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ö



I

Acknowledgments

In 2012, while I was a research associate at City University of Hong Kong, I read a paper

“Robust estimation in signal processing: A tutorial-style treatment of fundamental

concepts” published in IEEE Signal Processing Magazine, whose first author is Prof.

Abdelhak M. Zoubir. It is this paper that brought me to the field of robust signal

processing. I would never have imagined that several years later I will have the great

fortune of having Prof. Zoubir as my doctoral advisor. I would like to express my

heartfelt thanks to Prof. Zoubir, who is a true gentleman. His considerate guidance,

careful nurturing, constant encouragement, and generous support led me to complete

my doctoral dissertation. Without his advice and support, my academic career would

not have been the same. I am greatly indebted to him.

I am grateful to my co-advisor, Prof. Hing Cheung So of City University of Hong Kong.

These years I worked as a senior research associate with him. He guides me to do many

exciting research topics including robust estimation, sparse/low-rank recovery, greedy

algorithms and phase retrieval. He is like my senior brother to take care of me in life.

I cherish the good times with him in Hong Kong.

I would like to thank Prof. Jürgen Adamy, Prof. Udo Schwalke, and Prof. Florian

Steinke for serving on my Ph.D. oral examination committee. I also thank Prof. Marius

Pesavento for his encouragements.

Thanks to Prof. Jieping Ye of University of Michigan, Ann Arbor, for his valuable

discussion, guidance and encouragement. Appreciations go to Prof. Anthony Man-Cho

So of the Chinese University of Hong Kong. I attended two courses on optimization

lectured by him, which greatly consolidated my mathematical foundations. Thanks

also to Prof. Emmanuel Candes and Dr. Ju Sun of Stanford University for discussing

the nonconvex optimization.

Many thanks to all members of our great Signal Processing Group of Technische Uni-

versität Darmstadt: Dr. Michael Fauß, Di Jin, Mark Ryan Leonard, Dr. Michael

Muma, Afief Dias Pambudi, Dominik Reinhard, Tim Schäck, Ann-Kathrin Seifert,
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Kurzfassung

Low-Rank Approximationen spielen eine bedeutende Rolle in vielen Bereichen der

Wissenschaft und Technik, wie zum Beispiel in der Signal- und Bildverarbeitung, im

maschinellen Lernen und Data Mining, sowie in der Bildgebung, der Bioinformatik, der

Musterklassifizierung und im Bereich Computer Vision. Grund hierfür ist, dass viele

Daten, die realen Anwendungsgebieten entstammen, von Natur aus niederrangig sind.

Ziel dieser Dissertation ist die Entwicklung neuer Algorithmen zur robusten Low-Rank

Approximation einzelner und mehrerer Matrizen in Gegenwart von Ausreißern—einem

Problem bei dem konventionelle Techniken der Dimensionalitätsreduktion wie beispiel-

sweise die Hauptkomponentenanalyse (engl. principial component analysis, PCA)

häufig versagen. Die in dieser Arbeit vorgestellte Methodik basiert auf einer Residuen-

Minimierung unter Verwendung der lp-Norm, einschließlich des nicht-konvexen und

nicht-stetigen Falles von p < 1. Im Zentrum der Arbeit stehen sowohl die theoretische

Analyse des Problems als auch dessen praktische Anwendung. Die gewonnen experi-

mentellen Erkenntnisse zeigen die Überlegenheit der vorgestellten Methodik gegenüber

aktuellen Vergleichsverfahren.

Zunächst werden zwei iterative Algorithmen zur Low-Rank Approximation einer einzel-

nen Matrix konzipiert. Die sogenannte iteratively reweighted singular value decompo-

sition (IR-SVD) Methode basiert auf einer Matrix-Singulärwertzerlegung, bei der die

zugrundeliegende Matrix in jeder Iteration des Verfahrens neu gewichtet wird. In

der zweiten Methode wird das nicht-konvexe lp-Matrixfaktorisierungsproblem durch

eine Reihe einfacherer lp-Minimierungsprobleme ersetzt, wobei die auftretenden Vek-

toren als eigenständige Variablen betrachtet werden. Zu beiden Verfahren werden

Anwendungsbeispiele aus verschiedenen Bereichen diskutiert, darunter die Separation

von Bildkomponenten, die Vordergrunddetektion in der Videoüberwachung, Beispiele

aus dem Bereich Array-Signalverarbeitung, sowie die Richtungsschätzung zur Quellen-

lokalisierung in impulsivem Rauschen.

Anschließend wird die Low-Rank Approximation mit fehlenden Werten (engl. robust

matrix completion) behandelt, für welche ebenfalls zwei Verfahren vorgestellt werden.

Das erste Verfahren bietet einen iterativen Lösungsansatz, welcher auf der Berech-

nung linearer lp-Regressionsproblemen basiert. Das zweite Verfahren beruht auf der

sogenannten alternating direction method of multipliers (ADMM) im lp-Raum. Bei

jeder Iteration von ADMM wird eine Matrixfaktorisierung im Sinne der kleinsten

Fehlerquadrate (engl. least squares, LS) durchgeführt, wofür ein Näherungsoperator

basierend auf der p-ten Potenz der lp-Norm berechnet wird. Die LS-Faktorisierung
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wird effizient durch lineare Regression gelöst, wobei der Nährerungsoperator über die

Nullstellen einer skalaren nichtlinearen Funktion berechnet wird. Beide Algorithmen

sind in der Problemgröße skalierbar. Die Verfahren werden anhand von Beispielen zur

kollaborativen Filterung, der automatischen Bildvervollständigung, sowie anhand einer

Anwendung im Bereich Empfehlungssysteme demonstriert.

Für die robuste Low-Rank Approximation mehrerer Matrizen (RLRAMM) mit Aus-

reißern werden lp-greedy pursuit (lp-GP) Algorithmen konzipiert. Das lp-GP Verfahren

mit 0 < p < 2 löst die RLRAMM Problematik, indem das Kernproblem in eine

Reihe von Rang-Eins Approximationsproblemen zerlegt wird. Bei jeder Iteration des

Verfahrens wird die beste Rang-Eins Approximation durch Minimierung der lp-Norm

des Residuums gefunden, woraufhin die Rang-Eins Basismatrizen vom Residuum sub-

trahiert werden. Anschließend wird ein Minimierungsansatz zur lp-Rang-Eins Berech-

nung vorgestellt. Da der Sonderfall p = 1 nur die Berechnung gewichteter Mediane

erfordert, ist die Komplexität des Verfahrens beinahe linear in der Anzahl und Di-

mension der Matrizen, wodurch l1-GP nahezu skalierbar für große Probleme wird. Die

Konvergenz von lp-GP wird formal nachgewiesen, wobei gezeigt wird, dass die Summe

der lp-Normen der Residuen exponentiell abklingt. Hierbei wird ein Zusammenhang

zwischen der Konvergenzrate im ungünstigsten Fall und der lp-Korrelation zwischen den

Residuen und der aktuellen Lösung hergestellt. Des Weiteren wird gezeigt, dass lp-GP

ein höheres Kompressionsverhältnis gegenüber bisherigen Methoden aufweist. Für den

Spezialfall p = 2 wird die orthogonal greedy pursuit (OGP) Methode weiterentwickelt,

um deren Konvergenz zu beschleunigen. Gleichzeitig wird der Berechnungsaufwand

der erforderlichen Neugewichtung durch ein rekursives Updateverfahren reduziert. Ab-

schließend werden festere und genauere Grenzen der Konvergenzraten für den Fall p = 2

abgeleitet und Anwendungen zur Datenkompression, zur robusten Bildrekonstruktion

und zur Bildverarbeitung diskutiert.
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Abstract

Low-rank approximation plays an important role in many areas of science and en-

gineering such as signal/image processing, machine learning, data mining, imaging,

bioinformatics, pattern classification and computer vision because many real-world

data exhibit low-rank property. This dissertation devises advanced algorithms for ro-

bust low-rank approximation of a single matrix as well as multiple matrices in the

presence of outliers, where the conventional dimensionality reduction techniques such

as the celebrated principal component analysis (PCA) are not applicable. The proposed

methodology is based on minimizing the entry-wise `p-norm of the residual including

the challenging nonconvex and nonsmooth case of p < 1. Theoretical analyses are

also presented. Extensive practical applications are discussed. Experimental results

demonstrate that the superiority of the proposed methods over the state-of-the-art

techniques.

Two iterative algorithms are designed for low-rank approximation of a single matrix.

The first is the iteratively reweighted singular value decomposition (IR-SVD), where

the SVD of a reweighted matrix is performed at each iteration. The second converts the

nonconvex `p-matrix factorization into a series of easily solvable `p-norm minimization

with vectors being variables. Applications to image demixing, foreground detection

in video surveillance, array signal processing, and direction-of-arrival estimation for

source localization in impulsive noise are investigated.

The low-rank approximation with missing values, i.e., robust matrix completion, is

also addressed. Two algorithms are developed for it. The first iteratively solves a

set of linear `p-regression problems while the second applies the alternating direction

method of multipliers (ADMM) in the `p-space. At each iteration of the ADMM,

it requires performing a least squares (LS) matrix factorization and calculating the

proximity operator of the pth power of the `p-norm. The LS factorization is efficiently

solved using linear LS regression while the proximity operator is obtained by root

finding of a scalar nonlinear equation. The two proposed algorithms are scalable to the

problem size. Applications to recommender systems, collaborative filtering, and image

inpainting are provided.

The `p-greedy pursuit (`p-GP) algorithms are devised for joint robust low-rank approx-

imation of multiple matrices (RLRAMM) with outliers. The `p-GP with 0 < p < 2

solves the RLRAMM by decomposing it into a series of rank-one approximations. At

each iteration, it finds the best rank-one approximation by minimizing the `p-norm of

the residual and then, the rank-one basis matrices are subtracted from the residual. A
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successive minimization approach is designed for the `p-rank-one fitting. Only weighted

medians are required to compute for solving the most attractive case with p = 1, yield-

ing that the complexity is near-linear with the number and dimension of the matrices.

Thus, the `1-GP is near-scalable to large-scale problems. The convergence of the `p-GP

is theoretically proved. In particular, the sum of the `p-norms of the residuals decays

exponentially. We reveal that the worst-case bound of the convergence rate is related

to the `p-correlation of the residual and the current solution. The `p-GP has a higher

compression ratio than the existing methods. For the special case of p = 2, the orthog-

onal greedy pursuit (OGP) is further developed to accelerate the convergence, where

the cost of weight re-computation is reduced by a recursive update manner. Tighter

and more accurate bounds of the convergence rates are theoretically derived for p = 2.

Applications to data compression, robust image reconstruction and computer vision

are provided.
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Chapter 1

Introduction

1.1 Background

The amount and dimension of data that are being generated, collected, stored, and

processed have been increasing explosively in recent years. We have already entered

the era of “big data” [1,2]. High-dimensional data such as high resolution images and

videos, gene expression data from a DNA microarray, and social network data, are

ubiquitous. For example, as shown in Figure 1.1, more than 100-hour videos are being

uploaded to YouTube every minute.

Figure 1.1: Explosively increasing amount and dimension of data nowadays.

However, directly dealing with them are unrealistic due to the curse of dimensionality.

Fortunately, many high-dimensional data exhibit specific low-dimensional structure, in

which most useful information is hidden. As a result, a core problem in data science is

“How to effectively and efficiently learn the low-dimensional representation of high-

dimensional data?”

It is evident that in many cases the data naturally have or can be organized in the form

of matrices which often exhibit low-rank property [3]. Therefore, it is of great interest
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Figure 1.2: Netfix Prize as an example of recommender systems. The ratings take
values from 1, 2, · · · , 5, where 5 stands for the highest rating while 1 is the lowest. The
question mark denotes unknown entries.

in taking advantage of low-rankness in the matrices in order to achieve dimensionality

reduction and extract the desired information. The low-rank property is also referred

to rank-sparsity [4, 5] because the vector composing of the singular values of a low-

rank matrix is sparse [5]. A representative example exploiting the low-rankness for

information extraction and inference is the collaborative filtering in Netflix Prize [6–8],

shown as in Figure 1.2. In recommender systems [9], only a fraction of movie ratings can

be observed from a large data matrix in which rows are users and columns are movies

because each user typically rates a few movies rather than all movies. The database of

the Netflix Prize has over 100 million movie ratings made by 480,189 users in 17,770

films, which corresponds to recovery of a huge matrix with around 99% missing entries.

Collaborative filtering is the task of making automatic predictions about the ratings of

a user by collecting preference information from many users [10]. Generally, recovering

a data matrix from a subset of its entries is impossible. However, if the unknown matrix

is of low-rank or approximately low-rank, then accurate prediction is possible. This

type of low-rank matrix approximation with missing entries is referred to as matrix

completion [9, 11,12], which will be discussed in Chapter 3.

Low-rank approximation refers to approximating one matrix AAA ∈ Rm×n by another of

lower rank, say, ÂAA. Based on the minimum square loss criterion, low-rank approxima-

tion is mathematically formulated as

min
ÂAA

‖ÂAA−AAA‖2
F

s.t. rank(ÂAA) = r
(1.1)

where the target rank r ≤ min(m,n). Using the decomposition ÂAA = UUUVVV T where
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UUU ∈ Rm×r and VVV ∈ Rn×r, the low-rank constraint in (1.1) is automatically fulfilled and

(1.1) is equivalent to the following low-rank factorization

min
UUU,VVV

∥∥UUUVVV T −AAA
∥∥2

F
. (1.2)

The columns of UUU and VVV span the r-dimensional subspaces of the column and row

spaces of AAA, respectively. Therefore, the low-rank approximation also achieves the task

of subspace learning [13,14]. Low-rank approximation has a wide range of applications,

including signal/image processing [15], machine learning [16, 17], computer vision [18,

19], data mining [20], pattern classification [21], medical imaging [22], bioinformatics

[23,24], and social networks [25]. Also, it is closely related to dimensionality reduction

and subspace learning since the subspace with a lower dimensionality can be calculated

via low-rank factorization. By Eckart-Young Theorem [26], the global minimizer of

(1.1) is given by the truncated singular value decomposition (SVD) of AAA, which is

expressed as

ÂAA =
r∑
i=1

σi(AAA)yyyizzz
T
i (1.3)

where σi(AAA) is the ith singular value of AAA while yyyi ∈ Rm and zzzi ∈ Rn are the corre-

sponding left and right singular vectors, respectively. The largest r singular values and

the corresponding singular vectors {σi(AAA), yyyi, zzzi}ri=1 are called “principal components”.

