21 em exossomas.  

 Em conclusão, este trabalho demonstra o benefício da sobreexpressão de hSOD1WT no 

equilíbrio de marcadores pro- e anti-inflamatórios nas células da microglia, enquanto a 

sobreexpressão de hSOD1G93A aumenta a reatividade microglial, podendo ter um papel 

prejudicial na redução da sua capacidade de resposta a estímulos externos, causando assim um 

desequilíbrio na expressão génica de marcadores pro- e anti-inflamatórios. Adicionalmente, este 

estudo foca ainda que, apesar de com diferentes funções, os compostos GUDCA e a VS que 

podem ser benéficos para as células da microglia hSOD1G93A com diferentes polarizações. 

 

Palavras-chave:  ativação da microglia-hSOD1G93A; ácido glicoursodesoxicólico, vinil sulfona, 

miRNAs, lipopolisacárido. 
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ALS Amyotrophic Lateral Sclerosis 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor 

BA Bile acids 

BAC Bacterial Artificial Chromosome 

BBB Blood Brain Barrier 

BDNF Brain Derived Neurotrophic Factor 

BSA Bovine Serum Albumin 

CCL12 Chemokine Ligand 12 

CNS Central Nervous System 

CSF 

CSF-1 

Cerebrospinal Fluid 

Colony Stimulating Factor 1 

CX3CR1 Fractalkine Receptor or G-protein Coupled Receptor 13  

DAMP Damage-Associated Molecular Protein 
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DNA Deoxyribonucleic Acid 

DRP Dipeptide Repeat Proteins 

EAAT-2 Excitatory Amino Acid Transporter 2 

ED Embryonic Day 

ER Endoplasmatic Reticulum 

ERAD ER-associated Degradation System 

EVs Extracellular Vesicles 

fALS Familial Amyotrophic Lateral Sclerosis 

FBS Fetal Bovine Serum 

FDA Food and Drug administration 

Fizz1 Found in Inflammatory Zone 

FUS Fused in Sarcoma 

GFP Green Fluorescent Protein 

GLT-1 Glutamate Transporter-1 

GUDCA Glycoursodeoxycholic Acid 

H2O Water 

H2O2 Hydrogen Peroxide 

HMGB1 High Mobility Group Box 1 

hSOD1WT Human SOD1 Wild-Type 

hSOD1G93A Human SOD1 mutated in G93A 

IFN Interferon 

IL Interleukin 

ILVs Intraluminal Vesicles 

IMS Intermembrane space 
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LMN Lower Motor Neuron 
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MFG-E8 Milk-fat Globule EGF factor-8 

miR MicroRNA 

MHC Major Histocompatibility Complex  

MMP Matrix Metalloproteinase 

MN Motor Neuron 

MND Motor Neuron Disease 

mRNA Messenger RNAs 
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NADPH Nicotinamide Adenine Dinucleotide Phosphate 

NF-κB Nuclear Factor-kappa B 
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NO Nitric Oxide 

O2
- Superoxide Anion 

PAMP Pathogen Associated Molecular Pattern 
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Pen-Strep Penicilin-Streptomicin 

PNS Peripheral Nervous System 

PRRs Pattern Recognition Receptor 

qRT-PCR Quantitative Real-Time PCR 

RAGE Receptor for Advanced Glycation Products 

RNA Ribonucleic Acid 

ROS Reactive Oxygen Species 

RPMI Roswell Park Memorial Institute 

S100B S100 Calcium Binding Protein B 

sALS Sporadic Amyotrophic Lateral Sclerosis 

SC Spinal Cord 

SOCS1 Suppressor of Cytokine Signaling 1 

SOD1 Superoxide Dismutase 1 

TARDBP Transactive Response DNA-binding Protein 

TDP-43 TAR DNA-binding Protein 43 

TGF-β Transforming Growth Factor β 
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TNF- α Tumor Necrosis Factor α 

TREM-2 Triggering Receptor Expressed on Myeloid Cells 2 
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Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron disease (MND) that affects 

both the upper motor neurons (UMN) in the motor cortex and lower motor neurons (LMN) in 

brainstem and spinal cord (SC) (Chiò et al., 2013; Robberecht and Philips, 2013) (Figure I.1). 

ALS is the third most common neurodegenerative disease (Renton et al., 2013) and may have 

bulbar involvement or a spinal-onset appearance (Gordon, 2013). The earliest cases of ALS 

were described in 1848 and 1853, but only in 1869 the disease we recognize today as ALS 

was formally defined and identified (Al-Chalabi and Hardiman, 2013; Gordon, 2013).  

Progression of the disease is characterized by gradual muscle atrophy and weakness, 

spasticity, increased fatigue and problems swallowing which typically progresses to respiratory 

failure, ultimately leading to death (Chiò et al., 2013; Robberecht and Philips, 2013). 

ALS age of clinical onset is highly variable, but almost always occurs after the fourth 

decade of life; juvenile ALS is rare (Robberecht and Philips, 2013). Incidence rates for ALS 

range from 1.2-4.0 per 100 000 persons in Caucasians (Gordon, 2013), although may be lower 

in some ethnic populations (Gordon, 2013). In Portugal there are 700-800 estimated people 

affected with the disease. Overall median survival since diagnostic ranges from 2 to 5 years 

and, only 5% to 10% of patients survive beyond 10-20 years (Chiò et al., 2013; Robberecht 

and Philips, 2013). 

ALS is traditionally classified in two categories: familial ALS (fALS) and sporadic ALS 

(sALS). fALS is caused by mutations in a heterogeneous set of genes and is predominantly 

hereditary and almost always autosomal dominant. On the other way, sALS affects patients 

without precedence of the disease in any relatives and it is thought that sALS possibly have 

both genetic and environmental causes, although the ultimate cause still remains to be 

discovered (Gordon, 2013; Robberecht and Philips, 2013). However, despite all the 

I. Introduction 



Chapter I. Introduction 
 

2 
 

differences, clinically both ALS categories are very similar and genetic advances have 

contributed greatly to our knowledge of ALS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I. 1. Schematic representation of motor neuron degeneration in amyotrophic lateral 

sclerosis (ALS). Amyotrophic lateral sclerosis affects UMNs and LMNs neurons in the motor cortex 

and in the spinal cord. In a normal situation, muscles are stimulated by UMNs to contract, producing the 

movement of the body. On the contrary, in ALS disease, degenerated UMNs de-enervate LMNs which 

are not able to make the connection to the muscle, causing muscle atrophy leading to the loss of the 

movements of the body. LMNs, Lower Motor Neurons; UMNs, Upper Motor Neurons. 

 

Underlying the development of ALS disease are several multifactorial pathophysiological 

mechanisms which are a combination of genetics and environmental risk factors (Kiernan et 

al., 2011). It is presently considered that neurodegeneration in ALS may result from an 

alteration in a series of complex pathways inside the cells such as glutamate excitotoxicity, 

generation of free radicals, as well as cytoplasmic, axonal and neurite protein aggregates, 

together with mitochondrial dysfunction, and disruption of axonal transport processes (Kiernan 

et al., 2011; Vucic et al., 2014). 

Amyotrophic Lateral Sclerosis Normal Situation

Upper Motor Neurons

Lower Motor Neurons

Upper Motor Neurons

Lower Motor Neurons

Healthy Motor NeuronDegenerated Motor Neuron

In a normal situation, 
muscles contract

producing force and
motion

In ALS, deenervation of the
muscles cause muscle atrophy
and weakness producing efects
such as difficulty walking and

swallowing
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Neurodegenerative diseases have as a common hallmark, aggregates of mutated 

proteins. It is considered that in ALS, these protein aggregates interfere with normal protein 

homeostasis and induce cellular stress. By disturbing cellular functions such as intracellular 

transport, cytoskeletal architecture and mitochondrial function, cellular stress leads to axonal 

retraction and ultimately, cell death (Robberecht and Philips, 2013). Among the 33 genes 

reported to originate ALS disease, there is evidence that supports a pathogenic role for Cu/Zn 

superoxide dismutase 1 (SOD1) in 20% of the fALS 

(http://alsod.iop.kcl.ac.uk/Overview/gene.aspx?gene_id=SOD1). 

Although is it not entirely clear how these mutations influence the death of this particular 

group of neurons, current understanding links genetic mutations to a toxic gain of function of 

this enzyme, which leads to protein misfolding and aggregation of the peptide intracellularly 

(Pasinelli and Brown, 2006; Han-Xiang et al., 2008; Vucic and Kiernan, 2009; Bunton-

Stasyshyn et al., 2015) and result in the accumulation of free radicals that eventually lead to 

cell damage and death. However, protein aggregation occurs not only in mutated but also in 

wild-type (WT) proteins. This process is linked to non-genetic de-regulations, such as metal 

depletion, quaternary structure disruption and oxidation which leads WT protein to acquire a 

toxic conformation, similarly to mutated SOD1 proteins in ALS (Rotunno and Bosco, 2013).  

 

I.1. Motor neuron pathomechanisms 

 The major hallmark of ALS is the presence of abnormal accumulation of protein 

inclusions or aggregates in degenerating motor neurons. Inclusions are present in different 

central nervous system (CNS) regions such as frontal and temporal cortices, hippocampus 

and cerebellum. As above mentioned, neurodegeneration in ALS is currently associated with 

several mechanisms such as glutamate excitotoxicity, generation of free radicals, cytoplasmic, 

axonal and neurite protein aggregates, mitochondrial dysfunction, and disruption of axonal 

transport processes (Kiernan et al., 2011; Vucic et al., 2014), all considered to play a role in 

motor neuron (MN) dysfunction (Figure I.2).  

Glutamate is the major excitatory neurotransmitter released from presynaptic nerve 

terminals, diffusing across the synaptic cleft to further activate specific post-synaptic receptors 

such as N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptors. Termination of the nervous signal is only achieved upon removal of all 

glutamate molecules from the cleft by glutamate uptake transporters such as glutamate 

excitatory amino acid transporter-2 (EAAT2) localized both in neurons and in astrocytes (Ilieva 

et al., 2009; Vucic and Kiernan, 2009; Colonna and Butovsky, 2017). 

 Upon excessively release of this neurotransmitter, neurotoxicity, axonal swelling and 

depolarization are some of the effects produced on neurons. This excitotoxicity is observed 

both in the SOD1 mutant mouse model, the most studied in vivo mice model mutation, and in 

http://alsod.iop.kcl.ac.uk/Overview/gene.aspx?gene_id=SOD1
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familial and sporadic ALS patients. In addition, overstimulation by glutamate can induce a 

cascade of toxic events in the postsynaptic neurons with a consecutive activation of glutamate 

receptors which give origin to an increase in calcium influx that is too high for mitochondria 

and endoplasmic reticulum (ER) storage capacity (Ilieva et al., 2009; Tan et al., 2014), resulting 

in the production of free radicals that may further damage intracellular organelles and therefore 

lead to cell death (Bondy and Lee, 1993). 

The ER is a cellular compartment in which post-translational protein processing occurs. 

Upon a stress stimulus, the ER activates two adaptive pathways: (1) the unfolded protein 

response, which aims to refold misfolded proteins and (2) the ER-associated degradation 

(ERAD) that exports misfolded proteins to the proteasome, the cell’s machinery for eliminating 

abnormally folded proteins from the cytoplasm (Ilieva et al., 2009; Bunton-Stasyshyn et al., 

2015). 

 Mutant SOD1 (mutSOD1) has been implicated in the direct activation of ER stress 

(Ilieva et al., 2009; Bunton-Stasyshyn et al., 2015), was found to be accumulated in ER 

membranes and showed to inhibit ERAD degradation (Ilieva et al., 2009).  

Mitochondria are the major source of intracellular reactive oxygen species (ROS). ROS 

species, such as superoxide anion (O2
-) and hydrogen peroxide (H2O2) are products of normal 

oxygen metabolism in cells but when excessively present can harm the structure and function 

of the cell (Vehviläinen et al., 2014). Degeneration of mitochondria as well as increased 

production of ROS has been reported both in ALS patients and in the transgenic SOD1 mouse 

model (Mattiazzi et al., 2002; Lin and Beal, 2006). 

In normal cases, the presence of SOD1 in the intermembrane space (IMS) of the 

mitochondria is thought to exert a protective effect in the handling of O2
- as it has in the cytosol, 

converting this anion radical to H2O2 and furtherly to water (H2O) (Vehviläinen et al., 2014). 

However, the expression of mutSOD1 in neuronal cell lines or in cultures primary motor 

neurons has been shown to depolarize, impair calcium homeostasis and reduce mitochondria 

ATP production (Pasinelli and Brown, 2006). It is described that mutant forms of SOD1 protein 

selectively accumulates onto the cytoplasmic face of the outer membrane of the mitochondria 

where it forms aggregates and disrupts the proteins translocation machinery (Liu et al., 2004; 

Vucic and Kiernan, 2009). Accumulation of the mutated protein may interfere with 

mitochondrial protein import, mitochondrial fission/fusion, ionic balance or regulation of 

apoptosis (Ilieva et al., 2009; Tan et al., 2014). Although it is not fully understood how the 

protein affects mitochondrial function, this accumulation, incorrect dismutation of O2
- anion and 

accumulation of H2O2 may contribute to mitochondrial damage (Vehviläinen et al., 2014).   

Autophagy and apoptosis are two basic physiologic processes that contribute to the 

maintenance of cellular homeostasis. Autophagy is an intercellular catabolic process involved 

in the turnover of several cell components, important to maintain cellular homeostasis. This 
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process is essential for neuron survival due to its high specialization and because the cell does 

not undergo cell division as much as other cells in the body. Hence, they are susceptible to 

accumulation of misfolded protein aggregates and need a constants protein control to maintain 

cell viability (Ramesh and Pandey, 2017). Defects or alterations in autophagy pathway or in 

autophagy related-genes have been described in several pathologies including 

neurodegenerative diseases (Ghavami et al., 2014) such as ALS, since impairments in this 

pathway and its machinery can be contributors to the pathological formation of toxic protein 

aggregates (Ramesh and Pandey, 2017). In particular, beclin-1 is a key regulation of 

autophagy initiation described to be downregulated in the SC of SOD1-ALS patients where 

mutSOD1 impedes the vesicle nucleation step of autophagy, through abnormal interaction with 

beclin-1, thus impeding the cell to clear mutant protein aggregates (Lee et al., 2015; Ramesh 

and Pandey, 2017). 

Accumulation of SOD1 aggregated protein is also described as a contributor to cell death 

by apoptosis (Ghavami et al., 2014). Apoptosis is a process of programmed cell death which 

has been described as deregulated in several pathologies, including neurodegenerative 

diseases (Agostini et al., 2011). The major molecular components of the apoptosis program in 

neurons include proteins of the Bcl-2 family of oncoproteins and caspases which respond to 

cell death signals such as DNA damage, oxidative stress or limited trophic support. In ALS, 

changes in the levels of members of the Bcl-2 family result in a predisposition towards 

apoptosis. MutSOD1 is highly associated with Bcl-2 in the mitochondria, which results in a 

conformational change of this protein that weakens mitochondria, resulting in cytochrome c 

release and activation of mitochondria apoptosis machinery such as capase-9 and -3 

(Sathasivam and Shaw, 2005), which mediate cell death in motor neurons in the mutSOD1G93A 

transgenic mouse model (Zhang et al., 2013). 
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Figure I. 2. Motor neuron pathomechanisms in the amyotrophic lateral sclerosis disease. The 

neurotransmitter glutamate is released from the pre-synaptic nerve terminals and diffuse across the 

synaptic cleft to activate NMDA and AMPA receptors in the post-synaptic neuron. When glutamate is 

released in excess or is insufficiently removed from the synaptic cleft by astrocytes, neurotoxic effects 

are produced on neurons. Overstimulation by glutamate induces an overactivation of NMDA and AMPA 

receptors which produce an influx of calcium too high for mitochondria and ER to storage. Also, mutant 

SOD1 was found to accumulate in ER and mitochondria membranes, resulting in the generation of free 

radicals and resulting in the disruption of mitochondria machinery. Furthermore, in the mitochondria, 

mutant SOD1 interferes with the dismutation of O2
- anion, resulting in the accumulation of H2O2, which 

contributes to mitochondrial damage. In addition, mutant SOD1 aggregated in the cytoplasm interferes 

with autophagy and apoptosis processes by precipitating with beclin-1 and impeding the formation of 

autophagosome vesicles and by interfering with the viability of Bcl-2 in the mitochondria which leads to 

cytochrome c release and caspase activation, culminating in apoptosis, respectively. AMPA, α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor; Bcl-2, B-cell lymphoma 2; Bec1, Beclin1; Ca2+, calcium; Cyt 

c, Cytochrome c; ER, endoplasmatic Reticulum; H2O2, Hydrogen Peroxide; NMDA, N-methyl-ᴅ-aspartate; O2
-, 

Oxygen Anion; ROS, Reactive Oxygen Species; SOD1, Superoxide Dismutase 1. 

 

I.1.1. ALS-related proteins 

 It is considered that in ALS protein aggregates interfere with normal protein 

homeostasis and induce cellular stress. By disturbing cellular functions such as intracellular 

transport, cytoskeletal architecture and mitochondrial function, cellular stress leads to axonal 

retraction and ultimately, cell death (Robberecht and Philips, 2013). 

 In ALS, MNs contain intracellular protein inclusions, which consist of aggregated 

proteins, thought to be caused by mutations, protein damage such as oxidation, or protein 

seeding (Robberecht and Philips, 2013). 
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 Besides the pathogenic role attributed to Cu/Zn SOD1, other genes have been reported 

to contribute to ALS disease origin such as transactive response DNA-binding protein of 43 

kDa (TDP-43), fused in sarcoma (FUS) and C9orf72 genes (Gordon, 2013). Furthermore, there 

are some other mutations currently implicated in fALS include the Angiogenin, ataxin-2, 

Optineurin, Ubiquilin-2 (UBQLN2), Valosin containing protein (VCP) and VAMP-associated 

protein type B (VAPB) genes (Gordon, 2013). 

 Despite the progression and ultimate stage of the disease being almost equal despite 

which mutation is detected in the patient, mutations in these different genes cause MN death 

through different pathways: SOD1 mutations lead mostly to oxidative stress; TDP-43, FUS and 

C9orf72 induce disturbances in RNA machinery; VAPB affects endosomal vesicle trafficking; 

and UBQLN2 contributes to ubiquitination (Gordon, 2013). 

 

I.1.1.1. SOD1 protein and animal models 

SOD1 is composed of 153 amino acids in which more than 150 different mutations have 

been reported to be pathogenic, representing mutations in this enzyme for about 20% of 

familial ALS (Gordon, 2013; Robberecht and Philips, 2013). This protein is a member of the 

human SOD protein family, which includes proteins that function as anti-oxidizing enzymes 

that catalyze the dismutation of O2
- to H2O2, normally protecting the cell from ROS 

accumulation. SOD1 is highly abundant, comprising approximately 1% of total proteins in the 

cell, being located mainly in the cytosol and in a less amount in the IMS (Rotunno and Bosco, 

2013).  

SOD1 mutations are found in 20% of familial ALS cases and about 1%-5% of sporadic 

ALS cases globally (Gordon, 2013; Allen et al., 2014; Nardo et al., 2016).  The discovery that 

SOD1 mutations causes ALS early led to the development of the SOD1 transgenic mouse 

expressing high levels of human SOD1 containing a substitution of the amino acid glycine to 

the amino acid alanine at position 93 of the sequence (Gurney et al., 1994; Renton et al., 

2013). In the mutSOD1 mouse model, several cellular functions, such as mitochondrial energy 

production, axonal transport and others, have been found to subsequently fail, resulting in 

axonal retraction and denervation followed by cell death (Robberecht and Philips, 2013). 

MutSOD1 accumulates as oligomers and later as aggregates, which lead to stress 

responses. Afterwards, either because of further protein accumulation or because of an 

additional stressor, glial cells, such as astrocytes and microglia are activated and start an 

inflammatory cascade (Robberecht and Philips, 2013). 

Although SOD1 appears to trigger disease in motor neurons, astrocytes and microglia 

are the cells that promote disease progression being hypothesized that SOD1 is linked to ALS 

inducing oxidative damage to the mitochondria, ER stress, axonal transport dysfunction, 

excitotoxicity from excess glutamate at synapse, defects in protein degradation machinery and 
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overproduction of neurotoxic molecules through neuroinflammation (Komine and Yamanaka, 

2015).  

It has been previously shown that aggregation of misfolded SOD1 protein, influences 

nearby WT protein to change conformation and also become misfolded, being part of the 

explanation of how a disease that begins in one area is transmitted widely in the brain 

(Mackenzie et al., 2007; Gordon, 2013).  

Due to the similarities in many genetic features and physiology, anatomy and metabolism 

between humans and mice, the latter have been the preferred mammalian model for genetic 

research. In the context of ALS, mouse models based on gene abnormalities associated with 

ALS pathology have been used to characterize the disease pathophysiology as well as in the 

design and test of potential targeted therapeutics (Nardo et al., 2016). 

