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Abstract. Remote healthcare systems help doctors diagnose, monitor
and treat chronic diseases by collecting data from Implantable Medical
Devices (IMDs) through base stations that are often located in the pa-
tients’ house. In the future, these systems may also support bidirectional
communication, allowing remote reprogramming of IMDs. As sensitive
medical data and commands to modify the IMD’s settings will be sent
wirelessly, strong security and privacy mechanisms must be deployed.
In this paper, we propose a user-friendly protocol that is used to estab-
lish a secure end-to-end channel between the IMD and the hospital while
preserving the patient’s privacy. The protocol can be used by patients
(at home) to send medical data to the hospital or by doctors to remotely
reprogram their patients’ IMD. We also propose a key establishment
protocol between the IMD and the base station based on a patient’s
physiological signal in combination with fuzzy extractors. Through se-
curity analysis, we show that our protocol resists various attacks and
protects patients’ privacy.

1 Introduction

Remote healthcare systems usually collect data from medical devices implanted
within the patient’s body, also known as Implantable Medical Devices (IMDs),
several times per day through a base station that is often installed in the patient’s
house. In the near future, these systems may support bidirectional communica-
tion to enable remote reprogramming of the IMD by a doctor in a hospital.
While these remote healthcare systems can improve the patients’ quality of life
and extend the time they can live independently at home, they pose important
security and privacy risks. Currently, proprietary protocols are being deployed
with limited security measures [7, 11]. These insecure wireless protocols may lead
to several attacks that can result in fatal consequences for patients.

Remote healthcare systems are typically built such that there is a central
node (denoted as data concentrator in the rest of this paper) that collects and
redirects all (encrypted) data sent between base stations and hospitals. Context
information about these communications, i.e. metadata, can be valuable for in-
surance companies or government agencies to monitor public health or compile
statistics. However, even if cryptography is used, metadata can leak patients’



sensitive information to the data concentrator, which may lead to abuse of data,
e.g. denying individuals an insurance contract. To mitigate some of these issues,
a trivial solution would be to have several data concentrators (instead of only
one) that do not cooperate with each other. This solution would be expensive to
deploy and difficult to maintain. In addition, there would not be any guarantee
that the data concentrators do not share data with each other. Another solution
would be to use a fresh pseudonym in every message. Although this approach
would make it more difficult for adversaries to compromise the patient’s privacy,
this is not sufficient; if the data concentrator knows where the base station is
located, then unique patient identifiers may be revealed.

Our first contribution is a user-friendly protocol that allows an IMD to estab-
lish an end-to-end secure channel with a hospital while preserving the patient’s
privacy. The protocol can be used by patients (at home) to send medical data to
the hospital or by doctors to remotely reprogram the IMD of their patients. Our
protocol makes use of cryptography and an anonymous communication channel
to prevent the data concentrator from learning patients’ sensitive information.
Our second contribution is a key establishment protocol that allows an IMD
and a base station to agree on a symmetric session key without using public-key
cryptography or any pre-shared secrets between devices. Instead, our protocol
uses a patient’s physiological signal in combination with fuzzy extractors.

2 Related Work

2.1 Security and Privacy in Remote Monitoring Systems

While much research has focused on making remote monitoring systems more
reliable, unobtrusive, energy efficient and scalable, security and privacy have
received less attention [10, 12]. Ko et al. acknowledged the importance of secu-
rity and privacy, but they did not provide details about cryptographic mecha-
nisms [9]. Ortiz et al. proposed a protocol to secure the wireless communication
between devices in a medical system [13]. However, the protocol does not provide
message integrity, and the receiver keeps a list of keys for each transmitter. Trans-
mitters send messages along with their unique device identity (ID) unencrypted
to indicate to the receiver which of the keys is used to decrypt the message. This
may result in a privacy breach since adversaries can use the unique transmit-
ter ID to track, identify or locate individuals. Perrig et al. presented SNEP, a
protocol that provides data confidentiality, integrity, mutual authentication and
message freshness [14]. Pre-installed symmetric keys, shared between each device
and the base station, are used to derive a new session key every time a device
starts communicating with the base station. In contrast to Perrig et al., we also
consider privacy. More specifically, our protocol aims to prevent unauthorized
entities and adversaries from discovering the patients’ real ID, their location or
being able to link their messages. Furthermore, the devices are implanted within
the patient’s body and the base stations do not have any pre-shared keys with
them, which makes key management more challenging.