Thus, low-rank approximation under Frobenius norm minimization amounts to the cel-

ebrated principal component analysis (PCA) [27,28]. The PCA aims to find a subspace

with a given dimension (rank) that best preserves the energy in the reduced space. As

a fundamental tool for dimensionality reduction and data compression, the PCA has

very wide applicability. For example, the eigenface method for face recognition is based

on PCA [21].

1.2 Motivation

Although the PCA is extremely useful in various scenes, it has the following three

drawbacks.

1. The first drawback is that it is not robust to outliers1 or impulsive noise. It

is known that the PCA fails in properly capturing the low-rank structure when

the observations contain outliers, as illustrated in Figure 1.3. However, the oc-

currence of outliers has been reported in many fields [29–31]. For example, the

1In this thesis, outliers refer to outlying entries whose values are abnormally large, and they are
often sparse corruptions in the observed entries.
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Sensitivity to corruptions / outliers

What if some samples are corrupted (e.g. due to sensor errors /
attacks)?

Classical PCA fails even with a few outliers

Robust PCA 9-4

Figure 1.3: Sensitivity of the classic PCA to outliers. Blue points stand for “normal”
data while red points are outliers. In the figure on the left where there is no outlier, the
PCA successfully captures the dominate low-rank structure, i.e., the two-dimensional
yellow plane, which most points lie on. However, in the presence of outliers, as show
in the figure on the right, the plane given by the PCA significantly deviates from the
true one.

salt-and-pepper noise is a common impulsive noise type in image processing [31].

Another example that the outlier plays an important role is the foreground and

background separation in video surveillance, where the foreground can be well

modeled by sparse outliers [32–34].

2. The second drawback is that the PCA based on the SVD is not applicable to the

low-rank matrix completion where there are missing entries. In other words, it

is not robust to missing values.

3. The third drawback is that the PCA can only handle a single matrix, where

each of its columns corresponds to a data point. Thus, it needs to first convert

the data into vectors to apply the PCA if the data points are not in the form of

vectors. For two-dimensional (2D) array data such as images and frames of video,

which are represented by matrices, the “vectorization” yields a long vector and

then a matrix with very large size. This results in an expensive computational

cost because the complexity of the SVD is cubic with respect to the matrix

dimension [35]. Moreover, the vectorization breaks the 2D structure and the

innate relation between row and column [16,36].

We are motivated to explore advanced techniques for low-rank matrix approximation

to overcome these drawbacks. The new schemes have enhanced performance over the

conventional methods.
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1.3 State-of-the-Art

1.3.1 Overview of Robust Single Matrix Approximation

It is worth pointing out that a variety of approaches aiming to enhance the robustness of

the PCA have been developed in recent years. The celebrated robust principal compo-

nent analysis (RPCA) [32,33] models the data matrix as the superposition of a low-rank

component and a sparse component that represents the outliers. The RPCA minimizes

the nuclear norm of the unknown low-rank matrix plus the `1-norm of the outlier com-

ponent to separate the low-rank structure from the sparse outliers. At the earliest,

this minimization problem is converted into a semi-definite programming (SDP) whose

complexity is very high. A faster scheme based on the augmented Lagrange method

(ALM) is developed to reduce the complexity [37]. The ALM needs to calculate the

proximity operators of the nuclear norm and `1-norm at each iteration [37]. Thus, the

full SVD is required, making the computational cost of the ALM still expensive. The

nonconvex RPCA [38] replaces the nuclear norm and `1-norm with the rank constraint

and `0-norm, respectively. Its performance guarantee is theoretically analyzed in [38].

The nonconvex RPCA just needs the truncated SVD rather than the full SVD. As a

result, when the target rank is much smaller the matrix dimension, its computational

cost is evidently cheaper than the convex version.

1.3.2 Overview of Matrix Completion

Matrix completion, i.e., low-rank matrix recovery with missing entries, is a very hot

research topic in recent years due to its importance and wide applications in informa-

tion retrieval and inference [9,11,12,17,31]. It can be formulated as a constrained rank

minimization problem [9]. Unfortunately, this problem is NP-hard in general because

the rank is discrete and nonconvex. Analogous to the strategy of employing the `1-

norm instead of the `0-norm for sparse signal recovery [39, 40, 87], convex relaxation

for rank minimization replaces the nonconvex rank by the convex nuclear norm, which

is the sum of all singular values of the matrix [9, 42], and its theoretical guarantees

have been provided in [11]. Typically, nuclear norm minimization is converted into an

SDP [9, 42, 43] and hence can be solved by the interior-point methods [43, 44]. How-

ever, directly realizing the SDP leads to a high computational load. On the other

hand, algorithms which are more computationally efficient than the SDP-based meth-

ods have been suggested, such as singular value thresholding (SVT) [45], fixed point

continuation (FPC) [46], and proximal gradient descent [47]. Nevertheless, these faster
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schemes still require performing full SVD of the matrix at each iteration, implying the

high complexity to deal with a large matrix. Using the Schatten p-quasi-norm with

0 < p < 1, namely, `p-norm of the singular values instead of the nuclear norm can fur-

ther improve the recovery performance [48–52]. Note that the Schatten p-quasi-norm

minimization also involves the time-consuming full SVD calculation, which constitutes

its dominant computational cost. As a modification to the standard nuclear norm min-

imization treating each singular value equally, the weighted nuclear norm minimization

(WNNM) method [53] adaptively assigns weights to different singular values to enhance

the rank sparsity. However, the WNNM for matrix completion [53] is designed for the

noiseless case and hence, is not robust to outliers.

In sparse signal recovery, the `1-norm minimization can be solved by iterative soft

thresholding (IST) [87]. The SVT [45] in fact iteratively applies thresholding and

shrinkage to the singular values to achieve “rank sparsity”. Different from the IST, the

iterative hard thresholding (IHT) [54] for sparse recovery constrains that the number

of nonzero elements does not exceed a specific value to obtain a sparse result. Borrow-

ing the idea from IHT, a class of approaches, including the singular value projection

(SVP) [55], normalized IHT [56], and alternating projection (AP) [57], directly exploits

a rank constraint to ensure a low-rank solution. In particular, the SVP and normal-

ized IHT adopt gradient projection method [58] to solve the rank constrained problem.

Compared with the nuclear norm or Schatten p-norm minimization that needs to cal-

culate the full SVD, the IHT-type method only requires performing truncated SVD to

obtain the r dominant singular values and singular vectors, assuming that the rank in-

formation is available. Hence, the computational cost can be greatly reduced especially

when the rank is much smaller compared to the matrix dimensions [59].

The third approach for matrix completion utilizes low-rank matrix factorization, where

the target matrix is represented by the product of two much smaller matrices so that

the low-rank property is automatically fulfilled [60–64]. The gradient descent method

can be applied as the solver [60,61], but it suffers from slow convergence. To speed up

the convergence rate, the alternating least squares is employed to tackle the resultant

bi-convex problem [61,63,64]. It is worth pointing out that one main advantage of the

matrix factorization based solutions is that they avoid the SVD.

Conventional techniques for matrix completion often rely on the Gaussian noise as-

sumption and their derivation is based on the `2-space. In spite of providing theoretical

and computational convenience, it is generally understood that the validity of Gaussian

distribution is at best approximate in reality. The occurrence of non-Gaussian outliers

is also frequently encountered in matrix completion [31, 65–69]. The algorithms based

on Frobenius norm minimization severely degrade in the presence of outliers.
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Several existing schemes have utilized the fact that the entry-wise `p-norm with p < 2

is less sensitive to outliers than the Frobenius norm for robust matrix factorization [18].

The `1-Wiberg algorithm [18] that is applicable for the case of incomplete observations

exploits `1-norm to enhance the robustness to outliers, but it has a very high com-

putational complexity. In [48], the `p-norm and Schatten p-norm are jointly used for

robust matrix completion. The ALM is employed to solve the resultant joint `p-norm

and Schatten p-norm minimization, in which the full SVD is required. Thus, the com-

putational cost of the ALM is also high. In [57], matrix completion is formulated as

a feasibility problem, where the target matrix lies in the intersection of low-rank con-

straint set and fidelity constraint set. The AP algorithm is developed to find a common

point of the two sets. By modeling the fidelity constraint set as an `p-ball with the

center of the ball being the observed entries, the AP achieves robustness to outliers if

p < 2 is adopted. However, the AP needs the prior knowledge on the `p-norm of the

noise, which is difficult to obtain in practice. The proximal alternating robust subspace

minimization (PARSuMi) algorithm is proposed in [67], which directly exploits rank

constraint on the completed matrix and `0 pseudo-norm constraint to enhance the ro-

bustness to sparse outliers. However, the rank and an upper bound of the number of

outliers are required in this method. Unlike most approaches based on standard basis,

matrix completion with column-sparse outliers in general basis is addressed in [66].

The RPCA [32] that is originally designed for the case with full observations can also

be extended to the case with missing entries. Other two state-of-the-art robust matrix

completion methods include the hierarchical system performing bootstrapping [68] and

variational Bayesian matrix factorization based on L1-norm (VBMFL1) [69].

1.3.3 Overview of Multiple Matrix Approximation

The two-dimensional PCA (2DPCA) [36], which is one of the first methods dealing

with multiple matrices without vectorization, directly transforms the original matrices

into ones with lower column number. The optimal transform of the 2DPCA is given

by the principal eigenvectors of the covariance matrix of the 2D matrices whose size

is much smaller than that of the traditional PCA, resulting in a significant complexity

reduction. However, the 2DPCA merely reduces the column size while the row size

remains unchanged since it only applies a single-sided transform. It implies that the

compression capability is limited. The generalized low rank approximations of ma-

trices (GLRAM) [16] apply a double-sided transform to reduce both row and column

sizes, which considerably improves compression capability. Under the same compres-

sion ratio, the GLRAM achieves smaller reconstruction error than the 2DPCA. The

2D-SVD [70] uses similar idea to the GLRAM. The 2DPCA, GLRAM and 2D-SVD
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belong to orthogonal transform. That is, the columns of the resultant subspaces are

orthogonal. Note that unlike SVD, the GLRAM and 2D-SVD do not achieve diago-

nal decomposition. In [71], the two-dimensional linear discriminant analysis (2DLDA)

extends the conventional Fisher linear discriminant analysis [72] by directly handling

multiple 2D data points.

A set of matrices can be viewed as a third-order tensor [73]. With the use of ex-

isting low-rank tensor decomposition techniques [73–75] such as higher-order SVD

(HOSVD) [73], one can also obtain a low-rank approximation of the multiple ma-

trices. However, our methodology in this thesis is different from the low-rank tensor

approximation in two aspects. First, the factorized results of tensor decomposition are

tensors with smaller sizes while those of our method are matrices. Second, our method

is computationally more efficient and conceptually simpler than tensor decomposition.

1.4 Goal and Contributions

The goal of this dissertation is to devise new algorithms for several types of low-rank

matrix approximation robust against outliers and/or missing values and develop cor-

responding convergence theories of the proposed algorithms. We list our contributions

in four topics as follows.

1. Robust low-rank approximation of a single matrix. Three iterative algorithms

are designed for this task. The first is the iteratively reweighted singular value

decomposition (IR-SVD), where the SVD of a reweighted matrix is performed

at each iteration. The second converts the nonconvex `p-matrix factorization

into a series of easily solvable `p-norm minimization with vectors being variables.

The third is alternating direction method of multipliers (ADMM) in `p-space.

Moreover, the pseudo and full Newton’s methods with quadratic convergence

rate which are applicable to complex-valued variables are developed for the `p-

norm minimization.

2. Robust low-rank approximation of a single matrix with missing entries. Two

computationally attractive algorithms, namely, iterative `p-regression algorithm

and ADMM, for outlier-robust matrix completion under `p-minimization. The

complexity of the two algorithms is proportional to the number of observed entries

and thus, scalable to the matrix dimension.

3. Low-rank approximation of multiple matrices (LRAMM). Four contributions in

LRAMM (Chapter 4) are:
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i) Three greedy algorithms, namely, greedy pursuit (GP), economic greedy

pursuit (EGP) and orthogonal greedy pursuit (OGP) are devised for

LRAMM. The proposed algorithms are scalable to the problem size and

computationally more efficient than the celebrated SVD since it directly

deals with the 2D matrices.

ii) Compared with other 2D based approaches such as 2DPCA and GLRAM,

the greedy algorithms achieve a joint diagonal decomposition for multiple

matrices and hence, has a higher compression ratio given the same target

rank. In other words, the proposed methods achieve smaller reconstruction

errors under the same compression ratio.

iii) The convergence of the three greedy algorithms is theoretically proved. We

show that the reconstruction errors of the three algorithms decay exponen-

tially. The lower bound of the exponential decay factor, i.e., the worst-case

convergence rate, is derived.

iv) The finite convergence property of the OGP is proved. We quantitatively

show that how much faster the OGP converges than the GP. The exact

expression of the acceleration factor of the OGP over GP, which is dominated

by the angle between the current iterate and the subspace spanned by the

previous iterates, is derived.

4. Robust low-rank approximation of multiple matrices (RLRAMM) in `p-space.

Three contributions in RLRAMM (Chapter 5) are:

i) An `p-GP algorithm is devised for RLRAMM. It is near-scalable to the

problem size and computationally more efficient than the PCA and RPCA

since it directly deals with the 2D matrices. It provides a novel viewpoint for

robust low-rank representation and hence, is competitive to the celebrated

RPCA.

ii) Compared with other 2D based approaches such as 2DPCA and GLRAM,

the greedy algorithm achieves a joint diagonal decomposition for multiple

matrices and hence, has a higher compression ratio given the same target

rank. Moreover, the `p-GP is robust to outliers.

iii) The convergence of `p-GP is theoretically proved. We show that the sum of

the `p-norms of the residuals decays exponentially. Furthermore, the worst-

case bound of the exponential decay factor or convergence rate is related to

the `p-correlation of the residual and the current iterates.

In addition to the algorithm design and theoretical analysis of convergence, exten-

sive applications to foreground detection in video surveillance, array signal processing,
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direction-of-arrival estimation for source localization in impulsive noise, image inpaint-

ing, recommender systems, data compression, face recognition, and multiple image

reconstruction in salt-and-pepper noise, are investigated in this thesis.

1.5 Organization
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Figure 1.4: Illustration of the structure of the dissertation.

The remainder of this dissertation is organized as follows. Chapter 2 addresses the

robust low-rank approximation of a single matrix with full observations, where three

algorithms, IR-SVD, alternating minimization, and ADMM in `p-space, are proposed.

