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Abstract

The utilization of multi-antenna transmitters relying on full frequency reuse has proven

to be an effective strategy towards fulfilling the constantly increasing throughput require-

ments of wireless communication systems. As a consequence, in the last two decades

precoding has been a prolific research area, due to its ability to handle the interference

arising among simultaneous transmissions addressed to different co-channel users. The

conventional precoding strategies aim at mitigating the multi-user interference (MUI)

by exploiting the knowledge of the channel state information (CSI). More recently, novel

approaches have been proposed where the aim is not to eliminate the interference, but

rather to control it so as to achieve a constructive interference effect at each receiver. In

these schemes, referred to as symbol-level precoding (SLP), the data information (data

symbols) is used together with the CSI in the precoding design, which can be addressed

following several optimization strategies.

In the context of SLP, the work carried out in this thesis is mainly focused on devel-

oping more advanced optimization strategies suitable to non-linear systems, where the

per-antenna high-power amplifiers introduce an amplitude and phase distortion on the

transmitted signals. More specifically, the main objective is to exploit the potential of

SLP not only to achieve the constructive interference at the receivers, but also to con-

trol the per-antenna instantaneous transmit power, improving the power dynamics of the

transmitted waveforms. In fact, a reduction of the power variation of the signals, both

in the spatial dimension (across the different antennas) and in the temporal dimension,

is particularly important for mitigating the non-linear effects.

After a detailed review of the state of the art of SLP, the first part of the thesis is focused

on improving the power dynamics of the transmitted signals in the spatial dimension, by

reducing the instantaneous power imbalances across the different antennas. First, a SLP

per-antenna power minimization scheme is presented, followed by a related max-min fair

formulation with per-antenna power constraints. These approaches allow to reduce the

power peaks of the signals across the antennas. Next, more advanced SLP schemes are

formulated and solved, with the objective of further improving the spatial dynamics of

the signals. Specifically, a first approach performs a peak power minimization under

a lower bound constraint on the per-antenna transmit power, while a second strategy

minimizes the spatial peak-to-average power ratio.

The second part of this thesis is devoted to developing a novel SLP method, referred

to as spatio-temporal SLP, where the temporal variation of the transmit power is also

considered in the SLP optimization. This new model allows to minimize the peak-to-

average power ratio of the transmitted waveforms both in the spatial and in the temporal
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dimensions, thus further improving the robustness of the signals to non-linear effects.

Then, this thesis takes one step further, by exploiting the developed spatio-temporal

SLP model in a different context. In particular, a spatio-temporal SLP scheme is pro-

posed which enables faster-than-Nyquist (FTN) signaling over multi-user systems, by

constructively handling at the transmitter side not only the MUI but also the inter-

symbol interference (ISI). This strategy allows to benefit from the increased throughput

provided by FTN signaling without imposing additional complexity at the user termi-

nals. Extensive numerical results are presented throughout the thesis, in order to assess

the performance of the proposed schemes with respect to the state of the art in SLP.

The thesis concludes summarizing the main research findings and identifying the open

problems, which will constitute the basis for the future work.
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Chapter 1

Introduction

Current research in the context of wireless communications is facing the need to break

the existent throughput gridlock, in order to fulfill the ever-increasing demand for inter-

active services and multimedia content delivery. Since the wireless spectrum is a scarce

resource, which is becoming more and more congested, a main challenge is to find novel

system architectures and advanced signal processing techniques able to stretch the data

rate achievable utilizing the available bandwidth. In this direction, one solution relies

on the use of multi-antenna transceivers, which allow aggressive reuse of the frequency

spectrum by exploiting the additional degrees of freedom given by the spatial dimension.

This strategy allows to deliver information to different co-channel users sharing the same

time and frequency resources, through a space division multiple access scheme [1], thus

it can significantly boost the throughput performance. The related architectures are

known as multi-user multiple-input multiple-output (MIMO), when multiple antennas

are utilized both at the transmitter and at the receivers, or multi-user multiple-input

single-output (MISO), when a multi-antenna transmitter serves single-antenna users.

However, one crucial limitation of full frequency reuse schemes is the interference arising

among the simultaneous transmissions towards the different co-channel users, referred to

as multi-user interference (MUI). As a consequence, it is pivotal to employ appropriate

signal processing techniques in order to handle the MUI. In this framework, precoding

schemes have been shown to be effective in tackling the interference, while guaranteeing

specific system performance requirements. In a broad sense, precoding can be defined

as the design of the transmitted signals of a multi-antenna system aimed to efficiently

deliver the intended data stream to each user, tackling the MUI by exploiting the data

and channel state information. Precoding has found applications in many practical com-

munication systems, such as terrestrial cellular networks [2–6], satellite communications

(SatComs) [7–9], and visible light communications [10–12].
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Introduction 2

Conventional precoding techniques use knowledge of the channel state information (CSI)

to mitigate the MUI, therefore they can be referred to as channel-level precoding. In this

class of techniques, the generic scheme relies on the design of a precoding weight matrix

(or precoder), which depends only on the CSI. As a consequence, the precoder remains

constant for a whole block of symbols whose length is related to the coherence time of the

channel. In this framework, different strategies have been considered for the precoder

design. The optimal precoding strategy for the minimization of the total transmit power,

whilst guaranteeing some Quality-of-Service (QoS) targets at each user was given in [13,

14], while the problem of precoding for maximizing the minimum signal-to-interference-

plus-noise ratio (SINR) across the users, under sum power constraints, was optimally

solved in [15]. The goal of the latter formulation is to increase the fairness of the

system, hence the approach is also referred to as max-min fair. This work on channel-

level precoding was extended in [16] accounting for per-antenna power constraints, and

in [17] considering generalized power constraints. Furthermore, the problem of channel-

level precoding in a multigroup multicast framework has been tackled in [18, 19].

In the recent years, a new paradigm has been developed in the context of precoding,

known as symbol-level precoding (SLP), which is the main focus of this thesis work.

The term SLP refers to a class of precoding schemes where the transmitted signals are

designed exploiting the knowledge of both the CSI and the data information, constituted

by the symbols to be delivered to the users [20–25]. Differently from the conventional

channel-level schemes, the aim of SLP is not to cancel the interference, but rather to

control it so to have a constructive interference effect at each user. The classification of

the interference as constructive or destructive was given in [20], where a selective channel

inversion scheme was proposed in order to eliminate the destructive interference. A more

advanced SLP scheme was proposed in [21], based on the rotation of the destructive

interference so as to transform it into useful power. Several optimization strategies have

been considered in the literature for SLP, including the sum power minimization and

the max-min fair problem for phase shift keying (PSK) modulations [22], as well as

extensions to the case of multi-level modulations [23]. A detailed overview of the state

of the art in channel-level and symbol-level precoding is provided in chapter 2.

This thesis work goes beyond the state of the art in SLP, which is mainly focused on

a constructive exploitation of the MUI. On one hand, novel SLP strategies are pro-

posed which, besides leveraging the constructive interference effect at the receivers,

account for per-antenna power limitations and improve the robustness of the transmit-

ted waveforms to non-linear channels. On the other hand, SLP is also used to enable

faster-than-Nyquist (FTN) signaling over multi-user systems, by constructively handling

at the transmitter side not only the MUI but also the inter-symbol interference (ISI).

Motivation and scope of this thesis are specifically discussed in the following section.
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1.1 Motivation and Scope

The main motivation of this thesis is given by the considerations below:

� In practical systems it is common that each individual antenna has a dedicated

amplifier, resulting in a reduced flexibility in the power allocation amongst the

different radio frequency (RF) chains of the transmitter. This dictates the need to

consider the power limitations independently for each antenna, while performing

the precoding operation.

� While per-antenna power constraints have been considered in several works in

the context of channel-level precoding (see for instance [16]), the SLP schemes

available in the literature consider solely sum power constraints at the transmitter.

Therefore, they are not suitable to per-antenna power limited systems.

� The power amplifiers usually introduce non-linear effects which can degrade the

transmitted waveform [26, 27]. Therefore, good dynamic properties of the per-

antenna transmit power are required to limit the distortion effects. For single-user

links, predistortion techniques are used to deal with this problem [28]. However,

their extension to multi-user systems relying on precoding is not straightforward,

due to the complex nature of the constellations produced by the precoding opera-

tion. The non-linear effects are even more detrimental when multiple transmitting

antennas, each one having a dedicated amplifier, are considered. In fact, in this

case a phase distortion, dependent on the instantaneous transmitted power, ap-

plies independently to each transmitted stream. As a consequence, a high variation

across the instantaneous power transmitted by different antennas determines dif-

ferent phase shifts in the amplification stages, and this differential effect is a further

source of performance degradation.

� Based on the above point, in order to counteract the non-linear effects in the

context of SLP, it is important to control the per-antenna instantaneous transmit

power and, in particular, to reduce its variation both in the temporal dimension

and in the spatial one (i.e. among the different antennas). Although this issue has

already been addressed in the precoding literature resorting to peak-to-average

power ratio (PAPR) reduction or constant envelope precoding schemes [29–32],

this has not been done in the context of SLP based on constructive interference

and accounting for QoS constraints.

Based on these considerations, a first aim of this thesis is to develop novel optimization

strategies for SLP allowing to exploit the constructive interference effect and, at the same
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time, to control the instantaneous per-antenna power levels. Firstly, this is done solely

in the spatial dimension, by minimizing the per-antenna power amongst the antennas

under QoS constraints, as well as by improving the spatial power dynamics. The reason

of this space-only optimization is related to the inherent symbol-by-symbol processing

of SLP schemes, which prevents from controlling the power variations in the temporal

dimension. To fill this gap, in the second part of the thesis a novel SLP method is

proposed, referred to as spatio-temporal SLP, which models the transmitted waveforms

both in the spatial and in the temporal domain in the optimization procedure. This

method allows to optimize the power dynamics also in the temporal dimension, thus

further improving the robustness of the signals to non-linearities. A second aim of this

thesis is to use the introduced spatio-temporal SLP method to enable FTN signaling

over multi-user systems. In this regard, moving away from the traditional discrete

memoryless channel, SLP can jointly exploit the interference in the spatial dimension

(the MUI) and the interference in the temporal dimension (the ISI), using the pulse

shaping filters as additional side information for the precoding design. This strategy

allows to benefit from the increased throughput provided by FTN signaling without

imposing additional complexity at the user terminals. The novelty of this approach lies

in its ability to merge together the aggressive frequency reuse relying on precoding, the

FTN signaling, and the constructive interference effect, which involves both the MUI

and the ISI. An overview on the state of the art on FTN signaling is provided in chapter

2.

1.2 Thesis Outline

The main thread of the thesis is the development of novel SLP schemes which account

for per-antenna power limitations and improve the robustness of the signals to the non-

linear effects of practical systems. Nevertheless, in its second part the thesis goes beyond

this main thread, by introducing a multi-user FTN framework based on spatio-temporal

SLP. The outline of the thesis is as follows.

� Chapter 2 gives an overview on the state of the art in precoding, in particular

SLP, and in FTN signaling. Further, it presents the main working assumptions

and highlights with more detail the contributions of this thesis, related to the

existent literature.

� In chapter 3 a SLP per-antenna power minimization scheme under QoS constraints

is proposed, which allows to reduce the spatial power peaks of the transmitted

signals. Further, a related max-min fair approach under per-antenna power con-

straints is formulated and solved.
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� In chapter 4 two different more advanced symbol-level precoding strategies are pro-

posed, with the objective of reducing the power imbalances between the multiple

transmit antennas, and therefore to have improved performance over non-linear

channels. In both the proposed approaches QoS constraints are considered to

guarantee a per-user required SINR. The first presented algorithm minimizes the

per-antenna transmit power, and imposes a lower bound to the power carried by

each transmitted signal. In this approach, the imbalances between the different

RF chains are reduced by constraining the per-antenna transmit power within a

specific range. The second proposed scheme directly tackles a minimization of

the spatial peak-to-average power ratio (SPAPR) amongst the multiple transmit

antennas.

� In chapter 5 the spatio-temporal SLP method is presented, which is able to opti-

mize the power dynamics of the waveforms both in the spatial and in the temporal

dimensions, thus further enhancing the robustness of the signals to non-linear

effects. Specifically, the proposed scheme performs a minimization of the spatio-

temporal PAPR of the transmitted waveforms, under QoS constraints.

� Chapter 6 presents a spatio-temporal SLP scheme which enables FTN signaling

over multi-user MISO systems, managing at the transmitter side not only the

interference in the spatial dimension (the MUI), but also the interference in the

temporal dimension (the ISI). More specifically, two optimization schemes are

presented, one splitting the data streams in symbol blocks and tackling only the

ISI within each block, and another sequentially handling also the inter-block ISI.

� Finally, in chapter 7 conclusions are drawn and the open research challenges are

discussed.

1.3 Publications

The work presented in this thesis has resulted in a number of peer-reviewed conference

and journal papers, currently published or under revision, as well as in a patent filing.

The publications (fully or partially) included in this thesis are listed here below.

Journals

� J1: D. Spano, M. Alodeh, S. Chatzinotas and B. Ottersten, “Symbol-Level Pre-

coding for the Nonlinear Multiuser MISO Downlink Channel,” IEEE Transactions

on Signal Processing, vol. 66, no. 5, pp. 1331-1345, March 2018.
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� J2: D. Spano, S. Chatzinotas, S. Andrenacci, J. Krause, and B. Ottersten, “Per-

antenna Power Minimization in Symbol-level Precoding for the Multi-beam Satel-

lite Downlink”, International Journal of Satellite Communications and Network-

ing, May 2018.

� J3: D. Spano, M. Alodeh, S. Chatzinotas, and B. Ottersten, “Faster-than-Nyquist

signaling through spatio-temporal symbol-level precoding for the multiuser MISO

downlink channel,” IEEE Transactions on Wireless Communications, July 2018.

� J4: M. Alodeh, D. Spano, A. Kalantari, C. Tsinos, D. Christopoulos, S. Chatzino-

tas, and B. Ottersten, “Symbol-level and multicast precoding for multiuser multi-

antenna downlink: A state-of-the-art, classification and challenges,” IEEE Com-

munications Surveys and Tutorials, May 2018.

Conferences

� C1: D. Spano, M. Alodeh, S. Chatzinotas and B. Ottersten, “Per-Antenna Power

Minimization in Symbol-Level Precoding,” 2016 IEEE Global Communications

Conference (GLOBECOM), Washington, DC, 2016, pp. 1-6.

� C2: D. Spano, S. Chatzinotas, J. Krause and B. Ottersten, “Symbol-level pre-

coding with per-antenna power constraints for the multi-beam satellite downlink,”

2016 8th Advanced Satellite Multimedia Systems Conference and the 14th Signal

Processing for Space Communications Workshop (ASMS/SPSC), Palma de Mal-

lorca, 2016, pp. 1-8.

� C3: D. Spano, M. Alodeh, S. Chatzinotas, J. Krause and B. Ottersten, “Spatial

PAPR reduction in symbol-level precoding for the multi-beam satellite downlink,”

2017 IEEE 18th International Workshop on Signal Processing Advances in Wire-

less Communications (SPAWC), Sapporo, 2017, pp. 1-5.

� C4: M. Alodeh, D. Spano, S. Chatzinotas and B. Ottersten, “Faster-than-Nyquist

spatiotemporal symbol-level precoding in the downlink of multiuser MISO chan-

nels,” 2017 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), New Orleans, LA, 2017, pp. 3779-3783.

� C5: D. Spano, M. Alodeh, S. Chatzinotas, and B. Ottersten, “PAPR minimiza-

tion through spatio-temporal symbol-level precoding for the non-linear multi-user

MISO channel,” in 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), April 2018, to appear.
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Patents

� P1: M. Alodeh, D. Spano, and S. Chatzinotas, “Spatio-temporal precoding for

faster-than-Nyquist signal transmissions,” March 2017, Patent LU100110.

1.4 Publications not included in this thesis

The following publications, carried out in the context of the PhD work, are not included

in this thesis to keep it consistent. Nonetheless, they are still relevant to this thesis, as

they include preliminary results or extensions of the described ideas.

� BC1: D. Christopoulos, S. Andrenacci, D. Spano, S. Chatzinotas, J. Krause, and B.

Ottersten, “Multibeam joint processing satellites: cooperative relays, high above,”

Book chapter in Advanced Relay Technologies in Next Generation Wireless Com-

munication, IET 2016.

� C6: D. Spano, D. Christopoulos, S. Andrenacci, S. Chatzinotas, J. Krause, and B.

Ottersten, “Total degradation analysis of precoded signals onto non-linear satellite

channels,” in 21st Ka and Broadband Communications Conference, October 2015.

� C7: M. Alodeh, D. Spano, S. Chatzinotas and B. Ottersten, “Peak power mini-

mization in symbol-level precoding for cognitive MISO downlink channels,” 2016

IEEE International Conference on Digital Signal Processing (DSP), Beijing, Oc-

tober 2016, pp. 240-244.

� C8: S. Andrenacci, D. Spano, D. Christopoulos, S. Chatzinotas, J. Krause and B.

Ottersten, “Optimized link adaptation for DVB-S2X precoded waveforms based

on SNIR estimation,” 2016 50th Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, November 2016, pp. 502-506.

� C9: D. Spano, S. Chatzinotas, and B. Ottersten, “Sequential spatio-temporal

symbol-level precoding enabling faster-than-Nyquist signaling for multi-user MISO

systems,” 2018 26th European Signal Processing Conference (EUSIPCO), 2018, to

appear.





Chapter 2

Background and Contributions

In this chapter, an overview of the state of the art in precoding and in faster-than-

Nyquist (FTN) signaling is given, and the contributions of this thesis are highlighted.

First, the conventional channel-level precoding schemes are reviewed, describing their

common model and different optimization strategies. Then, the symbol-level precoding

(SLP) paradigm is described, by highlighting its peculiarities and discussing various

techniques proposed in the literature. Further, the chapter discusses the problem of

channel non-linearities and the concept of FTN signaling. Finally, an overview of the

contributions of this thesis is given.

2.1 Channel-level Precoding

Conventionally, precoding schemes treat the interference as a harmful factor to be mit-

igated, and they exploit the knowledge of the channel state information (CSI) to tackle

it. One of the earliest schemes concerning interference cancellation is dirty paper cod-

ing (DPC) [33, 34], a non-linear technique which pre-subtracts the interference and has

been shown to achieve the multiple-input multiple-output (MIMO) downlink capacity.

Albeit optimal, DPC methods are in general very complex [35] and assume codewords

with infinite length for the encoding of the data. A suboptimal counterpart of DPC is

Tomlinson-Harashima precoding (THP) [36, 37], which offers a complexity reduction at

a comparable performance. Nonetheless, the associated complexity is still prohibitive

and makes it impractical for current communication systems. On the other hand, sev-

eral linear precoding schemes have been proposed in the literature, having a much lower

complexity and therefore resulting more suitable for practical applications. Although

linear precoding does not achieve the optimum capacity bound of DPC, it has been

shown effective for several applications for handling the multi-user interference (MUI)

9
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while guaranteeing, at the same time, specific service requirements [13–15, 38–40]. Here-

inafter, the focus will be on linear precoding schemes.

The generic scheme for linear precoding relies on the design of a precoding weight matrix

(or precoder), which is used to pre-filter the data streams prior to transmission. The

precoder depends solely on the channel and remains constant for a whole block of symbols

(in time), whose length is related to the coherence time of the channel. Due to this

feature, this class of precoding schemes is referred to as channel-level precoding.

2.1.1 Communication Model

Let us assume that a base station is equipped with N transmit antennas and wishes

to transmit G symbol streams to K single-antenna users, with N ≥ K and K ≥ G.

Adopting a baseband discrete memoryless model, the received signal at the kth user for

the generic symbol slot n can be written as:

yk[n] = hkx[n] + zk[n], (2.1)

where hk ∈ C1×N is a complex vector representing the channel of the kth user, x[n] ∈
CN×1 is a complex vector representing the output signal from the N transmit antennas

and zk[n] is a complex scalar representing the additive white Gaussian noise (AWGN)

at receiver k for the symbol slot n, having power σ2z . The above communication model

can be written in a vector form as follows:

y[n] = Hx[n] + z[n], (2.2)

where y[n] ∈ CK×1 is a complex vector representing the received signal at all K users at

time n, H = [hT1 . . .h
T
K ]T ∈ CK×N is a complex matrix representing the system channel

matrix and z[n] ∈ CK×1 is a complex vector representing the AWGN for all K users at

instant n.

Let us also assume that each symbol stream is divided into blocks of T symbols, while

the channel matrix H remains constant for each block of symbols. In this context,

D = [d1 . . .dG]T ∈ CG×T is a complex matrix aggregating the T × 1 input symbol

vectors for each symbol stream, which are assumed uncorrelated in time and space and

having unit average power. Analogously, the matrix X ∈ CN×T represents the block

of output signals. The aim of precoding is to design the output symbols in X in order

to counteract the MUI and to efficiently convey the data streams in D to the users. In
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Figure 2.1: Schematic diagram of the trasmitter relying on channel-level precoding.

particular, for channel-level precoding the relation between X and D can be written as:

X = WD, (2.3)

where W ∈ CN×G is the precoding matrix applied to the entire information block D.

The precoding matrix can be written as W = [w1 . . .wG], each column representing a

precoding vector for the corresponding stream. From this formalization, it is clear how

the problem of channel-level precoding can be reduced to the problem of designing the

precoding matrix W , using the knowledge of the channel H, in order to mitigate the

interference. A block scheme of the transmitter relying on channel-level precoding is

shown in Fig. 2.1

Regarding the channel estimation, the receivers estimate their respective channel vectors

h1, . . . ,hK by exploiting a training sequence (pilot symbols) included in the framing

structure of the communication system, and the resulting CSI is transmitted back to

the base station through a feedback channel, in order to be available for the precoding

operation. Alternatively, in systems using time-division duplexing (TDD) the channel

can be directly estimated at the transmitter based on the uplink-downlink reciprocity

principle. The reader is referred to [13, 41] for a more detailed overview of the different

channel estimation strategies.

The above formulation considers G independent data streams to be delivered to K users,

with G ≤ K. It is important now to discuss separately the cases when G = K, G < K,

and G = 1 as they correspond to different services and, accordingly, to different classes
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of channel-level precoding schemes. In the first case, i.e. G = K, each data stream

is destined to a single intended user, and the related service type is known as unicast.

From an information theoretic point of view, this service type has been studied using

the broadcast channel [42]. Unicast precoding is the most studied class in the literature,

and its aim is to mitigate the interference among the different users. In the second case,

i.e. G < K, multiple independent messages are transmitted simultaneously but each

message is addressed to a group of users. This service is known as multicast, and the

related precoding schemes, aimed at mitigating the interference between the different

groups, are also referred to as multigroup multicast precoding [18, 19, 43–53]. Finally,

the case with G = 1 correspond to the broadcast service, in which a transmitter has

a common message to be sent to multiple receivers. In physical layer research, this

service has been studied under the term of physical layer multicasting [54–61]. Since a

single data stream is sent to all receivers, there is no multi-user interference. However,

precoding can still be used to improve the Quality-of-Service (QoS) across all users.

Below, an overview of channel-level precoding for the unicast, multicast, and broadcast

cases is given.

2.1.2 Channel-level Unicast Precoding

Concerning the class of unicast precoding, the literature provides some closed-form as

well as some solutions based on numerical optimization problems. The most relevant

closed-form solutions are zero forcing (ZF) precoding [62, 63] and minimum mean square

error (MMSE) precoding [64–67]. ZF is one of the simplest suboptimal techniques, which

decouples the multi-user channel into parallel single-user channel, thus canceling out the

multi-user interference. To this aim, the ZF precoding matrix can be calculated as the

pseudo-inverse of the channel matrix, asW = H†(HH†)−1. The ability of ZF precoding

to cancel out the interference makes it more appealing for the high signal-to-noise ratio

(SNR) regime. However, since ZF does not take into account the effect of noise, it does

not perform well in the low SNR regime (noise limited regime). MMSE precoding, on the

other hand, takes into account both the interference and the noise in order to improve the

system performance also in the noise limited scenarios [64]. The MMSE precoding matrix

can be written as W = H†(HH† + αI)−1, with α being a regularization parameter

inversely proportional to the SNR. Because of its expression, the MMSE precoder is also

referred to as regularized ZF [64, 68, 69]. It is worth mentioning also maximum ratio

transmission (MRT) precoding [70], aiming at maximizing the received SNR through a

precoding matrix as W = H†, which however is a suitable technique only in the noise

limited regime, where the multi-user interference can be neglected.
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The above mentioned closed-form solutions for precoding are effective and easy to im-

plement. However, they do not allow to optimize the system with respect to specific

objectives, or respecting specific constraints. In this regard, a number of objective-driven

precoding techniques have been devised, so to enhance the flexibility of the transmitter.