2.2 Key Establishment Protocols

The unique characteristics of IMDs pose novel challenges in the design of key es-
tablishment protocols and key management solutions. IMDs are battery-powered
and resource-constrained devices in terms of size, memory, processor and en-
ergy. The battery typically lasts 7 years. When the battery is drained, surgery
is needed to replace the IMD. We note that a trade-off between security and
open-access in emergencies is also required. Consider a cardiac patient who is
travelling. Although it is clear that no one should be able to access his pacemaker
while he is walking on the street, medical staff should have immediate access to
his IMD in an emergency situation.

Intuitively, one possible way for the IMD and the base station to establish a
key would be to use public-key cryptography. However, IMDs cannot use expen-
sive cryptographic primitives in terms of computations and power consumption.
Another possibility would be to pre-install a master (symmetric) key in all IMDs,
but this may prevent a patient from receiving care in an emergency situation. A
pairing protocol could also be used for establishing a symmetric session key [18,
6, 4]. Nevertheless, IMDs do not contain a screen, a keyboard or an accelerometer
and it is not possible to physically access them once implanted; thus none of the
existing solutions can be used. In this paper, we propose a key establishment
protocol in which the IMD and the base station measure a patient’s physiological
signal independently and synchronously to agree on a symmetric key. The pro-
tocol uses the time between heart beats, also known as InterPulse Interval (IPI),
as the source of randomness, similarly to the touch-to-access protocol proposed
by Rostami et al. [15]. Unlike their work, our protocol is more efficient as it only
uses symmetric cryptography in combination with fuzzy extractors.

3 Design Preliminaries

3.1 System Model

Our remote healthcare system, similar to existing architectures, consists of the
following entities (see Fig. 1). Without loss of generality, in the rest of this paper
we will assume that the IMD is a pacemaker.

A pacemaker (PM) is a device implanted within a patient’s body that is
used to monitor and control his heart beat. A base station (BS) is an external
device installed in a fixed location (e.g. home or a hotel) which collects and
forwards medical data to a hospital, and sends commands to PMs as instructed
by a doctor in the hospital. BSs have a programming head that incorporates
a built-in sensor to read a patient’s physiological signal (e.g. the IPI). A data

concentrator (DC) acts as a bridge between BSs and hospitals, and is in practice
often managed by the company that manufacturers the PMs and BSs. A hospital

(HO) is a medical institution where doctors analyse the medical data and send
commands to PMs, whereas a certification authority (CA) is a trusted entity
that issues digital certificates to HOs and the DC.
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Fig. 1. Our remote healthcare system comprises pacemakers (PMs), base stations
(BSs), a data concentrator (DC), hospitals (HOs) and a certification authority (CA).

A BS and a PM can communicate with each other wirelessly using the Med-
ical Implant Communication Service (MICS) band [17], or any other low-energy
wireless technology. The communication range between the BS and the PM de-
pends on the wireless communication technology being used, e.g. from two to
five meters when using the MICS band. The communication between the BS and
the DC takes place over the Internet using a low-latency anonymous communi-
cation channel (e.g. a Mix network [16]), whereas the communication between
the DC and a HO takes place over the Internet using a standard secure channel,
e.g. TLS. To balance the load, multiple DCs are in place; however, for the sake
of simplicity, we consider them as one in the rest of this paper.

We consider two possible scenarios depending on whether the doctor is on-
line or off-line. For an on-line remote medical check, the patient first makes an
appointment with the doctor (e.g. via telephone). At the time of the appoint-
ment, the patient sends medical data to the HO through the base station. The
doctor then analyses the data and, if required, sends commands to the PM. If
the doctor is off-line, the patient can still send medical data to the HO; however,
these data will be processed by the doctor at a later stage. We note that in our
system the doctor can only reprogram the patient’s PM in the on-line scenario.