Extending from the case with full observations of Chapter 2 to that with missing

values, Chapter 3 discusses the robust low-rank matrix completion with applications

in recommender systems and image inpainting. Chapter 4 presents a greedy pursuit

algorithmic framework including three variants for low-rank approximation of multiple

matrix in `2-space with theoretical proof of the convergence. Chapter 5 generalizes the

greedy algorithms to the `p-space, making it robust to outliers. Also, new convergence

theory of the `p-GP that is different from that of Chapter 4 is developed in Chapter
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5. Concluding remarks, open problems and topics for future research are provided in

Chapter 6. Figure 1.4 depicts the structure of the dissertation.

Throughout the thesis, we use bold upper-case and lower-case letters to represent

matrices and vectors, respectively. The acronyms and notations are listed in pages

135–137 and 138–139, respectively.
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Chapter 2

Robust Low-Rank Approximation of A
Single Matrix

This chapter focuses on low-rank approximation of a single matrix, where there are no

missing entries. As a fundamental tool for this task, the singular value decomposition

(SVD) is not robust against outliers. Based on minimizing the entry-wise `p-norm of

the residual instead of the Frobenius norm, this chapter develops three algorithms to

achieve outlier-robustness. The first algorithm is the iteratively reweighted singular

value decomposition (IR-SVD), where the SVD of a reweighted data matrix is per-

formed in each iteration. The second is the alternating minimization (AM), where

the objective function is minimized over one factored matrix while the other factor is

fixed. The convergence of the AM is proved. Two complex-valued Newton’s meth-

ods with optimal step size are devised to solve the resulting `p-fitting problems. It is

revealed that the iteratively reweighted least squares (IRLS) is a special case of the

pseudo-Newton’s method. The third is the alternating direction method of multipliers

(ADMM). The ADMM casts the difficult nonsmooth `1-subspace decomposition into

an `2-one, which can be efficiently solved via the truncated SVD with a marginal com-

putational increase of soft-thresholding. Experimental results on random data verify

the superior performance of the proposed methodology. Wide applicability of the tech-

niques of this chapter is demonstrated by the application examples to DOA estimation,

image demixing and video surveillance.

2.1 Least `p-Norm Criterion for Low-Rank Factor-

ization

In this chapter, complex-valued matrix is considered since application to array pro-

cessing will be investigated, where the baseband signal is complex. Given a matrix

AAA ∈ Cm×n, its r-dimension subspace can be computed by the following low-rank fac-

torization

min
UUU,VVV
‖UUUVVV −AAA‖2

F (2.1)

where UUU ∈ Cm×r and VVV ∈ Cr×n, ‖AAA‖F =
(∑

i,j|AAAij|
2
)1/2

is the Frobenius norm of AAA

with AAAij being its (i, j)th entry and | · | being the absolute value of a real number or

the modulus of a complex number. The columns of UUU and the rows of VVV span the
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r-dimensional subspaces of the column and row spaces of AAA, respectively. Therefore,

the low-rank factorization also achieves the task of subspace learning [13, 14]. The

Frobenius norm minimization (2.1) results in the ML estimates of UUU and VVV if the

noise is independent and identically distributed (i.i.d.) Gaussian. By Eckart-Young

Theorem [26], we can obtain the global minimum of (2.1) via the truncated SVD of AAA:

TSVDr(AAA) = TTTΣΣΣQQQH (2.2)

where ΣΣΣ ∈ Rr×r
+ is a diagonal matrix whose diagonal elements are the r dominant

singular values of AAA, the columns of TTT ∈ Cm×r and QQQ ∈ Cn×r are the corresponding

left and right singular vectors, respectively. Hence, we have

UUU = TTTΣΣΣ1/2, VVV = ΣΣΣ1/2QQQH. (2.3)

It has been known that the Frobenius norm is not an outlier-robust cost function since

it is based on the square error. Hence, the performance of conventional SVD will

degrade when the noise is impulsive.

To make the subspace estimation more robust to outlier, we propose to use the entry-

wise `p-norm of the residual matrix instead of the Frobenius norm in (2.1), expressed

as

min
UUU,VVV

fp(UUU,VVV ) := ‖UUUVVV −AAA‖pp (2.4)

where the entry-wise `p-norm ‖·‖p with 0 < p < 2 is defined as

‖AAA‖p =

(
m∑
i=1

n∑
j=1

|AAAij|p
)1/p

. (2.5)

When p = 2, (2.4) reduces to the Frobenius norm minimization of (2.1). Minimization

of the `p-norm error function with p < 2 is a more suitable criterion in the presence

of impulsive noise. Again, the `p-minimization of (2.4) with respect to UUU and VVV is a

nonconvex optimization problem and the SVD cannot be applied except for p = 2.

2.2 Iteratively Reweighted SVD Algorithm

Denoting the error matrix as EEE = AAA − UUUVVV with the (i, j)th entry eij, the entry-wise

`p-norm of (2.4) can be expressed as

fp(UUU,VVV ) = ‖EEE‖pp =
m∑
i=1

n∑
j=1

|eij|p =
∑
m,n

|eij|p−2|eij|2

= ‖DDD �EEE‖2
F = ‖DDD �AAA−DDD � (UUUVVV )‖2

F

(2.6)
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where � denotes the element-wise multiplication and DDD is the weighting matrix with

its (i, j)th entry dij = |eij|(p−2)/2. Equation (2.6) means that the entry-wise `p-norm

minimization problem can be converted into a weighted Frobenius norm minimization

one. We can perform SVD to the weighted matrixDDD�AAA to obtain a better result. Note

that the weighting matrixDDD depends on the unknownsUUU and VVV . That is, it is a function

of UUU and VVV which is written as DDD(UUU,VVV ). Due to this reason, we cannot immediately

obtain the optimal solution by performing the SVD of the weighted matrix DDD�AAA only

once. An iterative procedure must be employed, which is shown in Algorithm 1, where

the superscript (·)k is used to denote the result at the kth iteration. At each iteration,

the SVD of a reweighted matrix is performed. Therefore we refer to this algorithm

as iteratively reweighted SVD (IR-SVD). Note that εIII is added to |EEEk| to avoid the

ill-conditioning. A typical value of ε is taken as ε = 100εmachine with εmachine being the

machine precision.

Algorithm 1 IR-SVD

Initialize UUU0 with a random matrix of full column rank and VVV 0 of full row rank.
for k = 0, 1, 2, · · · do

Compute the error matrix EEEk = AAA − UUUkVVV k and the weighting matrix DDDk =
(|EEEk|+ εIII)(p−2)/2.
Perform rank-r truncated SVD:

TSVDr

(
DDDk �AAA

)
= TTT kΣΣΣk(QQQk)H

Set UUUk+1 = TTT k(ΣΣΣk)1/2 and VVV k+1 = (ΣΣΣk)1/2(QQQk)H.
end for

It should be pointed out that the IR-SVD algorithm does not always converge when p

is much smaller than 2. It rapidly decreases the objective function fp(UUU,VVV ) to a low

level at the first few iterations. The IR-SVD procedure will converge toward to this

low level value if it converges. This is the general convergence behavior of the IR-SVD

algorithm. If it does not converge, it oscillates around this low level value. Although

its convergence is not guaranteed, it is a simple and effective approach to achieve a

satisfactory low-rank approximation. If it oscillates around a lower level value, this

means that the objective function has attained a lower value. Then, the algorithm is

terminated and the low-rank approximation can be obtained from the minimum point

among all the iterations. The IR-SVD is also applicable to the case with 0 < p < 1.
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2.3 Alternating Minimization Algorithm

Despite the simplicity of the IR-SVD algorithm, it may not converge. In this section,

we propose the AM approach, whose convergence is guaranteed, to efficiently solve the

nonconvex problem of (2.4). In the AM, the objective function is minimized over one

factored matrix while the other factor is fixed. To be more specific, in the (k + 1)th

(k = 0, 1, · · · ) iteration, UUU and VVV are alternatingly minimized:

VVV k+1 = arg min
VVV
‖UUUkVVV −AAA‖pp (2.7)

UUUk+1 = arg min
UUU
‖UUUVVV k+1 −AAA‖pp. (2.8)

Note that both (2.7) and (2.8) are convex for 1 ≤ p ≤ 2 and the global minima of them

are guaranteed. For p < 1, (2.7) and (2.8) are nonconvex and only stationary points

can be guaranteed. The minimization problem of (2.7) with a matrix being variable

to be optimized can be decomposed into n independent `p-fitting subproblems

min
vvvj∈Cr

‖UUUkvvvj − aaaj‖pp, j = 1, · · · , n (2.9)

where vvvj and aaaj are the jth columns of VVV andAAA, respectively. Two algorithms, namely,

the IRLS and complex-valued Newton’s method will be presented later.

The convergence of the AM is illustrated in following theorem.

Theorem 1 The AM algorithm monotonically non-increases the value of the objective

function defined in (2.4), thus the sequence {fp
(
UUUk,VVV k

)
} converges to a limit point.

Proof. Denote the residual error value at the kth iteration of the alternating algorithm

as fp
(
UUUk,VVV k

)
. From (2.7) and (2.8), it follows that

fp
(
UUUk+1,VVV k+1

)
≤ fp

(
UUUk,VVV k+1

)
≤ fp

(
UUUk,VVV k

)
. (2.10)

This means that fp(UUU,VVV ) does not increase at each iteration. In addition, fp(UUU,VVV ) is

bounded from below by 0. Therefore, {fp
(
UUUk,VVV k

)
} converges to a limit point. �

The relative reduction of the error value can be used to examine the convergence.

Specifically, the convergence is determined by checking whether the following inequality

holds:
fp
(
UUUk,VVV k

)
− fp

(
UUUk+1,VVV k+1

)
fp(UUUk,VVV k)

< ε (2.11)
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Figure 2.1: Convergence behavior of IR-SVD and AM algorithms. (a) p = 1.6; (b)
p = 1.1.

for a small tolerance ε > 0. In the simulations, we choose ε = 10−7.

Using random data with m = 50, n = 200, and r = 20, Figure 2.5 plots the convergence

behaviors of the IR-SVD and AM algorithms. In Figure 2.5 (a), the IR-SVD algorithm

converges for p = 1.6 while it slightly oscillates for p = 1.1 in Figure 2.5 (b). Figure 2.2

further shows the relative error of the AM, which converges in several tens of iterations

with the specific tolerance of ε = 10−7.

We see that the AM is superior to the IR-SVD. Not only its convergence is guaran-

teed but also it more rapidly decreases the objective function value than the latter.

It is noticed that the AM does not necessarily converge to the global minimum point.

The point that it converges to depends on the initial value. We can initialize UUU using

random matrix of full column rank or the result obtained from the SVD or IR-SVD. Ex-

perimental results show that the AM provides a good enough low-rank decomposition

although the global optimum is not guaranteed.

2.3.1 IRLS for `p-Fitting

For 0 < p < 2, the `p-fitting of (2.9) can be efficiently solved by the IRLS algorithm

[76, 77] where global convergence can be achieved for the convex case of p ≥ 1 while
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Figure 2.2: Relative error versus number of iterations of AM algorithm. It converges
in several tens of iterations with a tolerance of 10−7.

only a stationary point is obtained for the nonconvex case of p < 1. At the tth iteration,

the IRLS solves the following weighted LS problem:

vvvt+1
j = arg min

vvvj
‖WWW t(UUUkvvvtj − aaaj)‖2 (2.12)

where WWW t = diag{wt1, · · · , wtm} is a diagonal weighting matrix with the ith diagonal

element being

wti =
1

(|rti |2 + ε)
1−p/2

2

. (2.13)

The rti is the ith element of the residual vector rrrt = UUUkvvvtj −aaaj. Like the term εIII in IR-

SVD, here ε > 0 is a small positive parameter to avoid division by zero and ensure nu-

merical stability, especially for p ≤ 1. Only one LS problem is required to solve in each

IRLS iteration. Therefore, the computational complexity of `p-fitting is O(mr2NIRLS),

where NIRLS is the iteration number required for the IRLS to converge. A typical value

of NIRLS is several tens. Then the complexity for solving (2.7) is O(mnr2NIRLS). Since

(2.7) and (2.8) have the same structure, (2.7) can be solved by the same way with the

same complexity. The total complexity of the AM is O(mnr2NIRLSNAM), where NAM

is the iteration number required for the AM to converge. Generally, a common value

of NAM is also several tens.
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2.3.2 Complex-Valued Newton’s Methods for `p-Fitting

The IRLS is the most widely used and considered as the standard method for solving

the following `p-fitting problem

min
zzz∈Cr

f(zzz) := ‖CCCzzz − bbb‖pp (2.14)

where CCC ∈ Cm×r and bbb ∈ Cm. However, we observe that the IRLS diverges when p is

larger than 3 in the simulations. Although we may not be interested in the setting of

p > 2 in robust estimation, this divergence phenomenon indeed reveals the drawback of

the IRLS. For p > 1, we devise two complex-valued Newton’s methods, called pseudo-

Newton’s and full-Newton’s methods with more stable and faster convergence. The

two schemes adopt optimal step size at each iteration. Interestingly, it is revealed that

the IRLS can be interpreted as a special case of the pseudo-Newton’s method using a

fixed step size of p/2, which is suboptimal.