The transgenic mice overexpressing the human SOD1G93A mutation was the first model 

to be developed (Gurney et al., 1994) due to the similarity of the clinical signs between the 

model and the pathology in humans (Vinsant et al., 2013). Since then, several other transgenic 

models have been created in mice, rats (Nagai et al., 2001; Howland et al., 2002), zebrafish 

(Ramesh et al., 2010), Drosophila melanogaster and Caenorhabditis elegans (Watson et al., 

2008). 

Nowadays there are 12 different SOD1 human ALS mutations expressed in the mouse 

as well as artificially induced SOD1 mutations that prevent copper binding or truncate the 

protein (Wang et al., 2003; Han-Xiang et al., 2008; Turner and Talbot, 2008).  

 

I.1.1.2. TARDBP, FUS and C9ORF72 mutations 

TDP-43 is a ubiquitously expressed nuclear protein encoded by the TARDBP gene. This 

protein was identified as the major disease accumulated protein (Kabashi et al., 2008; 

Rutherford et al., 2008) in neuronal intracellular inclusions in proteinopathy diseases such as 

ALS where TDP-43 is relocated from the nucleus to the cytoplasm and sequestered into 

inclusion mainly composed of hyperphosphorylated and C-terminally truncated TDP-43 

fragments (Rutherford et al., 2008). Mutations in this gene account for about 4-5% of fALS 

cases (Gordon, 2013; Renton et al., 2013). Nearly 50 mutations have been identified in this 

gene, mostly involving the C-terminal glycine rich region of the protein, that may influence 

protein-protein interaction (Kabashi et al., 2008; Gordon, 2013). Mutant forms of protein TDP-

43 were described to fragment more rapidly than WT and to caused neural apoptosis and 

development delay (Sreedharan et al., 2008). 

Mutations in the FUS gene account for about 5% of fALS and less than 1% sALS 

(Gordon, 2013; Renton et al., 2013; King et al., 2015). Similarly, to TARDBP, more than 50 

mutations have been identified, most affecting the last 17 amino acids of the protein, the 

commonest being Arg521Cys. FUS mutations cause ALS with age-of-onset younger than 40 
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years in one-third of cases, usual onset in the arm, and survival of less than two years (Gordon, 

2013; King et al., 2015). 

The expansion of the sequence GGGCCC hexanucleotide repeat upstream the C9orf72 

coding region is the most common cause of ALS in Caucasians, although the 

pathophysiological mechanisms involved are unknown (Mori et al., 2013; Edbauer and Haass, 

2016). This mutation is a hexanucleotide repeat in the gene accounting for up to 40% of fALS 

and 7% of sALS (Gordon, 2013; Floeter et al., 2017). The repeat GGGCCC is translated into 

dipeptide repeat proteins (DRP). DRPs are known to inhibit the proteasome and sequester 

other proteins leading to brain atrophy and cognitive impairment. Also, DPRs impair 

nucleocytoplasmic transport and promote TDP-43 aggregation and mislocalization (Balendra 

et al., 2016; Edbauer and Haass, 2016).  

Besides the SOD1 animal models, others have been created since the discovery of 

TARDBP gene mutations and TDP-43 protein (for review see (Wegorzewska and Baloh, 

2011)). More recently, a C9orf72 bacterial artificial chromosome (BAC) mouse model was 

successfully created being the first to develop the molecular, behavioral, and 

neurodegenerative features of the disease (Liu et al., 2016).  

A new emerging technique in the research field comprises the use of induced pluripotent 

stem cells (iPSC) generated from fibroblasts of ALS patients. iPSCs from patients with 

TARDBP, C9orf72 (Devlin et al., 2015), SOD1 (Chen et al., 2014) genes have already been 

obtained and characterized. 

 

I.2. ALS as a non-cell autonomous disease: studying microglia reactivity and 

function 

Neurodegenerative diseases are characterized by the selective death of a certain group 

of neuronal cells which are the center of most research studies. However, the activation of glial 

cells, their role in the death of neurons and spreading of the disease have been gaining 

attention.  

Despite neurons are the most affected cells in neurodegenerative diseases, non-cell 

autonomous processes also contribute to neuron degeneration, since previous studies in a 

mice model with overexpression of mutSOD1 in most or all neurons was not sufficient to cause 

neurodegeneration (Clement, 2003; Yamanaka et al., 2008). Although, these cells acquire an 

ALS phenotype when surrounded by glial cells carrying the mutation in SOD1 (Clement, 2003; 

Yamanaka et al., 2008).  

Expression of mutSOD1 in motor neurons is determinant for the initial timing of the 

disease onset and early progression, however there is supporting evidence stating glial cells 

such as microglia, astrocytes and oligodendrocytes as being actively involved in the later 
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progression of ALS and motor neuron degeneration (Ilieva et al., 2009; Haidet-Phillips et al., 

2011; Lee et al., 2016). 

 

I.2.1. Role of astrocytes in ALS progression 

Astrocytes are the most abundant non-neuronal cells in the CNS (Nagai et al., 2007) that 

have as major functions the clearance of glutamate neurotransmitter upon the nervous impulse 

and providing metabolic support to neuron cells (Philips and Rothstein, 2014). Upon stress 

stimuli proliferating and acquiring a reactive phenotype characterized by the development of 

long and thick processes with an increase expression of glial fibrillary acidic protein (GFAP) 

(Lee et al., 2016).  

One of the pathological characteristics of ALS disease is the generation and migration 

of new astrocyte cells within and around damaged regions of SC (Lee et al., 2016).  

It is probable that genetic alterations induced by mutSOD1 along with other sources of 

stress, play a role in the transformation of astrocytes into a neurotoxic reactive phenotype (Lee 

et al., 2016). In this context, non-cell autonomous death of motor neurons in ALS may be de 

result of the astrocytic support loss and/or the secretion of neurotoxic cytokines, which has 

been proven in several studies to contributes to disease progression in ALS (Nagai et al., 2007; 

Ferraiuolo et al., 2011; Meyer et al., 2014; Johann et al., 2015). Also, in ALS, reactive 

astrocytes present an insufficient release of neurotrophic factors, important in motor neuron 

health which may contribute to neuronal death (Lasiene and Yamanaka, 2011). 

Furthermore, being responsible for the clearance of the glutamate neurotransmitter from 

the synaptic cleft, mostly by uptake of glutamate by glutamate transporters EAAT2 and GLT-

1, being responsible for the maintenance of a low extracellular glutamate concentration, since 

glutamate overabundance leads to neuronal excitotoxicity (Lasiene and Yamanaka, 2011). 

When these cells become reactive, expression of EAAT2 gene is decreased and therefore, 

glutamate will not be as efficiently removed from the synaptic cleft, contributing to excitotoxicity 

in MNs. Lastly, astrocyte cell activation leads to the increased production of iNOS/NOS2 

expression which leads to increased production of nitric oxide (NO) release also damages MNs 

(Lee et al., 2016). 

 

I.2.2. Role of oligodendrocytes in ALS progression 

Myelination of axons provided by glial cells was the last major step in the evolution of 

cells. Oligodendrocytes have the ability to wrap long segments of axons with a multilayered 

sheath of extended cell membrane in the CNS, while Schwann cells have the same function 

in the peripheral nervous system (PNS) (Nave, 2010). However, oligodendrocytes myelinate 

several axons simultaneously, while Schwann cells restrict their myelination to one single 

axonal segment (Nave, 2010).  Like other glial cells such as astrocytes, these cells were 
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recently shown to provide metabolic support to neurons (Nave, 2010). Therefore, and given 

their neurotrophic function, oligodendrocytes are most likely contributors neurodegenerative 

diseases characterized by axonal loss and atrophy, such as ALS pathology (Philips et al., 

2013). However, until recently, oligodendrocytes had not been considered as potentially 

involved in ALS, even though some studies available suggested the existence of abnormalities 

in oligodendrocytes both in human ALS and in rodent models (Niebroj-Dobosz et al., 2007; 

Yamanaka et al., 2008; Mackenzie et al., 2011; Ferraiuolo et al., 2016). Actually, extensive 

degeneration of grey matter oligodendrocytes was found in the SC of SOD1G93A mice prior to 

disease onset (Kang et al., 2013).  

 

I.2.3. Microglial Cells 

Microglia account for approximately 10% of cells in the CNS and originate from a pool of 

primitive macrophages from the yolk sac, appearing in the mouse at embryonic day (ED) 8.5, 

constituting an entirely different lineage than the other hematopoietic cells (Ginhoux et al., 

2013; Colonna and Butovsky, 2017; Wolf et al., 2017). They invade the brain early in the 

development, transforming into cells with a highly ramified phenotype (Wolf et al., 2017). 

During development, microglia plays a role in shaping neural circuits by modulating the 

strength of synaptic transmission and sculpting neuronal synapses (Colonna and Butovsky, 

2017). Further in life, microglia perform not only immune functions but other fundamental roles 

like the control of neuronal proliferation and differentiation as well as in the formation of 

synaptic connections (Ginhoux et al., 2013). 

 In the healthy CNS, microglia constantly survey their environment with their motile 

processes to make contact with synapses, where they contribute for the modification and 

elimination of synapse elements, astrocytes and blood vessels (Ginhoux et al., 2013; Heneka 

et al., 2014). Upon an insult, microglia cells migrate to the lesion site and activate their signaling 

pathways producing pro-inflammatory mediators (Lasiene and Yamanaka, 2011).  

  In ALS pathology, microglia are an activated state, contributing to MN death through 

the secretion of neurotoxic factors. Also, in later stages of the disease, impaired microglia 

contributes to disease progression (Brites and Vaz, 2014).  
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Figure I. 3. Schematic representation of glial cells in amyotrophic lateral sclerosis. Upon an 

inflammatory stimulus, such as the presence of mutated protein aggregates, glial cells support to 

neurons is disrupted, conveying in the activation of these cells which produce and release inflammatory 

cytokines that will be further players in the uncontrolled inflammation generated in the brain. ALS, 

Amyotrophic Lateral Sclerosis; CNS, Central Nervous System; NO, Nitric Oxide; SOD1, Superoxide Dismutase 1; 

ROS, Reactive Oxygen Species. 

 

I.2.3.1. Neuroinflammation 

Uncontrolled inflammation constitutes a major component of CNS diseases related to 

acute or chronic neurodegenerative processes (Park et al., 2015; Cardoso et al., 2016).  

Although perivascular, choroid plexus and meningeal macrophages can also be found in the 

brain, brain immunity is mainly sustained by microglia cells, the resident immune cells in the 

CNS parenchyma (Heneka et al., 2014; Waisman et al., 2015; Cardoso et al., 2016). These 

cells are equally distributed throughout the brain and spinal cord with increased densities near 

neuronal nuclei, including substantia nigra in the midbrain (Ginhoux and Prinz, 2015). 

In the healthy CNS, microglia role is essentially of surveillance, having two photon 

microscopy studies showed these cells present an extremely ramified morphology with long 

branches and small soma, always moving (Ginhoux et al., 2013; Cardoso et al., 2016). Also, 

through this technique it was also possible to see microglia’s phenotype rapidly change to a 

round, branchless morphology in response to injury (Cardoso et al., 2016). Under normal 

conditions, macrophages from the PNS are not likely to infiltrate into the CNS, unless the 

blood-brain barrier (BBB) is damaged (Komine and Yamanaka, 2015), although, upon brain 

injury or fluctuations in CNS homeostasis, microglia cells are capable of recruiting 

macrophages from the PNS, orchestrating an immunological response (Wolf et al., 2017). At 

the same time, microglia are responsible for phagocytosis and elimination of pathogens, dead 
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cells and protein aggregates, acquiring diverse and complex phenotypes and migrating to the 

lesion site, participating in the cytotoxic response by proliferating and producing inflammatory 

mediators, participating in immune regulation and injury resolution (Caldeira et al., 2014; 

Komine and Yamanaka, 2015; Cardoso et al., 2016; Colonna and Butovsky, 2017). 

Neuroinflammation concept definition is nothing more than this activation of glial cells 

and infiltrated macrophages from the PNS, which leads to the production of proinflammatory 

cytokines and chemokines, characteristic of neurodegenerative diseases like ALS (Ilieva et al., 

2009; Komine and Yamanaka, 2015; Lee et al., 2016). However, this process is a vicious cycle, 

since the production of proinflammatory cytokines and toxic molecules leads to acceleration of 

neuronal dysfunction and the latter to the production of more of these molecules (Komine and 

Yamanaka, 2015). 

    

I.2.3.2. Alarmins and microglia response 

The majority of neurodegenerative diseases have as a hallmark the deposition and 

accumulation of aggregated misfolded proteins, which cause an activation of microglia cells 

that as the immune resident macrophages of the CNS have the function of maintaining 

homeostasis. 

To be able to recognize foreign molecules, microglia cells express pattern recognition 

receptors (PRRs) that are able to sense pathogen associated molecular patterns (PAMPs) and 

others that can detect damage-associated molecular patterns (DAMPs) (Colonna and 

Butovsky, 2017; Wolf et al., 2017). PRRs include toll-like receptors (TLRs), such as TLR4 and 

TLR1/2 and their co-receptors and NOD-like receptors (NLRs) like the NLRP3 inflammasome 

(Colonna and Butovsky, 2017). Thus, several molecules associated with neurodegeneration 

including SOD1 act as a DAMP, activating PRRs, which excessively stimulated, causes 

prolonged neuroinflammation and ultimately cell death, contributing to neurodegeneration and 

disease progression. Neurodegenerative conditions activating microglia also induce the 

release of ROS and NO, through the activation of NADPH oxidase, myeloperoxidase, inducible 

nitric oxide synthase (iNOS) and release of matrix metalloproteinases (MMPs) (Colonna and 

Butovsky, 2017; Wolf et al., 2017). In addition, microglia also express chemokine receptors, 

such as CX3CR1 as well as integrins, such as CD11b and CD11c, that control microglia 

migration in the CNS and potentiate their ability to bind foreign molecules for elimination 

(Colonna and Butovsky, 2017).  

DAMP molecules are described as a group of endogenous danger signals that play a 

critical and proinflammatory role in innate immunity. These molecules are also known as 

‘’alarmins’’ since they are released upon stress or damage to the cells. They are similar to 

immune system molecules given their adaptive immune response, activating antigen-

presentation in cells and rapid release upon tissue injury (Lee et al., 2014; Feldman et al., 
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2015). By binding to specific receptors like TLR2, TLR4 and receptor for advanced glycation 

end products (RAGE), DAMP molecules induce early innate and adaptive immune 

inflammation without infection, the so called ‘’sterile inflammation’’ (Lee et al., 2014; Feldman 

et al., 2015). 

DAMPs have been gaining attention from the scientific community in the latest years by 

their main role in the inflammation process. Originally, DAMP molecules were associated with 

cell death, however, more recently, these molecules were shown to be secreted by damage 

cells as an ‘’alarm sign’’ that something is not right in the brain environment. In normal 

physiological conditions, DAMPs are not detectable to the immune system. However, upon 

their release after cell death or stress, they play a main role in inflammation, activating almost 

exclusively macrophages and microglia through TLRs (Feldman et al., 2015; Pandolfi et al., 

2016). 

On the DAMP category are included S100 proteins, heat-shock proteins and high 

mobility group box 1 (HMGB1) , which although naturally expressed in the cytosol or nucleus 

can be secreted to the extracellular media sending signals to the surrounding cells for the 

presence of damaged tissue (Lotze and Tracey, 2005). 

In early stages of ALS pathology, microglia exert a protective effect, increasing the 

production of brain derived neurotrophic factor (BDNF). However, at a later stage of the 

disease, these cells start to participate in disease progression and motor neuron death due to 

the secretion of neurotoxic molecules like HMGB1, which promotes transcription of several 

proinflammatory genes (Figure I.4). HMGB1 is a 25-30 kDa protein constituted by two 

homologous DNA-binding domains: the A box and the B box (Lee et al., 2014). Functionally, 

A and B box domains are DNA binding domains although HMGB1 box A also acts as a specific 

antagonist to HMGB1, showing an anti-inflammatory effect (Lee et al., 2014). On the other 

hand, B box domain is not only related to DNA binding as it is also involved in the cytokine 

activity of the protein, stimulating the release of pro-inflammatory cytokines in macrophages, 

like tumor necrosis factor (TNF)-α (Ellerman et al., 2007; Lee et al., 2014).   

HMGB1 is a highly conserved, non-histone mobile chromatin protein. In eukaryotic cells, 

it is described to mainly remain in the cell nucleus, transiently binding to the DNA and 

functioning as a chaperone, facilitating DNA replication, recombination, DNA repair, 

stabilization of nucleosome formation, integration of transposons, and transcription (Lotze and 

Tracey, 2005; Ellerman et al., 2007; Lee et al., 2014; Pandolfi et al., 2016). While in the 

cytoplasm, it is involved in the regulation of autophagy and in maintaining balance between 

autophagy and apoptosis (Lee et al., 2014; Yang et al., 2015). This protein has been implicated 

in several aspects of the innate immune system as a DAMP molecule, playing a role as a 

mediator of autophagy and apoptosis as well as a late inflammation mediator. Upon release 
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by apoptotic or necrotic cells, HMGB1 is able to activate macrophages and produce an 

inflammatory response (Lotze and Tracey, 2005; Ellerman et al., 2007; Lee et al., 2014).  

 

Figure I. 4. Microglia response to DAMP molecules in the CNS. As the immune cells of the central 

nervous system (CNS), microglia are always into a vigilant state, reacting to abnormal stimulus. When 

released to the extracellular media by neurons or other CNS cells, SOD1 aggregates act like a damage 

insult associated molecular pattern (DAMP), also called alarmins, that signalize danger signs. DAMP 

molecules activate pattern recognition receptors (PRRs) such as toll-like receptors (TLRs)-2 and -4, as 

well as receptor for advanced glycation end products (RAGE) which will further culminate in the 

activation of inflammatory cascades that will lead to NLRP3 inflammasome, and NF-κB activation. The 

latter increases the expression of other alarmin molecules like high molecular group box protein – 1 

(HMGB1), matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and NADPH 

oxidase. As a result, HMGB1, MMPs, nitric oxide (NO) and reactive oxygen species (ROS) will be 

secreted into the extracellular media, producing more inflammation in the surrounding cells. CNS, Central 

Nervous System; DAMP, Damage Associated Molecular Pattern; HMGB1, High-Mobility Group Box Protein 1; NF-

κB, Nuclear Factor Kappa B; NO, Nitric Oxide; MMP, Metalloproteinase; PRR, Pattern Recognition Receptor; 

RAGE, Receptor for Advanced Glycation End Products; ROS, Reactive Oxygen Species; SOD1, Superoxide 

Dismutase 1; TLR, Toll-like Receptor; TNF, Tumor Necrosis Factor;  

 

It also contains two binding sites TLRs and RAGE, both crucial in the activation of 

macrophage cytokine release (Lee et al., 2014; Tsung et al., 2014; Yang et al., 2015; Pandolfi 

et al., 2016).  
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HMGB1 can be secreted for the extracellular media after injurious stimuli, transmitting 

danger signals to neighboring cells that initiate an inflammatory response. Once outside the 

cell, HMGB1 acts as a proinflammatory cytokine, functioning as a mediator of cellular 

communication and coordination of cellular activity, through specific receptors to promote the 

activation of the NF-κB signaling pathway, with a subsequent production of cytokines and 

chemokines (Lee et al., 2014). Also, its binding ability to RAGE receptor, mediate signals for 

neuronal outgrowth, polarization of T cells and upregulation of other cell-surface receptors 

such as TLR2, TLR4 and RAGE, triggering activation of Ras, PI3K and Rho pathways all 

converging to NF-κB (Lee et al., 2014). 

 

I.2.3.3. Reactivity  

Microglia activation occurs upon any kind of insult to the brain and activated cells acquire 

an amoeboid phenotype. Two types of activation are currently considered, the classical M1 

pro-inflammatory and the M2 repair or anti-inflammatory state although the latest knowledge 

suggests that there is more heterogeneity in activation states than it was initially thought 

(Figure I.5) (Orihuela et al., 2016; Tang and Le, 2016; Wolf et al., 2017). 

The classic M1 phenotype is neurotoxic and involved in the release of pro-inflammatory 

cytokines and chemokines and specialized in pathogen elimination. In this state, TLR and IFN-

γ signaling pathways are commonly activated and pro-inflammatory molecules like TNF-α, 

HMGB1, S100B, iNOS, IL-6, IL-1β, IL-12, CCL2, MMP12, MHCII, costimulatory molecules, 

RAGE, TLR4 and TREM-2 receptors, Fc receptors and integrins are produced (Komine and 

Yamanaka, 2015; Colonna and Butovsky, 2017). Furthermore, chemotaxis, microglia ability to 

migrate towards injured regions, is a property that also seems to be more related to M1 

phenotype, being the release of chemotactic molecules like ATP indicated to participate in the 

recruitment of these cells to lesion sites. If existent, infectious pathogens are phagocytosed by 

microglia through TLRs or complement receptors that also promote the release of pro-

inflammatory cytokines, while apoptotic cells or debris are internalized through 

phosphatidylserine receptors.  