3.2 Threat Model and Assumptions

Threat Model: PMs and HOs are honest and trusted. PMs follow the protocol
specifications as designed by their manufacturers and the U.S. Federal Commu-
nications Commission (FCC). PMs can only establish one communication session
with a BS at a time, and do not initiate any communication without receiving a
request from a legitimate BS [2]. Adversaries can eavesdrop, modify, inject and
jam the messages exchanged between any of the entities. Adversaries can observe



only a fraction of the Internet network traffic. This is a common assumption when
using low-latency anonymous communication systems. In addition, adversaries
might compromise any number of BSs, including the one being used by the pa-
tient. The DC is honest but curious; it follows the protocol specifications but it
might attempt to discover information about patients by looking at metadata.

Assumptions: We assume that adversaries cannot make physical contact
with the patient without this being noticed by the patient. We assume that the
communication between the BS and the DC takes place over the Internet using
an anonymous communication channel. However, we do not specify which type
of anonymous channel is used, since this is out of the scope of this paper. We
assume that all entities (except PMs) have the CA’s certificate pre-installed. We
assume that each HO has a server with a database that contains a list of their
patients along with their corresponding PM IDs and cryptographic keys. The
server is located in a secure room where it cannot be stolen or tampered with;
only authorized medical staff has access to it through appropriate identification,
authentication and authorization mechanisms.

3.3 Design Requirements

Our remote healthcare system should satisfy the following functional (F), secu-
rity (S) and privacy (P) requirements.

(F1) User-friendly: Reporting medical data and reprogramming the PM
should be easy and convenient for patients.

(F2) BS-independent: Patients should be able to use any legitimate BS,
even the ones belonging to other patients.

(F3) Energy Cost: Computational cost at PMs should be as low as possible
to reduce the energy consumption.

(S1) Mutual Entity Authentication: PMs and HOs should be assured
of each other’s identity when receiving messages.

(S2) Message Integrity: PMs and HOs should be assured that the received
messages are fresh and have not been altered during transit.

(S3) Confidentiality of Medical Data and Commands: Only the au-
thorized HO should be able to access patient’s medical data and send commands.

(S4) Availability: Ensures that the system is accessible upon demand by
authorised entities.

(P1) Patient Privacy (minimum data disclosure):
(P1.1) Patient Identity Privacy: Only HOs should know the identity of

the patient who sends medical data.
(P1.2) Hospital Identity Privacy: No unauthorized entity should know

to which hospital the patient sends medical data.
(P1.3) Location Privacy: No entity should infer the patient’s location. 1

(P1.4) Session Unlinkability: Only the HO where the patient is registered
should be able to link messages sent from the same patient.

1 In an emergency situation doctors have other means (e.g. necklace-based emergency
systems) to know the patient’s location.



4 The Protocol

This section presents our protocol for medical data reporting and remote repro-
gramming of the patient’s PM. It provides end-to-end security (i.e. data confi-
dentiality, integrity, mutual authentication and message freshness) between the
patient’s PM and the hospital, and protects the patient’s privacy. Our protocol
is divided into two stages: the medical data reporting stage and the PM repro-
gramming stage. Prior to the detailed protocol description, we first outline the
system initialization process. Table 1 shows the notation used in the paper.

4.1 System Initialisation

Each HO and the DC generate a public/private key pair, PKhoi/SKhoi and
PKdc/SKdc, respectively. The public keys are signed by the CA. A list of valid
HO certificates is stored in the DC, whereas each HO has a valid DC certifi-
cate. A group signature scheme is used by BSs to anonymously sign messages
on behalf of the BSs group, so that the DC can still verify the authenticity of
the message without knowing which specific BS signed the message, thus hiding
the ID and location of the patient. All BSs use the same (group) public key,
PKbsgroup , and have distinct private keys, SKbsi . Next, the DC signs the BSs
group public key, generates a digital certificate that contains the ID and group’s
public key, and stores it. The certificate of the DC is pre-installed in all BSs.

During the PM manufacturing process, a symmetric key, Kho-ps, is pre-
installed in each PM. Kho-ps is shared between all PMs and the DC, and used for
generating HO pseudonyms. Our protocol uses the same Kho-ps for all PMs, so
that the DC cannot identify the PM that generated the HO pseudonym. In the
PM setup phase, two independent symmetric keys, Kpm-ho and Kpm-ps, are gen-
erated and installed in each PM. The procedure takes place in the HO before the
PM is implanted to avoid the PM’s manufacturer (often the DC) from learning
these keys. Kpm-ho and Kpm-ps are shared between the PM and its corresponding
HO. The former is used for encrypting the patient’s medical data whereas the
latter for generating PM pseudonyms.