Gradient and Hessian of `p-Norm. By defining the residual vector

rrr = CCCzzz − bbb = [r1, · · · , rm]T, (2.15)

the objective function f(zzz) can be expressed as

f(zzz) = ‖rrr‖pp =
m∑
i=1

|ri|p. (2.16)

It is not difficult to derive the partial derivative with respect to the complex quantity

ri as
∂f

∂r∗i
=

1

2

(
∂f

∂Re(ri)
+ ı

∂f

∂Im(ri)

)
=
p

2
|ri|p−2ri, i = 1, · · · ,m

(2.17)

where Re(·) and Im(·) are the real and imaginary parts of a complex number, respec-

tively. The gradient of f(rrr) is given by

∂f

∂rrr∗
=

[
∂f

∂r∗1
, · · · , ∂f

∂r∗m

]T

=
p

2
|rrr|p−2 � rrr (2.18)

with |rrr|p−2 = [|r1|p−2, · · · , |rm|p−2]
T

. Define a diagonal matrix

ΦΦΦ = diag
{
|r1|p−2, · · · , |rm|p−2

}
. (2.19)

Equation (2.18) can be rewritten as

∂f

∂rrr∗
=
p

2
ΦΦΦrrr. (2.20)
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Note that sometimes we use ΦΦΦ(zzz) to emphasize that ΦΦΦ is a function of zzz. Clearly, ΦΦΦ(zzz)

is positive definite. We compute the second-order partial derivative as

∂2f

∂r∗i ∂rj
=

{
p2|ri|p−2/4, if i = j

0, if i 6= j
. (2.21)

Hence the m ×m partial Hessian matrix of f with respect to rrr, denoted by HHHrrr∗rrr, is

diagonal and has the form:

HHHrrr∗rrr =
∂2f

∂rrr∗∂rrrT
=
p2

4
ΦΦΦ (2.22)

The m× r Jacobian matrix of rrr∗(zzz) with respect to zzz∗ is given by

∂rrr∗

∂zzzH
= CCC∗. (2.23)

Then the gradient of f(zzz) with respect to zzz is computed as

ggg(zzz) =
∂f

∂zzz∗
=

(
∂rrr∗

∂zzzH

)T
∂f

∂rrr∗
= CCCH ∂f

∂rrr∗
=
p

2
CCCHΦΦΦ(CCCzzz − bbb). (2.24)

The r × r leading partial Hessian matrix of f with respect to zzz is

HHHzzz∗zzz =
∂2f

∂zzz∗∂zzzT
=

(
∂rrr∗

∂zzzH

)T

HHHrrr∗rrr
∂rrr

∂zzzT

= CCCHHHHrrr∗rrrCCC =
p2

4
CCCHΦΦΦ(zzz)CCC.

(2.25)

Note that the partial Hessian HHHzzz∗zzz is positive definite because ΦΦΦ(zzz) is positive definite.

The pseudo-Newton’s method only uses the r × r partial Hessian HHHzzz∗zzz whereas the

full-Newton’s method exploits the following 2r × 2r full Hessian matrix

HHH =

[
HHHzzz∗zzz HHHzzz∗zzz∗

HHHzzzzzz HHHzzzzzz∗

]
. (2.26)

The full Hessian matrix is positive definite when p > 1. The other three partial Hessian

matrices are given by

HHHzzz∗zzz∗ =
∂2f

∂zzz∗∂zzzH
= CCCHHHHrrr∗rrr∗CCC

∗ (2.27)

where

HHHrrr∗rrr∗ =
∂2f

∂rrr∗∂rrrH

=
p(p− 2)

4
diag

{
|r1|p−4r2

1, · · · , |rm|p−4r2
m

} (2.28)

is a diagonal matrix, and HHHzzzzzz = HHH∗zzz∗zzz∗ , HHHzzzzzz∗ = HHH∗zzz∗zzz. It is noticed that the two off-

diagonal block matrices HHH∗zzz∗zzz∗ and HHHzzzzzz become zero if p = 2. In this case, these two

partial Hessian matrices contain no information. When p 6= 2, these two matrices do

not vanish and contain useful information for optimization.
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Newton’s Method with Optimal Step Size. The pseudo-Newton’s method generates a

sequence {zzzk} (k = 0, 1, · · · ) through the following iteration

zzzk+1 = zzzk + µk∆zzz
k (2.29)

to find the minimum of f(zzz), where µk ≥ 0 is a positive step size, and

∆zzzk = −HHH−1
zzz∗zzzggg(zzzk) (2.30)

is the search direction or pseudo-Newton step in the kth iteration. According to (2.24)

and (2.25), the pseudo-Newton step is computed as

∆zzzk = −2

p

(
CCCHΦΦΦ(zzzk)CCC

)−1
CCCHΦΦΦ(zzzk)(CCCzzzk − bbb). (2.31)

Selection of the step size is an important issue. In conventional Newton’s method, the

fixed step size µk = 1 is adopted, which is clearly not an optimal choice. If a fixed step

size µk = p/2 is used, then (2.29) can be simplified to a fixed-point iteration

zzzk+1 =
(
CCCHΦΦΦ(zzzk)CCC

)−1
CCCHΦΦΦ(zzzk)bbb (2.32)

which is reduced to the widely used IRLS algorithm [76–78] with ΦΦΦ(zzzk) being the

weighting matrix. The relation between the IRLS and pseudo-Newton’s methods for

`p-norm minimization is revealed in the following theorem.

Theorem 2 The widely used IRLS approach to robust linear fitting based on the `p-

norm minimization is a special case of the pseudo-Newton’s method using a fixed step

size of p/2.

However, the fixed step size strategy is not optimal. We consider the variable step size.

For a given Newton direction ∆zzzk, the optimal step size is given by solving the line

search

µk = arg min
µ≥0

∥∥CCC(zzzk + µ∆zzzk
)
− bbb
∥∥p
p
. (2.33)

Denoting the residual vector in the kth iteration as

rrrk = CCCzzzk − bbb (2.34)

the optimal step size is determined by

min
µ≥0

f(µ) :=
∥∥rrrk + µCCC∆zzzk

∥∥p
p
. (2.35)
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This is a one-dimensional optimization problem and can be easily solved by the existing

line search techniques, such as Golden section search or tangential method [79]. The

global optimality of µ is guaranteed since f(µ) is unimodal with respect to µ if p > 1.

Unlike the pseudo-Newton’s and IRLS algorithms that only use the leading partial

Hessian matrix, the full-Newton’s method employs the full 2Q× 2Q Hessian matrix to

compute the search direction[
∆zzzk

(∆zzzk)∗

]
= −

[
HHHzzz∗zzz HHHzzz∗zzz∗

HHHzzzzzz HHHzzzzzz∗

]−1[
ggg(zzzk)

ggg∗(zzzk)

]
(2.36)

and the updating rule is[
zzzk+1

(zzzk+1)∗

]
=

[
zzzk

(zzzk)∗

]
+ µk

[
∆zzzk

(∆zzzk)∗

]
(2.37)

where the optimal step size is determined according to (2.33). Equations (2.36) and

(2.37) give a true Newton’s method since it utilizes all second-order derivatives. The

initial value of the IRLS and two Newton’s methods can be taken as the least-squares

(LS) solution zzz0 = ẑzzLS =
(
CCCHCCC

)−1
CCCHbbb.

Note that it is not necessary to directly compute the inverse of the Hessian matrices

of (2.30) and (2.36) when computing the pseudo-Newton step and Newton step. For

example, we can use some efficient algorithms such as the conjugate gradient (CG)

method [80] for solving the linear equation HHHzzz∗zzz∆zzz
k = −ggg(zzzk) to obtain the pseudo-

Newton step ∆zzzk.

The complexity of matrix multiplication CCCHΦΦΦ(zzz)CCC is O(mr2) because ΦΦΦ(zzz) is diago-

nal. This is the complexity of computing the partial and full Hessian matrices. The

complexity for solving the partial and full Newton steps of (2.30) and (2.36) is O(r3).

Hence the complexity of the Newton’s methods is O(mr2) in each iteration due to

m > r, which is the same as that of the IRLS.

The convergence rates of the IRLS and two Newton’s methods with optimal step sizes

for a variety of values of p are compared. We takes four values of p as example, i.e.,

p = 1.2, 1.5, 3.3, and 4. In this numerical example, we randomly generate the coefficient

matrix CCC ∈ C50×20 and the vector bbb ∈ C50. We are primarily interested in the behavior,

as a function of the number of iterations, of the relative error |f(zzzk) − f(zzz?)|/f(zzz?),

where f(zzz?) is the global minimum. We can calculate this global minimum exactly (in

practice up to computer round-off precision) with a finite number of steps using the

proposed Newton’s method or any optimization software package in advance. Figure 2.3
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Figure 2.3: Convergence rate versus number of iterations of IRLS and two Newton’s
methods with optimal step sizes for p = 1.2, 1.5, 3.3, and 4.

shows the convergence rates of the three methods. It is observed that the IRLS does

not converge for p = 3.3 and p = 4 while the two Newton’s methods converge in

all cases. When the IRLS converges, it has a linear convergence rate. The pseudo-

Newton’s method also has a linear convergence rate but it converges faster than the

IRLS. The full-Newton’s method has a quadratic convergence rate and converges very

fast. It only needs several iterations for convergence with a high accuracy.

Although the AM provides an better approach to robust low-rank factorization under

`p-minimization compared with the IR-SVD, it has two drawbacks. First, its computa-

tional complexity is still a bit high. Second, the point that the AM converges to severely

depends on the initial value. In the simulation results of Section 2.7, we observe that

the AM may converge to an inferior solution sometimes even with good initialization.

In the next section, we will discuss the ADMM for robust low-rank factorization, which

is computationally more efficient and more effective than the AM.
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2.4 ADMM for `1-Low-Rank Factorization

This section describes the ADMM for solving the problem of `1-low-rank factorization

min
UUU,VVV

f(UUU,VVV ) := ‖UUUVVV −AAA‖1. (2.38)

Here we only consider the `1-norm, i.e., p = 1, rather than all possible value in 1 ≤ p < 2

because the choice of p = 1 is more robust to outliers and computationally simpler than

p ∈ (1, 2), as we will see later. Another reason is that the proximity operator of the

`1-norm has the closed-form expression while those with other values of p are more

difficult to compute for the complex-valued variables.

2.4.1 Principles of ADMM

By introducing the matrix EEE = UUUVVV −AAA, (2.38) is equivalent to a linearly constrained

problem
min
UUU,VVV ,EEE

‖EEE‖1

s.t. EEE = UUUVVV −AAA.
(2.39)

The augmented Lagrangian function of (2.39) is

Lµ(UUU,VVV ,EEE,ΛΛΛ) = ‖EEE‖1 + Re(〈ΛΛΛ,UUUVVV −EEE −AAA〉)
+
µ

2
‖UUUVVV −EEE −AAA‖2

F

(2.40)

where the matrix ΛΛΛ ∈ Cm×n contains mn Lagrange multipliers, 〈AAA,BBB〉 =
∑

(i,j)AAA
∗
ijBBBij

represents the inner product of two complex-valued matrices where AAAij and BBBij are

the (i, j)th entries of AAA and BBB, respectively, and µ > 0 is the penalty parameter. The

augmented Lagrangian reduces to the unaugmented one if µ = 0. The selection of µ

is flexible [81]. One can simply use a fixed positive constant for µ. Of course, using

possibly different penalty parameters for each iteration may improve the convergence

in practice [82,83]. The Lagrange multiplier method solves the constrained problem of

(2.39) by finding a saddle point of the augmented Lagrangian

min
UUU,VVV ,EEE

max
ΛΛΛ
Lµ(UUU,VVV ,EEE,ΛΛΛ). (2.41)

This saddle point problem is a minimax problem, where the primal variables (UUU,VVV ,EEE)

aims at decreasing Lµ(UUU,VVV ,EEE,ΛΛΛ) while the dual variable ΛΛΛ aims at increasing this

function. ADMM uses the following iteration

(UUUk+1,VVV k+1) = arg min
UUU,VVV
Lµ(UUU,VVV ,EEEk,ΛΛΛk) (2.42)

EEEk+1 = arg min
EEE
Lµ(UUUk+1,VVV k+1,EEE,ΛΛΛk) (2.43)

ΛΛΛk+1 = ΛΛΛk + µ
(
UUUk+1VVV k+1 −EEEk+1 −AAA

)
(2.44)
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to calculate the saddle point in (2.41), where (UUUk,VVV k,EEEk,ΛΛΛk) denotes the result at the

kth iteration. Some remarks and explanations on three subproblems of (2.42), (2.43),

and (2.44) are given as follows.

Noting that the gradient of Lµ(UUUk+1,VVV k+1,EEEk+1,ΛΛΛ) with respect to ΛΛΛ is

∂Lµ(UUUk+1,VVV k+1,EEEk+1,ΛΛΛ)

∂ΛΛΛ∗
= UUUk+1VVV k+1 −EEEk+1 −AAA (2.45)

we can see that (2.44) adopts a gradient ascent with a step size µ to update the

dual variable ΛΛΛ. Since ΛΛΛ is complex-valued, the gradient is defined as the Wirtinger

derivatives, which is written as ∂Lµ
∂ΛΛΛ∗

. ADMM updates (UUU,VVV ) and EEE in an alternating

or sequential fashion to circumvent the difficulty in jointly minimizing with respect

to the two primal blocks. Note that (2.42) minimizes (UUU,VVV ) simultaneously. Thus,

(2.42)–(2.44) is a two-block ADMM but not a three-block one. The two blocks refer

to (UUU,VVV ) and EEE. The convergence of two-block ADMM is guaranteed but the multi-

block (block number larger than 2) one is not necessarily convergent [84]. Clearly, the

proposed ADMM does not have the divergence problem of multi-block ADMM since

it is a two-block one.

Denoting a matrix

YYY k = EEEk −ΛΛΛk/µ+AAA (2.46)

and ignoring the constant term independent on (UUU,VVV ), we can derive the subproblem

of (2.42) is equivalent to the following Frobenius norm minimization problem

(UUUk+1,VVV k+1) = arg min
UUU,VVV
‖UUUVVV − YYY k‖2

F (2.47)

whose global minimizer can be obtained by the truncated SVD of YYY k, which is denoted

as

TSVDr(YYY
k) = GGGkΣΣΣk

Y (PPP k)H (2.48)

where ΣΣΣk
Y ∈ Rr×r

+ is a diagonal matrix whose diagonal elements are the r dominant

singular values of YYY k, the columns of GGGk ∈ Cm×r and PPP k ∈ Cn×r are the corresponding

left and right singular vectors, respectively. Clearly, we have

UUUk+1 = GGGk(ΣΣΣk
Y )1/2, VVV k+1 = (ΣΣΣk

Y )1/2(PPP k)H. (2.49)

The complexity of the truncated SVD is O(mnr) [35]. When the rank r is smaller

than the matrix dimension (m,n), the computational cost of the truncated SVD is

cheaper than the full SVD which requires a complexity of O(max(mn2,m2n)). After

simplification, the subproblem of (2.43) is concisely expressed as

min
EEE∈Cm×n

1

2

∥∥EEE − YYY k
∥∥2

F
+

1

µ
‖EEE‖1. (2.50)
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where

YYY k = UUUk+1VVV k+1 + ΛΛΛk/µ−AAA. (2.51)

The solution of (2.50) defines the proximity operator [85] of the `1-norm of a complex-

valued matrix. Observing that (2.50) is separable, it can be decomposed into mn

independent scalar minimization problems

min
eij∈C

1

2

(
eij − ykij

)2
+

1

µ
|eij| (2.52)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, eij and ykij are the (i, j)th entries ofEEE and YYY k, respectively.