The literature on channel-level precoding includes different optimization strategies for

the precoding design. The two main performance metrics considered in the precoder op-

timization are the transmitted power and the QoS at the receivers. The usual approach

is to optimize one metric while using the other as a constraint, e.g., power minimization

under QoS constraints or QoS maximization under power constraints. Concerning the

transmitted power, both the average sum power and the average per-antenna power

have been considered in the literature. As to the QoS at the receivers, a typical metric

considered in the precoder design is the signal-to-interference-plus-noise ratio (SINR),

which enables to characterize the ratio of desired to undesired received power levels, but

also the rate has been used as a QoS metric. The vast majority of approaches in the

area of channel-level precoding consider Gaussian inputs, as a way of allowing the rate

to scale logarithmically with the SINR1.

The optimal precoding strategy for the minimization of the transmitted average sum

power, whilst guaranteeing some QoS targets at each user, was given in [14, 74]. For

channel-level precoding, it can be shown that the average sum power is P̄ =
∑K

j=1 ‖wj‖2.
Accordingly, the related optimization problem, which is optimally solved by semi-definite

relaxation (SDR), can be written as follows:

W (H,γ) = arg min
W

K∑
j=1

‖wj‖2

s.t.
|hjwj |2∑K

k 6=j,k=1 |hjwk|2 + σ2z
≥ γj , j = 1, . . . ,K, (2.4)

where the inputs are the channel matrix and a vector γ = [γ1, γ2, . . . γK ] including the

target SINR for the different users, and the output is the precoding matrix.

Another relevant precoding strategy aims at maximizing the minimum SINR across the

users, under a sum power constraint (SPC). This approach increases the fairness of

the system, thus it is known as max-min fair optimization. The related optimization

problem was solved in [75] based on the principles of uplink/downlink duality, and can

be written as:

1It is worth mentioning some notable exceptions ([71–73]).
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W (H, P ) = arg max
W

min
j

|hjwj |2∑K
k 6=j,k=1 |hjwk|2 + σ2z

s.t.

K∑
j=1

‖wj‖2 ≤ P.
(2.5)

Block-level precoding for unicast systems was extended in [16, 76] accounting for per-

antenna power constraints (PACs). In particular, it is worth mentioning that the

average per-antenna power (referring to the generic n-th antenna) can be written as

P̄n =
[∑K

j=1wjw
†
j

]
nn

. Moreover, further developments have been done considering

per-antenna-array power constraints [17] and non-linear power constraints [77].

Unicast multi-user precoding techniques have been proposed to utilize the spatial mul-

tiplexing gains of MIMO for different network capabilities such as multicell MIMO [78],

cognitive radio [79], physical layer security [80, 81], simultaneous wireless information

and power transfer [80, 82].

2.1.3 Channel-level Multicast Precoding

In the framework of channel-level multicast precoding, we assume multiple interfering

groups of users. In each group, each user receives a stream of common data. However, in-

dependent symbols are addressed to different groups and inter-group interference comes

into play. A unified framework for physical layer multicasting to multiple co-channel

groups was given in [18, 19, 43]. Therein, the power minimization and the fairness

problems were formulated, proven NP-hard and solved for the sum power constrained

multicast multigroup case. The sum power minimization problem, solved resorting to

SDR, can be written as:

W (H,γ) = arg min
W

G∑
k=1

‖wk‖2

s.t.
|hiwk|2∑G

l 6=k,l=1 |hiwl|2 + σ2z
≥ γi,

∀i ∈ Gk, k = 1, . . . , G,

where Gk denotes the k-th group of users.

The weighted max-min fair problem under SPC has been solved via bisection over the

power minimization problem, and can be written as:
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W (H, P ) = arg max
t,W

t

s.t.
1

γi

|hiwk|2∑G
l 6=k,l=1 |hiwl|2 + σ2z

≥ t,

∀i ∈ Gk, k,= 1, . . . , G,

G∑
k=1

‖wk‖2 ≤ P.

(2.6)

Different service levels among the users can be considered in this weighted formulation.

The problem receives as inputs the SPC P and the target SINR vector γ, and its goal is

to maximize the slack variable t while keeping the SINR at each user above this value.

Thus, it constitutes a max-min problem that guarantees fairness amongst users.

The weighted max-min fair problem has been addressed also accounting for PACs. In the

related optimization problem, analogous to (2.6), the PACs read as
[∑G

k=1wkw
†
k

]
nn
≤

Pn, ∀n ∈ {1 . . . N}. The weighted max-min fair problem with PACs has been solved in

[45, 46], based on SDR and Gaussian randomization to solve the power minimization

problem, and bisection to derive an accurate approximation of the non-convex max-min

fair formulation. Further, an alternative derivation of the precoder has been proposed

in [47], based on feasible point pursuit (FPP) successive convex approximation (SCA).

The application of multicasting in multi-user MIMO environment has been proposed

in different frameworks, such as cognitive radio [83], simultaneous wireless information

and power transfer [84], and hybrid analog digital beamforming for millimeter wave

[85]. Recently, the combination of multicast precoding with space-time coding through

multi-rank transmissions has been studied in [52, 83, 86–88].

2.1.4 Channel-level Broadcast Precoding

Broadcast precoding can be seen as a special case of multicast, where we have a single

group of users receiving the same data information. In this scenario, there is no inter-

ference since a single stream is sent to all users. Nonetheless, precoding can still be

adopted to improve the QoS across all users. In [54], the NP-hard broadcast precod-

ing problem was accurately approximated by SDR and Gaussian randomization. The

associated power minimization problem can be written as:

w(H,γ) = arg min
w

‖w‖2

s.t.
|hjw|2

σ2z
≥ γi, j = 1, . . . ,K,

(2.7)



Background and Contributions 16

wherew ∈ CN×1 represents the precoding vector for the unique transmitted data stream.

Since no interference mitigation is included in the optimization problem (2.7), there are

no constraints on the number of simultaneously served users, and the degrees of freedom

of the problem are entirely leveraged to transmit information. An information theoretic

capacity of broadcast precoding is studied in [55], where the scaling of the capacity as

the number of antennas and/or users is taken to infinity is analyzed. Further, robustness

for broadcast precoding is studied [56], where the goal is to design a beamformer that

minimizes the transmit power while satisfying probabilistic SNR constraints for line of

sight environment.

The broadcast transmissions are studied in different contexts such as cognitive radio [89],

simultaneous wireless and information power transfer [90], and coordinated multicell

networks [91]. Physical-layer transmission techniques that combine multicast, unicast

and broadcast have been proposed in [92–99].

2.2 Symbol-level Precoding

The interference among multiple simultaneous transmissions leads to a deviation of the

received symbols from their original position within their reference constellation. As

previously discussed, channel-level precoding treats the interference as harmful factor

that should be mitigated. In this case, precoding cannot tackle the interference suffered

by each symbol, and tries to reduce the interference along a whole block of symbols (or

codeword) exploiting the knowledge of the CSI. An illustrative example of a received

signal corrupted by interference is shown in Fig. 2.2, where a target symbol in the first

quadrant of a quadrature phase shift keying (QPSK) modulation is considered. The

target signal is the signal dedicated to the intended user and the interfering signals are

the ones transmitted towards the other users. The interfering signals tend to deviate

the received target symbol in any direction, and the aim of channel-level precoding is

to reduce the average power of interference, so as to prevent it from pushing the target

symbol outside its detection region.

On the other hand, in SLP the interference can be controlled symbol-by-symbol, there-

fore the main objective is not an average reduction of the interference power, but rather

a rotation of the interfering signals aimed at pushing the target symbol deeper into its

detection region. In other words, as illustrated in Fig. 2.3, SLP controls the interfer-

ence in order to make it constructive at each user and for each symbol. During the

past years several symbol-level processing techniques have been utilized in the multi-

user multiple-input single-output (MISO) context [20–24, 100–112]. The MUI can be

classified into constructive or destructive based on whether it facilitates or deteriorates
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Figure 2.2: Received signal corrupted by interference, with channel-level precoding.

the correct detection of the received symbols. Fig. 2.4 illustrates the two scenarios of

destructive and constructive interference for the case of a QPSK modulation. A detailed

classification of interference is thoroughly discussed in [20], for binary phase shift keying

(BPSK) and QPSK modulations, and in [22], for phase shift keying (PSK) modulations.

A selective channel inversion scheme was proposed in [20] in order to eliminate the de-

structive interference, while a more advanced SLP scheme was proposed in [21], based

on the rotation of the destructive interference so as to transform it into useful power.

Moreover, similarly to the channel-level case, also in SLP different objective-oriented

strategies have been considered in the literature. It should be stressed that SLP has

been studied only in the context of unicast transmissions, while its application for han-

dling the inter-group interference in multicast scenarios has not been addressed in the

literature. Hence, hereinafter the focus is on unicast communications.

Referring to the communication model in (2.1), the aim of SLP is to design the trans-

mitted signal vector x for each symbol slot2, using the knowledge of both the CSI H

and the data information d for achieving constructive interference. A block scheme of

the transmitter relying on SLP is shown in Fig. 2.5. It is clear how in SLP the precoding

processing takes place on a symbol-by-symbol basis, differently from the channel-level

case, where the calculated precoder is fixed as long as the channelH does not change. In

the context of SLP, one can directly design the transmitted signal vector x, as shown in

the provided block scheme, but a model based on a precoding matrix W is still possible

(see for instance [22]). In particular, it is possible to design the matrix W = [w1 . . .wK ]

2In order to ease the notation, hereafter the time index n is omitted in formulas.



Background and Contributions 18

In phase (Real)

Q
u

a
d

ra
tu

re
 (

im
ag

in
ar

y)

Interfering signals

Figure 2.3: Constructive interference effect in SLP.
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Figure 2.4: Illustration of destructive (on the left) and constructive (on the right)
interference, considering a single interfering signal and a QPSK modulation.

for each symbol slot, using both the CSI H and the data information d, and then calcu-

late the transmitted signal vector as x = Wd =
∑K

k=1wkdk. The precoding vectors in

the context of SLP have been used in [22] to classify the interference for PSK modula-

tions. Specifically, the normalized interference induced from the k-th data stream onto

the j-th user can be formulated as:

ψjk =
hjwk

‖hj‖‖wk‖
. (2.8)

An M -PSK modulated symbol dj is said to receive constructive interference from another

simultaneously transmitted symbol dk, which is associated with wk, if and only if the
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Figure 2.5: Schematic diagram of the trasmitter relying on SLP.

following condition holds:

∠dj −
π

M
≤ ∠(ψjkdk) ≤ ∠dj +

π

M
, (2.9)

which imposes the received interfering signal, originating from the symbol dk, to push the

target symbol dj deeper into its detection region. Further, the constructive interference

condition has the property of mutuality among pairs of transmitted streams [22].

For constructively interfering symbols, the amplitude of the received signal can be

bounded as:

‖hj‖
(a)

≤ |yj |
(b)

≤ ‖hj‖
(

1 +

K∑
∀k,k 6=j

|ψjk|
)
. (2.10)

The inequality (a) holds when all simultaneous users are orthogonal, while (b) holds

when all interfering signal are aligned with the intended symbol. On the other hand, in

the case of channel-level precoding techniques, the amplitude of the received signal is

bounded as:

0
(a)

≤ |yj |
(b)

≤ ‖hj‖,

with the best case scenario being a complete interference cancellation.

The optimal design for SLP depends on the specific definition of the related optimization

problem, and more importantly on how the constraints on constructive interference are

defined. The optimal SLP strategy for the minimization of the total transmit power,

whilst guaranteeing QoS targets at each user, was given in [22–24, 103–106]. For PSK

modulations, the related optimization problem can be written as follows:
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W (d,γ,H) = arg min
W

‖
K∑
k=1

wkdk‖2

s.t. |hj
K∑
k=1

wkdk|2 ≥ γjσ2z , j = 1, . . . ,K,

∠(hj

K∑
k=1

wkdk) = ∠sj , j = 1, . . . ,K, (2.11)

where an equality constraint has been imposed on the phase of the received symbols for

achieving constructive interference. As already mentioned, the problem can be formu-

lated in order to optimize directly the output vector x, by using x =
∑K

k=1wkdk. The

direct optimization of x will be considered hereafter (as well as in the remainder of this

thesis), since it allows to skip the intermediate step optimizing W .

The problem (2.11) has been extended to multi-level modulations, by exploiting the

constructive interference on the outermost points of the reference constellation D while

imposing an interference cancellation for the inner points. In particular, for amplitude

phase shift keying (APSK) modulations the SLP sum power minimization problem can

be formulated as:

x(d,γ,H) = arg min
x

‖x‖2

s.t. |hj
K∑
k=1

wkdk|2 D κ2jγjσ2z , j = 1, . . . ,K,

∠(hj

K∑
k=1

wkdk) = ∠sj , j = 1, . . . ,K, (2.12)

where κj = |dj |/
√
ED[|dj |2] is a magnitude scaling factor for the symbol dj , which allows

to account for the different amplitudes of the symbols in the multi-level constellation

(see [23]), while D is used as a generalized inequality to be read as ≥ or as = depending

on whether the constraint is referred to a boundary symbol or to an internal symbol

of the constellation, respectively. Further, the optimization can be tailored to exploit

the detection regions of quadrature amplitude modulation (QAM) schemes, by referring

the constraints to the in-phase and the quadrature components of the received symbols,

rather than their magnitude and phase. In this case, the optimization can be formulated
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as:

x(d,γ,H) = arg min
x

‖x‖2

s.t Re(hjx) R σz
√
γj Re(dj), j = 1, . . . ,K,

Im(hjx) R σz
√
γj Im(dj), j = 1, . . . ,K, (2.13)

where R denotes a generalized inequality, which shall be read as >,< or = depending

on the position of the data dk[i] within the QAM constellation and, accordingly, on its

detection region.

The optimization problems above have been addressed in [23], where their reformula-

tion into equivalent physical layer multicasting problems has also been discussed. Several

different SLP schemes have been proposed in the literature. In [24, 105], the construc-

tive interference precoding design is generalized under the assumption that the received

PSK symbol can reside in a relaxed region in order to be correctly detected. Moreover, a

weighted maximization of the minimum SNR among all users is studied, taking into ac-

count the relaxed detection regions. A symbol error rate (SER) analysis for the proposed

schemes is discussed, characterizing the tradeoff between transmit power reduction and

SER increase due to the relaxation. These precoding schemes achieve a better energy

efficiency in comparison to the techniques in [22, 103]. In [108], a SLP scheme aiming at

manipulating both the desired signal and the interfering signals is proposed, such that

the desired signal can be superimposed with the interfering signals. In this approach, a

Jacobian-based algorithm is applied to enhance the performance. The concept of con-

structive interference has been further studied in [113], where a systematic definition of

optimal and relaxed constructive interference regions is given.

Since the CSI acquisition in most systems is not perfect, a number of works on SLP have

also proposed robust schemes accounting for different types of channel errors. In [110],

the interference is decomposed into predictable interference, manipulated constructively

by the base station, and unpredictable interference, caused by the quantization error.

First, an upper bound for the unpredictable interference is derived. Then, the objective

is to align the predictable interference at the base station so that its power is much

greater than the derived upper bound. During this process, to intensify the received

signal power, the base station simultaneously aligns the predictable interference so that

it is constructively superimposed with the desired signal. Different approaches aimed

at guaranteeing the robustness of SLP have been proposed in [108–110, 114]. These

approaches are based on assuming that the errors in CSI is bounded, and the precoding

is designed taking into consideration the worst case scenario. The problem in [109] is

formulated as second order cone program and can be solved using conventional convex

optimization tools.
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Recently, hybrid analog-digital schemes have been proposed in the context of SLP, in

particular for massive MIMO systems [115]. In fact, in these systems the very large

number of antennas hinders the practical application of fully digital precoding schemes,

due to the high hardware complexity and power consumption. The utilization of hybrid

structures allows to dramatically reduce the power consumption, by reducing the num-

ber of radio frequency (RF) chains. In hybrid schemes, the precoding process is divided

into the analog domain and digital domain: while phase shifters are applied to provide

high dimensional phase-only controls in the analog domain, in the digital domain low-

dimensional digital processing is applied to handle the interference. In particular, in [115]

a SLP scheme based on constructive interference is proposed for hybrid massive MIMO

architecture. In order to further reduce the power consumption, the proposed approach

relies on the utilization of 1-bit digital-to-analog converters. Further, the concept of con-

structive interference has been also exploited in the context of cognitive radio networks

in [103], where the focus is on the X-channel, and in [116], focused on the Z-channel.

SLP has been applied also in the context of physical layer security in [117], where the

concept of constructive interference is exploited to design artificial noise beamformers

constructive to the intended receiver but disruptive to possible eavesdroppers.

2.2.1 Directional Modulation

A different research avenue developed in the context of channel and data dependent pre-

coding is known as directional modulation. Directional modulation refers to an analog

design strategy where amplitude and phase of each antenna are controlled on a symbol

basis, so as to efficiently deliver the intended data to the users. The main difference

between directional modulation and SLP is that the former focuses on applying array

weights in the analog domain, such that the signals on the receiving antennas have the

desired amplitude and phase, while the latter focuses on a digital design at the trans-

mitter, usually aimed to create constructive interference. One of the main application

of directional modulation is physical layer security, thus directing the data towards the

specific direction of the intended users while hindering the communication towards any

possible eavesdropper. In [118], the baseband in-phase and quadrature components of

the signals are separately used to excite two different antennas, so that symbols are

correctly transmitted only in a specific direction and scrambled in other directions. In

another paradigm, [119] uses random and optimized codebook selection, where the op-

timized selection suppresses large antenna side lobes, in order to improve the security

in a millimeter-wave large antenna array system. The authors of [120] derive optimal

array weights to get a specific bit error rate (BER) for QPSK modulations in the desired

and undesired directions. Further, the Fourier transform is used in [121, 122] to create
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the optimal constellation pattern for QPSK directional modulations, while the effect of

array structure on the directional modulation performance is investigated in [123]. In

particular, the authors have shown that, by increasing the space between the antennas

of a two element array, the symbol error rate can be improved for higher order PSK

modulation schemes. To overcome imperfect measurements, the authors of [124] pro-

pose a robust design for directional modulation in the presence of uncertainty in the

estimated direction angle.

In [125, 126], the directional modulation design in a MIMO fading channel has been

addressed, considering an arbitrary number of users and symbol streams. Moreover,

the necessary conditions for the existence of the precoder for the directional modulation

transmitter are derived. The power and SNR minimization precoder design problems are

simplified into a linearly-constrained quadratic programming problem. For faster design,

an iterative approach as well as non-negative least squares formulation are proposed.

SLP and directional modulation are conceptually similar, since they both exploit the

data information and the CSI in order to efficiently deliver the intended messages to

specific users. Nonetheless they refer to different contexts and architectures, with SLP

being driven by multi-user performance optimization, and directional optimization being

driven by implementational aspects. In the remainder of this thesis, the focus will be

on SLP, thus assuming a fully digital architecture.

2.3 Non-linear Amplification Stage

The system model described in (2.1)-(2.2) is a linear one. However, as already mentioned,

it should be considered that the introduced system model is actually corrupted by the

non-linear effects introduced in the per-antenna power amplification stages [26, 27],

which affect both the amplitude and the phase of the transmitted waveforms. The

input-output characteristics of several typologies of high-power amplifiers (HPAs) are

available in the literature [27, 127–131], including the amplitude-to-amplitude (AM-

AM) and the amplitude-to-phase (AM-PM) effects. Moreover, analytical models are

available for describing the distortion effects of the HPAs, such as Saleh model [132]

for traveling-wave tube amplifiers (TWTAs) and a modified version [133] for solid state

power amplifiers (SSPAs). To model such non-linear effects, the input signal to the HPA

on the generic i-th RF chain of the transmitter can be written in polar coordinates as:

xi = ρiexp(ιθi), (2.14)
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Figure 2.6: Block scheme of the transmitter relying on SLP, for a generic symbol slot.

where ρi and θi are the amplitude and the phase of xi, respectively. Then, the output

signal of the HPA can be written as:

x̂i = fA(ρi)exp(ιfP (ρi))exp(ιθi), (2.15)

with fA(·) and fP (·) denoting the AM-AM and the AM-PM conversions, respectively.

The resulting system model is shown in Fig. 2.6. A practical example of non-linear

HPA is given in Fig. 2.7, where the (normalized) AM-AM and AM-PM characteristics

of the non-linearized TWTA model of [130] are represented. Such characteristics clearly

show the saturation effect and the introduced phase distortion, respectively. The model

of Fig. 2.7 will be used as a practical reference in this thesis, in particular for the

numerical results, as it constitutes a highly non-linear model (especially with respect to

the AM-PM curve) allowing a proper validation of the proposed SLP schemes. However,

it should be stressed that all schemes for non-linear channels proposed in this thesis are

applicable to any non-linear AM-AM/AM-PM characteristic, modeled in the form of

(2.15).

The importance of taking into account the non-linear effects of the amplification stages

in the precoding design lies in the two following considerations.

� In some applications, such as satellite communications [127, 128], the power is a

scarce resource that has to be efficiently exploited. As a consequence, the HPAs

need to be operated as close as possible to their saturation point, and the conse-

quent AM-AM distortion cannot be neglected.
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Figure 2.7: An example of non-linear amplifier: normalized AM-AM and AM-PM
characteristics of the non-linearized TWTA of DVB-S2 standard.

� In other applications the power scarcity is not a crucial issue, therefore stretching

the operating region of the HPAs close to saturation is not necessitated. However,

there might be the need to employ cheap hardware components for the RF chains,

and specifically cheap amplifiers showing more severe non-idealities. This is for

example the case of massive-MIMO [134].

In this framework, it is important to control the instantaneous transmitted power and

to minimize its peaks, in order to mitigate the performance degradation due to the

AM-AM distortion. Furthermore, the use of separate per-antenna HPAs comes with an

additional impairment. In fact, as clear from the phase characteristic of the example

in Fig. 2.7, the per-antenna amplifiers introduce a phase shift which is considerably

different for different instantaneous powers feeding the HPAs. As a consequence, the

precoded data streams transmitted on the separate RF chains will experience a different

phase shift through the amplification stages, due to the variable power carried out by

the symbols. This specific issue, which will be referred to as differential phase shift,

has not been considered in previous literature, and constitutes an additional source of

degradation of the overall system performance.

The SLP strategy, which designs the transmitted signals on a symbol-by-symbol ba-

sis, has the potential to control the instantaneous transmit power and in particular to

improve the power dynamics accounting for the aforementioned effects. It should be

mentioned that this is not possible in the conventional channel-level approach, where

the precoder is designed for an entire codeword, including several symbols, hence the
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transmitted power can be controlled only in average and not symbol by symbol. Accord-

ingly, this thesis proposes novel SLP schemes coping with the problems of saturation

and differential phase shift, arising when non-linear HPAs are used. The main aim is

to reduce the power peaks of the transmitted waveforms, firstly accounting only for

the spatial dimension (i.e., for the power distribution among the different antennas),

and then considering also the waveforms in the temporal dimension. It should be also

remarked that a number of works available in the literature have proposed precoding

techniques suitable for non-linear channels, especially in the context of massive MIMO

systems [29–31]. In particular, these works aim at reducing the peak-to-average power

ratio (PAPR) of the transmitted waveforms, or even at designing constant-envelope sig-

nals. A fundamental novelty of this thesis with respect to [29–31] lies in the fact that

the proposed techniques are able to leverage the constructive interference effect, while at

the same time addressing the problem of non-linearities. As a consequence, the exploita-

tion of the MUI as a beneficial factor constitutes an inherent advantage of the proposed

schemes. A SLP approach achieving constructive interference and accounting for non-

linear channels has also been proposed in [112]. However, the scheme therein proposed

aims to a constant envelope precoding design for PSK modulations, thus having a fixed

power for each symbol slot and for every antenna. On the other hand, the techniques

proposed in this thesis do not perform constant envelope precoding, but they optimize

the power dynamics accounting for QoS constraints for the users, following an opti-

mization framework in line with [22, 23] and also accounting for multi-level modulation

schemes. Furthermore, in the second part of the thesis, where the temporal dimension

is addressed, the waveforms are modeled accounting for oversampling and not only for

the symbol-by-symbol power.

2.4 Faster-than-Nyquist Signaling

As mentioned in chapter 1, this thesis is not solely focused on developing SLP schemes

for non-linear channels, but also proposes, in its second part, a novel SLP method which

enables FTN signaling over multi-user MISO systems. Herein, an overview on FTN

signaling and on the related studies is provided, highlighting the novelty of this thesis

with repect to them.