Various circumstances may cause the certificates to become invalid before
their expiration date. If the private key of any of the entities is compromised, a
new public/private key pair is generated (as explained above). The new public
key is then signed by the CA and broadcasted to the network. All entities can
then verify the message authenticity by using the CA’s public key. From that
point onwards, the old certificate is no longer valid. If the private key of any BS
is compromised, the BS is sent to its manufacturer for being reconfigured and
replaced. We note that group signature schemes typically allow revocation and
addition of new members (i.e. BSs) into the group (for more details, see [3]).

4.2 Medical Data Reporting Stage

After the system initialisation phase, the PM can report medical data to the
HO (see Fig. 1). Prior to each reporting stage, a new symmetric session key is



Table 1. Notations.

Symbols Meanings

d, cmd medical data of a patient, command sent to the PM
IDi, PSi unique identity of entity i, pseudonym of entity i

Kpm-ho key shared between PM and HO to encrypt/decrypt data/commands
Kpm-ps key shared between PM and HO to create PM pseudonyms (ps)
Kho-ps key shared between all PMs and DC to generate HO’s pseudonyms (ps)
Ks session key established between PM and BS
Ni, TSi nonce generated by entity i, timestamp produced by entity i

msgi-j message constructed by entity i and intended for entity j

cti-j counter used in messages between the entity i and the entity j

Ci-j ciphertext generated by entity i and intended for entity j

PKi, SKi public and private key of entity i

PRFK(M) pseudorandom function of message M with key K
AEK(M) authenticated encryption of message M with key K
EPKi

(M) asymmetric encryption of message M with public key of entity i

Sigi(M) digital signature of entity i on message M

established between the PM and the BS for securing the data exchanged over
the air. We next describe the proposed key establishment protocol followed by
the actual reporting stage more in detail.

IPI-based Key Establishment Protocol: Our protocol requires the IMD and
the BS to independently measure the patient’s IPI (i.e. time between heart beats)
at the same time. These IPI readings, which can be measured anywhere in the
patient’s body just by touching the patient’s skin, are then used for establishing
a symmetric key that is valid only for one session. Previous work has shown
that the four least significant bits of IPIs are uncorrelated and independently
identically distributed (i.i.d) [19]. The IPI cannot be read remotely (e.g. via a
webcam), as shown by Rostami et al. [15]. Therefore, based on their results and
our assumptions, a remote attacker cannot measure the IPI. Fig. 2 shows the
IPI-based key establishment protocol.

To trigger the key establishment procedure, the patient first presses a button
on the BS. The PM and BS then take two readings of the patient’s IPI at the
same time. However, these readings are not equal (but rather similar) due to the
noise. Let us denote the reading taken by the BS as α and the reading taken
by the PM as β. Fuzzy extractors allow generating a cryptographic key k from
α and then successfully reproduce k from β, iff α and β are almost equal [5].
Fuzzy extractors are composed by two functions: generate

(

Gen
)

and reproduce
(

Rep
)

. Gen is executed by the BS with α as an input, and outputs a key k ǫ
{

0, 1
}l

and helper data P ǫ
{

0, 1
}

∗

. The BS then sends P in order to help the
PM to reproduce k. The PM executes Rep with β and P as inputs, and outputs
a key k’ (if β and α are similar, then k equals k’).

To achieve key confirmation, the BS generates a nonce, Nbs, and sends it
to the PM along with a Message Authentication Code (MAC), MACk(Nbs).
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Fig. 2. IPI-based key establishment protocol between the BS and the PM.

Upon receiving the message, the PM verifies MACk(Nbs) using k’. If the MAC
is verified correctly, the PM is assured that the BS knows the key; however the
BS does not have any assurance that the PM knows the key. For the PM to prove
knowledge of the key, it computes MACk(Nbs + 1) and sends it to the BS. The
BS repeats this operation with its own key and checks whether the result of this
operation corresponds to the received MAC. If the MAC is verified correctly,
both devices can use k, (hereafter denoted as Ks), to securely communicate with
each other, otherwise they execute the key establishment protocol again.