The solution of (2.52) is the soft-thresholding operator for complex variables, which

is a generalization of that for real variables [86] and has the following closed-form

expression [87,88]

ek+1
ij =

max
(
|ykij| − 1/µ, 0

)
max

(
|ykij| − 1/µ, 0

)
+ 1/µ

ykij. (2.53)

Obviously, it only needs a marginal complexity of O(mn) to update EEE. Note that the

variables are complex-valued in array processing. We should adopt the complex soft-

thresholding operator of (2.53), rather than the celebrated one for real variables [86].

Now it is clear that why we only consider the choice of p = 1. This is because the

proximity operator of the `1-norm has a simple closed-form solution while the `p-norm

with 1 < p < 2 does not. Although the proximity operator of the pth power of the

`p-norm can be solved since it is a convex problem for 1 < p < 2, it has no closed-form

solution and requires an iterative procedure, which is time-consuming. It is well-

known that the soft-thresholding shrinks the value larger than the threshold towards

to zero [40]. Therefore, it automatically achieves outlier reduction. This is why the

`1-subspace decomposition is more robust against outliers.

2.4.2 Summary of ADMM

The steps of ADMM for robust low-rank approximation are summarized in Algorithm

2.

From the steps of Algorithm 2, we see that the ADMM converts the minimization of

a nonsmooth `1-norm into a Frobenius norm minimization at each iteration, which

can be efficiently solve by truncated SVD. The additional cost for computing the soft-

thresholding operator is quite marginal because it has a simple closed-form solution.

The residual

RRRk = UUUkVVV k −EEEk −AAA (2.54)
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Algorithm 2 ADMM for Robust Low-Rank Approximation

Input: AAA, rank r, and µ > 0
Initialize: EEE0 = 000 and ΛΛΛ0 = 000
for k = 0, 1, 2 · · · do

1) Calculate YYY k = EEEk −ΛΛΛk/µ+AAA
2) Compute rank-r truncated SVD of YYY k:

TSVDr(YYY
k) = GGGkΣΣΣk

Y (PPP k)H

3) Update UUUk+1 = GGGk(ΣΣΣk
y)

1/2 and VVV k+1 = (ΣΣΣk)1/2(PPP k)H.
4) Compute YYY k = UUUk+1VVV k+1 + ΛΛΛk/µ−AAA
5) Update the elements of EEE using soft-thresholding:

ek+1
ij =

max(|ykij |−1/µ,0)
max(|ykij |−1/µ,0)+1/µ

ykij

6) ΛΛΛk+1 = ΛΛΛk + µ
(
UUUk+1VVV k+1 −EEEk+1 −AAA

)
Stop if termination condition satisfied.

end for
Output: (UUUk+1,VVV k+1)

reflects how well the current iterate satisfies the linear constraint and can be used to

check for convergence. Specifically, the iteration is terminated when the normalized

Frobenius norm of the residual
‖RRRk‖F

‖AAA‖F

< δ (2.55)

satisfies, where δ > 0 is a small tolerance parameter. A reasonable value can be taken

as δ = 10−3. The dominant complexity of the ADMM per iteration is calculating the

truncated SVD. Hence, the total complexity of the ADMM is O(mnrNADMM) where

NADMM is the iteration number of the ADMM. As can be seen from the numerical

results in Section 2.7, several tens is enough for NADMM for attaining a small estimate

error in impulsive noise. The computational cost of the ADMM is much lower than

that of the AM that requires O(mnr2NIRLSNAM) operations.

As an important technique in optimization, the ADMM has been widely used in signal

processing, machine learning and statistics. However, we still have novel contributions

to the ADMM in this chapter, which is summarized as follows.

i) The ADMM is first to apply to efficiently solve the challenging nonconvex

and nonsmooth problem induced by the low-rank approximation using `1-

minimization, which is much more difficult than the `2-subspace decomposition

that can be solved by truncated SVD.

ii) The proposed ADMM converts the nonsmooth `1-subspace factorization into a

series of `2-subspace factorization. At each iteration, it just needs calculation
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of truncated SVD and soft-thresholding, which automatically achieves outlier

reduction. The ADMM has a lower computational complexity than the AM.

iii) The ADMM provides an improved and more effective approach to robust subspace

decomposition. It is revealed that the AM sometimes yields inferior solutions.

The ADMM converges to a better solution having smaller objective function value

and more accurate subspace estimation, indicating that it is numerically superior

to the AM.

2.5 Differences with Other Robust PCA Methods

The RPCA proposed by Candès et al. [32] models the observed data matrix as a

superposition of a low-rank matrix LLL and a sparse outlier matrix OOO, i.e., AAA = LLL +OOO.

It solves the following convex programming

min
LLL,OOO
‖LLL‖∗ + α‖OOO‖1

s.t. LLL+OOO = AAA.
(2.56)

to separate the low-rank matrix LLL and the outlier matrix OOO, where α > 0. The

convex nuclear norm, which is defined as the sum of the singular values, is taken as

the surrogate of the nonconvex rank while the entry-wise `1-norm is used instead of

the nonconvex `0-norm for sparsity-promoting. If the outlier matrix has other special

structures, the `1-norm can be adapted to other norms. For example, the `1,2-norm

‖OOO‖1,2, which is the sum of `2-norms of the columns, is taken if OOO is column-sparse,

which is used in the outlier pursuit method [89]. Similarly, the `2,1-norm ‖OOO‖2,1, which

is the sum of `2-norms of the rows, if OOO has row-sparse structure [90]. The difference

between our method and the RPCA is mainly that our method directly uses low-

rank factorization to ensure low-rank property while the RPCA adopts nuclear norm

minimization. Although the global minimum of the convex programming in (2.56) is

guaranteed, its complexity is much higher than the proposed algorithms, which limits

its application to large-scale data. In addition, the parameter α is not easy to determine

even when the rank is known. A careful parameter tune for selecting an appropriate

α is required. In many applications such as dimensionality reduction and subspace

decomposition, after obtaining the “clean” data LLL with the outlier being removed, the

RPCA still requires performing SVD of LLL to obtain the principal components, but our

method directly calculates the subspace.
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2.6 Application to Array Processing

2.6.1 Overview on DOA Estimation

DOA estimation of multiple emitting sources is an important issue in array process-

ing and has various applications in radar, sonar, wireless communications, and source

localization [91–93]. The MUSIC [94] is one of the most well-known high resolution

DOA estimation techniques and it belongs to the subspace methodology [95]. It esti-

mates the DOAs by exploiting the orthogonality between the noise subspace and array

manifold. It has been shown that the MUSIC method is an asymptotically unbiased

and efficient DOA estimator based on the Gaussian noise assumption [96–98].

Many existing DOA estimators explicitly or implicitly assume that the ambient noise

is Gaussian distributed. However, the noise in practice often exhibits non-Gaussian

properties. The performance of the conventional DOA estimators may severely degrade

in the presence of non-Gaussian noise. One important class of non-Gaussian noises

that are frequently encountered in many practical wireless radio systems is impulsive

noise, also known as burst noise [99–101]. The probability density function (p.d.f.)

of impulsive noise has heavier tails than the Gaussian distribution. The property of

impulsive noise is somewhat similar to outliers in statistics. It is because the heavy

tailed distributions give higher probability of occurrence to values which exceed a few

standard deviations than the Gaussian distribution. Under a nominal Gaussian noise

model, these large values are unlikely to appear and can therefore be considered as

outliers.

The conventional subspace based DOA estimation techniques exploit eigenvalue de-

composition (EVD) of the covariance matrix of the received data. The DOA esti-

mators based on the second-order sample covariance are not robust against outliers.

A class of subspace based DOA estimation algorithms use the fractional lower-order

statistics such as the robust covariation (ROC) [102], fractional lower-order moments

(FLOM) [103], sign covariance matrix (SCM), and Kendall’s tau covariance matrix

(TCM) [104], instead of the second-order sample covariance. However, the fractional

lower-order statistics based algorithms are suboptimal and require large sample sizes

for a satisfactory performance [102, 105]. Swami et al. have proposed to apply zero-

memory nonlinear (ZMNL) functions to limit the influence of outliers by clipping the

amplitude of the received signal [106]. The ZMNL preprocessing achieves robust co-

variance estimation and provides more accurate DOA estimates than the fractional

lower-order schemes [105, 106]. Furthermore, the data-adaptive ZMNL approach is



30 Chapter 2: Robust Low-Rank Approximation of A Single Matrix

simple and has a low computational complexity. Despite these advantages, there is a

tradeoff in ZMNL between outlier suppression and subspace preservation. The ZMNL

preprocessing generally destroys the low-rank property of the signal subspace. Its per-

formance may degrade due to the rank increase of the signal subspace [105]. Similar

idea using outlier-trimming has been developed in [107], where the Shapiro-Wilk W

test for Gaussianity is used. One of its limitations is that Gaussian distributed source

signal is required [107].

Another representative DOA estimation scheme resistant to impulsive noise is based

on robust statistics [29, 78, 108]. This approach first uses a robust scheme such as the

M-estimator [29], S-estimator [78], or MM-estimator [109], to estimate the covariance

matrix, and then conventional subspace decomposition is exploited to obtain the DOA

estimates. The success of this method depends on choosing the appropriate robust

statistics. Different from the covariance based methodology which exploits the sam-

ple covariance, fractional-order moment, or any robust statistics computed from the

received data, we directly compute the signal subspace without explicitly constructing

the covariance. Naturally, the EVD is not required.

The key step of the MUSIC method is computing the signal or noise subspace. The

subspace decomposition rule in MUSIC is equivalent to minimization of the Frobenius

norm of the residual fitting error matrix. The resulting Frobenius norm minimization

can be efficiently solved by the SVD of the received data matrix. The orthonormal

bases of the signal and noise subspaces are given by the singular vectors associated

with the principal and minor singular values, respectively. The subspace decomposition

using Frobenius norm minimization is statistically optimal when the additive noise is

Gaussian distributed. It, however, is no longer optimal and the performance of the

conventional MUSIC. based on SVD will degrade in the presence of impulsive noise.

We call the robust DOA estimator employing `p-low-rank matrix factorization as `p-

MUSIC method [110].

2.6.2 Signal Model and `p-MUSIC

Consider a uniform linear array (ULA) of m sensors with half-wavelength inter-sensor

spacing. The ULA receives r far-field and narrowband sources emitting plane waves.

We assume that the number of sources is less than the number of sensors, i.e., r < m.

This assumption is common for subspace based array processing. Letting the first

sensor as the reference sensor, then the complex baseband signal received by the ith
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(i = 1, · · · ,m) sensor is

ai(t) =
r∑
j=1

sj(t)e
ıπ(i−1) sin θj + ξi(t) (2.57)

where t is the discrete-time index, sj(t) is the jth (j = 1, · · · , r) source with θj being its

DOA, ξi(t) is the non-Gaussian additive noise of the ith sensor. Stacking the output of

all the sensors in a vector aaat = [a1(t), · · · , am(t)]T ∈ Cm, the matrix-vector formulation

of (2.57) is expressed as

aaat = FFFssst + ξξξt (2.58)

where ssst = [s1(t), · · · , sr(t)]T ∈ Cr is the source vector, ξξξt = [ξ1(t), · · · , ξm(t)]T ∈ Cm

is the noise vector, and FFF ∈ Cm×r is the array manifold matrix having the following

form

FFF = [fff(θ1), · · · , fff(θr)] (2.59)

with fff(θ) being the steering vector:

fff(θ) =
[
1, eıπ sin θ, · · · , eıπ(m−1) sin θ

]T
. (2.60)

We aim at estimating the DOAs of the r sources based on the n snapshots, which are

collected in the following matrix

AAA
∆
= [aaa1, · · · , aaan] ∈ Cm×n. (2.61)

The source number r is assumed known or has been determined by an outlier-resistant

source enumeration method [108, 111, 112]. It is also assumed that the zero-mean

sources are mutually independently with each other, while the noises {ξi(t)}mi=1 are spa-

tially uncorrelated and temporally white, and statistically independent of the sources.

These assumptions are mild in practical applications.

After obtaining the subspace UUU through the robust matrix factorization algorithm,

e.g., the AM, ADMM, or IR-SVD, the projection matrix onto the signal subspace is

computed as

ΠΠΠUUU = UUU
(
UUUHUUU

)−1
UUUH. (2.62)

Because the steering vector of any source is orthogonal to the null space, the robust

spatial spectrum is given by

P (θ) =
1

fffH(θ)(III −ΠΠΠUUU)fff(θ)
. (2.63)

The DOA estimates can be obtained by searching for the peaks of (2.63). The root

finding technique, namely, root-MUSIC [113], can also be used to compute the DOAs
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instead of the spectrum search. Other subspace DOA estimation schemes such as

ESPRIT [114], can also be applied.

It is expected that the estimated signal subspace UUU spans the same range space of FFF .

Here we take the normalized subspace distance between UUU and FFF as the performance

measure to evaluate the quality of subspace estimate, which is defined as [35]

SD(UUU,FFF ) =
‖ΠΠΠUUU −ΠΠΠFFF‖F

‖ΠΠΠFFF‖F

(2.64)

where ΠΠΠFFF = FFF (FFFHFFF )−1FFFH is the projection matrix onto the column space of FFF . The

subspace distance will become zero if UUU and FFF spans the same column space. A smaller

subspace distance indicates a better subspace estimate. It should be pointed out that

the global optimum is not guaranteed for both ADMM and AM, but the ADMM can

provide an good enough subspace estimate for robust array processing, as we will see

in the simulation results.

2.7 Experimental Results

2.7.1 Impulsive Noise Model

We use two widely used p.d.f. models for impulsive noise, i.e., the Gaussian mixture

model (GMM) and generalized Gaussian distribution (GGD) in the experiments.

GMM. The p.d.f. of the two-term circular Gaussian mixture noise ξ(t) is

pξ(ξ) =
2∑
i=1

ci
πσ2

i

exp

(
−|ξ|

2

σ2
i

)
(2.65)

where ci ∈ [0, 1] and σ2
i are the probability and variance of the ith term, respectively,

with c1 + c2 = 1. If σ2
2 � σ2

1 and c2 < c1 are selected, large noise samples of vari-

ance σ2
2 occurring with a smaller probability c2 are the outliers embedded in Gaussian

background noise of variance σ2
1. Thus, GMM well models the phenomenon in the

presence of both Gaussian thermal noise and impulsive noise. The total variance of

ξ(t) is σ2
ξ =

∑
i ciσ

2
i . In the simulations, we set σ2

2 = 100σ2
1 and c2 = 0.1, i.e., there are

10% outliers.