FTN signaling is a signal processing strategy which has been studied, in parallel to

the full frequency reuse architectures, in order to increase the spectral efficiency of

wireless communications [135–141]. The key idea of FTN signaling is a reduction of the

time spacing between two adjacent pulses (the symbol period) below the one satisfying

the Nyquist condition. In other words, in FTN signaling the data rate is increased
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Figure 2.8: Nyquist vs. Faster-than-Nyquist for a sinc pulse, in the time domain.

by accelerating the transmitted pulses in the temporal dimension (time packing), thus

introducing controlled inter-symbol interference (ISI) which needs to be handled. This

is graphically shown in Fig. 2.8 for the case of a sinc pulse, where it can be seen how

in the FTN case the subsequent pulses are not orthogonal, and therefore the increased

data rate comes with ISI that has to be tackled.

The FTN concept was firstly introduced in the mid 70s by Mazo in [135], where it was

shown that, given a fixed bandwidth, it is possible to accelerate binary sinc pulses up

to a factor of 0.802 with respect to the Nyquist3 limit without damaging the error rate.

Although this result was initially received with skepticism and was not developed for

many years, the interest in FTN has grown in the last decade. In [136] it was shown

that the FTN concept applies also with squared root raised cosine (SRRC) pulses, which

allow a higher acceleration thanks to their excess bandwidth. In [137] the achievable

rate regions for FTN broadcast were investigated, considering SRRC pulses. Further,

FTN has also been extended in the frequency domain, by squeezing the signals together

in frequency just as they were accelerated in time [138]. The FTN principle has also

been applied jointly in two dimensions, time and frequency, for multi-carrier systems

3This means considering a symbol period equal to 0.802 times the one allowed by the Nyquist con-
dition.
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[139, 140], showing improved achievable rate performance. A review of the work on

FTN signaling can be found in [141]. The main problem of FTN signaling is the need

to cope with the introduced ISI, which in turn results in complex receivers relying on

trellis decoders as well as ad hoc equalization schemes, which are often prohibitive in

practical applications.

In this thesis, a novel transmission method is proposed which allows to merge the ag-

gressive frequency reuse relying on precoding and the FTN signaling. Considering a

generic multi-user MISO system, the main idea is to extend the concept of symbol-level

precoding in order to tackle at the transmitter side not only the interference in the spa-

tial dimension (the MUI), but also the interference in the temporal dimension (the ISI),

using the pulse shaping filters as additional side information. The novelty with respect

to the state of the art in FTN signaling is, on one hand, the application of FTN in a

multi-user MISO framework and, on the other hand, the ability to completely handle

the ISI at the transmitter side, which solve the problem of having highly complex re-

ceivers for FTN. Furthermore, it is important to highlight that this approach allows to

exploit in a constructive fashion the interference both in the temporal and in the spatial

dimensions, thus gleaning benefits from both the domains.

2.5 Main Assumptions in the Thesis

The main assumptions considered in this thesis are the following:

� Unicast transmissions are considered, i.e., each data stream is destined to a single

user. As mentioned, the extension to SLP to multicast scenarios is not straight-

forward and has not been addressed in the literature so far.

� Perfect knowledge of the CSI is assumed in the formulation of the proposed tech-

niques, thus the robustness to channel errors is out of the scope of this thesis.

Nonetheless, when specified so, channel uncertainties are considered in the numer-

ical results.

� Only quasi-static flat fading channels are considered, in a single-carrier scenario.

The extension to frequency selective channels, which comes with the need to tackle

the related ISI, is part of the future work. Concerning the channel model, the

presented SLP schemes apply to any full-rank channel matrix. For numerical

results, the main considered channel model is a Rayleigh fading channel, but also

satellite channel models are considered (the simulated channel model is always

specified throughout the thesis).
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� Single-antenna users are considered. Moreover, the problem of optimal user schedul-

ing is not addressed, as the main focus is on optimizing the transmitted waveforms

accounting for QoS constraints.

� The design of the proposed SLP schemes does not take into account the application

of forward error correction (FEC) schemes. However, when specified so, FEC has

been considered for the numerical results.

� The proposed approaches consider different modulation schemes for the data infor-

mation, however no adaptive coding and modulation (ACM) scheme is considered.

� The considered models for non-linear HPAs are memoryless. Moreover, the inter-

symbol interference created by the non-linear amplification stages is not modeled

in the proposed optimization schemes (although accounted for in the numerical

evaluation).

� A fully digital architecture is assumed, as the focus is on the design of the trans-

mitted baseband waveforms.

2.6 Thesis Contributions

The main contributions of this thesis are discussed hereafter, for each of the presented

chapters.

2.6.1 Chapter 3: Symbol-level Precoding for Per-antenna Power Lim-

ited Systems

In this chapter, novel SLP schemes are proposed in order to account for the per-antenna

power limitations of multi-user MISO systems, while constructively exploiting the in-

terference. In fact, a common practice in multi-antenna systems is the use of sepa-

rate per-antenna amplifiers, thus considering the power constraints individually for each

transmitting antenna is particularly important. First, the problem of per-antenna power

minimization in SLP is formulated and solved, under QoS constraints given in the form

of per-user target SINR. Then, the SLP max-min fair problem under per-antenna power

constraints is formulated and tackled through a bisection procedure over the previous

power minimization problem. This precoding design optimizes the system performance

at the receiver side in terms of SINR, whilst guaranteeing the system fairness and al-

lowing a control over the power transmitted by each antenna. Besides accounting for

individual per-antenna power limitations, the proposed schemes allow a reduction of

the power peaks in the spatial dimension. Numerical results are presented to show the
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effectiveness of the proposed schemes, which outperform the existing state of the art tech-

niques in terms of reduction of the power peaks and of the PAPR across the transmitting

antennas. The contributions of this chapter have been published in [129, 142, 143].

2.6.2 Chapter 4: Symbol-level Precoding for the Non-linear multi-user

MISO Downlink Channel

This chapter presents more advanced SLP strategies, which exploit the potential of

SLP not only to achieve constructive interference but also to control the per-antenna

instantaneous transmit power. In particular, the power peaks amongst the transmit-

ting antennas and the instantaneous power imbalances across the different transmitted

streams are minimized. These objectives are particularly relevant with respect to the

non-linear amplitude and phase distortions induced by the per-antenna amplifiers, which

are important sources of performance degradation in practical systems. More specifi-

cally, this work proposes two different SLP approaches. The first approach performs

a weighted per-antenna power minimization, under QoS constraints and under a lower

bound constraint on the per-antenna transmit power. The related optimization problem

is solved through an iterative procedure relying on SCA. The second strategy performs a

minimization of the spatial PAPR, evaluated amongst the transmitting antennas, under

QoS constraints. The related optimization problem is tackled by resorting jointly to

parametric programming and SCA. Numerical results are presented in a comparative

fashion to show the effectiveness of the proposed techniques, which outperform the state

of the art SLP schemes in terms of spatial PAPR and spatial dynamic range. Moreover,

a simulation accounting for the oversampled transmitted waveform and for a non-linear

HPA model is considered, in order to assess the enhanced robustness of the introduced

schemes to non-linear effects, based on SER results. The contributions of this chapter

have been published in [144, 145].

2.6.3 Chapter 5: PAPR Minimization through Spatio-temporal Symbol-

level Precoding

In this chapter, a novel precoding method is proposed, referred to as spatio-temporal

SLP, which allows to optimize the transmitted waveforms not only in the spatial di-

mension but also in the temporal dimension, accounting for the pulse shaping at each

antenna. In particular, this new strategy is used for minimizing the PAPR of the trans-

mitted waveform both in space and time, while at the same time exploiting the construc-

tive interference effect. The related optimization problem can be formulated similarly to

the spatial PAPR minimization of chapter 4, therefore it is addressed resorting once more
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to parametric programming and SCA. By accounting also for the temporal dimension of

the waveforms, the spatio-temporal SLP strategy further improves the robustness of the

signals to non-linear channels with respect to the previous methods. Numerical results

are presented to highlight the enhanced performance in terms of power distribution and

SER over non-linear channels. The contributions of this chapter have been published in

[146].

2.6.4 Chapter 6: Faster-than-Nyquist Signaling through Spatio-temporal

Symbol-level Precoding

In this chapter, the concept of spatio-temporal SLP is applied in order to go beyond the

classical precoding paradigm aimed at handling the MUI. In particular, spatio-temporal

SLP is used to enable FTN signaling over multi-user MISO systems, by constructively

exploiting the interference both in the spatial dimension (MUI) and in the temporal

dimension (ISI). By merging aggressive frequency reuse relying on precoding and FTN

signaling, the proposed method enhances the rate performance without imposing ad-

ditional complexity at the user terminals. Two different optimization strategies are

considered: a first approach splits the data streams in blocks of symbols and tackles

the interference (MUI and ISI) within each block; a second approach performs a se-

quential optimization and handles also the inter-block interference. Numerical results

are presented in a comparative fashion to show the effectiveness of the proposed tech-

niques, which outperform the state of the art symbol-level precoding schemes in terms

of SER, effective rate, and energy efficiency. The contributions of this chapter have been

published in [147, 148].
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Chapter 3

Symbol-level Precoding for

Per-antenna Power Limited

Systems

In this chapter, novel symbol-level precoding (SLP) schemes are proposed in order to

account for the per-antenna power limitations of practical multi-user multiple-input

single-output (MISO) systems, while constructively exploiting the interference. As pre-

viously discussed, the motivation for such schemes is twofold. A first consideration,

valid for any precoding technique, is that in many cases there is a lack of flexibility

in sharing the energy resources amongst the multiple transmitting antennas, since it is

common to have individual per-antenna amplifiers. This justifies the need to consider

power limitations independently for each transmitter. In addition to this, the instan-

taneous variation of the per-antenna transmit power need to be controlled in order to

limit the performance degradation due to non-linear high-power amplifiers (HPAs). In

this regard, the proposed schemes allow a reduction of the power peaks in the spatial

dimension, i.e., amongst the different antennas, for each symbol slot. More specifically,

the contributions of this chapter can be summarized as follows:

� The problem of SLP for per-antenna power minimization is formulated and solved

for phase shift keying (PSK) modulations, under Quality-of-Service (QoS) con-

straints in the form of per-user target signal-to-interference-plus-noise ratio (SINR).

The problem is tackled by reformulating it as a second-order cone program (SOCP).

� The SLP max-min fair problem, under per-antenna power constraints, is formu-

lated for PSK modulations, and solved through a bisection procedure over the

previous power minimization problem. This scheme is discussed in the context

35
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of a multi-beam satellite scenario. Nonetheless, it can be applied to any general

channel model.

3.1 Symbol-level Precoding for Per-antenna Power Mini-

mization

This section focuses on the SLP per-antenna power minimization scheme.

3.1.1 System and Signals Model

Let us consider a single-cell multiple-antenna downlink scenario, where a single base

station is equipped with N transmit antennas that serve K user terminals, with K ≤ N ,

each one equipped with a single receiving antenna. The adopted modulation is PSK,

and a block fading channel hj ∈ C1×N is assumed between the transmit base station

antennas and the j-th user. The received signal at the j-th user in the symbol slot n

can be written as:

yj [n] = hjx[n] + zj [n], (3.1)

where x[n] ∈ CN×1 represents the transmitted signal vector from the N transmit anten-

nas, and zj [n] is a complex circular symmetric random variable, modeling the zero mean

additive white Gaussian noise (AWGN) measured at the j-th user’s receiving antenna.

Without loss of generality, the noise variance is assumed to be 1.

By collecting the received signals by all the users in a vector y[n] ∈ CK×1, the above

model can be rewritten in a compact form as:

y[n] = Hx[n] + z[n], (3.2)

where H = [hT1 . . .h
T
K ]T ∈ CK×N represents the system channel matrix, and z[n] ∈

CK×1 collects the AWGN components for all the users.

According to the SLP approach [22], the transmitted signal vector x[n] is obtained

as output of a precoding module, which directly designs x[n] using the channel state

information (CSI), which is an estimate of H, and the input data symbols d[n] ∈ CK×1,
namely the data information that the base station wants to convey to the users. The

data symbols, drawn from a PSK constellation, are assumed to be uncorrelated and

having unit power.
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3.1.2 SLP for Peak Power Minimization (PPM)

Following the definition of constructive interference provided in [22], the objective is

to design the transmitted vector x (to ease the notation, hereafter the time index n is

omitted), based on the CSI and the data information, assuring that the received signal

lies in the detection region of the desired symbol, for each user. In other words, the

interfering signals should be forced to constructively contribute to the useful received

power. Moreover, unlike [22], where the total transmit power is minimized, here the aim

is to minimize the per-antenna transmit power. To this end, the proposed approach is

to minimize the maximum power among the different transmitters. Such minimization

can be seen as the minimization of the peak power between the antennas, thus the

proposed scheme is referred to as SLP for peak power minimization (PPM). The resulting

optimization problem can be written as:

x(d,H,γ) = arg min
x

max
i=1,...,N

{|xi|2}

s.t. C1 : |hjx|2 ≥ γj , j = 1, . . . ,K,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K,

(3.3)

where γj is the target SINR that should be granted for the j-th user, and γ = [γ1 . . . γK ]T ∈
CK×1 contains the target SINR for all the users. The set of constraints C1 is a QoS con-

straint for each user. The set of constraints C2 represents the constructive interference

condition, guaranteeing that each user receives the desired data symbol.

Following the method of [126], the following steps are carried out in order to write the

problem (3.3) in a more tractable form. The equality constraint in (3.3) can be rewritten,

by applying the tangent operator1, as:

Im(hjx)

Re(hjx)
= αj , j = 1, . . . ,K, (3.4)

where αj = tan (∠dj). However, since the tangent is not a one-to-one function, the

following conditions should be added, in order to ensure that the received symbol and

the intended one lie in the same quadrant:

Re(dj) Re(hjx) ≥ 0, j = 1, . . . ,K,

Im(dj) Im(hjx) ≥ 0, j = 1, . . . ,K.
(3.5)

1This does not apply for data symbols laying on the imaginary axis, since the tangent is not defined
in such case. Although this case can be easily handled, it is not considered herein, since a phase offset
preventing this situation can be always assumed.
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Concerning the inequality constraint in the problem (3.3), it can be rewritten referring

to the amplitude levels of the in-phase and quadrature components of the corresponding

symbols, as follows:

|Re(hjx)| ≥ √γj |Re(dj)|, j = 1, . . . ,K,

| Im(hjx)| ≥ √γj | Im(dj)|, j = 1, . . . ,K,
(3.6)

where the absolute value is necessary for accounting negative components. By multiply-

ing both the members of the above equations by Re(dj) and Im(dj) respectively, and by

taking into account the conditions in (3.5), the above constraints become:

Re(dj) Re(hjx) ≥ √γj Re2(dj), j = 1, . . . ,K,

Im(dj) Im(hjx) ≥ √γj Im2(dj), j = 1, . . . ,K.
(3.7)

Modeling the constraints as shown in (3.4) and (3.7), and resorting to the concept of l∞

norm, the PPM problem can be rewritten as:

x(d,H,γ) = arg min
x

||x||∞

s.t. C1 : Re(dj) Re(hjx) ≥ √γj Re2(dj), j = 1, . . . ,K,

C2 : Im(dj) Im(hjx) ≥ √γj Im2(dj), j = 1, . . . ,K,

C3 :
Im(hjx)

Re(hjx)
= αj , j = 1, . . . ,K.

(3.8)

Ultimately, the problem can be rewritten in a more compact form as:

x(d,H,γ) = arg min
x

||x||∞

s.t. C1 : Re(D) Re(Hx) ≥ βr

C2 : Im(D) Im(Hx) ≥ βi

C3 : ARe(Hx)− Im(Hx) = 0,

(3.9)

where D = diag(d), A = diag(α1, . . . , αK), βr =
√
γ ◦ Re(d)◦2, βi =

√
γ ◦ Im(d)◦2.

A way to tackle the problem (3.9) is to write it as a SOCP [149] in the stacked variable

x̃ = [Re(x)T , Im(x)T ]T ∈ R2N×1. To this end, the objective function, as well as the

constraints, should be written in terms of x̃.

Concerning the objective function, it is not difficult to see that:

||x||∞ = max
i=1,...,N

{|xi|} = max
i=1,...,N

||Bix̃||, (3.10)
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where Bi ∈ R2×2N is a matrix used for selecting Re(xi) and Im(xi) in the stacked vector

x̃ and, ∀i = 1, . . . , N , is defined as:

[
ei 0N

0N ei

]
, (3.11)

with ei being a the i-th row of an identity matrix with size N , and 0N being the all zero

entries vector in R1×N .

For writing also the constraints of (3.9) in terms of x̃, it is convenient to split the vector

Hx into its real and imaginary parts:

Hx = Re(H) Re(x)− Im(H) Im(x)+

+ ι[Re(H) Im(x) + Im(H) Re(x)],
(3.12)

which leads straightforwardly to:

Re(Hx) = H1x̃, Im(Hx) = H2x̃, (3.13)

where H1 = [Re(H),− Im(H)], H2 = [Im(H),Re(H)]. Hence, the optimization prob-

lem (3.9) becomes:

x̃(d,H,γ) = arg min
x̃

max
i=1,...,N

||Bix̃||

s.t. C1 : Re(D)H1x̃ ≥ βr,

C2 : Im(D)H2x̃ ≥ βi,

C3 : (AH1 −H2)x̃ = 0.

(3.14)

Finally, by introducing a slack variable r, the PPM problem can be formulated as a

SOCP as follows:

x̃(d,H,γ) = arg min
r,x̃

r

s.t. C1 : ||Bix̃|| ≤ r, i = 1, . . . , N,

C2 : Re(D)H1x̃ ≥ βr

C3 : Im(D)H2x̃ ≥ βi

C4 : (AH1 −H2)x̃ = 0.

(3.15)

The global optimum of this optimization problem can be obtained using the standard

convex optimization tools [149].
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3.1.3 Numerical Results

In this section some numerical results are presented, to show the effectiveness of the

proposed PPM approach. Before discussing the results, let us define the considered

performance metrics. The symbol-level average power transmitted by each antenna is

defined as Pav = ||x||2
N , whilst the symbol-level peak power among the antennas will

be Ppeak = ||x||2∞. By taking an average of such quantities over a large number of

symbol slots, the frame-level average power and peak power are obtained, which are

used as performance metric hereafter. Furthermore, the spatial peak-to-average power

ratio (SPAPR), intended as the ratio of the introduced power metrics, is also considered

to quantify the relative weight of the power peaks.

The numerical results of the proposed scheme are compared with the ones obtained with

the approach of [22], which we can refer to as constructive interference for sum power

minimization (SPM). The corresponding optimization problem is the following:

x(d,H,γ) = arg min
x

||x||2

s.t. C1 : |hjx|2 ≥ γj , j = 1, . . . ,K,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K.

(3.16)

The presented results in Figs. 3.1-3.4 have been obtained by averaging over 500 frames

of N = 100 symbol slots each. The quasi-static block fading channel coefficients have

been generated, for the generic user j, as hj ∼ CN (0, σ2hI), with σ2h = 1. Each fading

block is assumed to correspond to a frame. Moreover, the assumed modulation scheme

is quadrature phase shift keying (QPSK). Finally, the number of transmit antennas N

is assumed to be equal to the number of users K, and such number will be hereafter

referred to as system size.

Fig. 3.1 shows the introduced power metrics, in dBW, as a function of the target SINR,

assumed the same for all the users for the sake of simplicity. The system size is fixed

to 10. As expected, it can be seen how the required transmit power increases with the

target SINR, and how the proposed PPM approach attains better performance in terms

of peak power with respect to the SPM approach. This gain on the peak power, close to

1 dB, comes with the sacrifice of a higher average transmit power. As a result, we have

a lower SPAPR (3.1 dB) with the proposed PPM approach, with respect to the SPM

one (4.7 dB).

Fig. 3.2 shows the transmit power, in dBW, as a function of the system size, for a target

SINR fixed to 3 dB. Besides the fact that the PPM approach outperforms the SPM

one in terms of peak power, it is worth noticing how the power has a decreasing trend
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Figure 3.1: Frame-level transmit power in dBW vs. SINR target in dB.

with the system size. This can be intuitively explained considering that, for a higher

numbers of transmitting antennas, the stronger effect of constructive interference allows

to achieve the target SINR with a lower required power. Moreover, it is important to

notice how the performance gap between the two compared techniques increases with the

system size. This implies that much higher gains can be expected for very high system

size value. This is the case of large antenna arrays in massive multiple-input multiple-

output (MIMO) [150] and of multi-beam satellite systems [128]. Further insights can be

given by the SPAPR curves shown in Fig. 3.3. In fact, with the proposed approach the

SPAPR is remarkably lower when the system size increases.

Fig. 3.4 shows the transmit power as a function of the effective user rate, assuming the

system size fixed to 10. The effective user rate is clearly related to the target SINR and,

for a generic user j, can be defined as:

R̄j = Rj(1− SER), (3.19)

where Rj denotes the maximum rate, in bits per symbol, supported by the adopted

modulation, and SER is the symbol error rate. It can be seen how the maximum
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Figure 3.2: Frame-level transmit power in dBW vs. system size.
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Figure 3.4: Frame-level transmit power in dBW vs. effective user rate in bit/s/Hz.

supported user rate of 2 bits/s/Hz is attained with a lower peak power with the proposed

approach.

Finally, Fig. 3.5 shows the instantaneous power utilization, in linear scale, for each

transmit antenna, with the PPM and the SPM approaches, for a 5 × 5 system and a

target SINR of 3 dB. The channel matrix and the data information vector are fixed to

the values reported in (3.17), (3.18). Such representation clearly shows how, sacrificing

some average power, the proposed approach leads to a more uniform distribution of the

power between the antennas, resulting in a lower peak power.
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Figure 3.5: Per-antenna power utilization in Watts for a 5× 5 system.

3.2 Symbol-level Precoding with Per-antenna Power Con-

straints

In this section the SLP max-min fair problem, under per-antenna power constraints

(PACs), is addressed, considering a multi-beam satellite scenario.

3.2.1 System and Signals Model

We focus on a multi-user MISO satellite system. Let N denote the number of trans-

mitting elements of the transmitter and K the number of users, with K ≤ N , each

one equipped with a single receiving antenna. The adopted modulation is PSK, and a

channel vector hj ∈ C1×N is assumed between the transmitting antennas and the j-th

user. The received signal at the j-th user in the symbol slot n can be written as:

yj [n] = hjx[n] + zj [n], (3.20)

where x[n] ∈ CN×1 represents the transmitted signal vector from the N transmit an-

tennas, and zj [n] is a complex circular symmetric random variable, modeling the zero



Symbol-level Precoding for Per-antenna Power Limited Systems 45

mean AWGN measured at the j-th user’s receiving antenna. Without loss of generality,

the noise variance is assumed to be 1.

By collecting the received signals by all the users in a vector y[n] ∈ CK×1, the above

model can be rewritten in a compact form as:

y[n] = Hx[n] + z[n], (3.21)

where H = [hT1 . . .h
T
K ]T ∈ CK×N represents the system channel matrix, and z[n] ∈

CK×1 collects the AWGN components for all the users.

As regard to the channel model, assuming fixed users with highly directive antennas,

we consider real channel gains depending only on the multi-beam antenna pattern and

on the users position2. Considering the i-th beam and the k-th user, the corresponding

entry of the channel matrix H can be calculated resorting to the well accepted method

of Bessel functions, thus it will be the square root of the following power gain [151]:

gik(θik) = Gmax

(
J1(u)

2u
+ 36

J3(u)

u3

)2

, (3.22)

where θik is the off-axis angle of the user with respect to the boresight of the beam, u =

2.07123 sin θik/ sin θ3dB, with θ3dB being the one-sided half-power angular beamwidth,

Gmax is the maximum on-axis power gain of the antenna, and J1, J3 are the Bessel

functions of the first kind, of order one and three respectively.

As discussed in the previous section, SLP directly designs the vector x[n] using the

CSI and the input data symbols d[n] ∈ CK×1. The data symbols, drawn from a PSK

constellation, are assumed to be uncorrelated and having unit power. It should be no-

ticed that, after the precoding operation, the constellation diagram of the transmitted

signals is completely different from the PSK one associated to the original data infor-

mation, because of the correlation between the multiple data streams induced by the

precoding module. To better illustrate this, referring to an example with 7 beams and

a 8-PSK modulation for the data information, Figs. 3.6-3.7 show the scatter plot of a

large number of symbols associated to one of the transmitting antennas, before and af-

ter the application of precoding (the max-min fair symbol-level scheme with sum power

constraint - SPC of [22] is used), respectively. The effect of precoding is clearly visible,

in particular with respect to the transmitted power, which is far from being constant

for the various symbols and actually presents some peaks.

2However, the main conclusions of this work are still valid if a random phase is incorporated in the
channel model.
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Figure 3.6: Scatter plot of the symbols (8-PSK) associated to one antenna, before
precoding.
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Figure 3.7: Scatter plot of the symbols associated to one antenna, after SLP with
SPC.
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As already mentioned, it should be considered that the system model of (3.21) is actually

corrupted by the non-linear effects introduced by the on-board per-antenna traveling-

wave tube amplifiers (TWTAs), which affect both the amplitude and the phase of the

transmitted waveforms. Different models describing the relationship between the input

and the output signals of the on-board amplifiers are provided in [130, 131]. The common

non-linearized TWTA model of [130] will be taken as a reference. The related amplitude-

to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) characteristics have been

shown in Fig. 2.7, where the saturation effect introduced by the amplifier can be noticed.