Reporting Medical Data to the HO: In this stage the patient’s PM sends
medical data to the HO. Fig 3 depicts the processes executed by the entities.

PM: The PM performs the following steps.
1. It generates a fresh nonce, Npm, that is used to compute two fresh pseudonyms.

First, it computes a pseudonym for itself, i.e. PSpm = PRFKpm-ps
(IDpm ‖ Npm),

where PRF is a pseudorandom function (e.g. a secure block cipher) and IDpm

is the PM’s real identity (e.g. serial number). This pseudonym is only used once
(i.e. in the message sent from the PM to the HO). Next, it computes a pseudonym
for the HO, i.e. PSho = PRFKho-ps

(IDho ‖ Npm), where IDho is the HO’s real
identity. This pseudonym is used in a pair of messages (i.e. the one sent from the
PM to the HO and vice versa). Both pseudonyms protect the patient’s privacy
while communicating with the HO, i.e. the PM uses PSpm and PSho instead of
IDpm and IDho.



2. It encrypts the patient’s medical data, d, and a counter, ctpm-ho, using the
secret key it shares with the HO, Kpm-ho, i.e. (C,T)pm-ho = AEKpm-ho

(ctpm-ho ‖
d). Since PMs do not contain a precise clock, a counter is used to prevent re-
play attacks. The counter is initialised to zero every time a new session key
between the BS and the PM is established. For better performance, the encryp-
tion method used is an authenticated encryption scheme (e.g. AES-CCM [1]),
which outputs a ciphertext, C, and an authentication tag, T.

3. It constructs a message, Mpm-bs = PSs ‖ (C,T)pm-ho ‖ Npm, where PSs =
PSpm ‖ PSho, and encrypts it using the session key previously established with
the BS, Ks, i.e. (C,T)pm-bs = AEKs

(ctpm-bs ‖ Mpm-bs).

4. It sends msgpm-bs = (C,T)pm-bs to the BS.

BS: Upon receiving msgpm-bs, the BS performs the following steps.

1. It verifies the authenticity of msgpm-bs and decrypts the ciphertext to
obtain (ctpm-bs ‖ Mpm-bs). It then checks whether the counter, ctpm-bs, is valid,
i.e. if it is higher than the counter of the last received message. If this condition
is satisfied, the message is accepted, otherwise it is rejected.

2. It generates a random session ID, Sid, that is valid for a pair of messages
and allows the HO to anonymously send a message back without knowing which
specific BS sent the message. Then it encrypts Sid along with Mpm-bs using the
public key of the DC, PKdc, i.e. Cbs-dc = EPKdc

(Sid ‖ Mpm-bs).

3. It constructs a message, Mbs-dc = (TSbs ‖ Cbs-dc), where TSbs is a times-
tamp of the BS used to counter replay attacks. TSbs does not need to be kept
secret and is sent unencrypted to the DC; however, its integrity is protected by
means of a digital signature. This allows the DC to check the freshness of the
message before decrypting the message and verifying its authenticity.

4. It generates a signature on Mbs-dc using its private key, SigSKbs
(Mbs-dc).

Then it constructs a message, msgbs-dc = Mbs-dc ‖ SigSKbs
(Mbs-dc), and sends it

to the DC via an anonymous communication channel.

DC: Upon msgbs-dc reception, the DC performs the following steps.

1. It verifies the freshness of msgbs-dc by checking TSbs and the authenticity
of the message using the BSs group public key, PKbsgroup . It then decrypts Cbs-dc

to obtain (Sid ‖ Mpm-bs), where Mpm-bs = (PSpm ‖ PSho ‖ (C,T)pm-ho ‖ Npm).

2. It retrieves IDho by computing PS’ho = PRFKho-ps
(IDhoi ‖ Npm) for all

HOs, (IDho1 , . . . , IDhon) until the DC finds a match, i.e. PS’ho equals PSho.

3. It constructs a message, Mdc = (PSpm ‖ IDho ‖ (C,T)pm-ho ‖ Npm), in
which PSho is replaced with IDho. Then it encrypts the message and the session
ID, Sid, using the public key of the HO, PKho, i.e. Cdc-ho = EPKho

(Sid ‖ Mdc).