GGD. The p.d.f. of the circular zero-mean GGD with variance σ2
ξ is

pξ(ξ) =
βΓ(4/β)

2πσ2
ξΓ

2(2/β)
exp

(
−|ξ|

β

cσβξ

)
(2.66)
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where β > 0 is the shape parameter, Γ(·) is the Gamma function, and c =

(Γ(2/β)/Γ(4/β))β/2 [115]. The GGD reduces to the circular Gaussian distribution

for β = 2. β > 2 models sub-Gaussian noise while β < 2 models heavy-tailed one.

Especially, β = 1 corresponds to the Laplacian distribution. The smaller the value of

β, the more impulsive the noise is. We adopt β = 0.4 in the simulations.

2.7.2 Convergence Behavior and Running Time

We first compare the convergence behavior of the proposed ADMM and the AM for

solving the `1-subspace decomposition using randomly generated data. For fair compar-

ison, the two algorithms use the same initial value that takes the result of conventional

truncated SVD. A noise-free matrix AAA0 ∈ Cm×n of rank r is generated by the product

of two random matrices UUU0 ∈ Cm×r and VVV 0 ∈ Cr×n whose entries satisfy the standard

circular Gaussian distribution, i.e., AAA0 = UUU0VVV 0. Then, the GMM or GGD noise of vari-

ance σ2
ξ is added to AAA0 to obtain the noisy observation AAA = AAA0 +ΞΞΞ. The signal-to-noise

ratio (SNR) is defined as

SNR =
‖AAA0‖2

F

mnσ2
ξ

(2.67)

where ‖AAA0‖2
F/(mn) represents the average power of the noiseless observation. In this

example, we adopt the GMM noise with SNR = 6 dB and set m = 20, n = 50, and

r = 4. The results up to the computer round-off precision of AM and ADMM can

be obtained using finite iterations, which are denoted as f ?AM and f ?ADMM, respectively.

Figure 2.4 shows the differences of objective functions of AM and ADMM, i.e., f ?AM −
f ?ADMM, of 50 independent experiments. We see that all differences are positive, which

indicates f ?ADMM < f ?AM. Therefore, the ADMM and AM converge to different points.

The AM yields inferior solutions. The ADMM converges to a better solution with a

smaller objective function value.

Figure 2.5 shows the normalized decreases of the objective function |f(UUUk,VVV k) −
f ?|/f(UUU0,VVV 0) of the AM and ADMM with different penalty parameters µ = 1, 5, and

10, where f ? is the minimum. It should be pointed out that the global minimum f ? is

very difficult to obtain and we use f ?AM instead of it when plotting Figure 2.5. Again,

f ?AM can be calculated up to the computer round-off precision using finite iterations in

advance. Figure 2.6 plots the subspace distance versus iteration number. As we can

see, the AM is premature and sticks at an inferior point that has larger objective func-

tion value and subspace distance, although it has a rapid decreasing rate at the initial

stage. Obviously, the ADMM is more effective. It significantly improves the numerical

performance. The subspace estimate obtained by the ADMM is much more accurate
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Figure 2.4: Differences of objective functions of AM and ADMM of 50 independent
experiments.

than the AM. The normalized Frobenius norm of the residual, i.e., ‖EEEk‖F/‖AAA‖F, versus

iteration number is illustrated in Figure 2.7. From Figures 2.5 to Fig:Res:Iter, we see

that the ADMM with different values of penalty parameter µ converges to the same

solution finally but the convergence rates are different. The penalty parameter µ only

influences the convergence speed. In this experiment, the smaller value of µ = 1 has

the fastest rate at the initial stage but it slows down later. The results also imply

that selection of µ is quite flexible. Figure 2.7 indicates that several tens of iterations

are required for the ADMM to attain a normalized residual of 10−3 to 10−4. This

order-of-magnitude of iterations is also enough for the subspace distance converging.

To compare the computational efficiency, we test the ADMM and AM in MATLAB on

a computer with a 3.2 GHz CPU and 4 GB memory. The same experimental settings

are taken except that m and n vary. The CPU times (in seconds) of the two algorithms

with various values of m and n, which are based on an average of 20 independent runs,

are listed in Tables 2.1. The stopping parameter of the ADMM is δ = 10−3. This value

is also used as tolerance for the AM, i.e., the AM stops the iteration when the relative

change of the objective function is less than 10−3. We see that ADMM is much faster

than AM, especially for large-scale matrix. The AM is too time-consuming when the

problem size is large. Therefore, the ADMM is much more efficient than the AM for

solving large-scale robust subspace decomposition.
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Figure 2.5: Normalized decrease of the objective function of AM and ADMM versus
iteration number.
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Figure 2.6: Subspace distance versus iteration number.

Table 2.1: CPU times of ADMM and AM

m = 20

n = 50

m = 40

n = 100

m = 80

n = 200

m = 200

n = 500

m = 1000

n = 2000

ADMM 0.137 0.321 0.652 3.05 106.4

AM 11.04 27.82 115.1 1252.7 1.28 ×105
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Figure 2.7: Normalized residual of the ADMM versus iteration number.

2.7.3 Results of DOA Estimation

In the second simulation, the performance of the `1-MUSIC using the ADMM and

AM for subspace computation, conventional MUSIC [94], FLOM [103], ROC [102],

ZMNL [106], and MM-estimator [108,109] methods, as well as the Cramér-Rao bound

(CRB), are compared for DOA estimation. The ADMM and AM directly compute

a robust estimated the subspace but the FLOM, ROC, ZMNL, and MM robustly

estimate the covariance and then use conventional SVD or EVD routine to compute

the subspace. The ZMNL first uses a Gaussian-tailed ZMNL (GZMNL) function to clip

outliers. After this data preprocessing, the conventional MUSIC is applied. Therefore

this method is referred to as GZMNL for short. The method in [108] first robustly

estimates the covariance matrix by MM-estimator [109], and then employs MUSIC

for DOA estimation. ROC and FLOM use fractional lower-order moments instead of

the second-order sample covariance matrix. For the purpose of fair comparison, the

fractional order used in ROC and FLOM is set as p = 1, the same as the ADMM

and AM. We consider a ULA with inter-sensor spacing being half a wavelength. The

emitting sources are two independent quadrature phase-shift keying (QPSK) signals

with equal power. The CRB of for DOA estimation θθθ = [θ1, · · · , θr]T under non-

Gaussian noise [105], has been derived by Kozick and Sadler, which is

CRB(θθθ) =
1

Ic
diag

{
n∑
t=1

Re
(
SSSH
t BBB

H(θθθ)ΠΠΠ⊥FFFBBB(θθθ)SSSt
)}

(2.68)
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where SSSt = diag{s1(t), · · · , sr(t)} is a diagonal matrix, BBB(θθθ) = [bbb(θ1), · · · , bbb(θr)] with

bbb(θ) = daaa(θ)/dθ, ΠΠΠ⊥FFF = III −ΠΠΠFFF is the projection onto the orthogonal complementary

space of FFF , and

Ic = π

∫ ∞
0

(p′ξ(ρ))2

pξ(ρ)
ρdρ (2.69)

with ρ = |ξ| being the modulus of the complex variable ξ and p′ξ(ρ) the derivative of

pξ(ρ). The p.d.f. of the noise effects the CRB only through the scalar Ic. The CRBs

of GMM and GGD noises can be numerically computed using (2.68) and (2.69).

Monte Carlo trials have been carried out to evaluate the performance of the DOA

estimators. The DOAs of two uncorrelated sources are θ1 = −8◦ and θ2 = 10◦. This

means that the target rank is r = 2. The numbers of sensors and snapshots are m = 6

and n = 100. The root mean square errors (RMSEs) of the subspace distance and

DOA estimates are taken as the performance measures, which are defined as

RMSE(UUU) =
1

‖ΠΠΠFFF‖F

√√√√ 1

Nm

Nm∑
i=1

‖ΠΠΠUUU i −ΠΠΠFFF‖2
F (2.70)

and

RMSE
(
θ̂j

)
=

√√√√ 1

Nm

Nm∑
i=1

(
θ̂j,i − θj

)2

(2.71)

respectively, where Nm is the number of Monte Carlo trials, UUU i and θ̂j,i are the subspace

and DOA estimates of the jth source in the ith trial, respectively. To avoid grid search

over the spectrum, the root-MUSIC [113] is employed to calculate the DOA parameters

after the signal subspace is obtained.

RMSEs of subspace DOA estimates versus SNR are studied under GMM and GGD

noise in this experiment. At each SNR, 200 Monte Carlo trials are carried out. Fig-

ures 2.8 and 2.9 plot the RMSEs of subspace distance and DOA estimate of the first

source versus SNR in GMM noise, respectively. While Figures 2.10 and 2.11 plot the

results of in GMM noise. In addition, the CRBs for DOA estimate are also plotted for

comparison.

As can be observed from Figures 2.8 to 2.11, the conventional MUSIC is not robust

in the presence of impulsive noise. The ADMM using `1-subspace estimation has the

best performance. The AM also exhibits good performance but it is inferior to the

ADMM. MM and GZMNL also show good robustness to outlier but GZMNL suffers a

performance saturation as the SNR increases. This is because it generally destroys the

low-rank structure of the signal subspace, which leads to a performance saturation or
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Figure 2.8: RMSE of subspace distance in GMM noise versus SNR.

even degradation [105]. Although the ROC and FLOM are better than the conventional

MUSIC, they are inferior to the ADMM, AM, MM, and GZMNL. It has been analyzed

that the FLOM does not have a satisfactory performance if the sample size is not large

enough [102,105].

2.7.4 Results of Image Demixing

The application to real-world image demixing [116] is investigated. Many natural and

man-made images include highly regular textures, corresponding to low-rank structure.

In texture impainting, the task is to demix the background texture which is sparsely

occluded by untextured components. For the observed image, textured and untextured

components are modeled as low-rank matrix and sparse outlier, respectively. After ob-

taining the low-rank component UUUVVV using the AM and ADMM, the outlier component

is computed as AAA − UUUVVV . In the example herein, the PCA, RPCA, AM with p = 1,

and ADMM are applied to an image of a chessboard with 377× 370 pixels [116]. From

Figure 2.12, we clearly see that the background of the chessboard has low-rank struc-

ture with rank r = 2 while the chessmen can be viewed as sparse outliers. The PCA

cannot exactly separate chessboard and chessmen while the RPCA, AM, and ADMM

perfectly demix them.
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Figure 2.9: RMSE of DOA estimate of the first source in GMM noise versus SNR.
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Figure 2.10: RMSE of subspace distance in GGD noise versus SNR.
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Figure 2.11: RMSE of DOA estimate of the first source in GGD noise versus SNR.

2.7.5 Results of Foreground Detection for Video Surveillance

We apply the robust low-rank approximation to foreground detection in video surveil-

lance. In this application, the background scene is extracted from a number of video

frames. Converting each frame of a video as a column of a matrix, the resultant matrix

is of low-rank intrinsically due to the correlation between frames. In the presence of

foreground objects especially in busy scenes, every frame may contain some anomalies.

Foreground objects such as moving cars or walking pedestrians, generally occupy only

a fraction of the image pixels, and thus may be treated as sparse outliers. If the back-

ground is invariant, the rank can be set as r = 1. Otherwise the rank may be selected

slightly larger than one to accommodate small changes in the background.

The examples of video foreground detection (or equivalently background extraction)

herein consider two video datasets available from CDNET, which is a video database for

testing change detection algorithms [117]. Two examples in the video database, namely,

the “backdoor” comprising a video sample of 2000 color frames with prevalent hard

and soft shadow intermittent shades and the “streetlight” comprising a video sample

of 3200 color frames containing background objects stopping for a short while and then

moving away, are used in our experiment. In the examples herein, for both datasets,

the first 200 frames of the video samples were selected and converted to grayscale

versions. All frames of these examples have a size of 240 × 320, corresponding to

76800 pixels. Thus, the observed data matrix constructed from each video is R76800×200

where m = 76800 and n = 200. As the two videos have relatively static backgrounds,
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Figure 2.12: Demixing of chessboard and chessmen. The first, second, third, and
fourth rows correspond to the results of the PCA, RPCA, AM, and ADMM. The first,
second, and third columns show the images of mixture, background, and chessmen,
respectively.
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Figure 2.13: Foreground the background separation of the “backdoor” database for
video surveillance. The first column is the original frames while the second and third
columns are the background and foreground, respectively.

r = 1 is selected in both cases. Figures 2.13 and 2.14 show three representative frames

and the corresponding separated results in the “backdoor” and “streetLight” datasets,

respectively. It can be seen from these representative frames the ADMM successfully

separates the foreground from the background.

2.8 Summary

The conventional tool for low-rank matrix approximation is not robust against outliers

since it uses Frobenius norm minimization. In this chapter, we develop three algo-

rithms, namely, the IR-SVD, AM, and ADMM for robust low-rank factorization based

on minimization of the `p-norm of the residual. The ADMM is somewhat a bit better

than the IR-SVD and AM with improvement of numerical effectiveness. Experimental

results on random data, DOA estimation, image separation, and video surveillance

verify the superior outlier-robustness of the three proposed algorithm.
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Figure 2.14: Foreground the background separation of the “streetLight” database for
video surveillance. The first column is the original frames while the second and third
columns are the background and foreground, respectively.
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Chapter 3

Robust Low-Rank Matrix Completion in
`p-Space

In Chapter 2, we discuss robust low-rank approximation for a single matrix where the

entries are fully observed. In many applications, only partial entries of the matrix are

available. In this chapter, we investigate low-rank matrix approximation with missing

values. This problem is called as matrix completion. Most existing techniques for

matrix completion assume Gaussian noise and thus they are not robust to outliers. In

this paper, we devise two algorithms for robust matrix completion based on low-rank

matrix factorization and minimizing the entry-wise `p-norm of the fitting error with

0 < p < 2. The first method tackles the low-rank matrix factorization with missing

data by iteratively solving (m+n) linear `p-regression problems, where m and n are the

numbers of rows and columns, respectively. The second applies the alternating direction

method of multipliers (ADMM) in the `p-space. At each iteration of the ADMM,

it requires performing a least squares (LS) matrix factorization and calculating the

proximity operator of the pth power of the `p-norm. The LS factorization is efficiently

solved using linear LS regression while the proximity operator has closed-form solution

for p = 1 or can be obtained by root finding of a scalar nonlinear equation for other

values of p. The two proposed algorithms have comparable recovery capability and

computational complexity of O(K|Ω|r2), where |Ω| is the number of observed entries

and K is a fixed constant of several hundreds to thousands and dimension-independent.

It is demonstrated that they are superior to the state-of-the-art methods in terms of

computational simplicity, statistical accuracy and outlier-robustness.