On the other hand, M2 anti-inflammatory phenotype, usually induces MFG-E8, Arginase 

1 (Arg1), SOCS1, Fizz1, IL-4, IL-13, IL-10, TGF-β production, contributing to neuroprotection 

through the release of anti-inflammatory cytokines and growth factors and (Colonna and 

Butovsky, 2017). 

Both these transitional phenotypes were shown to exert beneficial or destructive effects 

depending on the stimuli, the duration and the surrounding environment, being the balance 

between both phenotypes considered to be a desirable therapeutic goal (Caldeira et al., 2014). 

M1 and M2 phenotypes are also associated with a different expression profile of 

microRNAs (miRNAs). Thus, miRNAs expressed in a certain moment help to identify which is 
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the activated phenotype more prevalent in different neurological diseases. This suggests that 

microglia’s phenotype modulation may allow a proper shift of these phenotypes and lead to a 

possible new way of treatment. Also, different kinetics of miRNA expression and degradation 

is proved to produce different immune outcomes and changes microglia phenotypes (Cardoso 

et al., 2016). 

 

I.2.3.4. Microglia phenotypic diversity and microRNAs profile in ALS pathology 

Although most of the investigation in ALS disease has been centered in specific proteins, 

also regulatory mechanisms mediated by small non-coding RNAs have been considered and 

explored in this complex disease being now considered key to understand pathology and 

disease progression (Abe and Bonini, 2013). 

MiRNAs are conserved, endogenous, non-coding RNAs. They are about 20-24 

nucleotides long and post-transcriptionally regulate protein expression or levels of target 

messenger RNA (mRNA) transcripts (Gascon and Gao, 2012; Abe and Bonini, 2013; Volonte 

et al., 2015). There are more than 1000 different known human miRNA sequences, being 20-

30% of all human protein-coding genes controlled by miRNAs (Volonte et al., 2015). 

The link between miRNAs and neurodegeneration was discovered while studying the 

effect of global disruption of miRNA biogenesis on neuronal development and they have been 

implicated in the modulation of inflammatory responses and in immune system activation 

(Paez-Colasante et al., 2015; Karkeni et al., 2016; Thome et al., 2016). 

Some specific miRNAs are emerging as important contributors to ALS pathogenesis, 

being pointed as key regulators of inflammation and as mediators of macrophages/microglia 

polarization, such as miRNAs-155, -146a and -125b (Parisi et al., 2013; Cunha et al., 2016). 

Upon an inflammatory stimulus with lipopolysaccharide (LPS) in vitro, inflammatory 

miRNAs-155 and -146a have been related to microglia polarization towards an M1 pro-

inflammatory phenotype (Cunha et al., 2016). 

MiRNA-155 is usually upregulated in blood and in SC (Maciotta et al., 2013; Paez-

Colasante et al., 2015; Cunha et al., 2017; Pegoraro and Angelini, 2017) and is involved in the 

targeting of TGF-β1, a set of peptides in control of cell differentiation and proliferation. 

Additionally, it has shown to increase proinflammatory cytokine secretion (Cunha et al., 2016). 

Also, a recent study demonstrated that genetic ablation or administration of antisense 

oligonucleotide of miR-155, elevated in humans and SOD1 mice model, extended survival time 

of SOD1G93A, partly thought restoring microglial functions and controlling neuroinflammation 

(Komine and Yamanaka, 2015). MiR-146a is reported to be dysregulated in spinal cord, 

promoting tissue inflammation (Butovsky et al., 2012; Maciotta et al., 2013; Paez-Colasante et 

al., 2015; Cunha et al., 2017). Although, the role of miR-146a is still quite unclear, since it is 



Chapter I. Introduction 
 

18 
 

also overexpressed in senescent/dystrophic microglia, which is not able to respond to stress 

stimuli anymore (Jiang et al., 2012; Cunha et al., 2016). 

MiR-125b involves cell growth, movement and division. It is responsible for macrophage 

activation (Chaudhuri et al., 2011) and when overexpressed in these cells, enhances surface 

activation markers and become potent stimulators of immune responses. In ALS, this miRNA 

is reported to be downregulated (Paez-Colasante et al., 2015) due to the release of TNF-α 

(Parisi et al., 2013).  

While miR-155 and miR-146a are considered proinflammatory miRNAs, miR-21 is in 

control of the extension of the immunological response, repressing M1 phenotype (Iliopoulos 

et al., 2010; Paez-Colasante et al., 2015; Cardoso et al., 2016; Cunha et al., 2016). The 

function of miR-21 is to target the expression of TGF-β1, causing an overall reduction of TGF-

β1 levels and is upregulated in patients with ALS (Parisi et al., 2013).  

 

I.2.3.5. Microglia capacity of response and aging 

Aging is a major risk for the development of many neurodegenerative diseases and brain 

aging has been intensively studied recently having several processes like mitochondrial 

dysfunction, oxidative stress and autophagy have been identified as contributors to the loss of 

synapses in neurons (Bishop et al., 2010; von Bernhardi et al., 2015).  

Since glial cells are highly important for all brain functions, it is very likely that aging 

related changes in glial cells, particularly microglia, are important to the development and 

progression of neurodegenerative diseases (Biber et al., 2014). 

In the healthy aging brain, microglia acquire a hypersensitive phenotype that results in 

an exaggerated immune responsiveness called microglial ‘’priming’’ (Godbout and Johnson, 

2009; Biber et al., 2014; Perry and Holmes, 2014). Priming reflects a shift of microglia towards 

a pro-inflammatory state known as classically activated M1-state. With age, microglia 

undergoes several age-related changes that contribute to the generation of a chronic mild 

inflammatory environment, including the production of pro-inflammatory cytokines and ROS 

species (von Bernhardi et al., 2015).  

Actually, not only aging appears to be a risk factor for neurodegenerative diseases, but 

the presence of neurodegenerative diseases potentiates the appearance of aging and 

senescence related markers (Baron et al., 2014; von Bernhardi et al., 2015). After prolonged 

inflammation in the CNS, and similarly to what happens in the aging brain, microglia acquire a 

senescent impaired phenotype, contributing to disease progression. Senescent microglia are 

characterized by a specific phenotype with large soma and thicker processes gathered with 

the decreased expression of M1 pro-inflammatory markers such as MHC-II, IL-1β, IL-6, TNF-

α and activation of NF-κB resulting from the mitochondrial damage caused by oxidative stress, 
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while M2 markers, involved in neuroprotection are upregulated, suggesting a more protective 

phenotype (Sierra et al., 2007; Colonna and Butovsky, 2017; Wolf et al., 2017).  

Dystrophic/Senescent microglia show different morphological characteristics: they are 

characterized by a cytoplasmic spheroid formation containing phagocytic-intake material and 

short, tortuous, swollen processes (Streit, 2006; Sierra et al., 2007; Colonna and Butovsky, 

2017). Also, reduced phagocytic capability is described in these cells, diminishing their 

capacity of clearance of both pathogens and apoptotic cells (Caldeira et al., 2014; Cardoso et 

al., 2016; Pinto et al., 2017). 

 

 

Figure I. 5. Schematic representation of microglia polarization states. Microglia activated cells 

acquire an amoeboid phenotype. Two types of activation are considered to be prevalent: The M1 pro-

inflammatory activation state, involved in a pro-inflammatory and neurotoxic response, and the M2 anti-

inflammatory state, considered to be involved in an anti-inflammatory, repair and neuroprotective 

response. In the first, TLR and IFN-γ signaling pathways are activated and pro-inflammatory molecules 

are released. In the second one anti-inflammatory cytokines and chemokines as well as growth factors 

are released. Arg1, Arginase 1; CCL, Chemokine Ligand; Fizz1, Found in Inflammatory Zone 1; HMGB1, High 

Mobility Group Box 1; IL, Interleukin; MHCII, Major Hitocompatibility Complex class II; miR, microRNA; MMP, 

Metalloproteinase; S100B, S100 Calcium Binding Protein B; SOCS1, Suppressor of Cytokine Signalling 1; TGF, 

Tumor Growth Factor; TNF, Tumor Necrosis Factor. 

 

I.3. Intercellular communication in the CNS 

The human body is an amazing complex system where everything is tightly connected. 

Intercellular communication plays an essential role in the development and maintenance of 

homeostasis and can occur locally, involving direct contact between cells, or through distance, 

secreting molecules like hormones that send signals through the circulatory system to different 

parts of the body (Ha et al., 2016). In particular, CNS is characterized by a reciprocal 

communication among its cellular populations such as neurons, astrocytes and microglia 

(Basso and Bonetto, 2016).  

ALS disease is often originated in a specific part of the body followed by contiguous 

spread of the disease which is compatible with a propagating process. Recent work on familial 
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ALS SOD1 mutations, suggested a cell-to-cell transmission of mutSOD1 aggregates (Chia et 

al., 2010; Munch et al., 2011) which was verified by Munch and colleagues (2011) in Neuro2a 

cells. 

It is considered that misfolded/mutated proteins can be spread from one cell to another 

in two different ways: 1) by extracellular release of soluble factors that are then collected by 

other cells or 2) by delivery within membrane-bound structures (Garden and La Spada, 2012). 

This last process has recently been gaining attention. Communication through the 

release of this membrane-bound structures, referred to as extracellular vesicles (EVs) have 

been shown to be released by all cell types in the CNS and further uptake by neighboring cells 

(Basso and Bonetto, 2016; Zappulli et al., 2016). EVs are known to participate in multiple 

processes including maintenance of myelination, synaptic plasticity, antigen presentation and 

trophic support of neurons (Pitt et al., 2016; Thompson et al., 2016). 

 

I.3.1. Extracellular Vesicles  

EVs are secreted by every cell of the body and allow the communication among cells 

both neighboring and long distance (Tkach and Théry, 2016).  

These vesicles are divided into three different types accordingly to their subcellular 

origin: apoptotic bodies, microvesicles and exosomes, each which present different 

characteristics, like their different compositions (Ha et al., 2016; Tkach and Théry, 2016). 

In particular exosomes range in size from 30 to 150 nm in diameter and are originated 

from the invagination of the endosomal limiting membrane to form the multivesicular body 

(MVB), containing intraluminal vesicles (ILVs) (Figure I.6) (Schneider and Simons, 2013; 

Ibrahim and Marbán, 2016). They are secreted by all cell types and can be found in most body 

fluids, including blood, saliva and urine (Ha et al., 2016; Thompson et al., 2016). Exosomes 

are composed by a lipid bilayer membrane containing proteins and lipids derived from the 

parent cell (Ha et al., 2016; Tkach and Théry, 2016). The protein constitution includes transport 

proteins, heat shock proteins, proteins associated with the MVB biogenesis and tetraspanins. 

Cholesterol, sphingolipids, phosphoglycerides, ceramides, and saturated fatty acid chains are 

among the presented lipids (Ha et al., 2016). Exosomes are specifically enriched in several 

proteins such as the integrins and tetraspanins CD63, CD89, CD81, CD9 and CD82; the MVE 

proteins alix and tsg101; the endosomal and endosome maturation-related proteins flotillin and 

annexin; and the heat shock proteins hsp70 and hsp90, all of which serve as marker proteins 

(Simons and Raposo, 2009; Schneider and Simons, 2013). 

Once in the extracellular space exosomes can passively traffic through the bloodstream 

or other bodily fluids or bind to specific cells mediating cell-to-cell communication, through 

different mechanisms: (A) They can activate intracellular signaling by ligand-receptor 

interaction without internalization; (B) Their membrane proteins can be cleaved, releasing 
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soluble ligands that bind to target receptors on the cell surface; (C) They can be taken up by 

membrane fusion where exosomes release their content into the recipient cell cytoplasm, 

thereby modifying the physiological state of the recipient cell ; (D) They can be internalized by 

endocytic mechanisms by recipient cells (Urbanelli et al., 2013; Robbins and Morelli, 2014; 

Tkach and Théry, 2016). Regarding cells in the CNS, exosomes have been shown to be 

release in vitro by oligodendrocytes, microglia, astrocytes and neurons (Potolicchio et al., 

2005; Fauré et al., 2006; Krämer-Albers et al., 2007; Taylor et al., 2007). Vs derived from glial 

cells, particularly microglia and astrocytes have an active role in neuroinflammation, by 

spreading proinflammatory signals. Although, they can also be carriers of factors involved in 

repair after stress, disease and injury (Budnik et al., 2016). 

 

 

Figure I. 6. Scheme of the formation and constitution of exosomes. Exosomes originate from the 

endosomal pathway. The early endosome results from the membrane invagination. This structure 

invaginates one more time to form ILVs that can incorporate proteins and/or nucleic acids present in the 

cell’s cytoplasm. After the vesicles are formed, the structure that carries them is named the MVB. The 

MVB can then follow the recycling pathway towards the Golgi complex, follow the recycling pathway 

towards the lysosome or fuse with the extracellular membrane, releasing the exosomes to the 

extracellular media. Exosomes are specifically enriched in several proteins that serve as markers to 

identify them such as tetraspanins, MVB proteins, endosome-maturation related proteins and heat-

shock proteins. dsRNA, Double Strand RNA; DNA, Deoxyribonucleic Acid; ER, Endoplasmatic Reticulum; ILV, 



Chapter I. Introduction 
 

22 
 

Intraluminal Vesicle; MHC, Major Histocompatibility Complex; MVB, Multivesicular Body; RNA, Ribonucleic Acid; 

ssRNA, Single Strand RNA.  

 

I.3.2. Disease spreading  

One of the mechanisms by which a protein can dominate a pathology is by propagating 

protein misfolding, like what happens in prion diseases (Figure I.7) (Grad et al., 2014). 

Recently, this mechanism has been increasingly implicated in neurodegenerative diseases as 

a cell to cell transmission of misfolded protein aggregates (Lee et al., 2014). Prion diseases 

are fatal neurodegenerative diseases of mammals, in which the infectious agent is a misfolded 

protein referred to as PrPSC. These proteins are able to self-propagate by binding to monomers 

of PrPC, the normal prion protein (Kabir and Safar, 2014). Recent studies in cell lines and 

mouse models suggest a prion-like mechanism is ALS disease.  

 

I.3.2.1. MiRNAs and misfolded proteins 

EVs are composed of a lipid bilayer containing transmembrane proteins. These vesicles 

are capable of enclosing several kinds of molecules, although, how this cargo becomes 

selected and whether it has a function in the recipient cell is still unclear and a matter of study 

(Budnik et al., 2016). Published studies reported molecules including cytosolic proteins and 

nucleic acids like DNA, RNA, mRNA and miRNAs as being carried inside these vesicles (Tkach 

and Théry, 2016). Several types of nucleic acids have already been detected inside EVs: DNA, 

including double-stranded and single-stranded DNA, retrotransposons and mitochondrial 

DNA; as well as RNA, including messenger RNA (mRNA), hairpin and non-hairpin RNA, 

transfer RNA, noncoding RNA, miRNA, ribosomal RNA fragments, small nucleolar RNA, small 

nuclear RNA, and small cytoplasmic RNA (Budnik et al., 2016; Thompson et al., 2016).  

Also, more than 40 000 proteins – nearly one-quarter of the known human proteome -

have been detected within EVs accounting nearly 400 proteins for about 75% of the overall 

EV-associated protein mass (Thompson et al., 2016). Some of these proteins are specific from 

the cell of origin, while others are specific across all exosomes (Bellingham et al., 2012). 

The export of misfolded SOD1 and uptake into other cells has been show in vitro 

(Urushitani et al., 2008). SOD1 and TDP-43 proteins can propagate within neuronal cells and 

transmit to neighboring cells whether secreted to the extracellular environment via exocytosis, 

transported inside vesicles like exosomes, or released upon apoptosis (Gomes et al., 2007; 

Munch et al., 2011; Nonaka et al., 2013; Lee et al., 2014; Sábado et al., 2014; Grad et al., 

2015). These exosomes, can subsequently be taken up by other cells where misfolded cargo 

of SOD1 will provide a template for induction of protein misfolding in other cells (Figure I.6) 

(Grad et al., 2015). MutSOD1 aggregates have been shown to be able to enter neuronal cells, 

where they cause aggregation of the normal cytoplasmic mutSOD1 (Munch et al., 2011). Also, 
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mutSOD1 induces misfolding of hSOD1WT, which propagates across cultured cells, even if 

mutSOD1 is absent in these cells (Grad et al., 2011, 2014). 

 

Figure I. 7. Schematic representation of the intercellular communication in the CNS. Extracellular 

vesicles and their content have recently been gaining attention. In particular, exosomes released by all 

cell types, have been pointed as carriers of proteins such as aggregates of SOD1 observed in 

experimental models of amyotrophic lateral sclerosis, as well as several types of genetic material, 

playing a key role in inflammation and disease spreading.  CNS, Central Nervous System; RNA, Ribonucleic 

Acid; SOD1, Superoxide Dismutase 1.  

 

I.4. Diagnostic and therapeutic strategies 

Currently, diagnostic criteria in ALS assume that clinical presentations are subdivided 

into bulbar-onset or spinal-onset disease, and by the degree of upper motor neuron and lower 

motor neuron involvement. With the recent novel technologies of neuroimaging, advanced 

genetics and bioinformatics, the existence of many subtypes of ALS, comprising a wide clinical 

and pathological spectrum, is becoming increasingly obvious. There is an awakening of the 

urgent need for reliable classification, which should include not only motor involvement, but 

also the degree and type of cognitive and behavioral impairment that is present in each patient 

(Al-Chalabi and Hardiman, 2013). 

Astrocyte

Microglia

Motor Neuron

Oligodendrocyte

Motor Neuron Exosomes

Microglia Exosomes

Astrocyte Exosomes

Wild-type
SOD1

Wild-type
SOD1

Mutant
misfolded 

SOD1

Wild-type
SOD1

Mutant
misfolded 

SOD1

Mutant
misfolded 

SOD1

Oligodendrocyte Exosomes

RNAs

RNAs

RNA
s



Chapter I. Introduction 
 

24 
 

Currently, there is still no effective cure for ALS. Only the benzothiazole riluzole, licensed 

in 1996, had been proved to slow the rate of progression and prolong survival by three months 

(Gordon, 2013; Renton et al., 2013), until recently when a new compound, Edaravone 

(RadicavaTM) was licensed by the Food and Drug Administration (FDA) 

(https://alsnewstoday.com/edaravone-radicava-for-als/). This compound is a radical 

scavenger which was found to have a neuroprotective effect, slowing disease progression by 

removing free radicals in the CNS (Abe et al., 2017). 

Several clinical trials have been unable to identify another neuroprotective agent. In 

progress, are clinical trials that test mediations aiming to interfere with a known cellular event 

and slow the disease course time. Researchers now aim to slow disease progression by 

targeting known pathophysiological pathways or genetic defects being most approaches 

directed at muscle proteins, energetic balance, cell replacement or abnormal gene products 

resultant from mutations (Gordon, 2013). 

 

I.4.1. Modulating neuroinflammation                                         

Although glial cells are important in the homeostasis of the CNS, their driven 

inflammation in neurodegenerative diseases contribute to disease progression. It is well known 

that the resident microglia when activated in response to insults release pro-inflammatory 

mediators. If the stress stimulus is constant, like what happens if mutated aggregated proteins 

are present, microglia activation becomes chronic, leading to further exacerbation of their 

response.  

 

I.4.1.1. Inflamma-MiRNAs and HMGB1 modulation 

Inhibition of anti-inflammatory activity of microglia has been considered in order to 

improve clinical outcome in neurodegenerative diseases (Mosley and Gendelman, 2010). 

However, a complete inhibition of inflammatory microglial states may be harmful to the CNS 

and phenotypic microglia changes towards M1/M2 phenotypes are still being discussed. 