4. It constructs a message, Mdc-ho = (TSdc ‖ Cdc-ho), where TSdc is a times-
tamp of the DC, and generates a signature on Mdc-ho using its private key,
SigSKdc

(Mdc-ho). Finally, it appends the signature to Mdc-ho in order to form a
message, msgdc-ho = Mdc-ho ‖ SigSKdc

(Mdc-ho), and sends it to the HO.



HO: Upon msgdc-ho reception, the HO performs the following steps.
1. It verifies the freshness of msgdc-ho by checking TSdc and the authenticity

of the message by checking the validity of SigSKdc
(Mdc-ho). It then decrypts

Cdc-ho to obtain (Sid ‖ Mdc), where Mdc = (PSpm ‖ IDho ‖ (C,T)pm-ho ‖ Npm).
2. It retrieves IDpm by computing PS’pm = PRFKpm-ps

(IDpm
i
‖ Npm) for

all PMs, (IDpm1
, . . . , IDpmw

), where w is the number of patients with a PM
registered in the HO, until a match is found, i.e. PS’pm equals PSpm.

3. It searches for IDpm in its database to retrieve Kpm-ho. Using this key,
the HO verifies and decrypts (C,T)pm-ho to obtain (ctpm-ho ‖ d). Next, the HO
verifies the freshness of the message by checking if the counter, ctpm-ho, is higher
than the counter of the previously received message. Only if this condition is
fulfilled, the HO accepts the patient’s medical data, d, as authentic and genuine.

4.3 PM Reprogramming Stage

After examining the patient’s medical data, the doctor can send the necessary
command(s) to adjust the PM’s settings. This stage, which can only take place
if the doctor is on-line, is described next and shown in Fig. 4.

HO: The HO performs the following steps.
1. It generates a fresh nonce, Nho, to create a fresh pseudonym for the PM,

PSpm. Then it increases the counter ctpm-ho, and encrypts it along with the
command, cmd, using Kpm-ho, i.e. (C, T)ho-pm = AEKpm-ho

(ctpm-ho ‖ cmd).
2. It constructs a message, Mho = (IDho ‖ PSs ‖ (C, T)ho-pm ‖ Ns), where

PSs = (PSpm ‖ PSho) and Ns = (Npm ‖ Nho). Next it encrypts Mho and the
session ID using the public key of the DC, i.e. Cho-dc = EPKdc

(Sid ‖ Mho).
3. It constructs a message Mho-dc = (TSho ‖ Cho-dc) and generates a signa-

ture on it, SigSKho
(Mho-dc). Then it constructs a message, msgho-dc = Mho-dc ‖

SigSKho
(Mho-dc), and sends it to the DC.

DC: Upon msgho-dc reception, the DC performs the following.
1. It verifies the freshness and authenticity of msgho-dc, and decrypts it to

obtain (Sid ‖ Mho). Once it learns IDho and Sid, it checks if Sid is a valid session
ID for this HO, i.e. if a message containing this session ID was previously sent
to this specific HO. It then constructs Mdc-bs = (Sid ‖ TSdc ‖ Mdc), where
Mdc = (PSs ‖ (C, T)ho-pm ‖ Ns), generates a signature on it, SigSKdc

(Mdc-bs),
and constructs a message, msgdc-bs = Mdc-bs ‖ SigSKdc

(Mdc-bs). Finally, msgdc-bs
is sent to the BS over the anonymous communication channel previously used.

BS: Upon msgdc-bs reception, the BS performs the following.
1. It verifies the freshness and authenticity of msgdc-bs before checking the va-

lidity of Sid, i.e. checking if this session ID is the same as one previously generated
by the BS. It then increases the counter by one, i.e. ctpm-bs = (ctpm-bs+1). It en-
crypts ctpm-bs and Mdc using the session key, i.e. (C, T)bs-pm = AEKs

(ctpm-bs ‖
Mdc), and constructs and sends a message, msgbs-pm = (C, T)bs-pm, to the PM.
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generate Npm

generate pseudonym for pm & ho
• PSpm = PRFKpm-ps(IDpm ‖ Npm)
• PSho = PRFKho-ps

(IDho ‖ Npm)
PSs = PSpm ‖ PSho

(C,T)pm-ho = AEKpm-ho
(ctpm-ho ‖ d)