The on-board TWTAs need to be operated as close as possible to saturation, to efficiently

exploit the scarce available power. As a consequence, the need of controlling the power

level of the transmitted waveforms is pivotal in order to reduce the detrimental effect

of the non-linearities of the satellite channel, which is critical in presence of precoding,

because of the complex structure of the transmitted constellations. In particular, the

transmitted power should be kept below the saturation point of the amplifiers.

3.2.2 SLP for Max-Min Fair with Per-antenna Power Constraints (Max-

Min-PAC)

The aim is to design the transmitted vector x (to ease the notation, hereafter the time

index n is omitted), based on the CSI and the data information, in order to achieve

constructive interference. More specifically, the proposed approach aims to maximize

the minimum SINR amongst the users (max-min fair), while satisfying per-antenna con-

straints for the transmitted power, in addition to the constructive interference condition.

The use of PACs is the novel aspect of the work, with respect to the max-min fair prob-

lem solved in [22], where the imposed constraints are over the total transmitted power

(hence a SPC is considered). The resulting optimization problem, which is referred to

as max-min fair with PACs (Max-Min-PAC), is the following:

x(d,H) = arg max
x

min
j=1,...,K

|hjx|2

s.t. C1 : |xi|2 ≤ PTh, i = 1, . . . , N,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K.

(3.23)

The set of constraints C1 represent the PACs, imposing that the power transmitted by

each antenna should be not larger than a predefined threshold power PTh. The set of

constraints C2 represents the constructive interference condition, guaranteeing that each

user receives the desired data symbol.

With respect to the max-min fair problem with SPC of [22] (which hereafter will be

referred to as Max-Min-SPC), we can expect worse performance in terms of attained
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SINR for a linear system, because of the tighter constraints. However, if the non-

linearities of the satellite channel are taken into account, the proposed scheme with

PACs can present some advantages. In particular, a wise choice of the value of PTh, in

relation to the saturation power of the on-board TWTAs, can guarantee that even the

power peaks of the transmitted waveforms (visible in the example of Fig. 3.7) lie in the

linear region of the amplifiers. For instance, denoting by PSat the saturation power of

the amplifiers, a possible choice for the PACs could be P dB
Th = P dB

Sat − ∆dB, where the

values are in dB and ∆ denotes an imposed minimum separation interval.

The problem (3.23) can be solved, in the same fashion of [22], based on a bisection

procedure on the solution of the equivalent power minimization problem. The related

per-antenna power minimization problem has been addressed in the previous section. It

is convenient now to reformulate it as follows:

q(d,H,γ) = arg min
q

max
i=1,...,N

|qi|2

s.t. C1 : |hjq|2 ≥ γj , j = 1, . . . ,K,

C2 : ∠hjq = ∠dj , j = 1, . . . ,K,

(3.24)

where q denotes the transmitted signal vector3.

The relation between the power minimization problem and the max-min fair problem at

hand is discussed below.

3.2.3 Relation between the Max-Min-PAC and the PPM Problems

The relation between the max-min fair and the power minimization problems can be

established, in the same fashion of [22], rewriting the Max-Min-PAC problem (3.23) as

follows, where the slack variable t is introduced:

x(d,H) = arg max
t,x

t

s.t. C1 : |xi|2 ≤ PTh, i = 1, . . . , N,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K,

C3 : |hjx|2 ≥ t, j = 1, . . . ,K.

(3.25)

Denoting by t∗ the optimal value of t in the problem (3.25), it turns out that the relation

between the Max-Min-PAC and the PPM problems can be described as x(d,H) =

3To avoid ambiguity, a different notation is used for the solution to the PPM problem (q) and for
the solution to the Max-Min-PAC problem (x).
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q(d,H, t∗1K), where 1K denotes the all one entries vector in RK×1. In other words, the

max-min fair solution is a scaled version of minimum power solution. This implies that

the solution to the Max-Min-PAC problem can be found applying a simple bisection

procedure [149] over the solution of the equivalent PPM problem, as in [22].

3.2.4 Numerical Results

In this section some numerical results are presented, in order to validate the proposed

Max-Min-PAC approach. For the sake of comparison, we consider also numerical results

related to the Max-Min-SPC scheme of [22], whose corresponding optimization problem

is the following:

x(d,H) = arg max
x

min
j=1,...,K

|hjx|2

s.t. C1 : ||x||2 ≤ PTot,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K,

(3.26)

where PTot represents the total available power at the transmitter.

The presented results are obtained assuming a 7-beam satellite channel based on the

radiation pattern described by (3.22), with a maximum power gain Gmax = 10 dB. The

number of users K is assumed to be equal to the number of transmitting antennas N ,

and the position of each user is fixed in the center of the respective beam. A picture of

the considered beam pattern, together with the users position, is given in Fig. 3.8. The

considered modulation is 8-PSK.

In Fig. 3.9 the attained minimum SINR (across the users) is shown as a function of

the total available transmit power, for the proposed PAC approach and for the SPC

approach. For fair comparison, the total available power is equally distributed amongst

the transmit antennas when the PACs are considered, thus the value of PTh is set equal

to PTot
N (this assumption is kept for all the following comparisons). Moreover, the result is

obtained by averaging over a large number of transmitted symbols. It is clearly visible

how the attained SINR over a linear channel is lower with the proposed approach,

showing a worse performance with respect to the SPC case. This could be expected

considering that the use of PACs implies a more restrained exploitation of the available

power, with a resulting lower SINR. In this regard, in Fig. 3.10 the instantaneous power

utilization for each transmit antenna is shown for the two approaches at hand, for a

specific symbol slot. The total available power is fixed to 10 Watts. It is evident how

the available power is not fully utilized with the proposed Max-Min-PAC approach, since

the PACs are not attained for each transmit antenna.
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Figure 3.8: Beam pattern (circles) considered in the simulations, together with the
position of the users (marked with the stars).
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Figure 3.9: Minimum SINR amongst the users, in dB, vs. available transmit power,
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Figure 3.10: Per-antenna power utilization in Watts for a specific data information
vector.

Although this can be seen as a disadvantage of the proposed technique, it should be high-

lighted how the PACs are not avoidable in per-antenna power limited systems, where the

energy sharing between the different transmission chains is not possible. Furthermore,

the advantages of the Max-Min-PAC technique can be noticed focusing on non-linear

satellite channels, accounting the non-linear characteristic of the TWTAs, as shown in

Fig. 2.7. In fact, as already mentioned, in this case the existence of power peaks in

the transmitted waveforms can determine a distortion effect with a considerable loss in

performance. Focusing on this aspect, we show now how the proposed scheme affects

the power distribution of the transmitted waveforms.

First of all, it is worth comparing the scatter plots of the symbols transmitted by one

of the antennas, with the SPC approach, as shown in Fig. 3.7, and with the proposed

PAC approach, as shown in Fig. 3.11. In both cases, a total available power of 10

dBW is assumed. It is evident how the proposed Max-Min-PAC scheme prevents the

power peaks, which are observable in the Max-Min-SPC case, where the per-antenna

power cannot be controlled. The proposed scheme, by imposing the PACs in the design

of the transmitted symbols, results in a constellation lying inside a circle, and this

clearly constitutes a relevant advantage with respect to the non-linearities of the satellite
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Figure 3.11: Scatter plot of the symbols associated to one antenna, after SLP with
PACs.

channel.

In Fig. 3.12 the power transmitted by one of the antennas is considered (we take,

without loss of generality, the antenna with indexed by 1, whose transmit power is

P1 = |x1|2), and the empirical evaluation of its complementary cumulative distribution

function (CCDF) is drawn for the Max-Min-PAC and the Max-Min-SPC approaches,

assuming a total available power of 10 dBW in both cases. The CCDF of the power P1

is a function of a variable z defined as the probability of P1 being larger than z, i.e.,

CCDFP1(z) = Pr(P1 > z). With respect to the SPC case, where a long tail is visible

in the curve, in the proposed approach the power results to be more bounded. The

difference between the maximum value of P1 in the two cases is over 4 dBW, which is

considerable taking into account the saturation effects of non-linear TWTAs.

Another interesting figure of merit for evaluating the dynamic properties of the trans-

mitted waveforms, with respect to the non-linear satellite channel, is the instantaneous-

to-average power ratio (IAPR). This quantity, referring again to the antenna indexed

by 1, is defined as:

IAPR1 =
|x1|2

En|x1|2
, (3.27)

and its maximum value over a certain time interval is the more common peak-to-average

power ratio (PAPR). The IAPR distribution over time gives an information about the
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Figure 3.12: CCDF of the transmitted power by a single antenna.

power variation around its average value, and thus about the power peaks. In Fig. 3.13,

the empirical evaluation of the CCDF of the IAPR, for a single transmit antenna, is

shown, considering the PAC and SPC cases. The total available power is again fixed to

10 dBW. The result shows how, with the proposed Max-Min-PAC approach, also the

IAPR is more bounded. This implies smaller variations of the transmitted power in time,

and this property is very important for non-linear systems. A considerable difference of

over 2 dB in the PAPR between the two techniques is observable.

3.3 Conclusions

In this chapter, novel SLP techniques have been proposed, taking into account the per-

antenna power limitations that arise typically in practical multi-user MISO systems.

First, the problem of minimization of the peak power amongst the transmitting antenna,

under QoS constraints, has been formulated and solved for PSK modulations, in order to

have a more uniform distribution of the transmitted power with respect to the state of the

art symbol-level techniques. Then, the related max-min fair scheme, under per-antenna

power constraints, is addressed, with specific regard to a multi-beam satellite scenario.

The max-min fair optimization problem is tackled through a bisection procedure over the
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Figure 3.13: CCDF of the IAPR for a single transmit antenna.

previous power minimization problem. The proposed schemes allow a reduction of the

power peaks amongst the transmit antennas, and therefore they are particularly suitable

for systems corrupted by non-linear effects. Numerical results have been presented to

show the effectiveness of the proposed schemes, which outperform the existing state of

the art techniques in terms of reduction of the power peaks and of the peak-to-average

power ratio across the transmitting antennas.



Chapter 4

Symbol-level Precoding for the

Non-linear Multiuser MISO

Downlink Channel

This chapter presents novel symbol-level precoding (SLP) schemes for multi-level mod-

ulations, aimed at exploiting the constructive interference effect and, at the same time,

controlling the instantaneous per-antenna power levels. Specifically, the contributions

of the chapter can be summarized as follows:

� Two different SLP strategies are proposed, with the objective of reducing the power

imbalances between the multiple transmit antennas, in order to have improved per-

formance over non-linear channels with respect to the symbol-level schemes of the

literature. In both the proposed approaches Quality-of-Service (QoS) constraints

are considered to guarantee a per-user required signal-to-interference-plus-noise

ratio (SINR), and a multi-level modulation scheme is assumed for the data infor-

mation.

� The first presented algorithm minimizes the per-antenna transmit power, and im-

poses a lower bound to the power carried by each transmitted signal. In this

approach, the imbalances between the different RF chains are reduced by con-

straining the per-antenna transmit power within a specific range. The related

optimization problem is solved through an iterative procedure relying on succes-

sive convex approximation (SCA).

� The second proposed scheme directly tackles a minimization of the spatial peak-

to-average power ratio (SPAPR) amongst the multiple transmit antennas. The

55
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related optimization problem is tackled by resorting jointly to parametric pro-

gramming and SCA.

The main novelty of the proposed techniques with respect to the state of the art on

SLP for constructive interference [20–25] is their ability to exploit the potential of the

symbol-level design for producing more robust waveforms to the harmful effects of non-

linear channels. A first step in this direction has already been taken in chapter 3.

Nevertheless, the scheme therein introduced performs just a peak power minimization

(and the related max-min fair formulation), without imposing any lower bound nor

optimizing the SPAPR. On the other hand, the techniques proposed herein directly aim

at a reduction of the power imbalances across the different antennas, thus they are able

to tackle the problem of differential phase shift discussed in chapter 2, and therefore to

achieve enhanced performance.

4.1 System and Signals Model

We consider a single-cell multiple-antenna downlink scenario, where a single base-station

is equipped with N transmit antennas serving K user terminals, with N ≥ K, each one

equipped with a single receiving antenna. We assume a block fading channel hj ∈ C1×N

between the transmit base-station antennas and the j-th user. The received signal at

the j-th user in the symbol slot n can be written as:

yj [n] = hjx[n] + zj [n], (4.1)

where x[n] ∈ CN×1 represents the transmitted signal vector from the N transmit anten-

nas, and zj [n] is a random variable distributed as CN (0, σ2z), modeling the zero mean

additive white Gaussian noise (AWGN) measured at the j-th user’s receiving antenna.

By collecting the received signals by all the users in a vector y[n] ∈ CK×1, the above

model can be rewritten in a compact form as:

y[n] = Hx[n] + z[n], (4.2)

where H = [hT1 . . .h
T
K ]T ∈ CK×N represents the system channel matrix, and z[n] ∈

CK×1 collects the AWGN components for all the users.

The transmitted signal vector x[n] is obtained as output of a precoding module, which

takes as input the channel state information (CSI), which is an estimate of H, and the

data information d[n] ∈ CK×1, namely the data symbols to be conveyed to the users. A
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framing structure including a preamble of pilot symbols is assumed in the transmission

scheme. As discussed in chapter 2, such pilots are exploited by each user to estimate

the related channel vector, and the resulting CSI is fed back to the base station in

order to be available for the precoding operation. The data symbols are assumed to

be uncorrelated and taken from a generic multi-level constellation represented by the

symbol set D, having unit average power, i.e., ED[|dj |2] = 1.

The system model described in (4.2) is a linear one. However, as discussed in section

2.3 of chapter 2, it should be kept in mind that the introduced system model is actually

corrupted by the non-linear effects introduced in the per-antenna power amplification

stages, which affect both the amplitude and the phase of the transmitted waveforms.

The resulting system model can be represented as in Fig. 2.6. Although the SLP schemes

proposed in this chapter are applicable to any non-linear model, the traveling-wave tube

amplifier (TWTA) model introduced in Fig. 2.7 will be used as a practical reference. The

SLP schemes herein proposed aim at improving the power distribution of the transmitted

signals in the spatial dimension, in order to counteract the distortion and the differential

phase shift introduced by the amplification stages1. In the following sections, these novel

precoding strategies are further explained, and the related optimization problems are

formalized and solved.

4.2 Symbol-level Precoding for Weighted Peak Power Min-

imization with Lower Bound (WPPMLB)

In this section a novel symbol-level precoding scheme is presented, which performs a

weighted per-antenna power minimization and imposes a lower bound on the transmit

power on each radio frequency (RF) chain. According to the general framework of

symbol-level precoding, the main objective of the proposed scheme is to design the

transmitted vector x by assuring a constructive interference effect at the users’ side,

following the definition in [22]. In other words, x should be optimized so that the

superposition of the multiple streams through the channel forces the received signal to

the detection region of the desired symbol, for each user. The novelty of the proposed

scheme, with respect to the work on constructive interference carried out in [22, 23], lies

in the different optimization of the transmitted power. While the available literature

focuses on minimizing the total transmitted power while guaranteeing some QoS targets

at the users, here the focus is on the per-antenna transmitted power. Taking into

1It should be noted that the inter-symbol interference created by the non-linear amplification stages
is not modeled in the proposed optimization schemes, as they design the transmit signals only in the
spatial dimension, for each symbol slot. However, this effect is taken into account in the numerical
evaluation stage of section 4.4.3.
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account the non-linear effects of the channel, the goal is to minimize the maximum power

among the different antennas and, at the same time, to put a lower bound constraint

on such power. This would guarantee a reduction of the power peaks and a reduced

variation of the instantaneous power transmitted by the different antennas, granting

better properties with respect to the non-linear amplification stages and, in particular,

limiting the differential phase shift. Lastly, the per-antenna transmit power is considered

in a weighted fashion, so as to account possible asymmetries in the different RF chains.

The resulting problem, referred to as weighted peak power minimization with lower

bound (WPPMLB), can be written as follows2:

x(d,H,γ,p) = arg min
r,x

r

s.t. C1 : αr2 ≤ |xi|
2

pi
≤ r2, i = 1, . . . , N,

C2 : |hjx|2 D κ2jγjσ2z , j = 1, . . . ,K,

C3 : ∠hjx = ∠dj , j = 1, . . . ,K,

(4.3)

where r is a non-negative slack variable used for bounding the power, α is a parameter

determining the lower bound (which is better characterized afterwards), γj is the target

SINR that should be granted for the j-th user, pi is the power weight for the i-th antenna,

and κj = |dj |/
√
ED[|dj |2] is a magnitude scaling factor for the symbol dj , which allows to

account the different amplitudes of the symbols in the multi-level constellation D. The

assumption to have symbols with unit average power implies that κj = |dj |. Moreover,

the vector γ = [γ1 . . . γK ]T ∈ CK×1 stacks the target SINR for all the users, while

p = [p1 . . . pN ]T ∈ CN×1 stacks the power weights for all the antennas. Further, the

notation D represents a generalized inequality: it shall be read as ≥ or = depending

whether the constraint is referred to a boundary symbol or to an inner symbol of the

constellation D, respectively (generalized inequalities related to the different detection

regions can be also found in [23]).

The set of constraints C1 in (4.3) gathers two different kinds of constraints. In particular,

such constraints impose an upper bound on the per-antenna weighted transmit power

(through the slack variable r, so to have a peak power minimization), and a lower bound

at the same time. The lower bound is defined through the design parameter α. This

parameter shall be chosen such that 0 ≤ α ≤ 1 and, if considered in dB, represents the

width of the region where the transmit power is constrained. The closer to 1 is α, the

more the power variations will be limited. Nonetheless, the choice of a high value for

2It should be mentioned that this formulation of the optimization problem is referred to circular
constellations, such as phase shift keying (PSK) and amplitude phase shift keying (APSK). A similar
formulation for rectangular constellations, such as quadrature amplitude modulation (QAM), can be
straightforwardly given but it is not shown for the sake of brevity. This consideration applies to the
optimization problems formulated in the remainder of this chapter.
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α comes with a reduction of the degrees of freedom of the optimization problem, whose

feasibility is not guaranteed, as discussed afterwards. Concerning the power weights,

they are positive parameters affecting the loading of the different RF chains: a higher

value for pi implies as higher power loading for the i-th antenna with respect to the

other ones. The set of constraints C2 represents a QoS constraint for each user. The set

of constraints C3 represents the constructive interference condition, guaranteeing that

each user receives the desired data symbol with the correct phase.

The problem (4.3) appears to be complex and hard to tackle. However, it is possible to

reformulate it in a more tractable form. More specifically, the following theorem holds,

whose proof is reported in the Appendix A:

Theorem 4.1. The optimization problem (4.3) is equivalent to the following one:

x̃(d,H,γ,p) = arg min
r,x̃

r

s.t. C1 : ‖Bix̃‖ ≤ r, i = 1, . . . , N,

C2 : x̃†(Ai)x̃ ≤ −αr2, i = 1, . . . , N,

C3 : Re(D)H1x̃ D βR,

C4 : Im(D)H2x̃ D βI ,

C5 : (TH1 −H2)x̃ = 0,

(4.4)

where the optimization variable x̃ is a stacked version of x, namely x̃ = [Re(x)T , Im(x)T ]T ∈
R2N×1, and the other introduced quantities are defined as functions of the input param-

eters only3, with the matrices Ai being negative semi-definite (NSD) ∀i = 1, . . . , N .

In particular, the sets of constraints C1 and C2 in (4.4) correspond to the upper and lower

bounding of the per-antenna transmit power, respectively, while the remaining constraints

are related to the attained SINR and the received symbol phases at the different users4.

�

In the problem in (4.4), it can be seen how all the constraints are convex, with the

exception of C2, imposing the lower bound. Indeed, the upper bound constraint is a

second order cone constraint, the QoS constraints and the phase constraints are affine,

whilst the lower bound constraint is a non-convex, since the matrices Ai are NSD.

Hereafter an approach to solve the non-convex problem (4.4), based on a successive

convex approximation (SCA) procedure [152, 153], is proposed.

3The definition of the introduced vectors and matrices can be found in the proof, and is not reported
here for the sake of brevity.

4The generalized inequalities D applied to vectors in the constraints shall be considered element-wise.
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4.2.1 FPP-SCA Algorithm

The main idea of the SCA algorithm is to iteratively approximate the non-convex prob-

lem at hand into a convex one, so to converge to the solution of the original prob-

lem. More specifically, assuming a random point z ∈ R2N×1, it is always true that

(x̃− z)†(Ai)(x̃− z) ≤ 0, being Ai NSD. Hence, the following inequality holds:

x̃†(Ai)x̃ ≤ 2z†(Ai)x̃− z†(Ai)z, (4.5)

which represents a linear restriction of x̃†(Ai)x̃ around the point z. By using the above

inequality, the non-convex constraint can be replaced by the following, which is affine in

x̃:

2z†(Ai)x̃− z†(Ai)z ≤ −αr2. (4.6)

By using the above linear restriction, the problem (4.4) can be written in the following

approximated form, to be tackled iteratively:

x̃(d,H,γ,p) = arg min
r,x̃

r

s.t. C1 : ‖Bix̃‖ ≤ r, i = 1, . . . , N,

C2 : 2z†k(Ai)x̃− z†k(Ai)zk ≤ −αr2,

i = 1, . . . , N,

C3 : Re(D)H1x̃ D βR,

C4 : Im(D)H2x̃ D βI ,

C5 : (TH1 −H2)x̃ = 0,

(4.7)

where zk is the introduced auxiliary variable at the k-th iteration, which is updated as

zk+1 = x̃ until convergence, i.e., until ‖x̃− zk‖ is smaller than a predefined threshold.

The introduced approach resorts to the SCA procedure [152–154], which requires the

initial point z0 to be a feasible one for the original problem. However, since the feasibility

of (4.4) is not guaranteed, it is not easy to find such feasible initial point. To solve the

issue, we can rely on the feasible point pursuit (FPP) SCA algorithm [153]. In particular,

the problem can be made always feasible by introducing an additional slack penalty term

s as follows:
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x̃(d, Ĥ,γ) = arg min
r,x̃,s

r + λ‖s‖

s.t. C1 : ‖Bix̃‖ ≤ r + si, i = 1, . . . , N,

C2 : 2z†k(Ai)x̃− z†k(Ai)zk ≤ −αr2 + si+N ,

i = 1, . . . , N,

C3 : Re(D)H1x̃ D βR,

C4 : Im(D)H2x̃ D βI ,

C5 : (TH1 −H2)x̃ = 0,

(4.8)

with s ∈ R2N×1, and λ being a trade-off term between the original objective function

and the new penalty one. The modified problem in (4.8) is always feasible for any choice

of z0 and the convergence is guaranteed [152, 153]. Therefore, the initial point z0 can

be randomly chosen. If the converged slack penalty variables turn out being all zero,

then the related solution solves the original problem (4.4). In general, the FPP-SCA

algorithm can be applied by using different starting points z0, and then choosing the

best solution, namely the one resulting in the lowest-norm penalty term. Concerning

the trade-off term λ, in the fashion of [153] we consider λ � 1, in order to force the

penalty terms toward zero, hence pushing the iterates towards the feasible region of the

original problem (4.4), when it is non-empty.

4.3 Spatial Peak-to-Average Power Ratio Reduction

In this section, a different symbol-level precoding scheme is proposed, with the objective

of directly minimizing the SPAPR amongst the transmit antennas. A metric usually

considered in the literature, in the context of non-linear systems, is the peak-to-average

power ratio (PAPR) evaluated over time. For example, the temporal PAPR has been

tackled for orthogonal frequency-division multiplexing (OFDM) systems [30, 155, 156].

Here the focus is instead on the SPAPR which, in light of the impairments described in

section 2.3 of chapter 2, is also important in order to utilize the multiple amplifiers in a

more homogeneous way. The SPAPR can be defined as:

SPAPR =
‖x‖2∞
‖x‖2/N

. (4.9)

In the direction of designing the transmit waveforms controlling their instantaneous

power, the opportunity to have low SPAPR allows a reduction of the per-antenna power



Symbol-level Precoding for the Non-linear Multiuser MISO Downlink Channel 62

imbalances across the different high-power amplifiers (HPAs), thus limiting the related

differential phase shift.

4.3.1 Spatial PAPR Optimization

The SPAPR minimization (SPAPR-Min) problem can be formulated as non-linear frac-

tional program, as:

x(d,H,γ) = arg min
x

‖x‖2∞
‖x‖2

s.t. C1 : |hjx|2 D κ2jγjσ2z , j = 1, . . . ,K,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K.