M1 and M2 phenotypes are also associated with a different expression profile of 

miRNAs) Thus, miRNAs expressed in a certain moment help to identify which is the activated 

phenotype more prevalent in different neurological diseases. This suggests that microglia’s 

phenotype modulation may allow a proper shift of these phenotypes and lead to a possible 

new way of treatment (Cardoso et al., 2016) 

In addition, it may be possible to develop strategies to specifically target DAMPs 

mediated inflammatory responses (Lu et al., 2014). In particular, HMGB1 has been described 

as a mediator of lethal infection and injury, which led investigators to discover endogenous or 

exogenous agents which inhibited HMGB1 release, protecting against infection and injury (Lu 

et al., 2014).  
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Treatment with HMGB1 inhibitors is beneficial and reduces inflammation in several 

preclinical animal studies (Yang and Tracey, 2010). Like in other neuroinflammation 

associated diseases like Alzheimer’s disease, HMGB1 was proposed to play a critical 

pathogenic role in the progression of the pathology, being proposed as a molecular target to 

delay onset and progression of the diseases (Fujita et al., 2016). There are several described 

HMGB1 inhibitors. An efficient strategy to perform this inhibition in through the use of HMGB1-

antagonists like antagonist A box, which is one of the DNA-binding motifs of HMGB1 (Yang et 

al., 2004), considered a potential anti-inflammatory agent (Yang et al., 2004; Kokkola et al., 

2005). Also, small molecules from natural sources or from chemical synthesis have been used 

as inhibitors (Mollica et al., 2007; Wang et al., 2010; Musumeci et al., 2014) 

 

I.4.1.2. Anti-inflammatory potential of glycoursodeoxycolic acid (GUDCA) and vinyl 

sulfone (VS) 

Bile acids (BAs) are acidic steroids synthesized from cholesterol (Figure I.8A) in the 

liver. First, primary BAs such as cholic acid and chenodeoxycholic acid are synthesized and 

then secreted into the intestine where they give origin to secondary BAs upon bacterial 

dihydroxylation (Cortez and Sim, 2014; Brites, 2015). 

Ursodeoxycholic acid (UDCA) is a secondary BA, usually used in the treatment of 

cholestasis in humans. For centuries isolated from the bile of the black bear, today this species 

is synthesized by pharmaceutical companies. Once taken orally, UDCA is absorbed in the 

intestine where it enters the liver through the portal vein and its conjugated with taurine to 

originate tauroursodeoxycholic acid (TUDCA) but mainly with glycine (79,8%), originating 

GUDCA (Rudolph et al., 2002; Brites, 2015). 

Although the primary function of bile acids is to solubilize dietary fats and vitamins in the 

intestinal lumen to improve absorption, UDCA, TUDCA and GUDCA have been described to 

have neuroprotective effects in models of neurodegeneration (Keene et al., 2002; Ramalho et 

al., 2008; Vaz et al., 2015). In this context, these compounds have been gaining attention as 

potential therapeutics for neurodegenerative diseases and treatment of non-liver diseases, 

presenting a low toxicity profile and ability to cross the BBB (Brites, 2015). Cytoprotective 

effects of UDCA and TUDCA have been attributed to the reduction of ROS formation, 

prevention of mitochondrial dysfunction and inhibition of apoptosis. Also, these two compounds 

are described to function as chaperones, reducing accumulation of toxic protein aggregates in 

disease models (Rodrigues et al., 1998; Cortez and Sim, 2014). Regarding GUDCA, it can 

prevent mitochondrial swelling, high extracellular levels of glutamate, inflammation, 

cytochrome c release, and neuronal loss, all found in ALS disease. Previous studies from our 

group with a model of MN-like demonstrates the preventive effects of this compound, pointing 

GUDCA as a promising therapeutic strategy to slow disease onset and progression. 
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(Fernandes et al., 2007; Brito et al., 2008; Silva et al., 2010; Vaz et al., 2010, 2015; Brites, 

2015). 

 

In the context of anti-inflammatory compounds, the Medicinal Chemistry group of the 

Research Institute for Medicines has synthesized several vinyl sulfone compounds which have 

shown inhibitory cysteine protease activity. Cysteine proteases include a particular group of 

molecules called cathepsins, from the endosomal/lysosomal proteolytic system previously, 

which were previously shown to be dysregulated in neurodegenerative diseases. Particularly 

one of the synthesized compounds, dipeptidyl vinyl sulfone (VS) (Figure I.8B) was able to 

prevent Aβ-induced microglia-inflammatory responses using N9 microglia cell line (Falcão et 

al., 2017). Considering these results, it is possible that VS can also have beneficial effects in 

other neurodegenerative diseases where inflammation plays a key role, like ALS. 

 

 

Figure I. 8. (A) Schematic representation of ursodeoxycholic acid conjugation in the liver and (B) 

Chemical structure of VS. In the scheme are represented the chemical structures of cholesterol which 

is transformed in the liver into the primary bile acid chenodeoxycholic acid, from which ursodeoxycholic 

acid is an epimer. Secondary bile acid ursodeoxycholic acid is produced through bacterial 

dihydroxylation in the small bowel. After entering the portal vein, this product re-enters the liver where it 

is conjugated with taurine to originate tauroursodeoxycholic acid or with glycine to originate 

glycoursodeoxycholic acid. 
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I.5. Aims 

It is estimated that among all patients with ALS, the most common neurodegenerative 

disease affecting the motor neuron system, 5 to 10% of cases are due to an inherited genetic 

mutation, often in SOD1 gene. The SOD1G93A mutation is the most studied one, mainly because 

the transgenic mouse model reproduces ALS symptoms, is widespread available and allowed 

the identification of numerous deficits and impairments, in particular neuroinflammation. 

MutSOD1G93A microglia isolated from the transgenic mouse model showed to have an 

inflammatory phenotype, but how the N9 murine microglia cell line transduced with lentiviruses 

to express SOD1G93A differently display phenotypic characteristics from those overexpressing 

the WT SOD1 has been scarcely investigated. Therefore, the global aim of this thesis is to 

assess whether the expression of hSOD1G93A is responsible for changes in microglia activation 

profile, leading to deregulated response towards LPS immunostimulation and, if so, whether 

antioxidant and immunomodulatory compounds can recover microglia steady state phenotype. 

With that in mind, we intend to better elucidate the key pathogenic role of microglia in the onset 

and progression of ALS disease and to find out targets to develop therapeutic strategies. 

 

 Specifc aims of the present study are: 

 

1. Characterization of pro-/anti-inflammatory markers in the mutant SOD1G93A 

microglia. N9 microglial cells will be transduced with hSOD1G93A to assess induced changes 

in their reactive status, and data will be compared with hSOD1WT and N9 naïve cells;  

 

2. Assessment of mutant SOD1G93A microglia activation susceptibility upon 

immunostimulation. Cultures of N9 naïve cells, as well as microglia overexpressing hSODWT 

and hSOD1G93A, will be treated with LPS for 48 h and the induced activation profile will be 

evaluated in each cell type and compared;  

 

3. Determination of the benefits produced by immunomodulators on mutant 

SOD1G93A microglia reactive phenotype towards the steady state phenotype. Microglia 

overexpressing hSOD1G93A will be incubated with glycoursodeoxycholic acid (GUDCA) or vinyl 

sulfone (VS) for 48 h and changes in pro-/anti-inflammatory characteristics will be assessed. 

 

 

 



Chapter II. Materials and Methods 

28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter II. Materials and Methods 

29 
 

 

 

 

 

 

 

 

 

 

 

II.1. Materials  

II.1.1. Supplements and chemicals 

Fetal bovine serum (FBS), Penicillin/Streptomycin and L-glutamine were purchased from 

Biochrom AG (Berlin, Germany); RPMI-1640 medium, trypsin-EDTA solution (1X), trypsin-

EDTA solution (10X), Hoechst 33258 dye, bovine serum albumin (BSA), Coomassie Brilliant 

Blue R-250 and phenazine methosulfate (PMS) were from Sigma-Aldrich (St. Louis, MO, 

USA); Glycoursodeoxycholic acid (GUDCA) (minimum 96% pure) and LPS, E.coli O111:B4, 

437627 were obtained from Calbiochem (Darmstadt, Germany); Triton X-100 and pHrodoTM E. 

coli bioparticles were acquired from Invitrogen Corporation™ (Carlsbad, CA, USA), and 

Nitrocellulose membrane was obtained from Amersham Biosciences (Piscataway, NJ, USA). 

MTS reagent powder was purchased from Promega (Madison, Wisconsin, USA). TRIzol® 

reagent and primers were purchased from Thermo Fisher Scientific (Waltham, Massachusetts, 

USA). TripleXtractror, GRS cDNA synthesis kit and Xpert Fast Sybr Blue were purchased from 

GRiSP (Porto, Portugal). miRCURYTM RNA Isolation Kit and miRCURY LNATM Universal RT 

microRNA PCR (Universal cDNA Synthesis Kit II and ExiLENT SYBR® Green master mix) as 

well as the PCR primer mixes for miR-21, miR-125b, miR-146a, miR-155 and SNORD110 

were purchased from Exiqon (Vedbaek, Denmark). All the other chemicals were purchased 

either from Sigma-Aldrich or Merck. 

 

II.1.2. Equipment 

Fluorescence microscope (model AxioScope.A1, Zeiss) with integrated camera 

(AxioCamHRm). Microplate reader (PR 2100 Microplate Reader, BioRad) was used for nitrites 

measurement and for MTS assay; ChemiDocTM was used for Western Blot and 

metalloproteinases revelation; gel photos were obtained from Bio-Rad Laboratories (Hercules, 

CA, USA). To ensure a stable environment to optimal cell growth (37°C and 5% CO2), cell 

cultures were maintained in HERAcell 150 incubators from Thermo Scientific (Waltham, MA, 

USA) and the work performed in sterile conditions in a HoltenLamin Air HVR 2460 (Allerod, 

II. Materials and Methods 
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Denmark). For flow cytometry studies, we used the Guava easyCyte 5HT Base System Flow 

Cytometer (Merck-Millipore, Darmstadt, Germany) and the BDFACSAria (BD Biosciences) 

cDNA synthesis was performed in a Tpersonal thermocycler from Biometra ® (Göttingen, 

Germany). For determination of mRNA and miRNA expression, by quantitative real-time PCR 

(qRT-PCR) we used a QuantStudio Flex 7 from Applied Biosystems (Foster City, CA, USA). 

Eppendorf 580R (Eppendorf, Hamburg, Germany) and a Sigma 3K30 centrifuges were used 

for different experimental procedures. For exosome isolation, we used a Beckman OptimaTM 

L-100 XP ultracentrifuge, with a type 90 Ti rotor (fixed angle) and centrifuge tubes of 

polycarbonate, from Beckman Coulter, Inc. (Fullerton, CA, USA).  

 

II.2. Methods 

II.2.1. N9 Cell line 

N9 cell line was obtained by immortalization of microglia cells from CD1 mouse cortex 

and present features similar to microglia in primary cultures such as phagocytosis and 

inflammation-related features (Righi et al., 1989; Bruce-Keller et al., 2000; Fleisher-Berkovich 

et al., 2010). 

N9 cell line was a gift from Teresa Pais, Institute of Molecular medicine (IMM), Lisboa, 

Portugal. Cells were cultures in RPMI media supplemented with FBS (10%), L-glutamine (1%) 

and Penicilin/Streptomycin (1%), grown to confluency and splitted every 2 to 3 days. For each 

experience, cells were plated at a concentration of 1x105 cells/mL. No coating was required. 

Cells were maintained as usual in our lab (Cunha et al., 2016). 

 

II.2.1.1. N9 cell transduction: Lentiviral Production and generation of N9 cells 

expressing hSOD1WT-GFP and hSOD1G93A-GFP protein 

Lentiviral particles were produced by co-transfections of HEK293T cells with the 

packaging plasmids pGal-pol and pRev, the envelope plasmid pVSV-G and the lentiviral 

expression vectors plvAcGFP-hSOD1wt/plvAcGFP-hSOD1G93A (Addgene, Cambridge, 

USA) at a ratio of 3:2:1:4, using X-tremeGene HP, according to the manufacturer’s instructions 

(Roche, Mannhein, Germany) (Pereira et al., 2014; Simões et al., 2015). 

Twenty-four hours after transfection, cell media was changed. Supernatants containing 

lentiviral particles were collected after 48 and 72 h, filtered using a 0.22 μm sterile filter and 

stored at - 80 ˚C for further use. 

To stably overexpress hSOD1WT-GFP and hSOD1G93A-GFP in N9 cell line, cells were 

seeded in 6-well plated at a density of 3 x 105 cells/well. Twenty-four hours after plating, cells 

were transduced by adding lentiviral particles containing supernatants. Media was changed 4-
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5 times to eliminate all the lentiviral particles (Figure II.1) Stable cell lines were purified by cell 

sorting (BDFACSAria, BD Diosciences) of GFP-expressing cells and the percentage of GFP-

positive cells was regularly analyzed in the GUAVA flow cytometer. The percentage of GFP-

expressing cells was >60% in all experiments (Pereira et al., 2014; Simões et al., 2015). 

 

 

Figure II. 1. Schematic representation of cell transfection for lentiviral production and further 

generation of N9 cells expressing hSOD1WT-GFP and hSOD1G93A-GFP protein. HEK293T cells were 

incubated with the packaging plasmids pGal-pol and pRev, the envelop plasmid pVSV-G and the 

lentiviral expression vectors plvAcGFP-hSOD1wt/plvAcGFP-hSOD1G93A in order to produce lentivirus 

carrying ssRNA containing the sequence for hSOD1WT/hSOD1G93A. Cell supernatants were collected at 

48 h and 72 h and furtherly incubated with N9 naïve cells were reverse transcriptase converted the 

ssRNA to dsRNA which enters the cell nucleus and stably integrates the genome. dsRNA, Double-Strand 

RNA; mRNA, messenger RNA; ssRNA; Single Strand RNA; SOD1, Superoxide Dismutase 1.  

 

 

II.2.2. Cell treatments 

For N9 characterization and response evaluation, cells were treated with either 300 ng/ml 

of LPS, GUDCA (50 μM) or VS (10 μM) (Figure II.2) to analyze N9 and N9 hSOD1WT microglia 

response to an inflammatory stimulus and N9 hSOD1G93A cell recovery by GUDCA and VS 

treatment as it will be further discussed. Experimental determinations were performed after 48 

h in order to assess the ability of this bile acid to restore the effects produced by hSOD1 

transduction.  
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Figure II. 2. Schematic representation of the cell incubation procedure with immunomodulators. 

N9 naïve, N9 hSOD1WT and N9 hSOD1G93A were plated and left to grow in culture for 1 DIV. Cells were 

incubated with 300 ng/mL of LPS, 50 μM of GUDCA or 10 μM of VS compound. After 2 DIV, cells and 

supernatants were collected and kept for further determinations. DIV, Days in vitro; GUDCA, 

Glycoursodeoxycholic Acid; LPS, Lipopolysaccharide; SOD1, Superoxide Dismutase 1; VS, Vinyl Sulfone. 

 

II.2.3. Differential Ultracentrifugation 

For exosome isolation, extracellular media of N9 naïve, N9 hSOD1WT and N9 hSOD1G93A 

cells with or without the incubated compounds were collected and centrifuged as described by 

Wang and colleagues (2010), with some minor modifications. Briefly, cell supernatant was 

centrifuged at 1000 g for 10 min, to pellet cell debris. Then, supernatant was transferred to a 

different tube and centrifuged at 16 000 g for 1 hour, to pellet microvesicles. 

The supernatant was filtered in a 0.22 μm pore filter, transferred to an ultracentrifuge 

tube and centrifuged at 100 000 g for 2 hours, to pellet exosomes. Afterwards, the pellet of 

exosomes was resuspended in PBS and centrifuged one last time at 100 000 g for 2 hours in 

order to wash the pellet (Figure II.3). All the procedure was performed at 4 ˚C. (Pinto et al., 

2017). 
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Figure II. 3. Schematic representation of the exosome isolation procedure from culture 

supernatant. (1) Cell supernatants are recovered and centrifuged 10 min at 1000 g in order to 

precipitate cell debris; (2) Cell debris pellet is discarded and supernatant is transferred to another tube 

and centrifuged 1 hour at 16 000 g to pellet microvesicles; (3) Supernatant is filtered through a 0.22 μm 

pore filter in order to eliminate remaining particles measuring more than 200 μm and centrifuged 2 hours 

at 100 000 g to pellet exosomes; (4) Supernatant may be discarded or saved for posterior 

determinations and the pellet containing exosomes is resuspended in PBS and exosome pellet is 

centrifuged one last time for 2 hours at 100 000 g in order to wash the pellet; (6) Exosome pellet is 

resuspended in lysis buffer for posterior RNA isolation. RNA, Ribonucleic Acid. 

 

II.2.4. Determinations 

II.2.4.1. Quantitative RT-PCR 

After incubation, cell extracellular media was removed and cells were collected using 

TRIzol® (Life Technologies, Carlsbad, CA, USA) using a cell scrapper as implemented in the 

lab (Cunha et al., 2016). Total RNA was then extracted from N9 cells using TRIzol reagent 

method according to the manufacturer’s instructions and posteriorly quantified using 

NanoDrop® ND-100 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) 

(Caldeira et al., 2014). 
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Determination of Arg1, Fizz1, HMGB1, IL-1β, IL-10, iNOS, MHCII, RAGE, SOCS1, 

S100b, TLR4 and TNF-α expression as well as miR-21, miR-124, miR-125b, miR-146a and 

miR-155, was performed by quantitative Real-Time PCR (qRT-PCR). RNA from exosomes 

was extracted using miRCURYTM RNA Isolation Kit (Exiqon).  

For mRNA expression, aliquots of 1000 ng/μl of total RNA were reversed transcribed 

into cDNA using SensiFASTTM cDNA Synthesis Kit (Bioline) and GRS cDNA Synthesis 

Mastermix (GRiSP, Porto, Portugal), following the manufacturer’s procedure. qRT-PCR was 

performed on a QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems), using a 

SYBR® Hi-ROX kit (Bioline) and a Xpert Fast Sybr Blue (GRiSP). The sequences of used 

primers are listed in the table II.1(A). qRT-PCR was performed in 384-well plates, with each 

sample performed in duplicate, and under optimized conditions: 50˚C for 2 min, 95 ˚C for 2 

min, followed by 40/50 amplification cycles at 95 ˚C for 5 seconds and 62 ˚C for 30 seconds. 

In order to verify the specificity of the amplification, a melting curve analysis was performer, 

immediately after the amplification protocol. qRT-PCR was performed using β-actin as an 

endogenous control, to normalize the expression level of Arg1, Fizz1, HMGB1, IL-1β, IL-10, 

iNOS, MHC class II, RAGE, SOCS1, S100b, TLR4 and TNF-α. Fold change was determined 

by the 2-ΔΔCT method. 

Expression of miR-21, miR-124, miR-125b, miR-146a and miR-155 was also performed 

by qRT-PCR. After RNA quantification, cDNA conversion was performed with the Universal 

cDNA Synthesis Kit (Exiqon), using 5 ng/μl of total RNA according to the following protocol: 60 

min at 42˚C followed by heat-inactivation of the reverse transcriptase for 5 min at 95˚C. For 

miRNA quantification, the ExiLENT SYBR® Green master mix (Exiqon) or the Power SYBR® 

Green PCR Master Mix (Applied Biosystems) was used in combination with pre-designed 

primers for miR-21, miR-124, miR-125b, miR-146a, miR-155 and SNORD110 (reference gene) 

(Exiqon). The sequences used for these miRNAs are listed in table II.1(B). The reaction 

conditions consisted of polymerase activation/denaturation at 95˚C for 10 min, followed by 50 

amplification cycles at 95˚C for 10 seconds and 60˚C for 1 min (ramp-rate 1.6˚/second). 

Quantification od target miRNAs was made in comparison to the reference gene (SNORD110) 

and fold change was determined by the 2-ΔΔCT method. 
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Table II.1. (A) - List of primer sequences used for qRT-PCR gene expression. 