3.1 Problem Formulation and Preliminaries

Let AAAΩ ∈ Rm×n be a matrix with missing entries where Ω is a subset of the complete

set of entries [m]× [n], with [n] being the list {1, · · · , n}. Throughout the chapter, the

subscript (·)Ω denotes the projection on the known entries. The (i, j)th entry of AAAΩ,

denoted by [AAAΩ]ij, can be written as:

[AAAΩ]ij =

{
AAAij, if (i, j) ∈ Ω

0, otherwise.
(3.1)
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In addition, we use the lower-case bold letter aaaΩ ∈ R|Ω| to represent the vector stacking

all the observed entries of AAAΩ in a column-by-column manner, where |Ω| stands for the

cardinality of Ω, that is, number of observed entries. As an illustration, suppose the

original matrix is:

AAA =


1 2 3

2 4 6

3 6 9

. (3.2)

If only four elements are observed over Ω = {(1, 1), (2, 1), (3, 2), (1, 3)}, we then have:

AAAΩ =


1 0 3

2 0 0

0 6 0

 (3.3)

with aaaΩ = [1, 2, 6, 3]T.

The task of matrix completion is to find a matrixMMM ∈ Rm×n given incomplete observa-

tions AAAΩ by incorporating the low-rank information. Mathematically, it is formulated

as a rank minimization problem:

min
MMM

rank(MMM)

s.t. MMMΩ = AAAΩ.
(3.4)

That is, among all matrices consistent with the observed entries, we look for the one

with minimum rank. However, (3.4) is NP-hard. A popular and practical solution is

to replace the nonconvex rank by convex nuclear norm [9,42–44], resulting in

min
MMM
‖MMM‖∗

s.t. MMMΩ = AAAΩ

(3.5)

where the nuclear norm ‖MMM‖∗ equals the sum of singular values of MMM . This convex

relaxation is analogous to the relaxation of the intractable problem of `0-minimization

to `1-minimization in sparse signal recovery [39]. In the presence of noise, (3.5) is

modified as
min
MMM
‖MMM‖∗

s.t. ‖MMMΩ −AAAΩ‖F ≤ εF
(3.6)

where ‖·‖F denotes the Frobenius norm of a matrix and εF > 0 is a tolerance parameter

that controls the fitting error. By converting (3.5) and (3.6) into SDP [9, 42], they

can be solved by interior-point methods [42, 44]. The complexity of the interior-point

method for solving SDP is high. But there exists faster alternatives such as SVT [45],

FPC [46] and proximal gradient descent [47]. Note that full SVD is still required for

these faster methods.
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In order to avoid SVD, matrix factorization has been exploited, corresponding to the

following optimization:

min
UUU,VVV

f2(UUU,VVV ) := ‖(UUUVVV )Ω −AAAΩ‖2
F (3.7)

where UUU ∈ Rm×r and VVV ∈ Rr×n. After determining UUU and VVV , the target matrix

is obtained as MMM = UUUVVV . Apparently, the low-rank property of MMM is automatically

fulfilled. To handle (3.7), it can be relaxed as a bi-convex problem [64], which is then

solved via alternating least squares. To be more specific, in the (k+1)th (k = 0, 1, · · · )
iteration, UUU and VVV are alternately minimized according to

VVV k+1 = arg min
VVV
‖(UUUkVVV )Ω −AAAΩ‖2

F

UUUk+1 = arg min
UUU
‖(UUUVVV k+1)Ω −AAAΩ‖2

F

(3.8)

where the algorithm is initialized with UUU0 and UUUk represents the estimate of UUU at the

kth iteration.

Although the formulations (3.6) and (3.7) work well in the presence of additive Gaussian

disturbance [9], its performance can significantly degrade when AAAΩ contains outliers.

3.2 Iterative `p-Regression Algorithm

To achieve outlier resistance, we robustify (3.7) by replacing the Frobenius norm by

the `p-norm where 0 < p < 2, that is:

min
UUU,VVV

fp(UUU,VVV ) := ‖(UUUVVV )Ω −AAAΩ‖pp, 0 < p < 2 (3.9)

where ‖ · ‖p denotes the element-wise `p-norm of a matrix, which has the form of:

‖EEEΩ‖p =

 ∑
(i,j)∈Ω

|EEEij|p
1/p

. (3.10)

where EEEΩ = (UUUVVV )Ω−AAAΩ with EEE = UUUVVV −AAA being the error matrix. Note that (3.9) can

be considered as a generalization of (3.7) because substituting p = 2 into the former

reduces to the latter. For the special case with p = 1, (3.9) corresponds to the least

absolute deviations (LAD), which was first proposed by Laplace [118] and has been

widely used in statistics for robust estimation and regression [119,120]. Different from

the least squares (LS) using `2-minimization, the LAD aims at minimizing the sum

of the absolute errors, i.e., the `1-norm of the residual. Furthermore, the nonconvex
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`p-minimization of (3.9) is different from the robust low-rank matrix approximation

discussed in Chapter 2, which addresses

min
UUU,VVV
‖UUUVVV −AAA‖pp (3.11)

where there are no missing entries. While in matrix completion, we only have incom-

plete observations over Ω. It is clear that (3.9) and (3.11) are different. In this work,

we devise two algorithms for solving (3.9) and the first one adopts the alternating

minimization strategy:

VVV k+1 = arg min
VVV
‖(UUUkVVV )Ω −AAAΩ‖pp (3.12)

UUUk+1 = arg min
UUU
‖(UUUVVV k+1)Ω −AAAΩ‖pp (3.13)

which generalizes (3.8). We now focus on solving (3.12) for a fixed UUU :

min
VVV

fp(VVV ) := ‖(UUUVVV )Ω −AAAΩ‖pp (3.14)

where the superscript (·)k is dropped for notational simplicity. Denoting the ith row of

UUU and the jth column of VVV as uuuT
i and vvvj, respectively, where uuui, vvvj ∈ Rr, i = 1, · · · ,m,

j = 1, · · · , n, (3.14) can be rewritten as

min
VVV

fp(VVV ) :=
∑

(i,j)∈Ω

|uuuT
i vvvj −AAAij|p. (3.15)

Since fp(VVV ) is decoupled with respect to vvvj, (3.15) is equivalent to solving the following

n independent subproblems:

min
vvvj

fp(vvvj) :=
∑
i∈Ij

|uuuT
i vvvj −AAAij|p, j = 1, · · · , n (3.16)

where Ij = {i1, · · · , i|Ij |} ⊆ {1, · · · ,m} denotes the set containing the row indices for

the jth column in Ω. Here |Ij| stands for the cardinality of Ij and in general |Ij| > r.

As an illustration, we provide a simple example for determining Ij as follows. Consider

AAAΩ ∈ R4×3:

AAAΩ =


0 × 0

× 0 ×
0 × ×
× 0 ×

 (3.17)

where the observed and missing entries are represented by × and 0, respectively. For

j = 1, the (2, 1) and (4, 1) entries are observed. Thus we have I1 = {2, 4}. It is easy

to see that I2 = {1, 3} and I3 = {2, 3, 4}. Apparently,
∑n

j=1 |Ij| = |Ω|. Defining a
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matrix UUUIj ∈ R|Ij |×r containing the |Ij| rows indexed by Ij:

UUUIj =


uuuT
j1
...

uuuT
j|Ij |

 (3.18)

and a vector bbbIj = [AAAj1j, · · · ,AAAj|Ij |j]
T ∈ R|Ij |, then (3.16) is compactly rewritten as

min
vvvj

fp(vvvj) := ‖UUUIjvvvj − bbbIj‖pp (3.19)

which is a robust linear regression in `p-space. It is worth mentioning that for p =

2, (3.19) is an LS problem with solution being vvvj = UUU †IjbbbIj , and the corresponding

computational complexity is O(|Ij|r2).

For 0 < p < 2, the `p-regression of (3.19) can be efficiently solved by the iteratively

reweighted least squares (IRLS) algorithm [76, 77] where global convergence can be

achieved for the convex case of p ≥ 1 while only a stationary point is obtained for the

nonconvex case of p < 1. At the tth iteration1, the IRLS solves the following weighted

LS problem:

vvvt+1
j = arg min

vvvj
‖WWW t(UUUIjvvvj − bbbIj)‖2 (3.20)

where WWW t = diag{wt1, · · · , wtm} is a diagonal weighting matrix with the ith diagonal

element being

wti =
1

(|ξti |2 + ε)
1−p/2

2

. (3.21)

The ξti is the ith element of the residual vector ξξξt = UUUIjvvv
t
j − bbbIj and ε > 0 is a small

positive parameter to avoid division by zero and ensure numerical stability, especially

for p ≤ 1. A typical value of ε is taken as ε = 100εmachine with εmachine being the machine

precision. Only one LS problem is required to solve in each IRLS iteration. Therefore,

the complexity of `p-regression is O(|Ij|r2NIRLS) where NIRLS is the iteration number

required for the IRLS algorithm to converge. Due to its fast convergence rate [76],

NIRLS will not be large, with a typical value of several tens, and is independent of the

problem dimension. The total complexity for handling the n `p-regressions of (3.15) is

O(|Ω|r2NIRLS) due to
∑n

j=1 |Ij| = |Ω|.

Since (3.12) and (3.13) have the same structure, we solve (3.13) in the same manner.

The ith row of UUU is updated by

min
uuuT
i

‖uuuT
i VVV

k+1
Ji − bbb

T
Ji‖pp (3.22)

1It should be pointed out that the iteration number t refers to IRLS iteration and should not be
mixed up with the iteration number k. That is, k is the index of outer iteration while t is the index
of inner iteration.
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where Ji = {j1, · · · , j|Ji|} ⊆ {1, · · · , n} is the set containing the column indices for

the ith row in Ω. Employing (3.17) again, only the (1, 2)th entry is observed for

i = 1, and thus J1 = {2}. We also easily obtain J2 = {1, 3}, J3 = {2, 3}, and

J4 = {1, 3}. Here, VVV k+1
Ji ∈ Rr×|Ji| contains the |Ji| columns indexed by Ji and bbbT

Ji =

[AAAii1 , · · · ,AAAii|Ji| ]
T ∈ R|Ji|. The involved complexity in (3.22) is O(|Ji|r2NIRLS) and

hence the total complexity for solving the m `p-regressions of (3.22) is O(|Ω|r2NIRLS)

because of
∑m

i=1 |Ji| = |Ω|.

The steps of the iterative `p-regression for matrix completion is summarized in Algo-

rithm 3. Note that the complexity for a k-iteration is O(|Ω|r2NIRLS). For the special

case when p = 2, Algorithm 3 reduces to solving the problem of (3.7). In this case,

we have NIRLS = 1 and the complexity reduces to O(|Ω|r2) per k-iteration. In many

practical applications, the number of observed entries is much smaller than the number

of total entries, that is, |Ω| � mn. Thus, the proposed algorithm becomes more com-

putationally efficient as the percentage of the observations decreases. Now it is clear

that the total complexity of the iterative `p-regression is O(|Ω|r2NIRLSKreg) where Kreg

is the number of outer iterations, namely, the k-iteration. Empirically, a value of sev-

eral tens for Kreg is sufficient for convergence. Finally, it is worth pointing out that

the n problems of (3.19) and m problems of (3.22) are independent and hence can be

realized in a parallel or distributed manner. As the number of processors increases, the

complexity reduces.

Algorithm 3 Iterative `p-Regression for Robust Matrix Completion

Input: AAAΩ, Ω, and rank r
Initialize: Randomly initialize UUU0 ∈ Rm×r

Determine {Ij}nj=1 and {Ji}mi=1 according to Ω.
for k = 0, 1, · · · do

// Fix UUUk, optimize VVV
for j = 1, 2, · · · , n do

vvvk+1
j ← arg min

vvvj
‖UUUk
Ijvvvj − bbbIj‖pp

end for
// Fix VVV k+1, optimize UUU
for i = 1, 2, · · · ,m do

(uuuT
i )k+1 ← arg min

uuuT
i

‖uuuT
i VVV

k+1
Ji − bbbT

Ji‖pp
end for
Stop if a termination condition is satisfied.

end for
Output: MMM = UUUk+1VVV k+1

We give a short remark on the convergence of the iterative `p-regression. Since Algo-

rithm 3 monotonically non-increases a below-bounded objective function for all p ≤ 2,
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the sequence {fp(UUUk,VVV k)} converges to a limit point. However, it does not imply that

{(UUUk,VVV k)} converges. If we further assume that either (3.12) or (3.13) has a unique

minimizer, then Algorithm 3 converges to a stationary point based on the convergence

result of a block coordinate descent method using the cyclic rule in [121], which contains

Algorithm 3 as a special case.

3.3 ADMM for Robust Matrix Completion

In this section, we apply the ADMM to solve (3.9). Note that the ADMM developed

here is different from that of Chapter 2. The former is applicable to the case with

missing values while the latter is for low-rank approximation with fully observed entries.

3.3.1 Framework of ADMM

With the use of EEEΩ = (UUUVVV )Ω −AAAΩ, (3.9) is equivalent to a linearly constrained opti-

mization problem:

min
UUU,VVV ,EEEΩ

‖EEEΩ‖pp
s.t. EEEΩ = (UUUVVV )Ω −AAAΩ.

(3.23)

where EEEΩ is treated as decision variables that are independent of UUU and VVV . Note that

[EEEΩ]ij = 0 if (i, j) /∈ Ω. The augmented Lagrangian of (3.23) is

Lµ(UUU,VVV ,EEEΩ,ΛΛΛΩ) =‖EEEΩ‖pp + 〈ΛΛΛΩ, (UUUVVV )Ω −EEEΩ −AAAΩ〉
+
µ

2
‖(UUUVVV )Ω −EEEΩ −AAAΩ‖2

F

(3.24)

where ΛΛΛΩ ∈ Rm×n with [ΛΛΛΩ]ij = 0 for (i, j) /∈ Ω contains |Ω| Lagrange multipliers

(dual variables), 〈AAA,BBB〉 =
∑

(i,j)AAAijBBBij represents the inner product of two matrices

AAA and BBB, and µ > 0 is the penalty parameter. The augmented Lagrangian reduces to

the unaugmented one if µ = 0. If the objective function is closed, proper and convex,

and the unaugmented Lagrangian L0 has a saddle point, then the iterates approach

feasibility and the objective function of the iterates approaches the optimal value [81].