(4.10)

It is possible to reformulate the problem (4.10), as shown in the following theorem,

whose proof is reported in the Appendix B:

Theorem 4.2. The optimization problem (4.10) is equivalent to the following one:

x(d,H,γ) = arg min
x

‖x‖2∞
‖x‖2

s.t. C1 : Re(dj)
hjx+ x†h†j

2
D σz

√
γj Re2(dj),

j = 1, . . . ,K,

C2 : Im(dj)
hjx− x†h†j

2ι
D σz

√
γj Im2(dj),

j = 1, . . . ,K,

C3 : tj(ιtj − 1)hjx+ (ιtj + 1)x†h† = 0,

j = 1, . . . ,K.

(4.11)

where tj = tan (∠dj).

�

In the reformulated problem (4.11), the challenging part is in the non-linear fractional

objective function. Dinkelbach suggests a parametric way of solving the non-linear

fractional problems [157, 158], whose basic idea is to tackle the fractional problem by

solving a sequence of easier problems which converges to the global solution. Never-

theless, Dinkelbach’s algorithm can be applied only if the numerator and denominator

are convex and concave, respectively. Therefore, it cannot be directly applied to the
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problem at hand, since the numerator ‖x‖2∞ and denominator ‖x‖2 are both convex

functions. In order to solve the problem, we can again resort to a SCA approach [152–

154]. In particular, the quadratic function can be approximated around a certain vector

z ∈ CN×1 by a concave (affine) function as:

(x− z)†(x− z) = x†x− 2 Re(z†x) + z†z ≥ 0

x†x ≥ 2 Re(z†x)− z†z

x†x ≈ 2 Re(z†x)− z†z. (4.12)

Using this lower bound approximation, the problem in (4.10) can be rewritten as:

x(d,H,γ) = arg min
x

‖x‖2∞
(2 Re(z†x)− z†z)

s.t. C1 : Re(dj)
hjx+ x†h†j

2
D σz

√
γj Re2(dj),

j = 1, . . . ,K,

C2 : Im(dj)
hjx− x†h†j

2ι
D σz

√
γj Im2(dj),

j = 1, . . . ,K,

C3 : tj(ιtj − 1)hjx+ (ιtj + 1)x†h† = 0,

j = 1, . . . ,K.

(4.13)

Now the problem can be solved by applying parametric programming on the approx-

imated formulation in (4.13). To this aim, it is possible to define the optimization

function F (η,z) = min
x∈S
{‖x‖2∞ − η(2 Re(z†x) − z†z)}, where S represents the sets of

constraints C1, C2, C3 and η is an auxiliary variable to apply parametric programming

techniques. Therefore, the problem can be formulated as:

x(d,H,γ) = arg min
x,η

‖x‖2∞ − η(2 Re(z†x)− z†z)

s.t. C1 : Re(dj)
hjx+ x†h†j

2
D σz

√
γj Re2(dj),

j = 1, . . . ,K,

C2 : Im(dj)
hjx− x†h†j

2ι
D σz

√
γj Im2(dj),

j = 1, . . . ,K,

C3 : tj(ιtj − 1)hjx+ (ιtj + 1)x†h† = 0,

j = 1, . . . ,K.

(4.14)



Symbol-level Precoding for the Non-linear Multiuser MISO Downlink Channel 64

Table 4.1: Proposed Successive Linear Approximation for Non-linear Fractional Pro-
gramming

1. Initialization: Set ε, k = 0, η = 0 in (4.14),
which results in solving F (0).

2. Evaluate η0 = ‖x‖2∞
‖x‖2 , z0 = x.

3. Solve the following optimization:

x = arg min
x

‖x‖2∞ − ηk(2 Re(z†kx)− z†kzk)

s.t. C1 : Re(dj)
hjx+ x†h†j

2
D σz

√
γj Re2(dj), j = 1, . . . ,K,

C2 : Im(dj)
hjx− x†h†j

2ι
D σz

√
γj Im2(dj), j = 1, . . . ,K,

C3 : tj(ιtj − 1)hjx+ (ιtj + 1)x†h† = 0, j = 1, . . . ,K.
(4.15)

4. Evaluate |F (ηk, zk)| and ‖x − zk‖; if
|F (ηk, zk)| ≥ ε or ‖x − zk‖ ≥ ε go to step
5.

5. Set ηk+1 = ‖x‖2∞
‖x‖2 , zk+1 = x, k = k + 1, go to

step 3.

Ultimately, to efficiently solve (4.11) using the formulation in (4.14), the algorithm in

Table 4.1 is proposed. The theoretical lower bound occurs when all the antennas have

the same power (i.e., ‖x‖2/N), with an achieved unit SPAPR.

4.3.2 Convergence of the Algorithm

It is proven in [157] that the parametric programming scheme applied to concave/linear

fractional programs converge to a global optimum (if the objective is to maximize the

concave/linear function). In our case this holds, since the objective is to minimize a

convex/linear function.

On the other hand, considering the SCA approach, it is proven convergent [152] to a

Karush-Kuhn-Tucker (KKT) point, provided that the approximation is a concave lower

bound having the same first order behavior of the original function. This is the case of

the approximation in (4.12), as stated in the following proposition.
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Proposition 4.3. Given the convex function f(x) = ‖x‖2, and its concave (affine)

approximation around z f̃(x, z) = 2 Re(z†x)− z†z, the following properties hold:

f̃(x, z) ≤ f(x), (4.16)

f̃(x,x) = f(x), (4.17)

∂

∂x
f̃(x, z)

∣∣∣∣
z=x

=
∂

∂x
f(x), (4.18)

∂

∂x∗
f̃(x, z)

∣∣∣∣
z=x

=
∂

∂x∗
f(x), (4.19)

where the gradient is considered with respect to x and x∗, and these variable are treated

as independent, in the fashion of [159].

Proof. The properties (4.16) and (4.17) come straightforwardly from (4.12). In order

to prove (4.18) and (4.19), we derive hereafter the gradient of f(x) and f̃(x, z) with

respect to x and x∗, based on [159]:

∂

∂x
f(x) =

∂

∂x
{x†x} = x†, (4.20)

∂

∂x∗
f(x) =

∂

∂x∗
{x†x} = xT , (4.21)

∂

∂x
f̃(x, z) =

∂

∂x
{z†x+ x†z} = z†, (4.22)

∂

∂x∗
f̃(x, z) =

∂

∂x∗
{z†x+ x†z} = zT . (4.23)

By evaluating (4.22) and (4.23) in z = x, the properties (4.18) and (4.19) follows, and

the proposition is proved. �

Although the parametric programming and the SCA approaches have been shown con-

vergent individually, it shall be noticed how the formulation (4.14), and accordingly the

algorithm proposed in Table 4.1, employs these schemes in a joint fashion, and it is not

straightforward to prove the convergence of the final algorithm. However, the proposed

scheme has been shown convergent through numerical simulations. This is shown in Fig.

4.1 for two instances of the algorithm, with K = 5 and N set to 10 and 8, respectively.

The figure shows, for both the cases, how the SCA error ‖x − zk‖ and the parametric

programming error |F (ηk)| vary with respect to the iteration index, going to zero in a

few iterations.
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Figure 4.1: Error metrics of the algorithm of 4.1, versus iteration index, for two
instances of the algorithm.

4.4 Numerical Results

In this section some numerical results are presented, to show the effectiveness of the

proposed approaches, in particular the WPPMLB scheme and the SPAPR-Min sheme.

Before discussing the results, let us introduce the considered performance metrics. The

most prominent metrics with respect to the problem of non-linearities, which is the

main object of this contribution, are the SPAPR and the spatial dynamic range. The

former has been already defined in equation (4.9), while the latter is defined, for a

specific symbol slot, as the ratio between the maximum and the minimum transmit

power amongst the antennas, i.e., as ‖x‖2∞
min
i
|xi|2 . Moreover, the total transmit power and

the average achieved SINR are also considered for the performance evaluation. The

introduced quantities, which are symbol dependent by definition, are considered at a

frame level by averaging over a large number of symbol slots. An additional performance

metric used in this section is the symbol error rate (SER), which is useful to quantify

the effectiveness of the proposed techniques when a non-linear channel is applied in the

communication chain.

All the results presented in the remainder of this section are obtained assuming a 16-

APSK modulation scheme for the data symbols, while the number of users is fixed to
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K = 5. The quasi-static block fading channel coefficients have been generated, for the

generic user j, as hj ∼ CN (0, σ2hI), with σ2h = 1. The results have been obtained

averaging over 30 fading blocks of 20 symbol slots each, for a total of 600 realizations.

Moreover, the noise variance σ2z is assumed unitary. Finally, the target SINR is assumed

the same for all the users for the sake of simplicity, and it is fixed to 12 dB for all the

results5.

In the following, the performance of the WPPMLB and SPAPR-Min schemes are ana-

lyzed with respect to some parameters, such as the number of transmit antennas and

the input α (for the WPPMLB case). Then, some comparative results are presented,

in order to compare the proposed techniques to the benchmarks, i.e., the sum power

minimization approach of [22, 23], the peak power minimization scheme presented in

chapter 3, and the constant envelope precoder of [29].

4.4.1 Performance of WPPMLB Scheme with respect to the Parame-

ters

Hereafter, the performance of the WPPMLB scheme is investigated with respect to the

number of transmit antennas and to the value of the design parameter α in the problem

(4.3). Concerning this, it is worth noticing that the value 1/α represents the imposed

spatial dynamic range for the transmit signal. Nevertheless, it has been mentioned how

the imposition of a tight spatial dynamic range (i.e., α close to 1) may compromise

the feasibility of the problem, since it implies a reduction in the degrees of freedom.

As a consequence, it is imperative to study to which extent it is possible to constraint

the WPPMLB problem, and how this is affected by the number of transmit antennas

N . The presented results are obtained by running the FPP-SCA algorithm using two

random starting points and then choosing the best solution, as discussed in section 4.2.1.

Moreover, the power weights are assumed equal to one, for simplicity.

In Fig. 4.2 the attained spatial dynamic range is displayed as a function of the imposed

one (i.e. 1/α), in dB, for different values of N . It is apparent how, when the number

of transmit antennas is equal to the number of users (fixed to 5), the attained spatial

dynamic range is larger than the required one for almost all the simulated values. In

other words, in this case the WPPMLB problem (4.3) turns out not to be feasible for all

the symbols and channel realizations6, unless the imposed spatial dynamic range is very

large (over 7 dB). It can be also noticed how, due to the infeasibility of the optimization

problem, the attained spatial dynamic range shows even a decreasing trend with 1/α

5This does not apply for the results in Figs. 4.6, 4.8, where the power-SINR dependence is studied.
6This implies that the lower bound constraints on the power are not met in average, as clear from

the displayed result.
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Figure 4.2: Attained spatial dynamic range, in dB, versus imposed one in dB.

when the latter is below 2 dB. This means that, in the case of 5 antennas, reducing

too much the imposed spatial dynamic range can even worsen the performance. On

the other hand, by increasing N the optimization problem is relaxed, and it is possible

to respect the imposed constraints also with a reduced spatial dynamic range, as it is

visible from the results obtained with N = 8 and N = 10. Remarkably, in the latter

case the problem is feasible even when a unit spatial dynamic range (0 dB) is imposed.

The dependency of the problem feasibility on the imposed spatial dynamic range and

on the number of antennas is further shown in Fig. 4.3, where the probability of success

in solving the WPPMLB problem is shown. This quantity, which is the probability of

respecting the imposed constraint on the spatial dynamic range, is calculated through a

Monte Carlo simulation over the multiple channel and symbols realizations. This figure

shows how the probability of success is low for N = 5, and how it strongly decreases when

1/α is reduced. This explains the decreasing trend observed in Fig. 4.2 for 1/α below

2 dB. Increasing the number of transmit antennas the probability of success increases

considerably, becoming basically 1 for any imposed spatial dynamic range when N = 10.

In Fig. 4.4 the total transmit power, in dBW, is shown as a function of the imposed

spatial dynamic range, for 8 and 10 transmit antennas. The case with only 5 antennas

is not considered, since the problem is not feasible for basically all the values of 1/α, as

previously discussed. It can be seen how the configuration with 1/α = 0 dB requires a
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Figure 4.3: Probability of success versus imposed spatial dynamic range in dB.

high transmit power7, because of the very tight constraint, especially in the case with

8 antennas. Nevertheless, the result shows how a relaxation of the constraint on the

imposed spatial dynamic range, as well as an increase in the number of antennas, allows

to reduce the transmit power. Such behavior is due to an increase of the degrees of

freedom of the optimization problem when the constraint is relaxed or more antennas

are used.

4.4.2 Performance of SPAPR-Min Scheme with respect to the Number

of Tx Antennas

Herein, the dependency of the performance of the SPAPR-Min scheme on the number

of transmit antennas N is examined. This dependency can be seen in Fig. 4.5, which

displays the attained SPAPR and the total transmit power as functions of N . Similarly

to the previous problem, also here we can observe how increasing the number of transmit

antennas implies better performance. In particular, the attained SPAPR decreases when

N increases, reaching the theoretical lower bound of 0 dB for N ≥ 9. Moreover, the

total transmit power sensibly decreases when N increases.

7However, it should be kept in mind that a reference scenario with unit noise variance at the receivers’
side is assumed, so the results in terms of transmit power shall be interpreted more in a comparative
fashion than in an absolute way.
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Table 4.2: Summary of the considered SLP techniques.

Technique Acronym Extended Name Problem Ref.

WPPMLB Weighted Peak Power Minimiza-
tion with Lower Bound

(4.3)

SPAPR-Min Spatial Peak-to-Average Power Ra-
tio Minimization

(4.10)

PPM Peak Power Minimization (4.25)
SPM Sum Power Minimization (4.24)

4.4.3 Comparative Performance Analysis

Hereafter, some comparative simulation results are discussed for the proposed tech-

niques, i.e. WPPMLB and SPAPR-Min. Unless specified otherwise, the number of

transmit antennas is fixed to 10, allowing additional degrees of freedom in the optimiza-

tion problems to be exploited, and the imposed spatial dynamic range in the WPPMLB

approach is fixed to 1 dB (i.e., α = −1 dB)8.

In the context of symbol-level precoding, the considered benchmarks are the sum power

minimization (SPM) scheme [22, 23] and the peak power minimization (PPM) of chapter

3. For the sake of completeness, a multi-level formulation for the SPM and the PPM

optimization problems, respectively, is provided in the following:

x(d,H,γ) = arg min
x

‖x‖2

s.t. C1 : |hjx|2 D κ2jγjσ2z , j = 1, . . . ,K,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K,

(4.24)

x(d,H,γ) = arg min
x

max
i=1,...,N

{|xi|2}

s.t. C1 : |hjx|2 D κ2jγjσ2z , j = 1, . . . ,K,

C2 : ∠hjx = ∠dj , j = 1, . . . ,K.

(4.25)

For the sake of clarity, all the considered SLP schemes are summarized in Table 4.2,

with their acronyms and the reference to the respective optimization problems.

First of all, let us focus on the achieved performance in terms of spatial dynamic range

and SPAPR, which are summarized in Table 4.3. The displayed values show a substantial

gain of the proposed schemes with respect to the benchmarks, especially in terms of

8However, it may be set to any value depending on the specific non-linear scenario at hand.
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Table 4.3: Comparison of the spatial dynamic range and SPAPR values for the dif-
ferent schemes.

SPAPR-Min WPPMLB PPM SPM

Spatial Dynamic Range [dB] 0 1 5.1 14.4
SPAPR [dB] 0 0.2 0.6 4.7

spatial dynamic range, which turns out extremely high when the SPM scheme is used.

As already observed, the SPAPR-Min approach is able to reach the lower bound for

the spatial dynamic range and the SPAPR. It should be highlighted that this is also

possible with the WPPMLB approach by properly setting α to 0 dB, which would come

of course with a higher transmit power required, according to the trade-off shown in

Fig. 4.4. Actually, the strength of the WPPMLB approach lies in its flexibility which

allows to cope with systems having different requirements, realizing a trade-off between

imposed spatial dynamic range and consumed power.

In Fig. 4.6 the total transmit power, in dBW, is shown as a function of the target

SINR, in dB, for the considered techniques. As expectable, the power requirements of

the proposed schemes are higher with respect to the benchmarks. In particular, the

SPAPR-Min scheme requires a higher total power than the WPPMLB one. Moreover,

Fig. 4.7 displays the average power transmitted by each antenna for the different schemes

at hand, for a fixed channel realization. This result allows to better visualize the trade-off

of the proposed precoding approaches, which produce a more uniform power distribution

amongst the antennas at the expense of a higher consumed power. It shall be highlighted

how the more uniform power distribution attained by the proposed approaches implies

better performance with respect to the benchmarks (SPM and PPM), over a generic

non-linear channel. This is clearly quantified in SER analysis presented later on in this

section.

In order to give further insights on the proposed symbol-level precoding schemes, let

us also consider herein a comparison with the constant envelope precoding of [29]. By

construction, this approach designs waveforms with 0 dB dynamic range (both in space

and in time), but it does not achieve the constructive interference effect of the symbol-

level schemes at hand. This can be seen in Fig. 4.8, where the achieved average SINR at

the users, in dB, is compared between the different approaches, as a function of the total

transmit power in dBW. In fact, it can be noted that an increase in the transmit power,

which in turn implies an increase in the interference level, enhances the constructive

interference effect in the symbol-level schemes, and results in a considerable gain in the

attained SINR. On the other hand, in the scheme of [29] the interference is harmful,
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Figure 4.6: Total transmit power, in dBW, versus target SINR, in dB.
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Figure 4.8: Average achieved SINR, in dB, versus total transmit power, in dBW.

thus the SINR has a slower growth when the transmit power increases. In particular, in

the case of [29] one can observe a saturation effect of the SINR curve for high transmit

power, which results in a maximum achievable SINR. In the remainder of this section,

the comparison with the scheme of [29] is also presented in term of SER over a non-linear

channel.

In Figs. 4.9-4.10 a comparative result in terms of SER is given. In particular, these re-

sults present the SER achieved at the users’ side when the schemes at hand are applied

over a channel corrupted by non-linearities (besides the MUI and the AWGN), consider-

ing a case with 8 transmit antennas and a case with 10 transmit antennas, respectively.

This analysis allows to evaluate the overall effectiveness of the proposed techniques with

respect to the differential phase shift effect. The results have been obtained by sim-

ulating S = 3000 symbol slots and considering, for both cases, a fixed realization for

the channel matrix and a target SINR of 12 dB9. The non-linear model of Fig. 2.7 has

been considered for the simulations10. In order to apply the non-linear characteristics,

9This target SINR is also considered for the approach of [29], although in this case it is not al-
ways guaranteed that this threshold is achieved, because of the saturation effect of the SINR with the
increasing power.

10It should be mentioned that the absolute average phase rotation, given by the PM characteristic of
the amplifiers, is assumed estimated and compensated at the receiver side, based on pilot symbols. This
phase recovery and compensation is a necessary operation, without which the detection process cannot
proceed, and is normally easy to perform, since it is referred to the average phase shift.
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the transmitted waveforms have been modeled by oversampled discrete sequences, by

applying a pulse shaping operation to the generated symbols, for each antenna. The

pulse shaping operation is performed using a unit energy symmetric pulse waveform

g(t). Denoting by T the symbol period and by ξ the oversampling factor, the trans-

mitted waveform for the generic i-th antenna can be represented through its discrete

samples spaced by ts = T
ξ , as follows:

xovsi [lts] =
S−1∑
n=0

xi[n]g[lts − nT ], l = 0, . . . , ξS − 1, (4.26)

where n indexes the S symbols while l indexes the samples. At the generic j-th user,

in order to obtain the received signal in the symbol domain, a matched filtering and

downsampling operation is applied to the oversampled received waveform yovsj [lts], as

follows:

yj [n] =

ξS−1∑
l=0

yovsj [lts]g[lts − nT ], n = 0, . . . , S − 1. (4.27)

The pulses g(t) considered for the simulations are square-root-raised-cosine (SRRC) with

a roll-off factor of 0.25, and the oversampling factor ξ has been set to 10.

The figures show the obtained SER as a function of the input back-off (IBO), in dB,

applied to the signal feeding the non-linear amplifiers. The shape of the obtained curves

can be explained by considering that, in general, rescaling the average power of the

transmit signals (i.e., applying a back-off with respect to the saturation point of the

amplifiers) allows to mitigate the non-linear effects, and therefore to improve the SER

performance. On the other hand, the back-off operation reduces the SINR, hence a very

high IBO tends to increase the achieved SER. Ultimately there is a trade-off, and the

optimal IBO can be identified as the one minimizing the SER.

In both the cases with 8 and 10 antennas, it is visible how the proposed approaches allow

to achieve an improved SER with respect to the symbol-level precoding benchmarks,

i.e., the PPM approach and the SPM approach11. Furthermore, it can be noted that, in

most of the simulated cases, the proposed techniques allow the non-linear amplifiers to

operate with a lower IBO in the optimal operating point. Interestingly, it turns out that

the SPAPR-Min scheme slightly outperforms the WPPMLB one, even when a spatial

dynamic range of 0 dB is imposed in the latter. It is conjectured that this is due to

11The attained SER values can be reduced by increasing the SINR target. Moreover, although channel
coding is out of the scope of this work, it should be noted that a forward error correction (FEC) scheme
can strongly boost the overall performance in terms of bit error rate. A study of the proposed schemes
including FEC is foreseen in future work.
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Figure 4.9: Achieved SER versus IBO, in dB, for a channel with 5 users and 8
antennas.

a better constructive interference effect taking place with the SPAPR-Min scheme, or

even to an improved dynamic in the temporal dimension experienced in such scheme.

The comparison of the proposed schemes with the constant envelope precoder of [29]

needs a separate discussion. Remarkably, in the case with 8 antennas of Fig. 4.9, the

proposed approaches outperform the constant envelope precoder in terms of achieved

SER. As a matter of fact, the numerical analysis has revealed that the maximum SINR

achievable by [29] in this scenario is around 9 dB, due to the aforementioned saturation

effect of the SINR. Therefore, the constant envelope precoder cannot guarantee the target

SINR of 12 dB. However, the symbol level schemes are able to achieve the guaranteed

SINR target. As a result, a better SER performance is attained by the proposed schemes.

The situation changes in the case with 10 antennas of Fig. 4.10. In fact, in turns out

that in this scenario the constant envelope scheme can guarantee the target SINR of 12

dB, as well as the proposed schemes. As a consequence, the advantage of [29] in terms

of dynamic range of the waveforms (it achieves constant envelope waveforms in space

and time) dominates, and a better SER performance is obtained. It can be concluded

that the number of antennas is an important factor in the choice of one scheme over the

other. Further, the target SINR is also a relevant factor in the choice, since the scheme

in [29] presents a saturation effect (as also shown in Fig. 4.8).
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Figure 4.10: Achieved SER versus IBO, in dB, for a channel with 5 users and 10
antennas.

4.4.4 Out-of-band Radiation

A final remark about the proposed precoding schemes is related to the out-of-band

radiation. In fact, it is well known that the non-linear relation (2.15) widens the spectrum

of the amplified waveforms, determining the transmission of power outside the pulse

bandwidth. Considering the signal transmitted by one of the antennas when a 3 dB

IBO is applied, Fig. 4.11 compares the related power spectral density at the output

of the non-liner amplifier, for the symbol-level precoding approaches at hand, together

with the case of a non-precoded waveform. Interestingly, it emerges how the proposed

approaches (WPPM, WPPMLB and SPAPR-Min) determine a moderately higher out-

of-band radiation with respect to the SPM precoding case and the non-precoded one.

This can be explained by considering that the introduced techniques are not improving

the signals dynamic properties in the time dimension. Accordingly, a reduction of the

out-of-band radiation was out of the scope of this work. Nonetheless, it shall be noted

how the relative level of the out-of-band radiation with respect to the in-band radiation

for the proposed techniques is comparable with the non-precoded case. Finally, the DC

level observable in the WPPMLB case reveals an asymmetric shape for the transmit

constellations produced by this approach.
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Figure 4.11: Power spectral density of the output signals with the proposed ap-
proaches for a 3 dB IBO; the normalized frequency fT is considered, with T being the

symbol period; the pulse bandwidth is BT = 1.25.

4.4.5 Numerical Evaluation of the Complexity

This section is concluded by providing a numerical evaluation of the complexity of the

proposed algorithms12. First of all, Table 4.4 quantifies the average number of iterations

required for convergence in the WPPMLB scheme and in the SPAPR-Min one, consid-

ering the cases with 8 and 10 transmit antennas. Moreover, the symbol-level precoding

algorithms are compared in Fig. 4.12 in terms of average total running time, based on

simulations over the same machine, as a function of the number of transmit antennas.