Gene Sequence (5’-3’) Sequence (5’-3’) 

iNOS 5’-ACCCACATCTGGCAGAATGAG-3’ (fwr) 5’-AGCCATGACCTTTCGCATTAG-3’ (rev) 

TLR4 5’-ACCTGGCTGGTTTACACGTC-3’ (fwr) 5’-GTGCCAGAGACATTGCAGAA-3’ (rev) 

IL-10 5’-ATGCTGCCTGCTCTTACTGA-3’ (fwr) 5’-GCAGCTCTAGGAGCATGTGG-3’ (rev) 

TNF-α 5’-TACTGAACTTCGGGGTGATTGGTCC-3’ (fwr) 5’-CAGCCTTGTCCCTTGAAGAGAACC-3’ (rev) 

HMGB1 5’-CTCAGAGAGGTGGAAGACCATGT-3’ (fwr) 
5’-GGGATGTAGGTTTTCATTTCTCTTTC-3 

(rev) 

RAGE 5’-CTGGTGGGACTGTGACCTTG-3’ (fwr) 5’-TCTGCCTGTCATTCCTAGCTC-3’ (rev) 

S100B 5’-GAGAGAGGGTGACAAGCACAA-3’ (fwr) 5’-GGCCATAAACTCCTGGAAGTC-3’ (rev) 

MHCII 5’-TGGGCACCATCTTCATCATTC-3’ (fwr) 5’-GGTCACCCAGCACACCACTT-3’ (rev) 

Arg1 5’-CTTGGCTTGCTTCGGAACTC-3’ (fwr) 5’-GGAGAAGGCGTTTGCTTAGTTC-3’ (rev) 

Fizz1 5’-GCCAGGTCCTGGAACCTTTC-3’ (fwr) 5’-GGAGCAGGGAGATGCAGATGAG-3’ (rev) 

Socs1 5’-CACCTTCTTGGTGCGCG-3’ (fwr) 5’-AAGCCATCTTCACGCTGAGC-3’ (rev) 

Il-1β 5’-CAGGCTCCGAGATGAACAAC-3’ (fwr) 5’-GGTGGAGAGCTTTCAGCTCATA-3’ (rev) 

β-actin 5’-GCTCCGGCATGTGCAA-3’ (fwr) 5’-AGGATCTTCATGAGGTAGT-3’ (rev) 

 

 

 Table II. 1. (B) - List of primer sequences used for qRT-PCR microRNA expression. 

microRNA Sequence (5’-3’) 

hsa-miR-146a-5p 5’-UGAGAACUGAAUUCCAUGGGUU-3’ 

mmu-miR-155-5p 5’-CTCAGAGAGGTGGAAGACCATGT-3’ 

hsa-miR-21-5p 5′- UAGCUUAUCAGACUGAUGUUGA-3′ 

hsa-miR-125b-5p 5′-UCCCUGAGACCCUAACUUGUGA-3 

SNORD110 Reference gene 

Spike-in Reference gene 

 

II.2.4.2. MTS assay 

Cellular reduction of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4- sulfophenyl)-2H-tetrazolium) is an enzymatic reaction that occurs in functional cells. This 

can be considered as a marker for cellular viability. Cells were incubated during 1 h at 37°C 

with 100 μL of the mix MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) and PMS (Phenazinemethosulfate) in 900 μL Dulbecco’s 
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Modified Eagle Medium (DMEM-F12) per well. Absorbance was measured at 490 nm using a 

microplate reader (Bio-Rad Laboratories; Hercules, CA, USA). For each experiment, the mean 

value of absorbance obtained from control conditions was considered as 100% of cell 

functionality (Falcão et al., 2017). 

 

II.2.4.3. Microglial phagocytosis and morphology 

To evaluate the phagocytic ability of N9 transduced and non-transduced microglia, cells 

were incubated with pHRodo E. Coli particles for 2 hours at 37 ˚C and fixed with 

paraformaldehyde in PBS. Fluorescence was visualized using an AxioScope.A1 coupled with 

an axioCam HR camera (Carl Zeiss). UV, green and red fluorescence images of ten random 

microscopic fields, under 400X magnification, were acquired per sample. The number of beads 

ingested per cell were counted and distributed by intervals to determine the condition 

representing with the highest phagocytic capacity. At least 100 cells were counted for each 

independent condition (Cunha et al., 2016). Morphology measurements were obtained by 

delineation of at least 100 cells using ImageJ software. 

 

II.2.4.4. Gelatine Zymography 

MMP-2 and MMP-9 quantification was performed in the extracellular media of N9 cells 

incubated with neurons differentiation media, either alone or incubated with LPS, GUDCA or 

VS, through the gelatine zymography assay. With this method, it is possible to detect the 

protease activity in the running gel based on the absence of color (white bands), at the 

particular site of protease action. 

 The assay was performed as usual in our lab (Silva et al., 2010). Cell supernatants free 

from cellular debris were used in SDS-PAGE zymography in 0.1% gelatin-10% acrylamide 

gels, under non-reducing conditions, at 30 mA/gel. After electrophoresis, gels were washed 

for 1 hour at RT with 2.5% Triton X-100 (in 50 mM Tris pH 7.4; 5 mM CaCl2; 1 μM ZnCl2). For 

enzyme activity analysis, gels were stained with 0.5% Coomassie Brilliant Blue R-250 for 30 

min and de-stained in 30% ethanol/ 10% acetic acid/H2O to see the bands. Gelatinase activity, 

detected as a white band on a blue background, was photographed in ChemiDocTM (Bio-Rad 

Laboratories) and measured using the Image LabTM software. 

 

II.2.4.5. Western Blot 

Western Blot was performed as usual in our lab (Fernandes et al., 2006). Protein was 

precipitated from Trizol® after RNA isolation. Following sonication for 45 seconds, the lysate 
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was centrifuged at 14 000 g for 10 min, 4 ˚C, and the supernatants were collected ad stored. 

Protein concentration was determined by NanoDrop® at 280 nm. Equal amounts of protein 

were separated in a gradient of 10% and 15% polyacrylamide electrophoresis gel (SDS-

PAGE). After electrophoresis, proteins were transferred to a nitrocellulose membrane. 

Following, membranes were blocked using a 5% milk solution in TBS-T and incubated with the 

following primary antibody mouse anti-TLR4 HRP-linked (1:100 in TBS-T with 5% BSA) by 

overnight incubation with diluted in blocking solution. Membranes were then washed with TBS-

T and incubated for one hour at RT with secondary antibody anti-mouse HRP-linked (1:5000, 

Santa Cruz Biotechnology®) After washing the membraned with TBS-T, chemiluminescence 

detection was performed by using LumiGLO® reagent and bands were visualized in ChemiDoc 

(Bio-Rad Laboratories, Hercules, CA, USA). The relative intensities of protein bands were 

analysed using the Image LabTM analysis software. 

 

II.2.4.6. Statistical analysis 

Results of at least six independent experiments were expressed as a mean ± SEM. 

Comparisons between different parameters evaluated were made using one-tailed Student’s 

t-test for equal or unequal variance, as appropriate. In the characterization of N9 naïve, N9 

hSOD1WT and hSOD1G93A, comparisons among the different groups for the assessed 

parameters were done by one-way ANOVA followed by multiple comparisons using Bonferroni 

post-hoc correction. p<0.5 was considered statistically significant. Statistical analysis was 

made using GraphPad Prism 7 (GraphPad Software Inc, San Diego, CA, USA). 
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III.1. Characterization of pro-/anti-inflammatory markers in the mutant SOD1G93A 

microglia 

The contribution of glial cells to the chronic inflammation process occurring in 

neurodegenerative diseases, such as ALS, has been gaining attention over the years. In ALS, 

protein aggregates, such as SOD1, are secreted to the surrounding environment by neurons 

from where they can be recognized and uptaken by glial cells, being a source of stress that 

constantly contribute to the inflammatory process. In particular, the activation of pro-

inflammatory pathways in microglia, the resident immune cells of the CNS, have been shown 

to contribute to motor neuron degeneration. In this thesis, we centered our research in 

microglia cells, using the N9 mouse microglia cell line, and studied the effects of the 

overexpression of human SOD1, either wild-type (hSOD1WT) or mutated in G93A (hSOD1G93A), 

in their activation mechanisms, as well as their response to LPS inflammatory insult and the 

potential protective role of GUDCA and VS as immunomodulators. 

 

III.1.1. Generation of N9 microglial cells overexpressing human SOD1 WT (hSOD1WT) 

and with G93A mutation (hSOD1G93A) 

To achieve SOD1 overexpression, N9 naïve cells were transduced with hSOD1WT and 

hSOD1G93A coupled with a green fluorescent protein (GFP) tail which allowed us to monitor 

protein overexpression over time, as detailed in methods. After transduction, hSOD1 

expression in the different generated cells was confirmed by preparing cell lysates of each cell 

type for Western Blot analysis. As shown in Figure III.1, hSOD1 protein expression was 

verified at about 40 kDa, which is the weight of human SOD1 coupled with the GFP tail, in the 

N9 hSOD1WT and hSOD1G93A. As expected, the expression of mouse SOD1 was also detected 

in all samples, at 14 kDa. 

 

 

 

III. Results 
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Figure III. 1. SOD1 expression in N9 naïve and 

transduced N9 microglia with human SOD1 wild-

type (hSOD1WT) and mutated in G93A (hSOD1G93A). 

Transduction and Western Blot analysis were 

performed as described in the Method section. Cell 

lysates of all the three cell types were prepared. 

Samples containing 50 μg of total protein were 

separated in a 10% SDS-PAGE gel and transferred to 

nitrocellulose membranes. Amido black was used 

control. GFP, Green Fluorescent Protein; SOD1, 

Superoxide Dismutase. 

 

 

III.1.2. Overexpression of hSOD1 in N9 microglia affects their viability, morphology 

and phagocytic ability 

After confirmation of the success in the transduction process, we assessed viability and 

morphology of the transduced N9 cells comparing to the naïve controls. Cell viability 

assessment was essential to prove that cells did not die upon transduction. Morphologic 

changes were analyzed since it was described that activated N9 microglia change their 

phenotype to an amoeboid shape once exposed to an inflammatory stimulus (Cunha et al., 

2016). Hence, there was a need to confirm that transduction did not work as a source of stress 

to the cells. Also, phagocytosis was analyzed as an essential characteristic of microglia 

functionality, critically important in the clearance of cellular debris and pathogenic organisms 

in the CNS (Nakamura et al., 1999).  

First, the obtained results show an increase in cell mitochondria viability (Figure III.2A) 

when naïve cells are transduced with hSOD1WT, probably deriving from the presence of an 

increased amount of the anti-oxidant SOD1 which may be helping the cell to get rid of ROS 

species. On the other hand, hSOD1G93A transduction produced no effect in cell viability 

comparing to naïve cells although a difference over the WT transduction was noticed. 

Additionally, morphological changes were evident in transduced cells, which appear to be 

larger than naïve ones (Figure III.2B) as shown by increased cell area, perimeter and Feret’s 

diameter. However, the percentage of cells with round/oval, ramified or amoeboid morphology 

did not change between the naïve and transduced cells. Transduction with hSOD1WT appears 

to not affect microglia phagocytosis ability (Figure III.2C), by hSODG93A overexpression 

reduced such function. This was demonstrated by an increased number of hSOD1G93A cells 

phagocytosing beads in the [1-5] subcategory.  

 

 

40 kDa

14 kDa

N9 
naïve

N9 
hSOD1WT

N9 
hSOD1G93A

Amido Black

hSOD1 + GFP tail

Mouse hSOD1
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Figure III. 2. Cell viability, morphology and phagocytic ability change in N9 hSOD1WT and N9 
hSOD1G93A transduced cells, when compared to N9 naïve cells.  Evaluation of cell viability was 
performed with a mixture of MTS/PMS as described in methods. Morphology was determined by 
delineation of each cell using 10 random fields in Image J (approximately 100 cells). Phagocytosis was 
determined by incubation of cells with pHRODO beads as described in the method section and by 
counting the number of beads in each cell and dividing into intervals to assess capacity differences. (A) 
Percentage of viable cells considering naïve cells as 100%. (B) Morphometric characterization by 
immunocytochemistry. (C) Determination of phagocytic ability by the number of engulfed beads. (D) 
Quantitative assessment of cell area, perimeter, Ferret’s diameter and Transformation Index (TI).  
Results are expressed in graph bars as mean (+SEM) from at least three independent experiments. 
One-way Anova followed by Bonferroni multiples comparison test was used to compare between the 
three tested conditions. $p<0.05 and $$p<0.01 vs. N9 naïve cells; *p<0.05 vs. N9 hSOD1WT cells. Scale 
bar represents 100 μm. 
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III.1.3. Overexpression of hSOD1WT in microglia reduces M1 and M2 activation 

markers, while that of hSOD1G93A triggers combined expression of pro- and anti-

inflammatory indicators 

SOD1 is an anti-oxidant enzyme that naturally converts superoxide radicals to molecular 

oxygen and hydrogen peroxide (H2O2) (Barber and Shaw, 2010).  As previously mentioned, 

mutations in this enzyme were found in fALS, where protein aggregates are formed mostly in 

the cytoplasm of degenerating motor neurons leading to a chronic inflammation environment 

that ultimately leads to cell death (Wong et al., 1995).  

Also, misfolded/aggregated proteins can be released by dying motor neurons into the 

secretome, either as soluble factors or integrated in the cargo of extracellular vesicles (Gomes 

et al., 2007), which may then activate the surrounding cells. However, the effect that mutSOD1 

expression in microglia may have in their activation process in ALS is not completely clarified. 

In Table III.1, are presented paired comparisons of the fold changes obtained between 

naïve and hSOD1WT cells, as well as between hSOD1WT and hSOD1G93A. In the first paired 

comparison analysis (Table III.1A) is evidenced that the overexpression of SOD1 induces 

alterations in the so called reactive and oxidative markers of the N9 naïve microglial cells. 

Results for hSOD1WT show a decrease in microglia activation markers, wither for those 

considered pro-inflammatory and usually associated to the M1 phenotype (IL-1β, iNOS, TNF-

α, MHCII, the receptors RAGE and TLR4 and the alarmins HMGB1 and S100B) or for the M2 

anti-inflammatory markers (MFG-E8, Arg1, Fizz1, SOCS1 and IL-10), as well as for the 

inflammatory miRNAs (inflamma-miRs) miR-21 and miR-125b. Despite the elevated levels of 

miR-155 and miR-146a, they were not statistically significant. The same profile was obtained 

for matrix metalloproteinase (MMP)-2, while MMP-9 only evidenced a slight increase. All 

decreased significant values are highlighted in light blue in Table III.1A. 

The second paired comparison comprises the transduced hSOD1WT and hSOD1G93A cells 

(Table III.1B), where differences caused by the mutation are identified. Results show an 

increase in all the analyzed pro-inflammatory markers (excluding TLR4 gene receptor) and a 

decrease in the anti-inflammatory IL-10, with no changes in Arg1 and Fizz1 M2 markers in 

hSOD1G93A cells compared with WT ones. Also, the pro-inflammatory miR-155 was increased, 

together with a decrease in miRs-146a and miR-21 levels, reinforcing the acquired pro-

inflammatory state of the mutated cells. Curiously, MMP-9 revealed to suffer a decreased 

expression, in accordance with previous non-published results in microglia and in opposite to 

the increased levels observed in motor neurons. All increased significant values are highlighter 

in yellow.   
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Overall, transduction with the WT protein exerts calming and protective effects of 

microglia, while transduction with the mutated protein changes the steady state phenotype 

towards mixed pro- and anti-inflammatory subclasses. 

 

Table III. 1. hSOD1WT transduction has calming effects on microglia, while hSOD1G93A 
transduction activates the cells in mixed subtypes. 

  (A) Fold change 
 N9 hSOD1WT  

vs 
N9 naïve 

(Mean ± SEM) 

P value 

(B) Fold change 
N9 hSOD1G93A  

vs  
N9 hSOD1WT 

(Mean ± SEM) 

P value 

 Genes     

P
ro

-i
n

fl
a

m
m

a
to

ry
 

m
a

rk
e

rs
 

IL-1β 0.30 ± 0.14 0.05 2.06 ± 0.44 0.05 

iNOS 0.19 ± 0.09 0.01 1.55 ± 0.35 0.05 

TNF-α 0.27 ± 0.04 0.01 3.51 ± 1.27 0.05 

MHCII 0.23 ± 0.10 0.01 2.51 ± 0.83 0.05 

RAGE 0.18 ± 0.14 0.01 4.01 ± 1.39 0.01 

TLR4 0.31 ± 0.10 0.01 0.36 ± 0.11 0.01 

HMGB1 0.64 ± 0.11 0.05 4.21± 0.76 0.01 

S100B 0.37 ± 0.08 0.01 2.18 ± 0.62 0.05 

A
n

ti
-i

n
fl

a
m

m
a

to
ry

 

m
a

rk
e

rs
 

MFG-E8 0.18 ± 0.09 0.01 2.27 ± 0.61 0.05 

Arg1 0.12 ± 0.07 0.01 1.22 ± 0.26 n.s. 

Fizz1 0.35 ± 0.16 0.01 1.04 ± 0.32 n.s. 

SOCS1 0.15 ± 0.04 0.01 7.30 ± 2.47 0.01 

IL-10 0.25 ± 0.14 0.01 0.56 ± 0.13 0.01 

 MicroRNAs     

 miR-125b 0.12 ± 0.07 0.01 1.36± 0.50 n.s. 

 miR-21 0.20 ± 0.06 0.01 0.45 ± 0.09 0.01 

 miR-155 1.53 ± 0.50 0.32 2.14 ± 0.35 0.01 

 miR-146a 3.10 ± 1.03 0.09 0.56 ± 0.15 0.01 

 Matrix Metalloproteinases     

 MMP-9 1.57 ± 0.06 0.01 0.71 ± 0.06 0.01 

 MMP-2 1.39 ± 0.27 0.22 1.29 ± 0.21 n.s. 

 Genes in Exosomes    

 HMGB1  - - 8.21 ± 2.62 0.05 

 SOD1 - - 3.51 ± 0.45 0.01 

 

Comparisons were made in pairs between N9 naïve and N9 hSOD1WT (A) and N9 hSOD1WT and N9 

hSOD1G93A (B). The expression of cytokine mRNA and inflamma-miRs in cells was evaluated by 

quantitative Real-Time PCR (qRT-PCR) and matrix metalloproteinases (MMPs) activity was determined 

in the extracellular media by gelatin zymography. Results are mean (± SEM) from at least three 

independent experiences. Comparisons were made using a paired one-tailed Student’s t-test. p<0.05 is 

considered significant. Arg1, Arginase 1; Fizz1, Found in inflammatory zone 1; HMGB1, High mobility group box 

protein1; IL-10, Interleukin-10;  IL-1β, Interleukin-1β; iNOS, inducible nitric oxide synthase; MFG-E8,  Milk fat 

globule EGF factor 8; MHCII, Major histocompatibility complex class II; miR, microRNA; MMP, Metalloproteinase; 

RAGE, Receptor for Advanced Glycation End Products; S100B,  S100 calcium binding protein B; SOCS1, 

Suppressor of cytokine signalling1; SOD1, Superoxide Dismutase 1; TLR4, Toll like receptor 4; TNF-α, Tumor 

necrosis factor-α. 
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Although the paired comparisons allowed data on the effects of WT and mutated SOD1 

in N9 microglial cells, we decided to make multiple comparison analysis considering the three 

conditions we have tested, i.e. naïve, hSOD1WT and hSOD1G93A microglial cells to globally 

understand the effects of the mutated protein transduction in the expression of inflammatory 

biomarkers (Figure III.3). 

Among the inflammatory mediators released by microglia are MMPs and NO. MMP-2 

and -9 were found elevated in the spinal cord of hSOD1G93A mice and MMP-9 in NSC-34 

neuron-like cell line, whereas NO is known for its contribution to oxidative stress and 

inflammation in ALS (Fang et al., 2010; Drechsel et al., 2012; Vaz et al., 2015). However, we 

did not find any significant difference for these molecules between the naïve and the mutated 

cells (results not shown), although an increased trend was noticed for NO in the hSOD1G93A 

cells. Further experiments are needed to confirm such results. 

When comparing microglia in the three testes conditions, we observed that the reduction 

of M1 and M2 markers are sustained in WT transduced cells as compared with naïve cell, as 

our previous data indicated (Figure III.3). In the hSOD1G93A transduced cells, although some 

M2 markers were reduced in a similar way to those obtained for the hSOD1WT cells (e.g. IL-10 

and Fizz1), some parameters such as TNF-α, IL-1β, MHC-II, HMGB1 and MGF-E8 are not 

only above the levels obtained in hSOD1WT, but also above naïve cells values, which indicate 

a stressed microglia that may either respond in a depressed or in an exacerbated way 

depending on the inflammatory stimulus. Although MFG-E8 is not actually a pro-inflammatory 

mediator, it is involved in the phagocytic capacity of cells. MFG-E8 upregulation may be 

involved in apoptotic processes caused by the presence of hSOD1G93A as shown for 

endothelial cells (Brissette et al., 2012). In addition, as a bridge between microglial receptors 

and phosphatidylserine exposed in apoptotic neurons, this result may also indicate that 

mutated microglial cells would be able to better recognize apoptotic neurons or debris inducing 

their engulfment (Hanayama et al., 2002). Interestingly, Arg1 and SOCS1 gene expression 

(and tentatively S100B and RAGE) levels returned to values of naïve cells. To additionally note 

the observed decreased of iNOS mRNA (Figure III.3), together with that of TLR4 gene and 

protein expression (Figure III.4). Negative regulation of  TLR4 by miRNA-146a was previously 

documented (Curtale et al., 2013), reason why we decided to next assess the expression of 

inflamma-miRs not only in cells, but also in their derived exosomes.  
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Figure III. 3. Calming effects by the transduction of hSOD1WT in microglia are lost in cells 
overexpressing hSOD1G93A, which evidence increased gene expression of pro-inflammatory 
cytokines, alarmin HMGB1, MFG-E8 and MHC class II expression, producing a heterogeneous 
phenotype. The mRNA expression of pro- and anti-inflammatory mediators was evaluated by 
quantitative Real-Time PCR (qRT-PCR), as detailed in the Method section. N9 naïve was used as 
control. Results are mean (± SEM) from at least three independent experiments. One-way ANOVA 
followed by Bonferroni multiple comparison test was used to compare the three tested conditions. 
$p<0.05 and $$p<0.01 vs. N9 naïve cells; *p<0.05 and **p<0.01 vs. N9 hSOD1WT cells. Arg1, Arginase 1; 

Fizz1, Found in inflammatory zone 1; HMGB1, High mobility group box protein1; IL-10, Interleukin-10; IL-1β, 
Interleukin-1β; iNOS, inducible nitric oxide synthase; MFG-E8, Milk fat globule EGF factor 8; MHCII, Major 
histocompatibility complex class II; RAGE, Receptor for Advanced Glycation End Products; S100B,  S100 calcium 
binding protein B; SOCS1, Suppressor of cytokine signaling 1; TLR4, Toll like receptor 4; TNF-α, Tumor necrosis 
factor-α.  
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Figure III. 4.TLR4 total protein level is consistent with downregulation of gene expression in both 

transduced cells. Cell lysates of all the three cell types were prepared. Samples containing 50 μg of 

total protein were separated in a 10% SDS-PAGE gel and transferred to nitrocellulose membranes. 