Mpm-bs = (PSs ‖ (C,T)pm-ho ‖ Npm)
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msgbs-dc = Mbs-dc ‖ SigSKbs

(Mbs-dc)

verify freshness of msgbs-dc
verify authenticity of msgbs-dc
decrypt Cbs-dc to get (Sid ‖ Mpm-bs)
learn PSho & Npm

for i = {1, · · · , n}
• PS’ho = PRFKho-ps

(IDhoi ‖ Npm)
• check if PS’ho = PSho

• if PS’ho = PSho, learn ho’s ID
end for
Mdc = (PSpm ‖ IDho ‖ (C,T)pm-ho ‖ Npm)
Cdc-ho = EPKho

(Sid ‖ Mdc)
Mdc-ho = (TSdc ‖ Cdc-ho)
msgdc-ho = Mdc-ho ‖ SigSKdc

(Mdc-ho)

verify freshness of msgdc-ho
verify authenticity of msgdc-ho
decrypt Cdc-ho to get (Sid ‖ Mdc)
learn PSpm & Npm

for i = {1, · · · , w}
• PS’pm = PRFKpm-ps(IDpmi

‖ Npm)
• check if PS’pm = PSpm

• if PS’pm = PSpm, learn pm’s ID
end for
check database and recover Kpm-ho

verify authenticity of (C,T)pm-ho

decrypt C to get (ctpm-ho ‖ d)
verify freshness of d
accept d as authentic and genuine

msgpm-bs

msgbs-dc
msgdc-ho

Fig. 3. Medical data reporting protocol.

HO DC BS PM

generate Nho

Ns = (Npm ‖ Nho)
generate a new pseudonym for pm
PSpm = PRFKpm-ps(IDpm ‖ Ns)
PSs = (PSho ‖ PSpm)
ctpm-ho = (ctpm-ho + 1)
(C, T)ho-pm = AEKpm-ho

(ctpm-ho ‖ cmd)
Mho = (IDho ‖ PSs ‖ (C, T)ho-pm ‖ Ns)
Cho-dc = EPKdc

(Sid ‖ Mho)
Mho-dc = (TSho ‖ Cho-dc)
msgho-dc = Mho-dc ‖ SigSKho

(Mho-dc)

verify freshness of msgho-dc
verify authenticity of msgho-dc
decrypt it to get (Sid ‖ Mho)
checks the validity of Sid for IDho

Mdc = (PSs ‖ (C, T)ho-pm ‖ Ns)
Mdc-bs = (Sid ‖ TSdc ‖ Mdc)
msgdc-bs = Mdc-bs ‖ SigSKdc

(Mdc-bs)

verify freshness of msgdc-bs
verify authenticity of msgdc-bs
check the validity of Sid

ctpm-bs = (ctpm-bs + 1)
(C, T)bs-pm = AEKs(ctpm-bs ‖ Mdc)
msgbs-pm = (C, T)bs-pm

verify authenticity of msgbs-pm
decrypt it to get (ctpm-bs ‖ Mdc)
verify freshness by checking ctpm-bs

check validity of PSho

PS’pm = PRFKpm-ps(IDpm ‖ Ns)
verify PS’pm = PSpm

verify authenticity of (C,T)ho-pm
decrypt C to get (ctpm-ho ‖ cmd)
verify freshness of cmd
accept cmd as authentic and genuine

msgho-dc
msgdc-bs

msgbs-pm

Fig. 4. PM’s reprogramming protocol.



PM: Upon msgbs-pm reception, the PM performs the following steps.

1. It verifies the authenticity of msgbs-pm, decrypts it to obtain (ctpm-bs ‖
Mdc) and verifies the freshness of Mdc by checking ctpm-bs. It then verifies the
validity of PSho, i.e. checks if PSho has been previously generated at the PM.

2. It uses Kpm-ps, its own ID and Ns to verify the PM’s pseudonym, PS’pm =
PRFKpm-ps

(IDpm ‖ Ns).
3. It verifies the authenticity of (C,T)ho-pm, decrypts it to obtain (ctpm-ho ‖

cmd) and verifies the freshness of cmd. If the verifications are correct, it accepts
cmd as an authentic and genuine command sent from the patient’s HO.