The WPPMLB technique is considered with α = 0 dB, -1 dB, and -3 dB. The most

evident outcome is the impressive increase in the running time of the proposed schemes

with respect to the benchmarks, which is clearly due to the increased complexity and to

the fact that multiple iterations have to be performed. It is also worth noticing how in

the SPAPR-Min scheme the number of iterations and the total running time decrease

when the number of antennas is increased, while in the WPPMLB scheme such numbers

increase with N , for α = −1 dB and α = −3 dB13. Interestingly, the case with α = 0

has a different behavior. It is conjectured that this is due to the reduced number of

12The complexity of the SPM scheme is also discussed in [22].
13A possible explanation of this fact is that a higher N gives more degrees of freedom to the SPAPR-

Min optimization problem (4.13), without increasing the number of its constraints, which depends only
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Table 4.4: Avg. Number of Iterations.

N = 8 N = 10

WPPMLB α = 0 dB 15.4 10.4
WPPMLB α = −1 dB 10.9 11.9
WPPMLB α = −3 dB 8.8 10.1

SPAPR-Min 14.4 5.9

feasible instances of the optimization problem in this edge case, which depends on N as

discussed in section 4.4.1 and, in turn, affects the running time.

Overall, it turns out that the proposed techniques are suitable for systems that can afford

to use a considerable computing capability to have improved performance over non-linear

channels. For systems with a very high number of transmitting elements, e.g. large-scale

antenna arrays, the SPAPR-Min scheme should be preferred to the WPPMLB one if the

affordable computing capability is limited, since in the former strategy the number of

required iterations, and accordingly the running time, results much lower. Whenever

the computational complexity is a major limitation, the proposed PPM scheme can be

considered in order to cope with the non-linear effects in a simpler fashion.

4.5 Conclusions

In this chapter, two novel strategies for SLP have been proposed, aiming at controlling

the per-antenna instantaneous transmit power and at limiting the power imbalances

across the different RF chains. A first proposed scheme (WPPMLB) performs a weighted

per-antenna power minimization, imposing a lower bound to the power carried by each

transmitted stream. A second scheme (SPAPR-Min) performs the minimization of the

spatial peak-to-average power ratio. Both the approaches allow to reduce the spatial

dynamic of the transmitted waveforms, besides exploiting the constructive interference

as in other symbol-level strategies available in the literature. Such feature, which is novel

in the context of symbol-level precoding, makes these techniques particularly relevant in

systems affected by non-linear impairments. More specifically, they allow to deal with

the problem of differential phase shift, which is characterized in the contribution. The

performance of the proposed schemes has been assessed through numerical results in

terms of spatial dynamic range, spatial peak-to-average power ratio and symbol error

rate, in comparison with state of the art symbol-level precoding techniques. The results

on K. On the other hand, in the case of the WPPMLB optimization problem (4.8), a higher N increases
also the number of constraints, besides allowing more degrees of freedom.
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Figure 4.12: Average running time per iteration, in s, vs. number of transmit anten-
nas.

show how the novel strategies outperform the existent symbol-level approaches with

respect to the mentioned metrics. They also motivate using more transmit antennas

than served users to improve the waveform characteristics of the transmitted signal.

The WPPMLB scheme has been shown more flexible than the SPAPR-Min one, which

however is able to achieve a slightly lower SER.



Part II

Spatio-temporal Symbol-level

Precoding
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Chapter 5

PAPR Minimization through

Spatio-temporal Symbol-level

Precoding

In practical multi-user multiple-input single-output (MISO) systems, the performance

degradation induced by the non-linear amplification stage depends on the power vari-

ation of the signals both in the temporal and in the spatial dimensions. As already

discussed, the latter one is referred to the variation of the instantaneous transmit power

among the different antennas, which causes the problem of differential phase shift. The

symbol-level precoding (SLP) schemes introduced in the previous chapters of this thesis

tackle this problem by reducing the instantaneous power imbalances among the antennas,

for each symbol slot. Nonetheless, these SLP schemes fail at improving the power dy-

namic of the waveforms in the temporal dimension, which is fundamental with respect to

non-linearities, since they work on a symbol-by-symbol basis. In order to fill this gap, this

chapter proposes a new SLP method, referred to as spatio-temporal SLP, which is able

to optimize the power dynamic of the waveforms both in the spatial and in the temporal

dimensions, thus further improving the robustness of the signals to non-linear effects.

Specifically, the proposed strategy performs a minimization of the spatio-temporal peak-

to-average power ratio (PAPR) of the transmitted waveforms, under Quality-of-Service

(QoS) constraints, for multi-level modulation schemes. The related optimization prob-

lem can be formulated similarly to the spatial PAPR minimization of chapter 4, therefore

it is addressed resorting once more to parametric programming and successive convex

approximation (SCA). The optimization takes into account the oversampled waveforms,

by modeling the pulse shaping operation at each antenna.

83
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5.1 System Model

Let us consider a single-cell multiple-antenna downlink scenario, where a base-station

delivers K independent data streams to K single-antenna user terminals through N

transmit antennas, with N ≥ K. Each data stream is divided in blocks of S symbols,

and the channel is assumed to be quasi-static flat fading. Considering a data block,

one can define the data information matrix S = [sT1 . . . s
T
K ]T ∈ CK×S , which aggre-

gates the symbol streams to be delivered to the different users. Similarly, the matrix

D = [dT1 . . .d
T
N ]T ∈ CN×S aggregates the precoded symbol streams feeding the transmit

filters. In fact, each symbol stream has to undergo pulse shaping before the actual trans-

mission. The pulse shaping operation is performed using a unit energy symmetric pulse

waveform1 α(t). Denoting by T the symbol period and by ξ the oversampling factor,

the transmitted waveform for the generic n-th antenna can be represented through its

discrete samples spaced by ts = T
ξ , as follows:

xn[l] =

S∑
i=1

dn[i]α[(l − 1)ts − (i− 1)T ], l = 1, . . . , ξS, (5.1)

where dn[i] is the i-th element of the symbol vector dn, which in turn is the n-th row of

D. Such relation can be rewritten in a compact matrix form as:

xn = dnATX, (5.2)

where xn ∈ C1×ξS represents the output data stream (in the oversampled domain) from

the n-th antenna and ATX ∈ RS×ξS is a block Toeplitz matrix modeling the pulse

shaping operation, with its (i, l)-th element being:

[ATX](i,l) = α[(l − 1)ts − (i− 1)T ]. (5.3)

By aggregating the output (oversampled) signals from all the antennas in a matrix

X = [xT1 . . .x
T
N ]T ∈ CN×ξS , the pulse shaping operation can be represented in a compact

matrix form as X = DATX.

According to the well-known multi-user MISO channel model, the received symbols at

the users can be written in matrix form as:

Ỹ = HX + Z̃,

1The symmetry of the pulse is not a strict requirement for the system model. However, this assump-
tion has been made in order to simplify the notation, and taking also into account that it is often met
in practice (for example for SRRC pulses).
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Figure 5.1: Block scheme of the considered system model relying on spatio-temporal
SLP.

where the matrix Ỹ = [ỹT1 . . . ỹ
T
K ]T ∈ CK×nsS represents the received samples at the

K users, H = [hT1 . . .h
T
K ]T ∈ CK×N is the channel matrix modeling the interference

among the different data streams, and Z̃ = [z̃T1 . . . z̃
T
K ]T ∈ CK×ξS models the additive

white Gaussian noise (AWGN). In order to obtain the received signals at the users in the

symbol domain, the matched filtering and downsampling operation needs to be modeled.

This can be done again in a matrix form, using the block Toeplitz matrix ARX ∈ RξS×S ,

which can be defined in the same fashion of (5.3). Overall, grouping the received symbols

at the K users in a matrix Y = [yT1 . . .y
T
K ]T ∈ CK×S , the global communication model

can be written as:

Y = Ỹ ARX = HXARX + Z̃ARX = HDA+Z, (5.4)

where A = ATXARX ∈ RS×S represents the combination of the filters at the transmitter

and at the receiver, while Z = Z̃ARX ∈ CK×S is the noise in the symbol domain.

Without loss of generality, the noise power is assumed to be 1.

As discussed in section 2.3 of chapter 2, it should be taken into account how the system

model introduced in (5.4) is actually degraded by the non-linear effects introduced by

the per-antenna high-power amplifiers (HPAs). In line with the previous chapters, the

traveling-wave tube amplifier (TWTA) model introduced in Fig. 2.7 will be used as a

practical reference2. The complete system model is represented in the block scheme of

Fig. 5.1, where it is clear how the symbol matrix D is obtained as output of a spatio-

temporal precoding module, which takes as input the channel state information (CSI),

i.e. an estimate of H, the filters matrices ATX and ARX and the data information

matrix S. Differently than in the previous chapters, the model in (5.4) represents the

signals not only in the spatial dimension (i.e., how they vary between the antennas),

but also in the temporal dimension, considering a whole block of S symbols per stream

2However, it should be stressed that the proposed scheme is general and applies to any non-linear
model.
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and the oversampled transmitted waveforms through X. This feature allows to take an

important step forward in SLP towards counteracting the non-linear effects. In fact, with

the introduced model it is possible to design the matrix D, namely the precoded symbol

streams feeding the transmit filters, by optimizing the power dynamic of the transmitted

samples X both in the spatial and in the temporal dimensions, thus making the signals

more robust to non-linear effects.

In order to facilitate the formulation of the proposed optimization scheme, discussed in

the next section, it is convenient to further manipulate the model of (5.4) by vectorizing

the introduced signal matrices over the temporal dimension (rows first). Hence, the data

information streams can be modeled through the vector s = vec(ST ) = [s1 . . . sK ]T ∈
CKS×1, the designed symbol streams through d = vec(DT ) = [d1 . . .dK ]T ∈ CNS×1, the

transmitted signals through x = vec(XT ) = [x1 . . .xN ]T ∈ CNξS×1, the noise through

z = vec(ZT ) = [z1 . . . zK ]T ∈ CKS×1, and the received symbols through y = vec(Y T ) =

[y1 . . .yK ]T ∈ CKS×1. It is straightforward to check that the relation between d and x

can be written as:

x = (IN ⊗AT
TX)d. (5.5)

Further, by introducing the matrix X̂ = XARX = DA ∈ CN×S and its vectorized

version x̂ = vec(X̂T ) ∈ CNS×1, and by accounting for (5.4), it is easy to check that

x̂ = (IN ⊗ AT )d and that y = (H ⊗ IS)x̂ + z. Finally, using the mixed-product

property of the Kronecker product yields (H ⊗ IS)(IN ⊗AT ) = (H ⊗AT ), therefore

the global communication model can be written as follows:

y = (H ⊗AT )d+ z = Gd+ z. (5.6)

This final formulation represents the introduced spatio-temporal system model in a very

simple way, formally similar to the spatial model used in the previous SLP literature.

The matrix G = H ⊗ AT ∈ CKS×NS is an equivalent representation of the channel

matrix in this novel spatio-temporal model, therefore it will be referred to as spatio-

temporal channel matrix.
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5.2 Spatio-temporal Peak-to-average Power Ratio Mini-

mization

In this section, a SLP scheme relying on the introduced spatio-temporal model is pro-

posed. The scheme performs the minimization of the PAPR of the transmitted wave-

forms both in the spatial and in the temporal dimensions, under QoS constraints. More-

over, in line with the previous works on SLP [23], it targets a constructive interference

effect at each receiver and for each symbol slot. Herein, the formulation is provided

assuming an amplitude phase shift keying (APSK) modulation scheme for the data in-

formation3. The spatio-temporal peak-to-average power ratio (ST-PAPR) can be simply

defined, based on the vectorized communication model of (5.6), as:

ST-PAPR =
‖x‖2∞
‖x‖2/N

. (5.7)

Taking also into account the relation between x and d, the optimization problem, re-

ferred to as ST-PAPR-Min, can be formulated as a non-linear fractional program as

follows:

d(s,H,ATX,ARX,γ) = arg min
d

‖(IN ⊗AT
TX)d‖2∞

‖(IN ⊗AT
TX)d‖2

s.t. C1 : |gjid|2 Dκ2jiγj , j = 1, . . . ,K, i = 1, . . . , S,

C2 : ∠gjid =∠sj [i], j = 1, . . . ,K, i = 1, . . . , S,

(5.8)

where gji denotes the spatio-temporal channel related to the j-th user for the i-th symbol

slot, thus it is the [(j− 1)S+ i]-th row of G, and sj [i] is the i-th element of sj . Further,

γj is the target signal-to-interference-plus-noise ratio (SINR) that should be granted

for the j-th user, γ = [γ1 . . . γK ]T ∈ CK×1 stacks the target SINR for all the users,

and κji = |sj [i]|/
√

Ej,i[|sj [i]|2] is a magnitude scaling factor for the symbol sj [i], which

allows to account the different amplitudes of the symbols in the multi-level constellation

(see also [23]). The notation D represents a generalized inequality, to be read as ≥ or =

depending whether the constraint is referred to a boundary symbol or to an inner symbol

of the constellation, respectively. The set of constraints C1 represents a QoS constraint

for each user, while the set of constraints C2 represents the constructive interference

condition, guaranteeing that each user receives the desired data symbol with the correct

phase.

3However, it can be easily extended to QAM modulations, as in [23] (see also chapter 6).
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The optimization problem (5.8) is formally similar to the spatial PAPR minimization

problem addressed in section 4.3 of chapter 4. Thus, it can be solved following the same

strategy. In particular, as a first step the problem can be rewritten by reformulating the

constraints, as follows4:

d(s,H,ATX,ARX,γ) = arg min
d

‖x‖2∞
‖x‖2

s.t. C1 : Re(sj [i])
gjid+ d†g†ji

2
D
√
γj Re2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C2 : Im(sj [i])
gjid− d†g†ji

2ι
D
√
γj Im2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C3 : (ιtji − 1)gjid+ (ιtji + 1)d†g†ji = 0,

j = 1, . . . ,K, i = 1, . . . , S,

(5.9)

where tji = tan (∠sj [i]), and x has been used in place of (IN ⊗ AT
TX)d to simplify the

notation.

The formulation in (5.9) is still challenging because of the non-linear fractional objective

function. The problem can be solved based on the method followed in chapter 4, by

applying in a joint fashion parametric programming [157] and SCA [152]. Accordingly,

the function ‖x‖2 can be approximated around a generic point z ∈ CNξS×1 by a concave

(affine) function as:

(x− z)†(x− z) = x†x− 2 Re(z†x) + z†z ≥ 0

x†x ≥ 2 Re(z†x)− z†z

x†x ≈ 2 Re(z†x)− z†z. (5.10)

Using this lower bound approximation, the problem in (5.9) can be rewritten as:

4This can be derived based based on the result of Theorem 4.2
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d(s,H,ATX,ARX,γ) = arg min
d

‖x‖2∞
2 Re(z†x)− z†z

s.t. C1 : Re(sj [i])
gjid+ d†g†ji

2
D
√
γj Re2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C2 : Im(sj [i])
gjid− d†g†ji

2ι
D
√
γj Im2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C3 : (ιtji − 1)gjid+ (ιtji + 1)d†g†ji = 0,

j = 1, . . . ,K, i = 1, . . . , S.

(5.11)

Then, by applying parametric programming to the formulation in (5.11) using an auxil-

iary variable λ, it is possible to define the optimization function F (λ, z) = min
d∈S
{‖x‖2∞−

λ(2 Re(z†x) − z†z)}, where S represents the sets of constraints C1, C2, C3. This yields

the following optimization problem:

d(s,H,ATX,ARX,γ) = arg min
d

‖x‖2∞ − λ(2 Re(z†x)− z†z)

s.t. C1 : Re(sj [i])
gjid+ d†g†ji

2
D
√
γj Re2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C2 : Im(sj [i])
gjid− d†g†ji

2ι
D
√
γj Im2(sj [i]),

j = 1, . . . ,K, i = 1, . . . , S,

C3 : (ιtji − 1)gjid+ (ιtji + 1)d†g†ji = 0,

j = 1, . . . ,K, i = 1, . . . , S.

(5.12)

Ultimately, the algorithm in Table 5.1 is proposed, where λ and z are iteratively updated

until convergence. The parametric problem (5.12) is convex and can be solved using the

standard convex optimization tools [149]. Both the SCA approach [152] and the para-

metric programming [157] have been proven convergent. Moreover, a numerical analysis

has evidenced a fast convergence of the proposed joint algorithm (see also chapter 4).

5.3 Numerical Results

In this section, numerical results are presented to assess the performance of the proposed

ST-PAPR-Min scheme over non-linear channels. The presented results are obtained

considering a scenario with N = 5 antennas and K = 3 users, a 16-APSK modulation
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H =

 0.217− 0.002ι −1.355− 0.642ι 0.587− 0.018ι −0.363− 0.312ι −0.356 + 0.635ι
−0.667− 0.692ι 0.342− 0.355ι −0.717 + 1.114ι 0.817 + 0.166ι 0.584 + 0.385ι
0.006− 1.211ι 0.798− 0.139ι 0.330− 0.315ι 0.327 + 0.711ι 0.192− 1.571ι


(5.13)

Table 5.1: Proposed Iterative Algorithm

1. Initialization: Set ε, k = 0, λ = 0, which
results in solving min

d∈S
{‖x‖2∞}.

2. Evaluate λ0 = ‖x‖2∞
‖x‖2 , z0 = x.

3. Solve the following optimization:

d = arg min
d

‖x‖2∞ − λk(2 Re(z†kx)− z†kzk)

s.t. C1, C2, C3.
(5.14)

4. Evaluate |F (λk, zk)| and ‖x − zk‖; if
|F (λk, zk)| ≥ ε or
‖x− zk‖ ≥ ε go to step 5.

5. Set λk+1 = ‖x‖2∞
‖x‖2 , zk+1 = x, k = k + 1, go to

step 3.

scheme for the data information, and a block length of S = 100 symbols, averaging

over different realization of the data S. The pulse shaping operation is performed

using squared root raised cosine (SRRC) pulses with a roll-off factor of 0.25, while

the oversampling factor ξ is set to 4. The target SINR, assumed the same for all the

users, is set to 12 dB, while a fixed realization has been considered for the spatial

channel coefficients5 as in (5.13). The considered benchmarks are the spatial peak-to-

average power ratio (SPAPR) minimization (SPAPR-Min) scheme of chapter 4, which

minimizes the PAPR only in the spatial dimension, and the peak power minimization

(PPM) scheme of chapter 3, which aims at minimizing the power peaks again only in

the spatial dimension.

First of all, Table 5.2 compares the ST-PAPR, in dB, achieved by the proposed scheme

and the benchmarks, together with the average per-antenna transmit power in dBW.

Remarkably, the proposed scheme manages to reduce the ST-PAPR of 6.55 and 5.45 dB

5However, the main conclusions of this work still apply if more general channel conditions are con-
sidered.
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Table 5.2: PAPR and transmit power for the different schemes.

ST-PAPR-Min SPAPR-Min PPM

ST-PAPR [dB] 1.05 7.6 6.5
Temp. PAPR [dB] 1.09 7.3 5.8

Per-ant. Power [dBW] 14.4 9.4 6

compared to the two considered benchmarks, respectively, at the expense of a higher

transmit power. The table also shows the attained temporal PAPR averaged between

the antennas, in order to highlight that impressive gains are obtained in the temporal

dimension for each radio frequency (RF) chain. The improved power dynamic obtained

with the proposed scheme in the temporal dimension is clearly visible in Fig. 5.2, where

the complementary cumulative distribution function (CCDF) of the instantaneous power

transmitted by one antenna (|x1[l]|2, considering the antenna indexed by 1, with l being

the sample index) is drawn. Notably, the ST-PAPR-Min approach shows a much lower

power variation in time.
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Figure 5.2: CCDF of the instantaneous transmit power for a single antenna.

Finally, to validate the performance of the proposed scheme with respect to non-linearities,

Fig. 5.3 shows the symbol error rate (SER) attained by the proposed approach and by

the benchmarks over a channel corrupted by the non-linear model of Fig. 2.7. The SER

is shown as a function of the input back-off (IBO), in dB, applied to the signal feeding
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Figure 5.3: Achieved SER versus IBO, in dB, using the non-linear model of Fig. 2.7.

the non-linear HPAs. This result shows how the improved PAPR properties achieved

by the proposed scheme result in a remarkable SER reduction when non-linearities are

considered.

5.4 Conclusions

In this chapter, a new SLP method has been proposed, which allows to optimize the

power dynamic of the waveforms both in the spatial and in the temporal dimensions,

thus further improving the robustness of the signals to non-linear effects with respect to

the space-only SLP schemes. In particular, the introduced spatio-temporal precoding

model is utilized to minimize the spatio-temporal PAPR guaranteeing some specific

Quality-of-Service targets, while at the same time exploiting the constructive interference

effect typical of SLP. Numerical results have been presented, in terms of PAPR, power

distribution, and symbol error rate over a non-linear channel, showing remarkable gains

with respect to the SLP shemes previously discussed, at the expense of a higher transmit

power.



Chapter 6

Faster-than-Nyquist Signaling

through Spatio-temporal

Symbol-level Precoding

In this chapter, the concept of spatio-temporal symbol-level precoding (SLP) previously

introduced is applied in order to go beyond the classical precoding paradigm aimed at

handling the multi-user interference (MUI). In particular, spatio-temporal SLP is used

to enable faster-than-Nyquist (FTN) signaling over multi-user multiple-input single-

output (MISO) systems, thus jointly leveraging the aggressive frequency reuse relying

on precoding and the rate enhancement given by time packing, as discussed in section 2.4

of chapter 2. Considering a generic multi-user MISO system, the main idea is to apply

spatio-temporal SLP in order to tackle at the transmitter side not only the interference

in the spatial dimension (the MUI), but also the inter-symbol interference (ISI) in the

temporal dimension. This extension of SLP is particularly relevant because it allows to

solves the problem of complex FTN receivers, as the ISI is completely handled at the

transmitter. Further, it is important to note that this approach allows to exploit in a

constructive fashion the interference both in the temporal and in the spatial dimensions,

thus gleaning benefits from both the domains. It should be also stressed that, unlike

the previous chapters, this chapter is not addressed to non-linear systems. Overall, the

main contributions of this chapter can be summarized as follows:

� The system model of spatio-temporal SLP, already introduced in chapter 5, is

retraced, with specific regard to FTN signaling.

� This spatio-temporal SLP framework is used to apply FTN signaling over a multi-

user MISO system, considering squared root raised cosine (SRRC) pulses and

93
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coping with the ISI at the transmitter side: in particular, the focus is on a FTN

SLP scheme performing sum power minimization under Quality-of-Service (QoS)

constraints for a generic multi-level modulation, where the data streams are divided

in blocks of symbols and the interference (MUI and ISI) is tackled within each

block.

� Further, a more advanced sum power minimization scheme is proposed, which tack-

les not only the interference within each block of symbols but also the inter-block

ISI arising between adjacent data blocks, borrowing concepts from dirty paper

coding [33] and precoding under interference constraints. This scheme results in

lower complexity as long frames can be broken down in shorter symbol blocks and

processed separately.

6.1 System Model

In this section, the system model for spatio-temporal SLP, already introduced in chapter

5, is retraced for the reader’s convenience. Further, the implications of applying FTN

signaling are discussed based on this system model. Let us consider a single-cell multiple-

antenna downlink scenario, where a base station simultaneously delivers K independent

data streams to K single-antenna user terminals through N transmit antennas, with

N ≥ K. Each data stream is divided in blocks of S symbols, and the channel is assumed

to be quasi-static flat fading. Considering a data block, the data information matrix

can be defined as S = [sT1 . . . s
T
K ]T ∈ CK×S . Such matrix aggregates the symbol streams

to be conveyed to the different users, taken from a constellation having unit average

power. Similarly, the matrix D = [dT1 . . .d
T
N ]T ∈ CN×S aggregates the precoded symbol

streams which feed the transmit filters. In fact, each symbol stream has to undergo

pulse shaping before the actual transmission. The pulse shaping operation is performed

using a unit-power symmetric pulse waveform1 α(t), having duration 2ηT , with T being

the symbol period2. This implies that α(t) = 0 for |t| > ηT . Moving to a discrete time

representation, and considering an oversampling factor ξ, the pulse waveform can be

represented through its samples spaced by ξ = T
ξ , i.e., α[mts], with the index m such

that |m| ≤ ηξ (accounting for the pulse duration).

With the introduced formalism, it is possible to write the expression of the discrete

samples at the output of the pulse shaping filter of the generic n-th antenna, as follows:

1The symmetry of the pulse is not a strict requirement for the system model. However, this assump-
tion has been made in order to simplify the notation, and taking also into account that it is often met
in practice (for example for SRRC pulses).