Amido black was used as the control of the experiment. The mRNA expression of TLR4 was evaluated 

by quantitative Real-Time PCR (qRT-PCR), as detailed in the method section. N9 naïve cells were used 

as control. Results are mean (± SEM) from at least three independent experiments. One-way ANOVA 

followed by Bonferroni multiples comparison test was used to compare among the three tested 

conditions. $$p<0.01 vs. N9 naïve cells; **p<0.01 vs. N9 hSOD1WT cells. TLR4, Toll like receptor 4. 

 

III.1.4. Microglia and their derived exosomes show altered inflammatory-

associated miRNA profile after hSOD1WT and hSOD1G93A overexpression 

Inflamma-miRs are reported to have a modulator role in microglia activation such as miR-

146a and miR-155 (Cardoso et al., 2012; Saba et al., 2012), which were also found as being 

part of exosome cargo (Alexander et al., 2015). Exosomes are extracellular vesicles that have 

recently been gaining attention as part of the transportable cell secretome. Once released, 

these vesicles can be taken up by nearby recipient cells or even travel longer distances (Sarko 

and McKinney, 2017).  

When analyzing cellular expression of inflamma-miRs (Figure III.5), decreased 

expression of miR-125b and miR-21 was observed in both SOD1 transduced cells. Data 

obtained, indicate that the first may be increased in exosomes from the hSOD1WT microglia, 

while the latter seems to increase in those from hSOD1G93A microglia. Relatively to the 

inflammatory miR-155 and the negative regulator miR-146a, only this last one was increased 

in WT cells, but both were found elevated in hSOD1G93A -derived exosomes. 

MiR-125b was shown to be a key mediator of microglia dynamics in ALS and to be 

upregulated in response to inflammatory stimulus (Parisi et al. 2016) in order to have a role as 

an anti-inflammatory molecule (Tili et al. 2007). Likewise, miR-21 is also considered to have 

an anti-inflammatory effect, thus meaning that the decrease in miR-21 and miR-125b may turn 

microglia more susceptible to activation (Barnett et al. 2016). More interestingly, although the 

N
9
 n

a
ïv

e
N

9
 

h
S
O

D
1
W

T

N
9
 

h
S
O

D
1
G

9
3
A

0 .0

0 .5

1 .0

1 .5

T
L

R
4

 
p

r
o

t
e

i
n

(
F

o
ld

 
v

s
.
 
N

9
 
n

a
ï
v

e
)

$ $
$ $

* *

Amido Black

TLR4 - 90/120 KDa

N
9

N
9
 

h
S

O
D

1
W

T

N
9
 

h
S

O
D

1
G

9
3
A

0 .0

0 .5

1 .0

1 .5

T L R 4
m

R
N

A
 e

x
p

r
e

s
s

io
n

F
o

ld
 v

s
 N

9
 n

a
ïv

e

$ $$ $



Chapter III. Results 

47 
 

overexpression of hSOD1wt determined a cellular increase in miR-146a, such finding was not 

reflected in the released exosomes. The opposite was observed for the cells overexpressing 

mutated SOD1 that did not reveal cellular alterations in miR-146a, but determined its increase 

in the derived exosomes. These two miRNAs were previously shown to be released from 

dendritic cells and N9 microglia within exosomes after treatment with LPS (Alexander et al., 

2015; Cunha et al., 2016), and revealed to have opposite effects. MiR-146a inhibits while miR-

155 promotes endotoxin-induced inflammation in mice (Alexander et al. 2015). 

 

 

 
Figure III. 5. MiRNA expression in transduced cells is not reflected in their derived exosomes. 
Inflamma-miRs expression in both cells and exosomes were analyzed by qRT-PCR. N9 naïve cells were 
used as control. Results are mean (± SEM) from at least three independent experiences. One-way 
ANOVA followed by Bonferroni multiple comparison test was used to compare among the three tested 
conditions. $p<0.05 and $$p<0.01 vs. N9 naïve cells; *p<0.05 vs. N9 hSOD1WT cells.  

 

Intriguingly, they were found to be co-induced in the brain by Toxoplasma infection 

(Cannella et al., 2014). Although more data is required to better define the microglia miRNA 

inflammatory profile and its consequences in ALS disease, our results sustain that exosomes 

from N9hSOD1G93A microglia may be implicated in the dissemination of miR-155 and miR-146a 

to other neural cells, namely glial cells. Exosomes may also be involved in the propagation to 

the alarmin HMGB1 and the SOD1 protein, whose gene levels were found elevated in N9 

hSOD1G93A microglia relatively to the N9 hSOD1WT cells (Table III.1). This result is consistent 

with previous findings where SOD1 was described to be transported into the extracellular 

media in exosomes, which are further uptaken by other cells  (Silverman et al., 2016). HMGB1 

that is described as being released upon apoptosis in apoptotic bodies (Bell et al., 2006; Buzas 

et al., 2014) and in exosomes of different cells (Liu et al., 2006; Sheller-Miller et al., 2017), was 

never mentioned to be carried by microglia-derived exosomes, what turns our result 
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particularly interesting. Actually, this finding indicates that mutated microglia also contribute to 

chronic inflammatory status through the transport of HMGB1 in their released exosomes, 

besides the propagation of the mutated SOD1. 

 

III.2. Assessment of mutant SOD1G93A microglia activation susceptibility upon 

immunostimulation 

In previous works from our group, it has been demonstrated that intraperitoneal 

administration of LPS in newborn mice activated microglia (Cardoso et al., 2015) and that LPS-

treated N9 cells show a predominant M1 polarized phenotype and release exosomes enriched 

in miR-155 and miR-146a (Cunha et al., 2016). In addition, it was also demonstrated that SOD1 

overexpression plays a significant role in inflammatory signaling in microglia by altering ROS 

production and reducing neurotoxic inflammatory markers (Dimayuga et al., 2007), even in the 

presence of LPS. Therefore, we thought that would be interesting to assess differences in 

SOD1G93A microglia reactivity towards LPS treatment relatively to the WT and naïve cells, to 

better understand how ALS microglia may behave when facing and inflammatory status 

condition in patients. 

 

III.2.1. LPS induces an inflammatory response of N9 microglia 

 Before assessing the effects of LPS stimulation in the transgenic microglia we evaluated 

the changes caused on viability, morphology and phagocytosis upon treatment and attested 

the activation properties of LPS on the N9 microglial cells, some of them already determined 

in a previous work of the group (Cunha et al., 2016) (Table III.2). LPS induced the amoeboid 

shape, with elevation in Feret’s diameter, cell area, cell perimeter and Transformation Index, 

while significantly decreased cell viability. It also increased the number of cells with any bead, 

although enhancing the expression of the phagocytic-associated protein MFG-E8. As 

expected, LPS induced the majority of the inflammatory mediators (except the reactive S100B 

protein and the receptor RAGE), together with some anti-inflammatory ones (Fizz1 and IL-10). 

It also produced an upregulated inflammatory miR-21, miR-155 and miR-146a, but a 

decreased miR-125b, which where all reduced in cell derived exosomes, excepting miR-146a. 

Relatively to the released MMP-2 and MMP-9, only the last one was found elevated in the 

extracellular media of microglia treated with LPS. Globally, we may conclude that LPS 

determined a predominant M1 polarization and an amoeboid morphology in the LPS-treated 

N9 microglia. 
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Table III. 2. Changes induced by lipopolysaccharide (LPS) on the morphology, 
phagocytosis, viability and inflammatory profile of N9 naïve cells. 

Comparison was made between N9 naïve and N9 naïve + LPS. Cells were cultured for 48 h in the 
presence of 300 ng/mL LPS. The expression of cytokine mRNA and inflamma-miRs in cells was 
evaluated by quantitative Real-Time PCR (qRT-PCR) and matrix metalloproteinases (MMPs) activity 
was determined in the extracellular media by gelatin zymography. Results are mean (± SEM) from at 
least three independent experiences. Comparisons were made using a paired one-tailed Student’s t-
test. p<0.05 is considered significant. Arg1, Arginase 1; Fizz1, Found in inflammatory zone 1; HMGB1, High 

mobility group box protein1; IL-10, Interleukin-10; IL-1β, Interleukin-1β; iNOS, inducible nitric oxide synthase; MFG-
E8, Milk fat globule EGF factor 8; MHCII, Major histocompatibility complex class II; miR. microRNA; MMP, 
Metalloproteinase; RAGE, Receptor for Advanced Glycation End Products; S100B, S100 calcium binding protein 
B; SOCS1, Suppressor of cytokine signalling1; SOD1, Superoxide Dismutase 1; TLR4, Toll like receptor 4; TNF-α, 
Tumor necrosis factor-α. 

  

Fold change 
 N9 naïve + LPS  

vs 
N9 naïve 

(Mean ± SEM) 

P value 

 Viability 0.53 ± 0.44 0.01 

 Phagocytosis   

 [0] 2.05 ± 0.34 0.05 

 [1-5] 0.98 ± 0.07 n.s. 

 [6-10] 0.90 ± 0.15 n.s. 

 [≥11] 0.87 ± 0.19 n.s. 

 MFG-E8 3.41 ± 0.99 0.05 

 Morphology   

    Round/Oval 0.36 ± 0.09 0.05 

    Ramified 0.12 ± 0.02 0.01 

    Amoeboid 5.00 ± 0.07 0.01 

    Cell area 2.91 ± 0.14 0.01 

    Cell perimeter 1.53 ± 0.17 0.01 

    Feret’s Diameter 1.82 ± 0.07 0.01 

    Tansformation Index 1.27 ± 0.09 0.05 

 Genes   

M
1

 M
a

rk
e

rs
 

IL-1β 6.59 ± 4.17 n.s 

iNOS 1.56 ± 0.68  n.s. 

TNF-α 10.56 ± 3.87 0.01 

MHCII 1.46 ± 0.58 n.s. 

RAGE 0.46 ± 0.26 0.05 

TLR4 2.00 ± 0.65 n.s. 

HMGB1 1.69 ± 0.28 0.01 

S100B 0.32 ± 0.09 0.01 

M
2

 

M
a

rk
e

rs
 Arg1 1.11 ± 0.37 n.s. 

Fizz1 8.49 ± 1.78 0.01 

SOCS1 0.31 ± 0.09 0.01 

IL-10 11.09 ± 7.67 n.s. 

 MicroRNAs   

 miR-125b 0.25 ± 0.12 0.01 

 miR-21 7.49 ± 1.78 0.01 

 miR-155 6.28 ± 1.95 0.01 

 miR-146a 5.34 ± 1.1 0.01 

 Matrix Metalloproteinases   

 MMP-9 2.23 ± 0.34 0.01 

 MMP-2 1.20 ± 0.15 n.s. 

 Nitric Oxide 2.74 ± 0.47 n.s. 

  MicroRNAs in Exosomes   

 miR-125b 0.48 ± 0.07                      0.01 

 miR-21 0.36 ± 0.11 0.01 

 miR-155 0.33 ± 0.33 0.05 

 miR-146a 1.25 ± 0.36 n.s. 
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III.2.2. LPS induces amoeboid morphology in microglia, independently of hSOD1 

expression, and increases hSOD1WT microglia phagocytosis, but diminishes such 

ability in hSOD1G93A cells 

In previous studies it was shown that SOD1 transgenic microglia (mutSOD1 and WT) 

have a lower capacity to sense tissue alterations in steady state conditions, including a reduced 

ability to phagocytose and respond to extracellular ATP stimulation (Sargsyan et al., 2011). 

Thus, we first evaluated whether LPS produced alterations in the phagocytic ability of SOD1 

transgenic microglia relatively to the naïve cells, as well as on cell viability and morphology. 

For that we used the concentration of 300 ng/ml of LPS already showed by us to polarize the 

naïve cells into the M1 phenotype (Cunha et al., 2016). As depicted in Figure III.6A, LPS 

stimulation not only did not change the viability of the transgenic microglia relatively to the N9 

LPS-treated microglia, but also did not modify the acquired amoeboid morphology of the 

activated microglia (Figure III.6B). Actually, ramified cells were only marginal in all cases. 

Interestingly, based on the results obtained for Ferret’s diameter (Figure III.6D) hSOD1G93A 

microglia are the most spheroid ones. In addition, while the experiments with hSOD1WT N9 

microglia revealed as compared to naïve cells lower number of cells with no beads and an 

increase in microglia containing 6-10 beads, upon LPS treatment, those of hSOD1G93A showed 

a reduced number of cells able to swallow more than 11 beads (Figure III.6C). Therefore, LPS 

stimulus was more injurious to hSOD1G93A microglia in terms of morphological alterations and 

impaired phagocytosis.  
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Figure III. 6.Lipopolysaccharide (LPS) triggers microglia amoeboid shape in all conditions, while 
enhances phagocytosis in hSOD1WT cells and decreases it in hSOD1G93A ones.  N9 naïve and 
transgenic microglia were treated with 300 ng/mL LPS for 48 h. Evaluation of cell viability was performed 
with a mixture of MTS/PMS as described in methods. Morphology was determined by delineation of 
each cell using 10 random fields in Image J (approximately 100 cells). Phagocytosis was determined by 
incubation of cells with pHRODO beads as described in the method section and by counting the number 
of beads in each cell and dividing into intervals to assess capacity differences. (A) Viable cells 
considering naïve cells as 100%. (B) Morphometric characterization by immunocytochemistry. (C) 
Determination of phagocytic ability by the number of engulfed beads. (D) Quantitative assessment of 
cell area, perimeter, Ferret’s diameter and Transformation Index (TI). Results are expressed in graph 
bars as mean (+SEM) from at least three independent experiments. One-way ANOVA followed by 
Bonferroni multiples comparison test was used to compare between the three conditions. #p<0.05 vs. 

N9 naïve cells+ LPS; §p<0.05 vs. N9 hSOD1WT cells + LPS. Scale bar represents 100 μm. 
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III.2.3. Transgenic hSOD1G93A microglia stimulated by LPS showed downregulation of 

anti-inflammatory markers and similar inflammatory response when compared with 

LPS-treated naïve cells 

When stimulated with LPS, N9 naïve cells responded to LPS (Table III.2) by increasing 

pro-inflammatory markers. Thus, we decided to compare whether N9 hSOD1WT and N9 

hSOD1G93A would respond differently from LPS-treated naïve cells upon LPS exposure. Pro- 

and anti-inflammatory molecules were evaluated as previously indicated and depicted in 

Figure III.7. Overall, we observed that HMGB1, SOCS1 and MFG-E8 did not present 

significant differences among the three conditions tested. Both transduced cells showed a low 

expression of the M2 markers (Arg1, Fizz1 and IL-10), as well as of the reactive marker S100B.  

Intriguingly, hSOD1WT cells showed a trend to IL-1β increased gene expression and 

downregulated TNF-α mRNA, which we found to be similarly to naïve microglia levels in 

hSOD1G93A cells. In a similar way, iNOS, MHCII and RAGE expression levels were close to the 

values observed in LPS-treated naïve cells and slightly elevated than those in hSOD1WT 

microglia. Therefore, we may assume that the expression of mutated SOD1 did not increase 

or decrease the ability of microglia in mounting an inflammatory response towards an 

immunostimulatory injury. To note that no significant differences were found for MMP-2, MMP-

9 or NO (results not shown). Now considering the effects of LPS on its receptor TLR4, although 

a slight decrease was observed for the gene expression, we found an upregulation of the 

protein in the hSOD1WT cells upon LPS treatment, as indicated in Figure III.8. To that it may 

account the fact that TLR4 gene expression was shown to be upregulated upon LPS (Ren et 

al., 2010) after 6 to 8 hours of exposure and we used 48 h incubation. 
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Figure III. 7. Lipopolysaccharide triggers downregulation of anti-inflammatory markers in 
transgenic microglia, which apparently react similarly to naïve cells in terms of inflammatory-
related indicators. The mRNA expression of pro- and anti-inflammatory mediators in cells were 
evaluated by quantitative Real-Time PCR (qRT-PCR), as detailed in the method section. N9 naïve + 
LPS was used as control. N9 naïve and transgenic microglia were treated with 300 ng/ml LPS for 48 h. 
Results are mean (± SEM) from at least three independent experiences. One-way ANOVA followed by 
Bonferroni multiple comparison test was used to compare among the three tested conditions. &p<0.05 
and &&p<0.01 vs. N9 naïve cells + LPS. Arg1, Arginase 1; Fizz1, Found in inflammatory zone 1; HMGB1, High 

mobility group box protein1; IL-10, Interleukin-10; IL-1β, Interleukin-1β; iNOS, inducible nitric oxide synthase; MFG-
E8, Milk fat globule EGF factor 8; MHCII, Major histocompatibility complex class II; RAGE, Receptor for Advanced 
Glycation End Products; S100B,  S100 calcium binding protein B; SOCS1, Suppressor of cytokine signaling 1; 
TNF-α, Tumor necrosis factor-α. 
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Figure III. 8. Lipopolysaccharide triggers upregulation of TLR4 protein expression in N9 hSOD1WT 
cells, but not in hSOD1G93A microglia. Cell lysates of all the three cell types were prepared. Samples 
containing 50 μg of total protein were separated in a 10% SDS-PAGE gel and transferred to 
nitrocellulose membranes. Amido black was used as the control of the experience. The mRNA 
expression of TLR4 was evaluated by quantitative Real-Time PCR (qRT-PCR), as detailed in the 
method section. N9 naïve + LPS cell were used as control. N9 naïve and transgenic microglia were 
treated with 300 ng/ml LPS for 48 h. Results are mean (± SEM) from at least three independent 
experiences. One-way ANOVA followed by Bonferroni multiple comparison test was used to compare 
the three tested conditions. &p<0.05 vs. N9 naïve cells + LPS. TLR4, Toll like receptor 4. 

 

III.2.4. Transgenic microglia stimulated by LPS and their derived exosomes show altered 

inflammatory-associated miRNA profile  

To more deeply evaluate the inflammatory response of the SOD1 transgenic microglia 

upon LPS immunostimulation, we next evaluated both intracellular and exosomal cargo 

miRNAs (Figure III.9). Surprisingly, we noticed that miR-155 decreased by LPS in both 

transgenic cells, while no other differences were obtained for the remaining inflammatory-

associated miRNAs in both transgenic cells. However, only the exosomes from hSOD1WT 

microglia showed an elevated cargo of miR-155, despite the same trend exhibited by miR-21, 

suggesting that LPS increases their dissemination in exosomes in the WT transgenic microglia 

to decrease the harmful influence of LPS. The variability we found in the expression of these 

miRNAs indicates that further determinations must be performed to confirm these yet 

preliminary results. 
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Figure III. 9. MiRNA expression in transduced cells upon LPS treatment reveals reduced miR-155 
levels, together with its elevation in exosomes derived from hSOD1WT cells. Inflamma-miRs 
expression in both cells and exosomes were analyzed by qRT-PCR. N9 naïve + LPS cells were used 
as control. N9 naïve and transgenic microglia were treated with 300 ng/mL LPS for 48 h. Results are 
mean (± SEM) from at least three independent experiences. One-way ANOVA followed by Bonferroni 
multiple comparison test was used to compare the three tested conditions. &p<0.05 and &&p<0.01 vs. 
N9 naïve cells + LPS; §p<0.05 vs. N9 hSOD1WT cells+ LPS. 

 

III.3. Determination of the benefits produced by immunomodulators on mutant 

SOD1G93A microglia reactive profile towards the steady state phenotype 

We have observed that the transduction of mutated SOD1 in microglia induced 

alterations in cell morphology and in expression of pro-inflammatory and anti-inflammatory 

markers.  