5 Security Analysis

Message Authenticity: Messages exchanged between any of the entities con-
tain either a digital signature of the message originator or a MAC. Assuming that
a standard digital signature scheme (e.g. RSA or Schnorr variant of ECDSA [8])
or a MAC algorithm (e.g. AES CBC-MAC) are used, our protocol guaranties
source authentication, message integrity and non-repudiation (only with digital
signatures). Thus, attacks that attempt to modify the messages in transit can
be detected. All messages include either a counter or a timestamp to ensure
freshness, and hence prevent replay attacks (satisfy (S1) and (S2)).

Confidentiality of Medical Data and Commands: Medical data and
commands to modify the PM’s settings are always encrypted twice (i.e. in
two encryption layers). The inner-layer encryption is carried out between the
PM and the HO. This provides end-to-end security. The outer-layer encryp-
tion is performed between any two communicating entities, and used to hide
the pseudonyms from adversaries. In addition, it helps to prevent some types
of denial-of-service attacks (satisfy (S4)). Assuming that a standard encryption
scheme (e.g. AES) is used, it will be hard for eavesdroppers to learn the content
of the messages. Only authorised medical staff will be able to access the medical
data or send commands (satisfy (S3)).

Patient’s Identity Privacy: Each message exchanged between the PM and
the HO contains a distinct pseudonym to hide the PM’s real ID. This pseudonym
is generated using a PRF, e.g. AES-128, and the symmetric key that is known
only to the PM and the authorized HO. AES-128 can be used as a PRF as long
as the number of messages for one key is less than 240, which corresponds to more
than 4,000 encrypted messages per second exchanged between the HO and the
PM (assuming that the battery lasts 7 years). All unauthorized internal entities
(i.e. BSs and DC) as well as external adversaries will not be able to obtain the
PM’s real ID. Only the authorized hospital can recover the real ID of the PM,
and link the medical data to a specific patient (satisfy (P1.1)).

Hospital’s Identity Privacy: For each pair of messages exchanged between
the PM and the HO, the PM generates a distinct pseudonym to hide the real ID
of the hospital where it sends medical data. This pseudonym is generated using
a PRF, e.g. AES-128, and the symmetric key shared between all PMs and the
DC. As explained above, AES-128 is a secure PRF if the number of encrypted



messages is less than 240. However, external adversaries cannot have access to
the pseudonyms produced by the PRF, since pseudonyms are always sent in an
encrypted format between the communicating entities (satisfy (P1.2)).

Location Privacy: A low-latency anonymous channel (e.g. a Mix network)
between the BSs and the DC in combination with a group signature scheme
prevents the DC from learning the location of the BS while being used by the
patient (satisfy (P1.3)).

Session Unlinkability: Fresh and random pseudonyms are used in each
message exchanged between the PM and the HO. Therefore, by looking at the
exchanged messages, no unauthorized entity can link different sessions or learn
if two messages have been sent by the same PM (satisfy (P1.4)).

Protection against Stolen BSs or Pre-owned PMs: Since BSs are sim-
ply relay devices that do not have any pre-installed shared secrets with PMs,
adversaries who get a BS cannot access the content (i.e. medical data and com-
mands) of the messages exchanged between the PM and the HO. In addition,
adversaries who obtain a new or a pre-owned PM cannot send data to the HO.
Upon a PM replacement, the old PM’s ID and the corresponding keys are re-
moved from the database so that the patient is no longer linked to the old PM.

6 Conclusions

In this paper, we proposed a protocol that provides end-to-end security between
a PM and a HO while preserving the patient’s privacy. Each PM uses two fresh
pseudonyms for hiding the unique PM’s ID and the HO where the medical
data is sent. These pseudonyms allow the DC to forward the medical data to
the authorized HO without learning to whom the data belongs to, and prevent
adversaries from discovering the PM’s real ID and to which hospital the medical
data is sent. In addition, all BSs sign their messages using a group signature
scheme and send them to the DC over an anonymous channel. This allows (i) the
DC to verify the authenticity of the messages and (ii) the HO to link the medical
data to the patient without learning which specific BS sent the messages (i.e. the
location of the patient). Moreover, we presented an IPI-based key establishment
protocol that allows a PM and a BS to agree on a symmetric key without using
public-key cryptography or any pre-installed shared secrets.
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