2For infinite pulses, η is defined by the time (in symbol periods) at which the pulse amplitude decades
below a sufficiently low level so that it can be considered negligible.
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xn[m] =
S∑
i=1

dn[i]α[(m− 1)ts − (i− 1)T ], m = 1, . . . , ξS, (6.1)

where dn[i] is the i-th element of the symbol vector dn, which in turn is the n-th row of

D. Such relation can be rewritten in a compact matrix form as:

xn = dnATX, (6.2)

where xn ∈ C1×ξS represents the output data stream (in the oversampled domain) from

the n-th antenna and ATX ∈ RS×ξS is a block Toeplitz matrix modeling the pulse

shaping operation, with its (i,m)-th element being:

[ATX](i,m) = α[(m− 1)ts − (i− 1)T ]. (6.3)

Further, we can aggregate the output signals from all the antennas in a matrix X =

[xT1 . . .x
T
N ]T ∈ CN×ξS , which allows us to model the pulse shaping operation for all the

N antennas simply as X = DATX.

According to the well-known multi-user MISO channel model, the received symbols at

the users can be written in matrix form as:

Ỹ = HX + Z̃

where the matrix Ỹ = [ỹT1 . . . ỹ
T
K ]T ∈ CK×ξS represents the received samples at the K

users,H = [hT1 . . .h
T
K ]T ∈ CK×N is the quasi-static flat fading channel3 matrix modeling

the MUI among the different data streams, and Z̃ = [z̃T1 . . . z̃
T
K ]T ∈ CK×ξS models the

additive white Gaussian noise (AWGN). In order to obtain the received signals at the

users in the symbol domain, the matched filtering and downsampling operation needs

to be modeled. This is done again in a matrix form, using the block Toeplitz matrix

ARX ∈ RξS×S , which can be defined in the same fashion of (6.3). Overall, grouping

the received symbols at the K users in a matrix Y = [yT1 . . .y
T
K ]T ∈ CK×S , the global

communication model can be written as:

Y = Ỹ ARX = HXARX + Z̃ARX = HDA+Z, (6.4)

where A = ATXARX ∈ RS×S is a matrix representing the convolution of the filters

at the transmitter and at the receiver, while Z = Z̃ARX ∈ CK×S is the noise in

3In principle, it is possible to extend the model accounting also for frequency selective fading channels,
by representing the resulting channel induced ISI. Nevertheless, in order not to further complicate the
system model, in this thesis the focus is on flat fading channels, while the extension to the general case
will be considered in the future work.
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Figure 6.1: Block scheme of the considered system model relying on spatio-temporal
SLP.

the symbol domain, having power σ2z . If we denote by β(t) the impulse response of

the overall filter composed by the convolution of the pulse shaping and the matched

filtering, it can be seen that A is a symmetric Toeplitz matrix whose first row is a =

[β[0]β[T ] . . . β[2ηT ]0 . . . 0]4. It should be stressed that the model in (6.4) takes into

account the interference both in the spatial dimension (the MUI), through the spatial

channel matrix H, and in the temporal dimension (the ISI), through the temporal

channel matrix A. The complete system model is represented in the block scheme of

Fig. 6.1, where it is clear how the symbol matrix D is obtained as output of a spatio-

temporal precoding module, which takes as input the channel state information (CSI),

i.e. an estimate of H, the filters matrices ATX and ARX and the data information

matrix S.

The aim of the symbol-level precoding scheme is to optimize the matrix D, namely

the precoded symbol streams feeding the transmit filters, by constructively exploiting

the interference in the spatial and in the temporal dimension. While this optimization

procedure will be explained in detail in the following section, it is now convenient to

further manipulate the model of (6.4) by vectorizing the introduced signal matrices

over the temporal dimension (rows first). Accordingly, data information streams are

modeled through the vector s = vec(ST ) = [s1 . . . sK ]T ∈ CKS×1, the designed symbol

streams through d = vec(DT ) = [d1 . . .dN ]T ∈ CNS×1, the transmitted signals through

x = vec(XT ) = [x1 . . .xN ]T ∈ CNξS×1, the noise through z = vec(ZT ) = [z1 . . . zK ]T ∈
CKS×1, and the received symbols through y = vec(Y T ) = [y1 . . .yK ]T ∈ CKS×1. It is

straightforward to check that the relation between d and x can be written as:

x = (IN ⊗AT
TX)d. (6.5)

Further, by introducing the matrix X̂ = XARX = DA ∈ CN×S and its vectorized

version x̂ = vec(X̂T ) ∈ CNS×1, and by accounting for (6.4), it is easy to check that

4To ease the notation, the assumption that S > 2η is considered.
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x̂ = (IN ⊗ AT )d and that y = (H ⊗ IS)x̂ + z. Finally, using the mixed-product

property of the Kronecker product yields (H ⊗ IS)(IN ⊗AT ) = (H ⊗AT ), therefore

the global communication model can be written as follows:

y = (H ⊗AT )d+ z = Gd+ z. (6.6)

The matrix G = H ⊗AT ∈ CKS×NS incorporates both the spatial channel matrix H

and the temporal one A, thus it will be referred to as spatio-temporal channel matrix.

Ultimately, the model of (6.6) allows to represent in a very simple way both the MUI

and the ISI of the system. In the next section, the optimization problem modeling the

proposed spatio-temporal SLP scheme will be detailed.

6.1.1 Faster-than-Nyquist

As already mentioned, FTN signaling manages to pack more information in the time

domain by reducing the symbol period T below the minimum allowed by the Nyquist

criterion, thus introducing controlled ISI. This is graphically shown in Fig. 6.2 for the

case of a SRRC pulse. In the system model definition, no assumptions have been on the

symbol-rate so far. It can be easily seen that if we do not apply FTN, then the Toeplitz

matrix A simply reduces to a scaled identity, i.e., A = β[0]IS . In this case there is no

ISI and the model in (6.4) boils down to the classic multi-user MISO case.

Now, let us assume that we apply a signaling acceleration factor τ ∈ [0, 1], so that

the effective symbol period is T = τTny, with Tny indicating the minimum symbol

period allowed by the Nyquist criterion. It can be easily seen that the lower is the

acceleration factor τ (i.e., the more the transmissions are accelerated) the larger is the

number of non-zero values in the matrix A, thus the higher is the ISI level in the

system. This can be easily explained by the fact that more pulses are packed in the time

domain. Furthermore, as the total duration of the individual pulse remains constant,

the value of η increases as τ decreases5. The schemes proposed in this chapter apply

regardless of the chosen pulse. In the numerical results section, SRRC pulses will be

considered, as they are the most used in practical applications. It should be noted that

no complex equalization or decoding is needed at the receivers, as they are oblivious to

the FTN operation. The receivers have to be informed only about the baud-rate of the

communication for sampling purposes.

5In the remainder of the chapter the FTN operation will be represented solely through the acceleration
factor τ , as η is directly dependent on it for a given pulse.
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Figure 6.2: Nyquist vs. Faster-than-Nyquist for a SRRC pulse, in the time domain.

6.2 Faster-than-Nyquist SLP for Sum Power Minimization

with QoS Constraints

In this section a novel SLP scheme accounting for FTN signaling is presented, which

exploits in a constructive fashion [22] the interference both in the spatial and in the

temporal domain. The novelty with respect to the previous SLP solutions lies in the

ability of the new scheme to model and handle the ISI, together with the MUI, and in the

consequent capacity of exploting the potential of FTN signaling in the context of multi-

user MISO systems. More specifically, a sum power minimization scheme under QoS

constraints is proposed. As common in the precoding literature, the QoS constraints

are expressed in terms of target SINR, which represents a predefined per-user SINR

threshold to be guaranteed at the receivers’ side. The target SINR, which is an input

parameter to the precoding scheme, has to be selected in order to ensure a sufficiently

good performance (e.g. in terms of symbol error rate or bit error rate) for the considered

application, and strongly depends on the adopted modulation as well as on the use of

forward error correction (FEC) schemes. Therefore, in a practical system the target

SINR should not be selected a priori, but it shall be rather chosen through a training
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phase based on pilots, which allows to evaluate the performance associated to different

target SINR values for the specific system at hand. Since the aim is to minimize the

total transmit power Ptot, it is convenient to explicit its expression before formalizing

the proposed scheme, as follows:

Ptot =
1

ξS

nsS∑
m=1

N∑
n=1

|[X](n,m)|2 =
1

ξS
‖X‖2F =

1

ξS
‖x‖2. (6.7)

Accordingly, taking also into account that X = DATX, a general formulation of the

optimization problem for the proposed scheme, using the matrix notation introduced in

section 6.1, is the following:

D(S,H,ATX,ARX,γ) = arg min
D

‖DATX‖2F

s.t. HDA . σzQ ◦ S,
(6.8)

where the quantities in brackets are given as input to the optimization problem. Among

them, the vector γ = [γ1 . . . γK ]T ∈ RK×1 represents the target SINR for all the users

and appears in the optimization problem through the matrix Q =
√
γ ⊗ 11×S . The

operator . used in the constraint, which applies element-wise, imposes that the received

symbols at each user (represented respectively by the elements of HDA) lie in their

correct detection regions. Further, the correct detection regions, which clearly depend

on the data information matrix S, are scaled accounting for the target SINR γ, which

has to be guaranteed at each user6. The introduced constraint allows the exploitation

of the constructive interference effect, in the same fashion as [23]. In order to express

it in a more explicit form it is necessary to refer to a specific modulation scheme, as

will be done later in this section. The problem (6.8) can be rewritten resorting to the

vectorized formalism and the spatio-temporal channel matrix introduced in (6.5)-(6.6),

as follows:

d(s,H,ATX,ARX,γ) = arg min
d

‖x‖2

s.t. Gkd . σz
√
γks

T
k , k = 1, . . . ,K,

(6.9)

where Gk = [gTk1 . . . g
T
kS ]T ∈ CS×NS is a submatrix of G denoting the spatio-temporal

channel matrix for the k-th user, and sk ∈ C1×S represents the data information related

to the k-th user. The optimization problem can be further manipulated by using (6.5),

and by specifying the constraints for each symbol slot, as follows:

6However, it should be stressed that the target SINR does not need to be known a priori at the
receivers. In fact, the receivers estimate the attained SINR based on pilots (see also [160]) and normalize
the received constellation accordingly.
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d(s,H,ATX,ARX,γ) = arg min
d

‖(IN ⊗AT
TX)d‖2

s.t. gkid . σz
√
γksk[i], k = 1, . . . ,K, i = 1, . . . , S.

(6.10)

It should be stressed that the quantity gkid represents the received symbol at the k-

th user terminal in the i-th symbol slot, and that the imposed constraint forces it

to lie in the correct detection region of the corresponding data information symbol

sk[i]. It is also worth highlighting that the SINR corresponding to the k-th user is

given by Ei
[
|gkid|2
σ2
z

]
, therefore the scaling factor σz

√
γk introduced in the constraint

allows to guarantee the target SINR γk. It is important now to take a further step

in the formalization of the power minimization problem at hand, by expressing the

introduced constraints in an explicit form. To this aim, let us focus on a quadrature

amplitude modulation (QAM) modulation scheme for the data information. In this

case the optimization problem can be written by decomposing the constraints along the

in-phase and quadrature components of the symbols, as follows:

d(s,H,ATX,ARX,γ) = arg min
d

‖(IN ⊗AT
TX)d‖2

s.t. C1 : Re(gkid) R σz
√
γk Re(sk[i]), k = 1, . . . ,K, i = 1, . . . , S,

C2 : Im(gkid) R σz
√
γk Im(sk[i]), k = 1, . . . ,K, i = 1, . . . , S,

(6.11)

where the notation R denotes a generalized inequality, which shall be read as >,<

or = depending on the position of the data sk[i] within the QAM constellation and,

accordingly, on its detection region. A detailed formulation of the constraints C1, C2 is

explained hereafter:

� For the inner constellation symbols, which are labeled by A in the 16-QAM exam-

ple of Fig. 6.3, the constraints C1, C2 should guarantee that the received signal

achieves the exact constellation point. Hence, the constraints are equality con-

straints, as follows:

C1 : Re(gkid) = σz
√
γk Re(sk[i]),

C2 : Im(gkid) = σz
√
γk Im(sk[i]).

(6.12)

� For the outer constellation symbols, which are labeled by B in the 16-QAM ex-

ample of Fig. 6.3, the constraints C1, C2 guaranteeing the correct detections and

exploiting the constructive interference are:
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Figure 6.3: Classification of the constellation points into inner (A), outer (B) and
outermost (C), for a 16-QAM modulation scheme.

C1 : Re(gkid) ≥ σz
√
γk Re(sk[i]), if Re sk[i] > 0,

Re(gkid) ≤ σz
√
γk Re(sk[i]), if Re sk[i] < 0,

C2 : Im(gkid) = σz
√
γk Im(sk[i]),

(6.13)

when sk[i] lies on the left/right side of the constellation, and:

C1 : Re(gkid) = σz
√
γk Re(sk[i]),

C2 : Im(gkid) ≥ σz
√
γk Im(sk[i]), if Im sk[i] > 0,

Im(gkid) ≤ σz
√
γk Im(sk[i]), if Im sk[i] < 0,

(6.14)

when sk[i] lies on the upper/lower side of the constellation.

� Finally, for the outermost symbols lying on the edges of the QAM constellation,

which are labeled by C in the 16-QAM example of Fig. 6.3, the constraints C1,

C2 can exploit the constructive interference effect by imposing inequalities along

both the in-phase and the quadrature components of the signals, as follows:
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C1 : Re(gkid) ≥ σz
√
γk Re(sk[i]), if Re sk[i] > 0,

Re(gkid) ≤ σz
√
γk Re(sk[i]), if Re sk[i] < 0,

C2 : Im(gkid) ≥ σz
√
γk Im(sk[i]), if Im sk[i] > 0,

Im(gkid) ≤ σz
√
γk Im(sk[i]), if Im sk[i] < 0.

(6.15)

The final optimization problem in (6.11) presents a convex quadratic objective function

and affine constraints, therefore it is convex and can be solved resorting to the standard

convex optimization tools [149]. As a final remark, it should be mentioned that, although

herein we solely focused on QAM constellations, the optimization problem (6.10) can be

straightforwardly expressed for different constellations, by tailoring the constraints to

the different detection regions. In particular, if the data information symbols belong to

a phase shift keying (PSK) or to an amplitude phase shift keying (APSK) constellation,

it is convenient to express the constraints in (6.10) focusing on the amplitude and the

phase of the symbols, rather than their in-phase and quadrature components, as done in

chapters 4-5. Although in this case the optimization problem appears more constrained

with respect to (6.11), due to the different detection regions, it is still possible to exploit

the constructive interference effect of SLP.

6.3 Sequential Faster-than-Nyquist SLP: processing sub-

sequent blocks

So far a single data block of S symbols per stream has been considered, and an approach

to constructively handle the interference within the block has been devised. However, it

is clear that the optimization problem (6.11) cannot handle any arbitrary block length

S, as the dimension of the involved optimization variables, as well as the number of

constraints, linearly grow with S7. This implies that in a practical system the scheme

needs to process subsequently different information blocks of a manageable length S. If

the framing structure of the system allows to neglect the mutual interference between

adjacent blocks (for instance, because subsequent information blocks are separated by a

sufficient number of non-precoded signaling symbols, such as headers and pilots), then

the problem formulation in (6.11) still applies. Nevertheless, in general we also need to

account for the ISI arising between subsequent blocks, i.e., the inter-block ISI. In this

section the proposed approach is extended so as to cope with the problem of inter-block

interference, thus moving closer to the practical application of the discussed FTN SLP

scheme.

7A numerical evaluation of the complexity of (6.11), as a function of S, is given in section 6.4.
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As a first step towards extending the previous scheme, the ISI between two adjacent

blocks needs to be modeled. In particular, denoting the current block under processing

by an index l, one needs to model the residual ISI coming from the previous (l − 1)-th

block, as well as the ISI that the current l-th block is causing to the (l − 1)-th one8.

This inter-block interference can be taken into account by extending the communication

model in (6.6) as follows:

[
yl−1

yl

]
=

[
G GU

GP G

][
dl−1

dl

]
+

[
zl−1

zl

]
, (6.16)

where GP = H ⊗AT
P ∈ CKS×NS and GU = H ⊗AT

U ∈ CKS×NS respectively, and the

matrices AP ∈ RS×S and AU ∈ RS×S model the ISI coming from the previous block and

the ISI caused to the previous block, respectively. It is straightforward to observe that

AP is a Toeplitz matrix whose first column is given by aPc = [0 . . . 0 β[−2ηT ] . . . β[−T ]]T

and whose first row is a zero-entries row vector. Similarly, AU is a Toeplitz matrix

whose last column is given by aUc = [β[T ] . . . β[2ηT ] 0 . . . 0]T and whose last row is a

zero-entries row vector.

Now, assuming that blocks are serially processed, the ISI caused by the (l− 1)-th block

to the l-th one will be represented by the vector v = GPdl−1 ∈ CKS×1, which is known

and can be used in the optimization scheme designing dl. It should be noted that this

concept is similar to the dirty paper coding principle [33], where a known state is taken

into account while designing the transmit signal. Analogously to the other introduced

vectorized quantities, v can also be decomposed by indexing the components related to

the different users, i.e., v = [v1 . . .vK ]T . Besides accounting for the ISI coming from the

previous block, one should also try to minimize the ISI that the l-th block is causing to

the previous one, which is represented by the vector GUdl. This is achieved by setting

interference constraints towards the previous block, following a strategy which resembles

cognitive precoding schemes [107, 161, 162]. With these considerations, the following

sequential FTN SLP optimization problem can be formalized, which performs a sum

power minimization with QoS constraints:

dl(s,H,ATX,ARX,γ,v, ε) = arg min
dl

‖xl‖2

s.t. C1 : Gkdl + vTk . σz
√
γks

T
k , k = 1, . . . ,K,

C2 : |GUdl|◦2 ≤ ε1KS×1,

(6.17)

8In principle, it could be possible to consider also the (l − 2)-th block or even previous blocks in
the model. However, in most practical scenarios the residual ISI coming from such blocks would be
negligible, and considering it would not significantly improve the performance. Thus, in order to keep
the complexity of the scheme to a manageable level, only two adjacent blocks are considered.
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where the Hadamard notation ◦ in C2 is used to indicate that the squaring operation

applies element-wise (moreover, the inequality has also to be considered element-wise).

The novelty with respect to the problem in (6.9) is in the fact that the constraints

C1 is now also accounting the ISI coming from the previous block, so as to guarantee

constructive interference at each user. Further, the constraint C2 imposes a maximum

level of ISI that the l-th block is causing to the previous one, through a predefined

threshold ε. Although the best in terms of ISI reduction would be to impose a zero-

forcing condition in C2, i.e., fixing ε = 0, a numerical analysis has shown how such

choice would make the problem unfeasible for most scenarios due to the lack of degrees

of freedom. In the numerical results section different values for ε will be considered and

discussed.

The constraint C2 can be decomposed by considering for each user the relative submatrix

of the matrix GU , similarly to what was done in (6.9) for G. Accordingly, GUk =

[gTUk1 . . . g
T
UkS ]T ∈ CS×NS is a submatrix of GU related to the k-th user, hence the

problem (6.17) can be rewritten as:

dl(s,H,ATX,ARX,γ,v, ε) = arg min
dl

‖xl‖2

s.t. C1 : Gkdl + vTk . σz
√
γks

T
k , k = 1, . . . ,K,

C2 : |GUkdl|◦2 ≤ ε1S×1, k = 1, . . . ,K,

(6.18)

and, expressing the constraints for each symbol slot, in the same fashion of (6.10), as:

dl(s,H,ATX,ARX,γ,v, ε) = arg min
dl

‖(IN ⊗AT
TX)dl‖2

s.t. C1 : gkidl + vk[i] . σz
√
γksk[i], k = 1, . . . ,K, i = 1, . . . , S,

C2 : |gUkidl|2 ≤ ε, k = 1, . . . ,K, i = 1, . . . , S.

(6.19)

Interestingly, it can be noticed how in this sequential scheme the SINR corresponding to

the k-th user is given by Ei
[
|gkidl+vk[i]|2

σ2
z

]
, since the ISI coming from the previous block,

modeled by vk, also contributes to the constructive interference effect.

Furthermore, by focusing on a QAM modulation scheme, the problem can be finally

written decomposing the constraints C1 along the in-phase and quadrature components

of the symbols, as follows:
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dl(s,H,ATX,ARX,γ,v, ε) = arg min
dl

‖(IN ⊗AT
TX)dl‖2

s.t. C1 : Re(gkidl + vk[i]) R σz
√
γk Re(sk[i]), k = 1, . . . ,K, i = 1, . . . , S,

C2 : Im(gkidl + vk[i]) R σz
√
γk Im(sk[i]), k = 1, . . . ,K, i = 1, . . . , S,

C3 : |gUkidl|2 ≤ ε, k = 1, . . . ,K, i = 1, . . . , S.

(6.20)

In the last proposed formulation, the same considerations given in the previous section

apply for the constraints C1, C2, while the constraints introduced in C3 are convex

quadratic ones. Therefore, the final optimization problem in (6.20) is convex and can

be solved resorting to the standard convex optimization tools [149].

6.4 Numerical Results

This section presents numerical results to show the effectiveness of the proposed scheme

with respect to the classical SLP approach [22, 23], which can handle only the inter-

ference in the spatial dimension. As shown in [23, 25], SLP already outperforms the

conventional block-level precoding schemes and this is why it was selected as bench-

mark. The performance of the proposed approaches will be assessed in terms of symbol

error rate (SER), total transmit power, effective rate and energy efficiency, consider-

ing different acceleration factors τ applied to the FTN system9. Further, bit error rate

(BER) results will be presented to assess the performance of the techniques when a FEC

scheme is used.

All the results presented in the remainder of this section are obtained assuming a 16-

QAM modulation scheme for the data information, while the number of antennas N

and the number of users K are both fixed to 4 (unless specified otherwise). As to the

pulse shaping operation, it is modeled using a SRRC pulse waveform, which is the most

used in practical systems, with a roll-off factor of 0.25. The considered oversampling

factor ξ is 20. The target SINR is assumed the same for all the users for the sake of

simplicity, and it is fixed to 12 dB for all the results10, while the noise variance σ2z is

9This thesis does not provide a performance bound (for instance, in terms of information rate as in
[140]). This is not straightforward in the context of SLP, because of the irregular received constellations
due to the constructive interference effect (see also [23]), and is an issue for the future work.

10 As already mentioned, in practical systems the target SINR should be selected based on a training
phase. Herein a 12 dB target is considered as a reference value for the assumed 16-QAM modulation
scheme. It can be numerically checked that this value can lead to good BER performance when an
appropriate FEC scheme is employed (see also Section 6.4.3). However, it should be kept in mind
that, when needed for a specific application, the SER/BER performance can always be improved by
considering a higher target SINR.
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assumed unitary. Unless specified otherwise, the results are obtained by averaging over

several realizations of the spatial channel matrix which is generated, for the generic user

k, as hk ∼ CN (0, σ2hIN ), with σ2h = 1. Finally, the block length S has been set to 50

symbols. In the following, first the focus is on the scheme presented in section 6.2, which

does not consider any inter-block interference. Then, the sequential FTN SLP scheme

of section 6.3 is evaluated.

6.4.1 Performance Analysis without Inter-block Interference

Herein a scenario with no ISI between multiple symbol blocks is considered. This is

the case when a single data block is handled by the SLP scheme, or when the framing

structure ensures that the adjacent blocks do not mutually interfere. Accordingly, the

focus is on the scheme presented in section 6.2. The presented results are obtained by

averaging over several realizations of the data information matrix S.

Fig. 6.4 shows a SER result comparing the proposed FTN SLP approach with the SLP

scheme of [23], as a function of the acceleration factor τ . Since the SLP scheme of [23]

operates only in the spatial dimension, for each symbol slot, this technique is referred

to as space-only SLP. As expected, the SER achieved by the two approaches is the same

when no acceleration is applied, since in this case there is no ISI so the schemes are

equivalent. When τ is reduced11, it is apparent how the space-only approach severely

suffers the introduced ISI, which is not handled by such scheme, showing a higher and

higher SER with decreasing values of τ . On the other hand, the result shows the ability

of the proposed technique in managing the ISI for all the considered acceleration factors.

Interestingly, the constructive interference effect over the temporal dimension even allows

to improve the achieved SER performance12 when the system is more accelerated.

Another interesting performance metric is the effective sum rate of the system. This

quantity can be defined as:

R̄ =
1

τ

K∑
k=1

Rk(1− SERk), (6.21)

where Rk is the error-free rate for the user k. Such error-free rate (the maximum rate

that can be achieved by the used modulation) can be written in turn as W log2(M),

with W being the user bandwidth and M the modulation order. Considering a user

11For the sake of clarity, it should be stressed again that the acceleration factor τ defines the symbol
period fraction of the accelerated system compared to the Nyquist system. Thus lower τ means higher
acceleration, as discussed in section 6.1.1.

12The attained SER values can be further reduced by increasing the target SINR. However, the
application of FEC allows to strongly boost the performance in terms of BER without any SINR increase,
as shown later in this section (see also footnote 10).
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Figure 6.4: Attained symbol error rate versus acceleration factor.

bandwidth of 10 MHz (this value will be also used in the remainder of this section), Fig.