In an attempt to rescue the hSOD1G93A overexpression effects on microglia, we used the 

bile acid GUDCA, previously shown to have anti-apoptotic, anti-oxidant and anti-inflammatory 

properties  (Fernandes et al., 2007; Brito et al., 2008; Silva et al., 2012; Vaz et al., 2015) and 

VS, which was lately demonstrated to reduce the inflammatory responses of N9 microglia to 

Aβ (Falcão et al., 2017). Both compounds were used in order to analyze its capacity to prevent 

some cellular features implicated in the ALS pathology, namely those associated to 

neuroinflammation. Indeed, as already commented there are no effective therapeutic 

strategies for ALS and usage of anti-inflammatory compounds are a subject of controversy in 

neurodegenerative diseases. 
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III.3.1. GUDCA and VS do not change viability or phagocytosis, but reduces cell 

area of N9 hSOD1G93A microglia  

First in our approach, we evaluated GUDCA and VS effects on cell viability. Results 

presented in Figure III.10A reveal that both compounds did not significantly cause any 

differences in cell viability. Our data show modifications in cell morphology mostly upon 

treatment with GUDCA that switch the cells from ramified to amoeboid morphology (p<0.01), 

probably because GUDCA is thought to act on the cell membrane, stabilizing its structure and 

dynamic properties (Figure III.10B). However, both GUDCA and VS reduced cell area. In 

addition, despite no alterations in the phagocytic ability, VS seem to enhance the number of 

cells without any bead by decreasing cells able to ingest [1-5] bead interval subcategory. 
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Figure III. 10. Glycoursodeoxycholic acid (GUDCA) and vinyl sulfone (VS) treatment does not 
affect cell viability or phagocytosis, while modify hSOD1G93A morphological appearance. 
Transgenic microglia were incubated with 50 μM of GUDCA or 10 μM of VS compound for 48 h.  
Evaluation of cell viability was performed with a mixture of MTS/PMS as described in methods.  
Morphology was determined by delineation of each cell of 10 random fields in Image J (approximately 
100 cells) and measuring of cell area, perimeter, Ferret’s Diameter and Transformation Index (TI). 
Phagocytosis was determined by incubation of cells with pHRODO beads as described in the method 
section and was determined by counting the number of beads of each cell and dividing the counting into 
intervals in order to compare each interval in every cell line. N9 hSOD1G93A were used as control. (A) 
Percentage of viable cells considering naïve cells as 100%. (B) Morphometric characterization by 
immunocytochemistry. (C) Determination of phagocytic ability by the number of engulfed beads. (D) 
Quantitative assessment of cell area, perimeter, Ferret’s diameter and Transformation Index (TI).  
Results are expressed in graph bars as mean (+SEM) (A) Results of viable mitochondria in the cells. 
(B) Morphologic differences by immunocytochemical assessment. (C) Phagocytosis analysis by 
immunocytochemical assessment. (D) Quantitative assessment of cell measurements. One-way 
ANOVA followed by Bonferroni multiple comparison test was used to compare the three tested 
conditions. ††p<0.01 and †p<0.05 vs. N9 hSOD1G93A cells. Scale bar represents 100 μm. 
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III.3.2. GUDCA and VS differently influence the gene expression of pro-

inflammatory and anti-inflammatory mediators in N9 hSOD1G93A microglia 

Evaluation of mRNA expression of usual of genes associated to microglia activation and 

deactivation revealed that both GUDCA and VS exert no effects on TNF-α, MHCII, Fizz1 and 

iNOS, but decreased anti-inflammatory M2 (SOCS1, Arg1) and pro-inflammatory M1 (S100B 

and IL-1β) indicators and increased TLR4 receptor, thus influencing the response of the cells 

towards LPS (Figure III.11). Furthermore, only GUDCA revealed ability to decrease HMGB1 

gene expression and increase that of IL-10. However, we also observed that it reduced the 

expression of MFG-E8 drastically, with possible consequences on the phagocytic ability, 

although this was not observed in the experiment with fluorescent beads (Figure III.10B).  
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Figure III. 11. Pro-inflammatory and anti-inflammatory indicators are differently regulated by 
glycoursodeoxycholic (GUDCA) and vinyl sulfone (VS) in hSOD1G93A microglia. Transgenic 
microglia were incubated with 50 μM of GUDCA or 10 μM of VS compound for 48 h. The mRNA 
expression of pro- and anti-inflammatory mediators in cells were evaluated by quantitative Real-Time 
PCR (qRT-PCR), as detailed in the method section. N9 hSOD1G93A was used as control. Results are 
mean (± SEM) from at least three independent experiences. One-way ANOVA followed by Bonferroni 
comparison test was used to compare the three tested conditions. ††p<0.05 and †p<0.01 and vs. N9 
hSOD1G93A; ●p<0.05 vs. N9 hSOD1G93A + GUDCA. Arg1, Arginase 1; Fizz1, Found in inflammatory zone 
1; HMGB1, High mobility group box protein1; IL-10, Interleukin-10; IL-1β, Interleukin-1β; iNOS – 
inducible nitric oxide synthase; MFG-E8, Milk fat globule EGF factor 8; MHCII, Major histocompatibility 
complex class II; RAGE, Receptor for Advanced Glycation End Products; S100B, S100 calcium binding 
protein B; SOCS1, Suppressor of cytokine signaling 1; TLR4, Toll like receptor 4; TNF-α, Tumor 
necrosis factor-α. 
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III.3.3. GUDCA and VS diversely influence inflammatory-associated miRNA profile 

in N9 hSOD1G93A microglia and in their derived exosomes 

It is well known that the expression of a particular set of miRNAs is directly related with 

microglia activation and that some of those are transferred into exosomes and exert anti-

inflammatory or pro-inflammatory effects on the recipient cells (Brites and Fernandes, 2015; 

Pinto et al., 2017). While VS was previously indicated to decrease miR-155 and miR-146a in 

N9 microglial cells incubated with the amyloid-β peptide, no similar studies were so far 

performed for GUDCA, and none were assessed in ALS experimental models. Therefore, we 

evaluated the expression of the same inflammatory-miRNAs determined in the conditions we 

investigated before after the application of both experimental treatments in N9 hSOD1G93A 

microglia. 

From all the pro-inflammatory miRNAs evaluated in the N9 hSOD1G93A microglia after 

the application of the two immunomodulators, only miR-21 was shown to increase by GUDCA 

and miR-125b by VS (Figure III.12). Curiously, passage into cell derived exosomes was just 

noticed for miR-21 by VS, what may have benefits due to its anti-inflammatory effects. 

However, the same seems to occur for miR-155, although not significantly, what may in part 

counteract the influence of miR-21. Again, the variability we found in the expression of these 

miRNAs indicates that further determinations must be performed to confirm these yet 

preliminary results. 
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Figure III. 12. Treatment of N9 hSOD1G93A microglia with glycoursodeoxycholic acid (GUDCA) 
and vinyl sulfone (VS) does not significantly change the cellular expression of inflammatory 
miRNAs, but determines alterations in their exosomal cargo. Transgenic microglia were incubated 
with 50 μM of GUDCA or 10 μM of VS compound for 48 h. Inflamma-miRs expression in both cells and 
exosomes were analyzed by qRT-PCR. N9 hSOD1G93A was used as control. Results are mean (± SEM) 
from at least three independent experiences. One-way ANOVA followed by Bonferroni comparison test 
was used to compare the three tested conditions. ††p<0.05 and †p<0.01 vs. N9 hSOD1G93A cells; ●p<0.05 
vs. N9 hSOD1G93A cells + GUDCA. miR, microRNA. 

 

III.3.4. Pro-inflammatory matrix MMP-9 is downregulated by VS treatment in N9 

hSOD1G93A microglia. 

Besides exosomes, soluble factor released by activated microglia into the extracellular 

milieu are also very important in the neuroinflammatory processes. We noticed that treatment, 

with either GUDCA or VS, did not change the generation of NO and activation of MMP-2 (data 

not shown). Interestingly, we found that MMP-9 activity was downregulated by VS (p<0.01) 

and slightly by GUDCA (Figure III.13). Since MMP-9 plays a role in disrupting the BBB, 

neurodegeneration, and allows the propagation of glial cells activation (Sargsyan et al., 2005; 

Könnecke and Bechmann, 2013), decreased secretion of these soluble factor to the 

extracellular media could constitute an advantage in the treatment with such potential VS 

compound. Moreover, reduction of neuronal MMP-9 function by diverse procedures revealed 

to delay muscle de-enervation, reason why it was proposed as a candidate therapeutic target 

for ALS (Kaplan et al., 2014).  

 

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0 .0

0 .5

1 .0

1 .5

m iR -1 5 5

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0 .0

2 .5

5 .0

1 0 0 0

2 0 0 0

m iR -1 5 5  e x o

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0

5

1 0

1 5

2 0

2 5

m iR -1 4 6 a

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0 .0

0 .5

1 .0

1 .5

m iR -1 4 6 a  e x o

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0

2

4

6

8

m iR -2 1

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0

1

2

3

m iR -1 2 5 b

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

 

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0

1

2

3

4

5

m iR -1 2 5 b  e x o

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

††

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0

1

2

3

4

m iR -2 1  e x o

m
iR

 e
x

p
r
e

s
s

io
n

(
F

o
ld

 v
s

. 
N

9
 h

S
O

D
1

G
9

3
A

)

+  G U D C A +  V S

††

  



Chapter III. Results 

62 
 

Figure III. 13. Matrix metalloproteinase 

(MMP)-9 activity is reduced in hSOD1G93A 

microglia upon VS treatment. Transgenic 

microglia were incubated with 50 μM of 

GUDCA or 10 μM of VS compound for 48h. 

Culture media of the three conditions were 

loaded into gelatin gels to quantify 

metalloproteinase activity, as detailed in the 

method section. N9 hSOD1G93A was used as 

control. Results are mean (± SEM) from at 

least three independent experiences. One 

way-ANOVA followed by Bonferroni multiple 

comparison test was used to compare the 

three tested conditions. ††p<0.01 vs. N9 

hSOD1G93A. MMP, Metalloproteinase. 

 

 
 
 
 

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

N
9
 

h
S

O
D

1
G

9
3
A

0 .0

0 .5

1 .0

1 .5

M
M

P
-
9

 a
c

t
iv

it
y

(
F

o
ld

 v
s

 N
9

 h
S

O
D

1
G

9
3

A
)

+  G U D C A +  V S

92 kDa

††



Chapter IV. Discussion 

63 
 

 
 
 
 
 
 
 
 
 
 
 
 

 ALS pathogenesis results from alterations in several intracellular processes such as 

autophagy, mitochondria and miRNA profile dysfunction (Chen et al., 2012a; Cozzolino and 

Carrì, 2012; Parisi et al., 2013). Several mutations are involved in this disease and new in vitro 

models have been recently created in addition to those based in  SOD1 mutations, which is 

still the most used model (Myszczynska and Ferraiuolo, 2016). Although based in a familial 

form of the disease (fALS), both fALS and sporadic cases (sALS) have the very similar clinical 

symptoms highlighting the relevance of such models. The role of glial cells such as astrocytes 

and microglia in neurodegenerative diseases, and particularly in ALS, have been thoroughly 

investigated and discussed being these cells pointed as key contributors to the 

neuroinflammation processes and disease progression (Lasiene and Yamanaka, 2011; Philips 

and Rothstein, 2014). In vitro studies have shown that murine astrocytes and microglia 

expressing mutSOD1 can induce motor neuron death (Xiao et al., 2007; Haidet-Phillips et al., 

2011).  

 Our study was focused on microglial cells. Particularly, we used the N9 microglia cell 

line, derived from the mouse brain. This line is characterized by sharing many phenotypical 

characteristics with primary mouse microglia. Hence it is an interesting model to study 

microglia without using live animals (Stansley et al., 2012).  

 First, we transduced N9 naïve cell line with hSOD1WT or hSOD1G93A. Afterwards, we 

looked at cell viability and whether or not it was affected by the overexpression of the foreign 

proteins. Actually, N9 hSOD1WT cells presented a higher viability comparing to naïve cells, as 

previously described by Dimayuga and colleagues (2007), probably because of the anti-

oxidant role of SOD1, which decreases the oxidative stress in the cell. On the other hand, N9 

hSOD1G93A cells did not show any increase or decrease in viability, which may result from the 

mutation-loss ability to efficiently scavenge ROS. Morphological alterations in cells were 

previously reported upon transduction with SOD1, which is consistent with our results in either 

WT or G93A transduced cells (Sargsyan et al., 2009) that revealed to be larger in size. In 

addition, phagocytic capacity did not change upon transduction, contrarily to what was 

described by Sargsyan and colleagues (2011), in a study performed in microglial primary 

IV. Discussion 
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cultures from mice brain (Sargsyan et al., 2011). Our microglial cell line may have increased 

resistance, and therefore be more able to retain some of the inner capacities of the cells even 

upon the transduction process. Since morphological properties, such as cell area, perimeter 

and diameter are not sufficient to infer on microglia activation status, we analyzed gene and 

miRNA expression in the cells, as well as secreted soluble factors and exosomes in order to 

determine if the overexpression of a foreign protein could somehow activate the cells or make 

cells more dysfunctional. Overexpression of human SOD1 in transgenic mice has been shown 

to be highly protective in models of Parkinson’s disease and global ischemia (Nakao et al., 

1995; Murakami et al., 1997). In addition, a more recent study reported the decrease of pro-

inflammatory cytokine TNF-α and NO, which are major players in ALS  (Urushitani and 

Shimohama, 2001; Dimayuga et al., 2007). Indeed, we found that all pro- and anti-inflammatory 

parameters decreased upon hSOD1WT expression, which could mean that cells are in a more 

steady state and resistant condition, considering the protection from the oxidative stress in the 

cell. Therefore, the same was not observed for the transduction with the mutated protein. 

Overexpression of the hSOD1G93A led to heterogeneous activation and polarization of the cells 

mainly towards the M1 phenotype. Contrarily to the profile observed for the WT protein, G93A 

transduced cells increased their expression in pro-inflammatory mediators (TNF-α, IL-1β, 

HMGB1 and MHCII) and in the phagocytic-related protein MFG-E8, while revealing similar 

downregulated anti-inflammatory indicators (Fizz1 and IL-10) and TLR4. Indeed, increased 

expression in pro-inflammatory markers in SOD1G93A but not SOD1WT mice had already been 

described  (Hensley et al., 2006; Jeyachandran et al., 2015), and primary microglia, isolated 

from SOD1G93A mice was reported to be more neurotoxic than LPS-activated WT microglia, 

also due to the increased production of superoxide, NO and pro-inflammatory cytokines IL-1β 

and TNF-α (Tang and Le, 2016). 

When analyzing miRNA profile in both cells and released exosomes, our data evidenced 

that both hSOD1WT and hSOD1G93A have a reduction of miR-21 and miR-125b, but that 

exosomal increase in the pro-inflammatory miR-155 and miR-146a only occurred in those from 

mutated cells, as previously observed in N9 microglia polarization by LPS (Cunha et al., 2016). 

However, increase of miR-146a in cells was only found in the WT ones. As a mediator of 

microglia dynamics in ALS and reported to be upregulated in the pro-inflammatory response 

(Chaudhuri et al., 2011; Parisi et al., 2016), the release of miR-125b by WT cells may function 

through a different mechanism. However, this result can also mean that other pro-inflammatory 

mediators not analyzed in this work might be upregulated as a response of the cell to the 

foreign protein (Parisi et al. 2016). Increase of miR-146a in hSOD1WT cells may determine an 

inhibition of the inflammatory response by targeting NF-κB with consequent downregulation of 

pro-inflammatory cytokines like TNF-α and IL-1β, as we observed in these cells. Curiously, 

gene expression analysis in exosomes revealed that HMGB1 and SOD1 are transported as 
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part of their cargo. As previously presented in the Results section HMGB1 was never reported 

as being transported in microglia-derived exosomes, although described for exosomes from 

other cells (Liu et al., 2006; Sheller-Miller et al., 2017). Our findings in hSOD1G93A 

overexpressing cells indicate that cells carrying such mutation are more reactive in the steady 

state condition than the WT microglia, probably influencing the surrounding cells and 

contributing to an overall inflammatory environment. In addition, our results confirm the 

transport of mutated/misfolded SOD1 in exosomes. This results are supported by previous 

studies which not only confirm SOD1 release in exosomes, but state that the enzyme induce 

exosome formation and release (Basso et al., 2013; Grad et al., 2014; Silverman et al., 2016). 

Preconditioned response has been defended by some authors stating that a moderate 

primary stimulus can stimulate cells to respond more markedly to secondary insults (primed 

microglia). Thus, a wide range of stimuli have been used, among them LPS (Chen et al., 

2012b), which has been described to enhance the pro-inflammatory microglia response 

towards a given second stimulus (Zhang et al., 2015; Cunha et al., 2016). Our previous work 

demonstrated that N9 microglia cells become M1 polarized when subjected to LPS exposure 

(Cunha et al., 2016). Hence, we analyzed the effects, upon stimulation with LPS, in both naïve 

and transduced cells with 300 ng/mL, a concentration with maximum LPS effect on N9 

microglia cells (Cui et al., 2002). We aimed to explore differences in the transduced cell 

response by an additional stress stimulus, whereas the first one was the overexpression of 

hSOD1, either WT or mutated in G93A. We first analyzed LPS effects on viability, morphology 

and phagocytosis. We must notice that 300 ng/mL LPS caused a marked demise of N9 

microglial cells that were sustained in the transgenic microglia, what may have determined a 

selection of a specific set of surviving microglia, thus restricting all our data further obtained to 

such living cells, but not influencing the comparison among the three tested conditions. 

However, as expected, LPS exposure caused N9 naïve and both transduced cells morphology 

to change abruptly from a ramified to an amoeboid phenotype, which was already described 

by our studies using N9 naïve cells (Cunha et al., 2016). This change in morphology is 

consistent with cell activation. Also, N9 naïve microglia phagocytic capacity upon LPS 

exposure was not affected, which can be explained by the fact that higher phagocytic capacity 

is a main characteristic of M2 polarized cells, while our studies on N9 naïve cells demonstrated 

a M1 polarization (Cunha et al., 2016; Tang and Le, 2016). On the contrary, overexpression of 

hSOD1WT appeared to increase phagocytosis in LPS-treated microglia, with a decrease in the 

amount of cells that phagocytosed zero beads and an increase in the number of cells 

phagocytosing six to ten beads, suggesting the existence of M2 polarized subclasses. Finally, 

hSOD1G93A overexpression and treatment with LPS seemed to decrease the number of cells 

phagocytosing eleven or more beads, which could mean that although the overall cell 

phagocytic capacity is not affected, it is not fully functional either, at least when comparing with 
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the two other tested conditions. Regarding the analysis of cytokines and chemokines produced 

by the cell upon LPS exposure, the majority of studies describe an upregulation of pro-

inflammatory cytokines TNF-α, IL-1β, as well as the release of NO (Chen et al., 2012b; Dai et 

al., 2015). However, LPS stimulation in cells transduced with hSOD1WT cells showed protection 

against the production of these molecules (Chang et al., 2001). Our results showed an overall 

decrease in all the analyzed pro- and anti-inflammatory cytokines in N9 hSOD1WT over the 

naïve cells, although there was an increase (not significant) in the pro-inflammatory IL-1β 

suggesting that protection from activation may work for the activation of some pro-inflammatory 

pathways of the cell, but not for all of them. Nevertheless, our results needs further confirmation 

to increase their significance, given that IL-1β is a key regulator of iNOS/NO induction and 

iNOS gene expression is below the control levels (Kim et al., 2006). Regarding hSOD1G93A 

overexpression, markers such as HMGB1 and IL-1β were found at the same level as the LPS-

treated naïve cells and WT, suggesting that although showing increased inflammatory markers 

they are not able to mount an overactivated response towards LPS. Despite of that, it deserves 

to be noted that a slight increase was observed for TLR4, iNOS, MHCII and RAGE as 

compared with the LPS-treated transgenic WT cells. On the other hand, anti-inflammatory 

markers like Arg1 and Fizz1 were downregulated in both transgenic microglia, which could 

mean some pro-inflammatory activation subsequently to LPS in these cells, although miR-155 

revealed to be downregulated in each of them. 

Upon LPS exposure, miR-155, miR-146a and miR-21 were all reported to be upregulated 

in several models (Tili et al., 2007; Sheedy, 2015; Cunha et al., 2016; Parisi et al., 2016). While 

miR-155 was shown to be upregulated upon inflammatory stimulus consequently producing 

higher levels of TNF-α, overexpression of miR-146a was shown to act as a negative feedback 

loop by downregulating NF-κB activation and further miR-155 upregulation (He et al., 2014). 