6.5 compares the effective rate (in Mbps) of the proposed technique with the space-only

benchmark, for different acceleration factors. This result shows again the effectiveness

of the FTN SLP scheme in exploiting the FTN signaling and handling the ISI.

It is now essential to assess the transmit power required by the proposed scheme, and

how it varies with the acceleration factor. The total transmit power, defined in (6.7),

is shown, in dBW, in Fig. 6.6 as a function of τ . While the transmit power does not

depend on τ for the space-only SLP (as this approach does not take into account the

acceleration), it is visible how with the FTN SLP it significantly depends on τ . In

particular, when τ is too low the required power becomes prohibitive. Nevertheless, if a

τ not lower than 0.8 (which determines a 25% gain in the rate with respect to the non

accelerated case) is used, the power increase is moderate.

Finally, a fundamental performance metric which allows to jointly account for the effec-

tive rate and the consumed power is the energy efficiency, defined as E = R̄/Ptot, with

R̄ and Ptot defined in (6.21) and (6.7) respectively13. The related result, in Mbits/J,

13For simplicity, in the computation of the consumed power only the transmit power is considered,
while additional terms due to, for instance, the digital-to-analog conversion or the power amplifiers
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Figure 6.5: Attained effective sum rate, in Mbps, versus acceleration factor.
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Figure 6.6: Total transmit power, in dBW, versus acceleration factor.
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Figure 6.7: Attained energy efficiency, in Mbits/J, versus acceleration factor.

is shown in Fig. 6.7. From the result, it turns out that the proposed approach out-

performs the space-only scheme in terms of energy efficiency only in a certain range of

the acceleration factor, starting from 0.75. Further, it should be highlighted that when

τ < 0.85 the energy efficiency of the FTN scheme becomes lower with respect to the non

accelerated case, with τ = 1. This means that accelerating the transmission beyond this

threshold, although determining a higher rate, is not convenient for the energy efficiency

of the system. We can conclude that the optimal τ in this scenario is 0.85, which allows

an 18% gain in the rate with respect to the non FTN case.

6.4.2 Performance Analysis accounting for the Inter-block Interference

In this section, a scenario where multiple data blocks are sequentially transmitted is

considered, without assuming any separation between the blocks. In this case, there is

inter-block ISI between adjacent blocks, and the performance of the scheme proposed

in section 6.3 can be assessed. The presented results are obtained by simulating L = 10

sequential blocks. As anticipated, the choice of the parameter ε in (6.20) affects the

feasibility of the optimization problem. Moreover, since the problem (6.20) is more

losses, are neglected. Nevertheless, the main conclusions of this work still apply if a more complicated
power model is used.
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constrained than the one in (6.11), the permissible range for the acceleration factor τ

turns out to be tighter. In fact, the performed numerical analysis has shown that there is

a lower bound for τ , which depends on ε, under which the problem becomes unfeasible.

Hereafter we consider acceleration factors τ in the range [0.8, 1], and the performance

of the scheme in (6.20) is assessed for different values of ε. In particular, the evaluation

is performed for ε = 3σ2z , ε = 6σ2z , and ε = +∞, with the last case corresponding to

solving the problem in (6.20) without the constraint C3.

The obtained numerical results are presented in Figs. 6.8-6.11, based on the previously

introduced performance metrics. The sequential FTN SLP approach is compared with

the non sequential one of section 6.2, which has to tolerate the inter-block interference

arising in the system. Moreover, the space-only SLP is also used as a benchmark. In

Figs. 6.8-6.9 the obtained SER and the effective sum rate are shown, respectively, as a

function of the acceleration factor τ . It is notable how, when the acceleration becomes

significant, the non sequential FTN SLP scheme suffers the ISI, showing worse SER and

rate performance. On the other hand, the introduced sequential FTN SLP scheme is

able to handle the inter-block interference, and it does not show any SER degradation

when τ is reduced with ε = 3σ2z and ε = 6σ2z , without a significant difference among

these two cases. When the constraint C3 in (6.20) is relaxed, i.e. for ε = +∞, it can

be seen how even the sequential scheme shows a SER degradation for low values of τ ,

because of the residual inter-block ISI. Nevertheless, it is apparent how the sequential

scheme outperforms the benchmarks in terms of SER and effective rate even when ε is

set to +∞.

As previously discussed, it is fundamental to evaluate the performance also in terms of

transmit power and, ultimately, in terms of energy efficiency. The related results are

shown in Figs. 6.10-6.11. Concerning the total transmit power, it appears from Fig. 6.10

how the power requirement of the sequential scheme is higher than the non sequential

one for ε = 3σ2z and ε = 6σ2z , especially for low values of τ within the considered range.

On the other hand, it emerges how when ε = +∞ the transmit power is comparable

to the non sequential scheme, since in this case the problem in (6.20) has more degrees

of freedom. Taking this into account, it is interesting to notice from Fig. 6.11 how the

best approach in terms of energy efficiency is the sequential FTN scheme with ε = +∞,

which outperforms the non sequential scheme for all the considered acceleration factors.

Conversely, the constrained cases with ε = 3σ2z and ε = 6σ2z show a worse energy

efficiency due to their higher transmit power. For this reason, in the remainder of

this section the main focus will be on the case with ε = +∞, which is assumed when

not specified otherwise. Concerning the acceleration factor, it can be observed how

for τ ≥ 0.85 the energy efficiency attained by the proposed sequential FTN scheme is

not lower than the non accelerated case (τ = 1). Accordingly, also in this multi-block
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Figure 6.8: Attained symbol error rate versus acceleration factor, in a multi-block
scenario.

scenario the optimal τ is 0.85, which allows an 18% gain in the rate with respect to the

non FTN case.

An additional result is displayed in Fig. 6.12, which shows how the achieved performance

changes when more antennas are utilized at the transmitter. More specifically, the energy

efficiency and the effective rate are represented as a function of the number of antennas

N , when τ = 0.85. Remarkably, while the effective rate does not show substantial

changes, the attained energy efficiency considerably grows with N due to the reduced

transmit power required to achieve the target SINR. This effect is related to the improved

constructive interference effect taking place when more antennas are used, and has been

discussed also in [23].

6.4.3 Effect of imperfect CSI and BER analysis with FEC

So far, a perfect knowledge of the CSI has been assumed for the presented techniques, as

a robust version of them to CSI errors falls out of the scope of this thesis. Nevertheless,

it is worth analyzing how the different schemes are sensitive to channel uncertainties,

which are usually present in practical applications. Consequently we can model the
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Figure 6.9: Attained effective sum rate, in Mbps, versus acceleration factor, in a
multi-block scenario.

CSI estimate for the k-th user as ĥk = hk + ek (see also [13]), with ek being an error

vector modeled as ek ∼ CN (0, σ2eIN ). In Fig. 6.13 the obtained SER for the introduced

schemes is presented, for different values of τ and σ2e , focusing on the multi-block scenario

(moreover, for simplicity from now on a fixed channel matrix H is considered, as in

(6.22)). First of all, it can be noticed how the SER degradation induced by the CSI

error is limited for σ2e = 10−4 and σ2e = 10−3, while when σ2e = 10−2 the performance is

extremely degraded for all the schemes. Notably, the non sequential FTN SLP scheme

and the sequential one show a comparable sensitivity to CSI errors, and their SER

degradation does not substantially vary with τ . As to the space-only scheme, it shows

the same sensitivity of the proposed ones only for high acceleration factors (τ > 0.9),

while when τ is decreased the SER degradation is reduced (however, it should be noted

that in this case the SER is already very high with perfect CSI, thus the CSI errors are

less determinant).

Besides the imperfect CSI, the performance of precoding can be degraded by timing

errors. In fact, a common assumption in the precoding literature is to have a perfect

synchronization between the transmitted waveforms. However, in many practical sys-

tems (for instance in satellite communications) there is a timing misalignment across
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Figure 6.10: Total transmit power, in dBW, versus acceleration factor, in a multi-
block scenario.
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Figure 6.12: Attained energy efficiency and effective rate versus number of antennas,
for τ = 0.85.

H =


−0.6753 + 0.7875ι −0.9406 + 0.3229ι −0.1814 + 0.2493ι 0.1856− 0.7855ι
−0.0214 + 0.3383ι −1.1166 + 1.0522ι 0.0435− 1.1963ι −0.8914− 0.2106ι
0.1734− 1.0120ι −1.1399 + 1.5326ι −0.5112 + 1.3084ι −0.8879 + 0.3026ι
0.0145− 0.0956ι −0.5300 + 0.0520ι −0.5749− 0.0975ι −0.2097 + 0.3532ι

 ,
(6.22)

the different antennas which, if not compensated, can deteriorate the precoding gains.

Timing errors are an issue in the general context of precoding, and have been addressed

for instance in [163]. A study of timing errors in the specific context of SLP falls out of

the scope of this thesis (which assumes synchronized transmissions), and is left for the

future work.

Finally, Fig. 6.14 presents a result in terms of BER obtained using a FEC scheme with

the proposed techniques. In particular, the low-density parity check (LDPC) code of the

DVB-S2 standard [130], which is available in Matlab, is considered as an example of FEC.

The frame length is 64800 bits, while the code rate is 5/6 (for more details on this specific

LDPC scheme the reader is referred to [130]). The presented result has been obtained

by simulating 10 frames14. The coded BER is shown for the different approaches as a

function of τ , and the case with ε = 6σ2z is also considered (besides ε = +∞) for the

sequential FTN SLP scheme. Remarkably, it can be seen how the application of LDPC

14The simulation requires to solve numerically the optimization problems using CVX, and this makes
prohibitive to simulate a higher number of frames
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Figure 6.13: Attained symbol error rate versus acceleration factor, considering CSI
errors.

provides considerable improvement in the BER performance achieved by the proposed

schemes, with an error-free communication (i.e., a zero BER for the simulated scenario)

for τ ≥ 0.9 for the sequential SLP with ε = 6σ2z .

6.4.4 Numerical Evaluation of the Complexity

To conclude this section, a complexity evaluation of the proposed approaches is provided,

as a function of the number of symbols to be processed (for each user stream). Since the

proposed optimization problems are tackled resorting to numerical convex optimization

tools [149], analytical expressions for the complexity are hard to derive. Thus herein the

complexity is numerically evaluated in terms of average running time of the algorithms

over the same machine. Before presenting such evaluation, it should be stressed that

in general complexity is one of the key challenges of SLP with respect to conventional

channel-level precoding schemes: in fact, while in the latter ones the precoder optimiza-

tion is performed once per channel coherence time, SLP (e.g. [23]) presents a much
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higher switching rate, equal to the baud rate. Nonetheless, the spatio-temporal precod-

ing introduced herein has an advantage in this regard, since the optimization procedure

applies once per block and not once per symbol slot. This can be observed in Fig. 6.15,

which presents how the average running time varies with the number of symbols to be

processed per stream, for τ = 0.85. The considered schemes are the spatio-temporal

SLP, which performs the optimization symbol by symbol, the non sequential FTN SLP,

which processes the whole symbol stream all at once, and the sequential FTN SLP

scheme, which processes the data divided in blocks of S = 50 symbols. As expected, it

can be observed how both the space-only approach and the sequential FTN one present

a linear dependence between the running time and the number of symbols (blocks), but

the latter one shows a remarkably reduced running time due to the block processing. On

the other hand, it can be also noticed how, in the case of the non sequential FTN SLP,

the complexity grows in a superlinear way with the number of processed symbols, and

this justifies the need of resorting to a serial processing of multiple sequential blocks.

Overall, the sequential FTN SLP scheme appears to be the most suitable in terms of

complexity. In general, complexity still remains an open challenge of the SLP frame-

work, especially when the system dimensions (e.g. number of users/antennas) is high.
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Figure 6.15: Average running time of the algorithms, in seconds, versus stream length.

An efficient implementation of SLP schemes aimed at reducing their inherent complex-

ity, and eventually at allowing a real-time processing, is part of the ongoing and future

work [164].

6.5 Conclusions

In this chapter, a novel symbol-level precoding strategy has been proposed, which han-

dles, at the transmitter side, not only the interference in the spatial dimension (the

MUI), but also the interference in the temporal dimension (the ISI). This new precoding

method, named spatio-temporal symbol-level precoding, is used to apply faster-than-

Nyquist signaling over multiuser MISO systems. The introduced strategy splits the

data streams in blocks of symbols, and processes the blocks so as to exploit in a con-

structive fashion the interference both in the temporal dimension and in the spatial one,

thus gleaning benefits from both the domains. Firstly, a sum power minimization scheme

which tackles the interference within each data block has been proposed. Afterwards,

an extension of the optimization scheme has been presented, which tackles a scenario

with multiple mutually interfering data blocks, and is able to manage the inter-block ISI

arising between adjacent blocks. The performance of the proposed schemes has been as-

sessed through numerical simulations over a multiuser MISO system using SRRC pulse

shaping and a 16-QAM modulation scheme, in terms of achieved SER, effective sum rate,
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energy efficiency, and total transmit power. The results have shown how the proposed

spatio-temporal precoding outperforms the existent symbol-level precoding solutions in

terms of effective rate and energy efficiency, for acceleration factors in the order of 0.8-

0.9. Further, the gain in the system rate (thus, in energy efficiency) of the FTN schemes

has been discussed with respect to the classical Nyquist transmission.



Chapter 7

Conclusions and Future Work

In this chapter, the main conclusions of this thesis are summarized, and the issues

for future work are identified and discussed. The main focus of this thesis has been

the investigation of novel symbol-level precoding (SLP) schemes suitable to non-linear

systems, where the per-antenna high-power amplifiers (HPAs) introduce an amplitude

and phase distortion on the transmitted signals. In this context, the objective was to

exploit the potential of SLP not only for constructive interference, but also to improve

the power dynamics of the transmitted waveforms, in order to enhance the robustness

to non-linear effects.

In the first part of the thesis novel SLP schemes have been proposed in order to improve

the power dynamics of the transmitted signals in the spatial dimension, by reducing

the instantaneous power imbalances across the different antennas. First, a SLP per-

antenna power minimization scheme has been presented, followed by a related max-

min fair formulation with per-antenna power constraints. These schemes allow to take

into account the per-antenna power limitations of practical multi-user multiple-input

single-output (MISO) systems. In fact, a common practice in multi-antenna systems

is the use of separate per-antenna amplifiers, thus considering the power constraints

individually for each transmitting antenna is particularly important. Moreover, these

SLP schemes reduce the power peaks among the different antennas, for each symbol slot.

Then, more advanced SLP schemes have been formulated and solved, with the objective

of further improving the spatial dynamics of the signals and therefore counteracting

the problem of differential phase shift. Specifically, a first proposed scheme performs

a per-antenna power minimization, under QoS constraints and under a lower bound

constraint on the per-antenna transmit power. The related optimization problem has

been solved through an iterative procedure relying on successive convex approximation

(SCA). A second scheme performs a minimization of the spatial peak-to-average power

119
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ratio (SPAPR), evaluated amongst the transmitting antennas, under Quality-of-Service

(QoS) constraints. The related optimization problem has been tackled by resorting

jointly to parametric programming and SCA. Numerical results have been presented,

showing how the proposed schemes outperform the state of the art in SLP in terms

of SPAPR and spatial dynamic range, at the expense of a higher average transmitted

power. Further, the enhanced robustness of the proposed schemes to non-linear effects

has been assessed based on symbol error rate (SER) results over a channel corrupted by

a non-linear HPA model.

In the second part of the thesis a novel SLP method has been developed, referred to

as spatio-temporal SLP, where the temporal variation of the transmit power is also

considered in the SLP optimization. The main aim of this extension was to improve the

power dynamics of the transmitted waveforms also in the temporal dimension, which are

particular important in the context of non-linear channels, in order to counteract the

distortion and the saturation effect. Specifically, spatio-temporal SLP has been used to

minimize the peak-to-average power ratio (PAPR) of the transmitted waveforms both

in space and time, while at the same time exploiting the constructive interference effect.

The related optimization problem has been formulated in a similar fashion to the SPAPR

minimization carried out in the first part of the thesis, therefore parametric programming

and SCA have been used to tackle the problem. Numerical results have been shown that

accounting also for the temporal dimension significantly improves the performance over

non-linear channels, in terms of SER and in terms of power distribution, at the expense of

a higher average transmitted power. Then, one step further has been taken in the context

of spatio-temporal SLP. In particular, a spatio-temporal SLP scheme is proposed which

enables faster-than-Nyquist (FTN) signaling over multi-user systems, by constructively

handling at the transmitter side not only the multi-user interference (MUI) but also

the inter-symbol interference (ISI). This strategy, which is not referred to non-linear

systems, allows to benefit from the increased throughput provided by FTN signaling

without imposing additional complexity at the user terminals. Numerical results have

been presented in a comparative fashion to show the effectiveness of the this novel FTN

approach, which outperform the state of the art symbol-level precoding schemes in terms

of SER, effective rate, and energy efficiency.

7.1 Future Work

The work carried out in this thesis can be extended in several directions. The main

issues left for future work are discussed below:
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� The accuracy of the estimated channel state information (CSI) plays an important

role in designing accurate precoding that can exploit the interference created from

the simultaneous spatial transmissions. Designing robust precoding strategies to

CSI errors is an important topic to tackle, especially in the context of SLP for

non-linear channels.

� Complexity is an open challenge in the context of SLP, especially when the system

dimension (e.g. number of users/antennas) is high. An efficient implementation

of the proposed SLP schemes aimed at reducing their inherent complexity, and

eventually at allowing a real-time processing, is an issue for future work.

� The proposed schemes refer to a unicast scenario, where each data stream is ad-

dressed to a single user. In general, SLP has been applied so far only in the unicast

framework. The investigation of the proposed schemes for multicast scenarios is

an interesting problem for future work. In particular, a multicast evolution of the

proposed schemes would allow their application in communication systems where

the framing structure imposes that groups of user receive the same data.

� The exploitation of multiple antennas at the receivers has never been discussed

for SLP (however, it has been considered in the context of single link directional

modulation [165, 166]). An investigation of SLP, and of the proposed schemes

in particular, in a multiple-input multiple-output (MIMO) context where more

degrees of freedom are available, is an issue for future work.

� Another issue to be addressed is the study of the proposed schemes accounting for

adaptive coding and modulation (ACM) schemes. This is particularly important

in the context of SLP for FTN signaling, where it is important to assess if the

discussed energy efficiency gains hold in a system supporting ACM.

� The study of the introduced schemes under frequency selective fading channels is an

important extension left for future work. It is well known that frequency selective

fading introduces ISI. In this regard, an interesting research avenue would be to

tackle such ISI analogously to the FTN case, resorting to spatio-temporal SLP.

� As remarked, the FTN SLP scheme introduced in chapter 6 is not addressed to

non-linear channels. Nonetheless, it can be extended to the non-linear case by

modifying the related optimization formulation in the same fashion as in chapters

4-5. Further, the spatio-temporal processing could be used to handle non-linear

channels with memory, by addressing the resulting ISI.

� Finally, a further extension of the proposed FTN SLP scheme could be considered

for multi-carrier systems. In this case, it has been shown that a similar concept
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to FTN can be applied in the frequency domain, by handling the resulting ISI.

Although it is a challenging problem, an extension of the proposed FTN SLP

scheme to the frequency domain would allow to jointly handle at the transmitter

the interference in the spatial domain (MUI), temporal domain (ISI), and frequency

domain (ICI).



Appendix A

Proof of Theorem 4.1.

This proof is based on a number of steps through which the optimization problem (4.3)

is transformed into the formulation in (4.4).

First of all, following the method of [125, 126, 142], the constraint C3 in (4.3) can be

rewritten, by applying the tangent operator1, as:

Im(hjx)

Re(hjx)
= tj , j = 1, . . . ,K, (A.1)

where tj = tan (∠dj). However, since the tangent is not a one-to-one function, the

following conditions should be added, in order to ensure that the received symbol and

the intended one lie in the same quadrant:

Re(dj) Re(hjx) ≥ 0, j = 1, . . . ,K,

Im(dj) Im(hjx) ≥ 0, j = 1, . . . ,K.
(A.2)

Secondly, the QoS constraint C2 in the problem (4.3) can be rewritten, again in the

same fashion of [125, 126, 142], referring to the amplitude levels of the in-phase and

quadrature components of the corresponding symbols, as follows:

|Re(hjx)| D σz
√
γj |Re(dj)|, j = 1, . . . ,K,

| Im(hjx)| D σz
√
γj | Im(dj)|, j = 1, . . . ,K,

(A.3)

1This does not apply for data symbols laying on the imaginary axis, since the tangent is not defined
in such case. Although this case can be easily handled, it is not considered herein, since we can always
assume a phase offset preventing this situation.

123



Conclusions and Future Work 124

where the absolute value is necessary for accounting negative components. By multiply-

ing both the members of the above equations by Re(dj) and Im(dj) respectively, and by

taking into account the conditions in (A.2), the above constraints become:

Re(dj) Re(hjx) D σz
√
γj Re2(dj), j = 1, . . . ,K,

Im(dj) Im(hjx) D σz
√
γj Im2(dj), j = 1, . . . ,K.

(A.4)

Thus, the problem becomes:

x(d,H,γ,p) = arg min
r,x

r

s.t. C1 : αr2 ≤ |xi|
2

pi
≤ r2, i = 1, . . . , N,

C2 : Re(dj) Re(hjx) D σz
√
γj Re2(dj),

j = 1, . . . ,K,

C3 : Im(dj) Im(hjx) D σz
√
γj Im2(dj),

j = 1, . . . ,K,

C4 :
Im(hjx)

Re(hjx)
= tj , j = 1, . . . ,K.

(A.5)

Ultimately, the problem can be rewritten in a more compact form as:

x(d,H,γ,p) = arg min
r,x

r

s.t. C1 :
|xi|2

pi
≤ r2, i = 1, . . . , N,

C2 :
|xi|2

pi
≥ αr2, i = 1, . . . , N,

C3 : Re(D) Re(Hx) D βR

C4 : Im(D) Im(Hx) D βI

C5 : T Re(Hx)− Im(Hx) = 0,

(A.6)

where D = diag(d), T = diag(t1, . . . , tK), βr = σz
√
γ ◦ Re(d)◦2, βi = σz

√
γ ◦ Im(d)◦2.

A further step for simplifying the problem (A.6) is to rewrite it in the real domain, in the

stacked variable x̃ = [Re(x)T , Im(x)T ]T ∈ R2N×1. To this end, the constraints should

be modified accordingly.

Regarding the weighted per-antenna transmit power, it is not difficult to see that:

|xi|2

pi
= ‖Bix̃‖2, (A.7)
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where Bi ∈ R2×2N is a matrix used for selecting Re(xi) and Im(xi) in the stacked vector

x̃ and, ∀i = 1, . . . , N , is defined as:

1
√
pi

[
ei 0N

0N ei

]
, (A.8)

with ei being a the i-th row of an identity matrix with size N , and 0N being the all zero

entries vector in R1×N .

Concerning the QoS constraints, it is convenient to split the vector Hx into its real and

imaginary parts:

Hx = Re(H) Re(x)− Im(H) Im(x)+

+ ι[Re(H) Im(x) + Im(H) Re(x)],
(A.9)

which leads straightforwardly to:

Re(Hx) = H1x̃, Im(Hx) = H2x̃, (A.10)

where H1 = [Re(H),− Im(H)], H2 = [Im(H),Re(H)].

With the above positions, the problem (A.6) can be expressed as:

x(d,H,γ,p) = arg min
r,x

r

s.t. C1 : ‖Bix̃‖ ≤ r, i = 1, . . . , N,

C2 : ‖Bix̃‖2 ≥ αr2, i = 1, . . . , N,

C3 : Re(D)H1x̃ D βr,

C4 : Im(D)H2x̃ D βi,

C5 : (TH1 −H2)x̃ = 0.

(A.11)

Finally, by defining the matrices Ai = −B†iBi the problem becomes the one in (4.4),

hence the Theorem 4.1 is proved.

�





Appendix B

Proof of Theorem 4.2.

Retracing the procedure followed in the proof in Appendix A, and specifically considering

the equations (A.1)-(A.4), the problem (4.10) can be rewritten as follows:

x(d,H,γ) = arg min
x

‖x‖2∞
‖x‖2

s.t. C1 : Re(dj) Re(hjx) D σz
√
γj Re2(dj),

j = 1, . . . ,K,

C2 : Im(dj) Im(hjx) D σz
√
γj Im2(dj),

j = 1, . . . ,K.

C3 : tj Re(hjx)− Im(hjx) = 0, j = 1, . . . ,K.

(B.1)

By applying the following equalities:

Re(hjx) =
hjx+ x†h†j

2
,

Im(hjx) =
hjx− x†h†j

2ι
,

(B.2)

the problem (4.10) can be straightforwardly expressed as in (4.11). Thus, the Theorem

4.2 is proved.

�
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