Elevation of miR-146a was also indicated to lead to microglial primed state, and importantly to 

directly target IL-1β downregulation (indicated to be involved in phagocytosis together with 

iNOS, MHCII, IL-10 (Saba et al. 2012). In addition, miR-21 is also involved in the cell’s immune 

response, controlling the balance between initial pro-inflammatory responses and later 

immune-regulatory and anti-inflammatory responses (Sheedy, 2015). MiR-155 and miR-125b 

are both involved with NF-κB, the first by activating it, and the second by being activated by it, 

strengthen and prolonging the inflammation state (Ma et al., 2011). Our results show that 

despite miR-155 reduced levels in transgenic microglia, miR-155 was detected in the exosome 

cargo of hSOD1WT cells. Both miR-146a and miR-21 expression was not altered in cells, and 

again miR-21 seems to be preferentially released by hSOD1WT microglia through exosomes, 

although more experiments are needed to confirm such data. In hSOD1G93A microglia, neither 

miR-155, nor miR-21, was found to be increasingly transported in exosomes as compared with 

vesicles from naïve cells. Overall, results point to a less activation state upon LPS exposure in 
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hSOD1WT cells, by the downregulation of miR-155 and miR-125b in the cells. However, 

upregulation of miR-155 in the WT cells exosomes also suggests that cell may be signaling 

inflammation to other cells. On the other hand, miR-155 decrease in hSOD1G93A cells with LPS 

and its low transport in exosomes can be supporting data of the lower capacity of response of 

cells carrying the mutation in comparison with hSOD1WT cells. 

Having determined microglial reactive profile in non-treated and LPS-treated hSOD1G93A 

cells, we next focused on the evaluation of the modulatory efficacy of the anti-inflammatory 

GUDCA and VS compounds to rescue the dysfunctional microglia phenotype towards a more 

neuroprotective one, based on previous achieving results (Falcão et al., 2007; Vaz et al., 

2015). Regarding the two compounds, our approach was to incubate hSOD1G93A transduced 

cells, with each one of them, for 48 h, as we did for LPS. Despite previous reports, we 

confirmed the most used concentration of each one for not causing loss of cell viability in our 

models. In addition, our results did not show alterations in phagocytic capability upon treatment 

with either compound, although morphology moderately changed  by either treatment, with 

GUDCA significantly increasing the number of amoeboid in detriment of ramified cells, 

probably by its stabilizing effect on cell membranes (Fernandes and Brites, 2009; Perez and 

Britz, 2009). The same tendency was verified with VS incubation, although results were not 

statistically significant. Data indicate a decrease in the pro-inflammatory molecules S100B and 

IL-1β, as well as in the anti-inflammatory SOCS1 and Arg1 markers and receptor TLR4, for 

both compounds, with a concomitant increase of IL-10 and decrease of HMGB1, together with 

miR-125b exosomal increase only in GUDCA treated cells. Actually, GUDCA was 

demonstrated to inhibit the production of TNF-α and IL-1β in astroglial cells, by preventing the 

maturation of these cytokines and their consequent release in an experimental model of 

jaundice (Fernandes et al., 2007). Regarding VS, its anti-inflammatory properties already 

described included the suppression of miR-155 and miR-146a and of MMP-2 and 9 activities, 

as well as of HMGB1 and IL-1β in microglia exposed to Aβ peptide, as a model of Alzheimer’s 

disease. These anti-inflammatory properties of GUDCA and VS should be tested in the future 

in the LPS-treated hSOD1G93A transduced cells to better confirm such effects. Here, we only 

evaluated their immunomodulatory effects on the reactive, but not LPS-stimulated hSOD1G93A 

cells, as we intended to assess GUDCA and VS benefits on the ALS microglia phenotype. VS 

revealed a trend advantage over GUDCA in sustaining MFG-E8 close to control values and in 

increasingly inhibiting IL-1β and S100B, while specifically preventing MHCII and iNOS, and 

driving exosomal elevation of miR-21.  

We hypothesize that miR-155 and miR-21 may increase in exosomes from VS-treated 

hSOD1G93A cells in the course of their increased clearance, the same occurring for miR-125b 

this time from GUDCA-treated hSOD1WT cells. In contrast, cellular retention of miR-146a and 

miR-125b in VS-treated hSOD1WT cells may determine its reduction in exosomal cargo. These 
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findings are without precedent, as we observed that  exosomes released by LPS-stimulated 

microglia recapitulated cell expression profile (Cunha et al., 2016). It will be interesting to 

evaluated miRNA-related elimination from cells as depending on changes inducing by 

compounds in membrane properties. Anyway, VS treatment  is probably acting on both pro- 

and anti-inflammatory pathways, by increasing miR-146a and miR-125b, respectively. In 

addition, exosome cargo is increased in the expression of the anti-inflammatory miR-21 and 

the pro-inflammatory miR-155 suggesting the existence of a heterogeneous M1 and M2 

microglia population upon VS treatment. Furthermore, MMP-9, although slightly reduced by 

GUDCA similarly to our previous results in ALS motor neurons (Vaz et al., 2015), was more 

efficiently downregulated by VS treatment. 

We may then conclude that although both compounds showed to differ in their action 

pathways, either GUDCA or VS appear to have benefic therapeutic effects on modulating 

microglia reactivity in ALS, although future studies are required to corroborate their use in 

disease treatment. 

Overall, as schematically represented in Figure IV.1, our findings gave important 

information on how transduced hSOD1wt, but above all that hSOD1G93A, caused alterations in 

the host cell and which signaling mechanisms are upregulated, with or without secondary LPS 

immune-stimulation. Besides inducing the expression of pro-inflammatory genes, hSOD1G93A 

also decreased the expression of anti-inflammatory genes, what can potentiate reactivity, but 

mainly decrease microglia repairing ability after injury and inflammation, thus compromising 

homeostatic balance. Finally, we propose that treatment with GUDCA/VS may constitute 

complementary therapies to ALS due to their multi-target effects and the new hope based on 

the usage of combined therapies for diseases with still not clear pathogenicity. 

 

 

 

 

 

 

 

 



Chapter IV. Discussion 

69 
 

 

Figure IV. 1. Schematic representation of the major findings obtained in the present study.  

hSOD1WT transduction causes pro- and anti-inflammatory gene expression mediators to decrease in N9 

cells, although do not limit their capacity of response relatively to naïve cells under LPS exposure. On 

the other hand, hSOD1G93A transduction produces an increase in the gene expression of pro-

inflammatory mediators, while decreases some others, together with anti-inflammatory indicators, 

leading to a heterogeneous mixed population. Treatment of these transgenic cells with LPS produces a 

sustained reactive response similar to naïve cells, while decreases some pro- and anti-inflammatory 

mediators, and modifies the phagocytic capacity of the cells. GUDCA and VS treatment shows to 

modulate the gene expression of inflammatory-related molecules, with different consequences in N9 

hSOD1G93A cells and exosomal cargo for specific miRNAs. Also, treatment with VS decreased MMP-9 

activation, thus contributing to a less inflammatory extracellular environment. GUDCA, 

Glycoursodeoxycholic Acid; HMGB1, High mobility group box protein 1; LPS, Lipopolysaccharide; miR, microRNA; 

MMP, Matrix Metalloproteinase; SOD1, Superoxide Dismutase 1; VS, Vinyl Sulfone. 
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Concluding remarks 

 
• hSOD1WT overexpression in N9 microglia causes downregulation of pro- and anti-

inflammatory gene expression markers; 

• N9 overexpressing hSOD1G93A cells show a predominant reactive microglia with 

predominant elevation of pro- and anti-inflammatory gene expression markers; 

• Upon LPS treatment, hSOD1WT and hSOD1G93A have some similarities with the LPS-

treated naïve cells, although both show depressed anti-inflammatory markers and the 

hSOD1G93A microglia a decreased reactivity; 

• GUDCA and VS were able to downregulate some pro-inflammatory mediators and 

influence exosomal cargo, although acting in different pathways, showing promise in 

future combined approaches to ALS. 

 

New perspectives and approaches 
 

 In the present study, we discuss and compare the effects of transduction with both 

hSOD1WT/G93A in microglia cells, the modifications in the cell responses upon stimulation with LPS 

and the capacity of GUDCA to rescue the effects of overexpressing hSOD1G93A in the cells. 

Further in our work, it would be interesting to incubate GUDCA in LPS-treated hSOD1G93A 

overexpressing cells, in order to evaluate the benefits of GUDCA after immunostimulation.  

 Moreover, co-cultures of both transduced cells with motor neurons alone and treated with 

LPS/GUDCA should be hypothesized in order to assess the effects of the overexpressing 

hSOD1WT/G93A in neurons, with and without stimulation, and how GUDCA can prevent possible 

damages caused by microglial cells in motor neurons. Given the importance of intercellular 

communication in the CNS, exosomes of these co-cultures media would provide us with essential 

information on how the cargo of these vesicles can affect and modulate another cell’s behavior. 

 The final purpose with this approach, is to furtherly understand the role of glial cells in the 

disease and its progression, together with the effect of their reactivity to immunostimulation, and 

how and which pathways can be modulated in order to prevent inflammation and slow disease 

progression.  
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SOD1G93A transduced microglia show a depressed inflammatory response to 
LPS 
 

Catarina Ezequiel (1), Carolina Cunha (1), Ana Rita Vaz (1,2), Dora Brites (1,2) 
 
(1) Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de 
Lisboa, Lisbon, Portugal; (2) Department of Biochemistry and Human Biology, Faculdade de 
Farmácia, Universidade de Lisboa, Lisbon, Portugal. 
 
 

Immune unbalance plays a crucial role in Amyotrophic Lateral Sclerosis (ALS) and 

microglia dysfunction was shown to be associated with neuronal injury and to influence the 

onset and progression of the disease [1]. Indeed, there are evidences that microglia can either 

be highly reactive in early stages or irresponsive to stress stimuli [2]. However, it is not known 

the signaling pathways that are affected in the mutated ALS microglia that may be responsible 

for the dual microglia signatures, mainly when stimulated by a proinflammatory stimulus as 

LPS.  Our previous data showed that LPS stimulation of microglial N9 cells switch to a 

prevalent M1 polarization [3]. With this is mind we proposed to evaluate the resultant effects 

of overexpressing human SOD1G93A mutation, one of the most common in ALS, in the 

reactivity of microglia towards LPS.  

For that, we used mouse N9 microglial cell line, expressing WT human SOD1 (WT-MG) 

or containing the G93A mutation (mSOD1-MG), either incubated or not with 300 ng/ml of LPS 

for 48 h. Upon incubation, phagocytic capacity was evaluated by quantifying the number of 

ingested beads and mRNA was isolated to evaluate the expression of different M1/M2-

associated cell polarization markers. 

We observed that mSOD1-MG significantly lost the arginase-1 associated M2 phenotype 

as well as the expression of the IL-10 anti-inflammatory cytokine, an effect that was 

exacerbated in the presence of LPS. In addition, the mSOD1-MG showed an increased 

expression of the stress-related HMGB1 and lower capacity to upregulate S100B levels or 

MHCII expression upon interaction with LPS. Intriguingly, mSOD1-MG still sustained a 

moderate ability to increase some markers of M1 microglial phenotype, either in the absence 

or in the presence of LPS, such as TNFα, microRNA (miR)-155 and miR-146a. In terms of the 

phagocytic ability, the mSOD1-MG was able to ingest an increased number of beads than the 

WT-MG, but not in the presence of LPS. 

Overall, our study provides a model to characterize microglial heterogeneity in ALS, and 

data indicate that ALS microglia, although sustaining a moderate inflammatory response to 

LPS, show increased levels of the alarmin HMGB1 and low expression of MHCII expression 

that may lead to suboptimal Th cell response during neuroinflammation along the progression 

of the disease (4). 
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Upregulation of miR-155 in hSOD1G93A microglia is depicted in their derived-exosomes  

Carolina Cunha*, Marta Barbosa, Catarina Ezequiel, Ana Rita Vaz, Dora Brites 

*jcarolinacunha@ff.ulisboa.pt 

 

Background: Motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS) starts 

focally and spreads to neighboring areas indicating that neuroinflammation and intercellular 

communication are crucial for disease propagation. The transfer of molecules through 

exosomes, including microRNAs (miRs), modulates the function of recipient cells. We recently 

showed that miR-155 is increased in early stages of the disease in the transgenic SOD1G93A 

mouse model (familiar ALS) and maintained over disease progression (Cunha et al. Mol 

Neurobiol, 2017). 

Aims: We aimed to study (i) microglia activation in ALS; (ii) the transport of inflammatory 

microRNAs (inflamma-miRs) in exosomes; (iii) the distribution of exosomes in microglia-MNs 

co-culture. 

Methods: To study microglia activation we used: (i) N9 microglia transduced with hSOD1WT or 

hSOD1G93A, and (ii) primary microglia obtained from the spinal cord of 7 day-old SOD1G93A 

mice and WT littermates. Phenotype markers and inflamma-miRs were assessed by qRT-PCR 

(Cunha et al. Med Inflam, 2016). Exosomes were isolated from supernatants by differential 

ultracentrifugation. Exosomes were stained with the PKH67 fluorescent dye to assess their 

internalization by the recipient cell (Pinto et al. Front Neurosci, 2017).  

Results: The expression of hSOD1G93A in N9 microglia induced the upregulation of MHC-II, 

IL-1β, IL-10 and miR-155, a major regulator of pro-inflammatory responses. Conversely, miR-

124 and miR-146a, linked to neuroprotection, were decreased. Primary SOD1G93A microglia 

showed a similar pro-inflammatory status with upregulation of MHC-II, iNOS and IL-1β.  Again, 

miR-155 was highly expressed, now only accompanied by miR-124 downregulation. 

Interestingly, N9 microglia-derived exosomes recapitulated the cell of origin carrying high miR-

155 levels. Finally, we observed that exosomes were preferentially internalized by microglia 

relatively to motor neurons. 

Conclusions: Our data show that microglia acquire a pro-inflammatory phenotype in ALS and 

suggest that miR-155 release in exosomes may account for the propagation of inflammatory 

responses in an autocrine/paracrine manner. 

 

Keywords: Microglia activation in ALS; miR-155; Exosomal cargo; Inflamma-miRs transfer 
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Microglia Acquire a Pro- inflammatory Phenotype in ALS and Release miR-155 

through Exosomes 
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Motor neuron (MN) degeneration in amyotrophic lateral sclerosis (ALS) starts focally and 

spreads to neighboring areas indicating that neuroinflammation and intercellular 

communication are crucial for disease propagation. The transfer of molecules through 

exosomes, including microRNAs (miRs), modulates the function of recipient cells. We recently 

showed that miR-155 is increased in early stages of the disease in the transgenic SOD1G93A 

mouse model (familiar ALS) and maintained over disease progression. [1] 

We aimed to study (i) microglia activation in ALS; (ii) the transport of inflammatory microRNAs 

(inflamma-miRs) in exosomes; (iii) the distribution of exosomes in microglia-MNs co-cultures. 

To study microglia activation we used: (i) primary microglia obtained from the spinal cord 

of 7 day-old SOD1G93A mice and WT littermates; and (ii) N9 microglia transduced with 

hSOD1WT or hSOD1G93A. (ii) Phenotype markers were assessed by qRT-PCR and 

immunocytochemistry and inflamma-miRs by qRT-PCR. Exosomes were isolated from cell 

culture supernatants by differential ultracentrifugation. Exosomes were stained with the PKH67 

fluorescent dye to assess their internalization by recipient cells. [2] 

Analysis of inflamma-miRs expression showed that miR-155, a major regulator of pro-

inflammatory responses, was upregulated in spinal SOD1G93A microglia while miR-124, 

linked to neuroprotection, was decreased. Upregulation of CD80, MHC-II and iNOS along with 

SOCS1 and arginase 1 (Arg1) downregulation further suggest an M1-polarization of 

SOD1G93A microglia. Importantly, iNOS/Arg1 double-immunostaining showed that different 

populations coexist and 48% of microglia have a typical pro-inflammatory phenotype 

(iNOShigh/Arg1low). Accordingly, NF-kB activation, IL-1beta upregulation and nitric oxide 

(NO) release were also observed. The overexpression of hSOD1G93A in N9 microglia induced 

an activation profile similar to spinal SOD1G93A microglia including the upregulation of miR-

155, MHC-II and IL-1β as well as downregulation of miR-124 and miR-146a. Interestingly, N9 

microglia-derived exosomes recapitulated the cell of origin carrying high miR-155 levels. 
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Finally, we observed that exosomes were preferentially internalized by microglia relatively to 

motor neurons. 

Our data show that microglia acquire a pro-inflammatory phenotype in ALS and suggest 

that miR-155 release in exosomes may account for the propagation of inflammatory responses 

in an autocrine/paracrine manner. 
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Expression of hSOD1G93A causes microglia activation, but unresponsiveness to LPS, 

while hSOD1wt has a calming effect and sustains reactivity to LPS 
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Neuroinflammation is one of the main hallmarks of Amyotrophic Lateral Sclerosis (ALS), 

and activation of microglia cells, the immune resident cells in the Central Nervous System 

(CNS), play a key role in disease onset and progression.[1] It was showed that stable 

overexpression of SOD1WT in mouse microglia cells decreases production of ROS and release 

of proinflammatory cytokines.[2] Inversely, the overexpression of SOD1G93A in microglia 

stimulated ROS production and neurotoxicity, while decreased microglia response towards 

LPS inflammatory stimulus.[3] Our recent data indicate an induction of M1 polarization with a 

specific signature in terms of either pro- and anti-inflammatory associated markers in N9-

microglia exposed to lipopolysaccharide (LPS).[4] 

We aimed to investigate the role of hSOD1WT (MGWT) and hSOD1G93A (MGG93A) in 

microglia and their reactivity upon LPS stimulation, by using the mouse N9-microglia cell line, 

transduced with MGWT or MGG93A. Cells were incubated or not with 300 ng/ml LPS for 48h. 

Non-transduced N9 (naïve) were used as controls. Upon incubation, mRNA was isolated to 

evaluate the expression of different markers associated with microglia pro- and anti-

inflammatory phenotype. 

 We observed that MGWT are in a less reactive state when compared to naïve N9, as 

demonstrated by decreased pro-inflammatory (HMGB1, S100B, IL-1β, MHCII and RAGE) and 

anti-inflammatory (IL-10, Arginase 1) markers. However, upon LPS stimulation, both cell types 

(naïve and MGWT) similarly switched to a more pro-inflammatory state, as indicated by 

increased levels of HMGB1, S100B, IL-1β, MHCII and RAGE.  

On the other hand, MGG93A cells had a more heterogeneous phenotype, indicated by 

increased expression of either pro- (HMGB1, S100B, IL-1β, MHCII, RAGE) and anti-

inflammatory (Arginase 1) markers.  In addition, we observed miR-146a/-21 downregulation 

and miR-155 upregulation in MGG93A. However, upon LPS exposure, MGG93A became less 

responsive than MGWT, with a less activated phenotype demonstrated by the decreased 

expression of S100B, RAGE and IL-1β. 
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Overall, our study provides information on the beneficial action of hSOD1WT 

overexpression in microglia and on the irresponsiveness caused by the presence of 

hSOD1G93A upon an inflammatory stimulus. A better knowledge on the SOD1 function in 

microglia will contribute to understand risk-associated mutations and how SOD1 targeting may 

promote neuroprotection. 

 

Keywords: Microglia-hSOD1 overexpression; hSOD1G93A mutation; LPS-stimulated 

microglia  
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Transfection of N9 microglia with hSOD1G93A inhibits their response to LPS and 

triggers M1 polarization, which is reversed by GUDCA 
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Microglia are key players in the pathogenic mechanisms of Amyotrophic Lateral 

Sclerosis (ALS), the third most common neurodegenerative disease. SOD1 mutation is highly 

common in the familial cases of ALS and the SOD1G93A mouse model revealed an increased 

number of Arg1+ and iNOS+ microglia in the spinal cord. In contrast, microglia overexpressing 

wtSOD1 have attenuated levels of ROS and NO. Here, we transfected N9 microglia with 

wtSOD1 and SOD1G93A to assess cell phenotypic changes and differences in response to 

300 ng/ml lipopolysaccharide (LPS). We also used 50 μM glycoursodeoxycholic acid 

(GUDCA), known for its anti-inflammatory effects, to test its regenerative ability over 

dysfunctional microglia.  

Considering the gene expression of M1 and M2 selected markers, N9 cells transfected 

with SOD1 showed lower M1 (HMGB1, S100B, IL-1β; p<0.01) and M2 /Arg1 and IL-10; p<0.01) 

levels than the naïve cells. However, cells did not respond differently to the 48 h incubation 

with LPS (similar HMGB1, S100B and IL-1β levels). In contrast, cells transfected with 

SOD1G93A showed a decreased inflammatory response to LPS (reduced S100B and IL-1β; 

p<0.01). However, these mutated microglia were found activated with a marked elevation of 

inflammatory markers (HMGB1, S100B, IL-1β and miR-155; at least p<0.05), together with 

decreased anti-inflammatory ones (Arg1, miR-21 and miR-146a; at least p<0.05). When we 

treated cells for 48 h with GUDCA we observed the recovery of the steady state of microglia, 

with a reduction of M1 polarized microglia (HMGB1, S100B and IL-1β, p<0.05) and an increase 

of M2 anti-inflammatory markers (miR-21, miR-146a and IL-10; at least p<0.05). 

Data highlight that SOD1G93A transfection lead to a dysfunctional and activated 

microglia phenotype that is rescued by GUDCA.  
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