However, the objective function of our problem is nonconvex. The theoretical proof

of the convergence of the nonconvex ADMM is very challenging and remains an open

problem. We give a brief discussion on this issue at the end of Section 3.3.3. Empiri-

cally, numerical examples [81] demonstrate that the selection of µ is flexible. We can



52 Chapter 3: Robust Low-Rank Matrix Completion in `p-Space

use a fixed appropriate positive constant for µ or properly adapt the penalty param-

eter at each iteration for convergence speedup [82, 83]. In the simulations, we simply

use µ = 5 and it is observed that this value always makes the ADMM converge. The

Lagrange multiplier method solves (3.23) by finding a saddle point of the augmented

Lagrangian

max
ΛΛΛΩ

min
UUU,VVV ,EEEΩ

Lµ(UUU,VVV ,EEEΩ,ΛΛΛΩ). (3.25)

The ADMM uses the following iterative steps:

(UUUk+1,VVV k+1) = arg min
UUU,VVV
Lµ(UUU,VVV ,EEEk

Ω,ΛΛΛ
k
Ω) (3.26)

EEEk+1
Ω = arg min

EEEΩ

Lµ(UUUk+1,VVV k+1,EEEΩ,ΛΛΛ
k
Ω) (3.27)

ΛΛΛk+1
Ω = ΛΛΛk

Ω + µ
(
(UUUk+1VVV k+1)Ω −EEEk+1

Ω −AAAΩ

)
(3.28)

to calculate the saddle point in (3.25), where (UUUk,VVV k,EEEk
Ω,ΛΛΛ

k
Ω) denotes the result at

the kth iteration. Several remarks and explanations on the three subproblems (3.26),

(3.27), and (3.28) are given as follows.

Since the gradient of Lµ(UUUk+1,VVV k+1,EEEk+1
Ω ,ΛΛΛΩ) with respect to ΛΛΛΩ is

∂Lµ(UUUk+1,VVV k+1,EEEk+1
Ω ,ΛΛΛΩ)

∂ΛΛΛΩ

= (UUUk+1VVV k+1)Ω −EEEk+1
Ω −AAAΩ (3.29)

we can see that (3.28) adopts a gradient ascent with a step size µ to update the dual

variable ΛΛΛΩ. ADMM updates (UUU,VVV ) and EEEΩ in an alternating or sequential fashion to

circumvent the difficulty in jointly minimizing with respect to the two primal blocks.

Noting that (3.26) minimizes (UUU,VVV ) simultaneously, (3.26)–(3.28) correspond to a two-

block ADMM where the blocks refer to (UUU,VVV ) and EEEΩ, and are not of three blocks.

It has been observed that updating more than two blocks may result in divergence of

the ADMM [84]. Nevertheless, the divergence caused by multi-block update will not

happen to the proposed ADMM since it is a two-block one.

By ignoring the constant term independent of (UUU,VVV ), we derive that the subproblem

(3.26) is equivalent to the following Frobenius norm minimization problem:

min
UUU,VVV

∥∥∥∥(UUUVVV )Ω −
(
EEEk

Ω −
ΛΛΛk

Ω

µ
+AAAΩ

)∥∥∥∥2

F

(3.30)

which can be solved by the iterative `2-regression, namely, Algorithm 3 with p = 2, with

a complexity bound of O(K`2|Ω|r2). Here, K`2 is the iteration number for Algorithm

3 to converge at p = 2.

On the other hand, the subproblem (3.27) is concisely simplified as

min
EEEΩ

1

2

∥∥EEEΩ − YYY k
Ω

∥∥2

F
+

1

µ
‖EEEΩ‖pp (3.31)
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where

YYY k
Ω = (UUUk+1VVV k+1)Ω +

ΛΛΛk
Ω

µ
−AAAΩ. (3.32)

We only need to consider the entries indexed by Ω because other entries of EEEΩ and YYY k
Ω

which are not in Ω are zero. Define eeeΩ, yyykΩ, λλλkΩ, and tttkΩ ∈ R|Ω| as the vectors that contain

the observed entries in EEEΩ, YYY k
Ω, ΛΛΛk

Ω, and (UUUkVVV k)Ω, respectively, in a column-by-column

manner. Apparently, (3.31) is equivalent to the vector optimization problem:

min
eeeΩ

1

2

∥∥eeeΩ − yyykΩ
∥∥2

+
1

µ
‖eeeΩ‖pp (3.33)

whose solution defines the proximity operator [85] of the pth power of `p-norm, which

is written as

eeek+1
Ω = prox1/µ(yyykΩ). (3.34)

After obtaining eeek+1
Ω , EEEk+1

Ω is then determined. We will address computing this prox-

imity operator shortly. For (3.28), its equivalent form in terms of vectors is:

λλλk+1
Ω = λλλkΩ + µ

(
tttk+1

Ω − eeek+1
Ω − aaaΩ

)
(3.35)

That is, the operations are now in terms of vectors but not matrices, and its complexity

is O(|Ω|). Also, at each iteration, we just need to compute (UUUVVV )Ω instead ofUUUVVV , whose

complexity is O(|Ω|r) because only |Ω| inner products {uuuT
i vvvj}(i,j)∈Ω are calculated.

3.3.2 Proximity Operator of pth Power of `p-Norm

In this section, the proximity operator is determined. First, we rewrite (3.33) as:

min
eee∈R|Ω|

1

2
‖eee− yyy‖2 +

1

µ
‖eee‖pp (3.36)

where the subscripts and superscripts are ignored for notational simplicity. Denote ei

and yi, i = 1, · · · , |Ω|, as the ith entry of eee and yyy, respectively. As (3.36) is separable,

it can be decomposed into |Ω| independent scalar problems:

min
ei∈R

g(ei) :=
1

2
(ei − yi)2 +

1

µ
|ei|p, i = 1, · · · , |Ω|. (3.37)

The closed-form solution of (3.37) for p = 1 is

e?i = sgn(yi) max(|yi| − 1/µ, 0) (3.38)

which is known as the soft-thresholding operator [86, 87] and is easily computed with

a marginal complexity of O(|Ω|).
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When the noise is very impulsive, the value of p < 1 may be required. The scalar

minimization problem of (3.37) with p < 1 has already been solved recently in [48,52,

123], whose solution is:

e?i =

 0, if |yi| ≤ τ

arg min
ei∈{0,ti}

g(ei), if |yi| > τ
(3.39)

where

τ =

(
p(1− p)

µ

) 1
2−p

+
p

µ

(
p(1− p)

µ

) p−1
2−p

(3.40)

is the threshold and ti = sgn(yi)ri with ri being the unique root of the nonlinear

equation:

h(θ) := θ +
p

µ
θp−1 − |yi| = 0 (3.41)

in the interval
[
(p(1− p)/µ)

1
2−p , |yi|

]
where the bisection method [122] can be applied.

Although computing the proximity operator for p < 1 still has a complexity of O(|Ω|),
it is more complicated than p = 1 because there is no closed-form solution. On the

other hand, the case of p ∈ (1, 2) is not difficult to solve since (3.37) is a scalar convex

problem but it also requires an iterative procedure for numerical calculation. For the

purpose of completeness, we present the solver of (3.37) for p ∈ (1, 2) since this has not

been addressed. Obviously, if yi ≥ 0, the minimizer e?i ≥ 0. Otherwise, e?i < 0. That

is to say, we only need to consider minimizing g(ei) in [0,∞) if yi ≥ 0. The minimizer

is either the stationary point satisfying the nonlinear equation

g′(ei) = ei − yi +
p

µ
ep−1
i = 0 (3.42)

or the boundary point 0. Due to g′(0) = −yi ≤ 0 and g′(yi) = pyp−1
i /µ ≥ 0, i.e.,

g′(0)g′(yi) ≤ 0, there exists a root in [0, yi] for the equation g′(ei) = 0. Moreover,

g′′(ei) = 1 + p(p−1)
µ

ep−2
i > 0 holds for all ei ≥ 0, implying that g′(ei) monotonically

increases in [0,+∞). Thus, the positive root of g′(ei) = 0 in [0, yi] is unique, which is

denoted as r+
i . This root can be quickly found using the bisection or secant method

with a complexity of O(1) [122]. After obtaining r+
i , the minimizer in [0,−∞) is

e?i = arg min{g(0), g(r+
i )}.

Similarly, we only need to minimize g(ei) in (−∞, 0] if yi < 0. The minimizer is either

the stationary point fulfilling

g′(ei) = ei − yi −
p

µ
(−ei)p−1 = 0 (3.43)

or the boundary point 0. Since g′(yi) = −p(−yi)p−1/µ ≤ 0 and g′(0) = −yi ≥ 0,

namely., g′(0)g′(yi) ≤ 0, g′(ei) = 0 has a root in [yi, 0]. Noting that g′′(ei) = 1 +
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p(p−1)
µ

(−ei)p−2 > 0 holds for all ei ≤ 0, g′(ei) monotonically increases in (−∞, 0].

Then, the negative root of g′(ei) = 0 in [yi, 0], which is denoted as r−i , is unique

and can be solved easily. Once r−i is obtained, the minimizer in (−∞, 0] is e?i =

arg min{g(0), g(r−i )}. The solution of (3.37) for p ∈ (1, 2) is compactly written as

e?i =

{
arg min

{
g(0), g(r+

i )
}
, if yi ≥ 0

arg min
{
g(0), g(r−i )

}
, if yi < 0.

(3.44)

Again, calculating the proximity operator for 1 < p < 2 has a complexity of O(|Ω|)
although an iterative procedure for root finding is required. Nevertheless, the choice

of p = 1 is more robust than employing p ∈ (1, 2) and is computationally simpler. In

the case of very impulsive noise, p < 1 will be adopted.

3.3.3 Summary of ADMM

The steps of ADMM for robust matrix completion are summarized in Algorithm 4.

The `2-norm of the residual, that is, ‖tttkΩ − eeekΩ − aaaΩ‖ is used to check for convergence.

Specifically, the iteration is terminated when

‖tttkΩ − eeekΩ − aaaΩ‖ < δ (3.45)

where δ > 0 is a small tolerance parameter.

Algorithm 4 ADMM for Robust Matrix Completion

Input: AAAΩ, Ω, and rank r
Initialize: eee0 = 000 and λλλ0 = 000
for k = 0, 1, · · · do

1) Solve LS matrix factorization

(UUUk+1,VVV k+1) =

arg min
UUU,VVV

∥∥(UUUVVV )Ω −
(
EEEk

Ω −ΛΛΛk
Ω/µ+AAAΩ

)∥∥2

F

using Algorithm 3 with p = 2.
2) Compute YYY k

Ω = (UUUk+1VVV k+1)Ω + ΛΛΛk
Ω/µ − AAAΩ and form yyykΩ and tttk+1

Ω ←
(UUUk+1VVV k+1)Ω.
3) eeek+1

Ω ← prox1/µ(yyykΩ)

4) λλλk+1
Ω ← λλλkΩ + µ

(
tttk+1

Ω − eeek+1
Ω − aaaΩ

)
Stop if a termination condition is satisfied.

end for
Output: MMM = UUUk+1VVV k+1



56 Chapter 3: Robust Low-Rank Matrix Completion in `p-Space

The dominant complexity of the ADMM is O(|Ω|r2K`2KADMM) where KADMM is the

number of outer iterations of the ADMM, namely, the k-iteration. Empirically, a value

of several tens for KADMM will result in an accurate estimation.

All values of p > 0, including the nonconvex and nonsmooth case with p < 1, can be

set for the ADMM of this chapter. However, the ADMM of Chapter 2 just considers

p = 1 because the proximity operator of the `p-norm with p < 1 for complex variables

is difficult to calculate.

It should be pointed out that our ADMM is different from the ALM of [48] for matrix

completion that solves

min
MMM
‖MMMΩ −AAAΩ‖pp + γ‖MMM‖pSp (3.46)

where γ > 0 is the regularization parameter and ‖MMM‖Sp is the Schatten p-norm, which

equals the `p-norm of the vector containing all singular values of MMM . As p→ 0, ‖MMM‖Sp
approaches the rank of MMM . Therefore, the Schatten p-norm regularization with p ≤ 1

can be employed to find a low-rank solution. Especially, when p = 1, (3.46) is a convex

program because ‖MMM‖Sp is the nuclear norm. In [48], the ALM is applied to solve

(3.46), in which the full SVD of a m× n matrix is computed. Thus, the complexity of

the ALM [48] is O(m2n) per iteration, assuming that m ≥ n without loss of generality.

The proposed method is also different from the RPCA that models the observed matrix

as the sum of a low-rank matrix LLL and a sparse outlier matrix SSS. When partial

observations are available, the RPCA can be applied for matrix completion by solving

the minimization problem
min
MMM,SSS
‖LLL‖∗ + α‖SSS‖1

s.t. [LLL+SSS]Ω = AAAΩ

(3.47)

where α > 0 is the regularization parameter that needs to estimate in practice. Al-

though (3.47) is a convex optimization and the global minimum is guaranteed, it has

a high computational cost even fast algorithms are employed because the full SVD is

required [32,33].

In a unified manner, the total complexity of the iterative `p-regression and ADMM can

be written as O(K|Ω|r2) where

K =

{
NIRLSKreg, for `p-regression

K`2KADMM, for ADMM.
(3.48)

The magnitude-of-order of K corresponds to several hundreds to thousands because

NIRLS, Kreg, K`2 , and KADMM, are of several tens.
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The convergence of the two-block ADMM has only been proved for convex optimization

[81]. Although the convergence of the ADMM for a class of nonconvex and nonsmooth

optimization problems, including the `p-regularization with p < 1, has been established

very recently in [124], the corresponding results are not applicable to our problem. The

first reason is that the `p-norm appears as a regularization term to promote sparsity

in [124] while our problem minimizes the `p-norm of the fitting error. This results

in that the mathematical formulations of [124] and our problem are different. The

second reason is that the nonconvexity of our problem is not only due to the `p-norm

with p < 1 but also induced by the matrix product UUUVVV . These two reasons make the

theoretical proof of the convergence of the proposed ADMM challenging. It remains an

open problem for future research. Although the convergence is not proved theoretically,

we observe that the proposed ADMM always converges in the simulations. Thus, it is

deemed that the proposed ADMM is empirically convergent in practice.

3.3.4 Algorithmic Parameter Selection

There are two parameters of the proposed algorithms, namely, the rank r and p. We

discuss how to appropriately select them.

If the true rank is unknown, it needs to be estimated. Determining the rank is a model

selection problem [125]. However, conventional model selection methods such as Akaike

information criterion and minimum description length [125] are not applicable because

there are missing data and outliers in our problem. Denoting the estimate for a given

r as M̂MM(r), the optimal r aims at minimizing the estimation error

min
r∈Z+
‖M̂MM(r)−AAA‖2

F (3.49)

where Z+ is the set of positive integers. However, we cannot obtain the optimal r from

(3.49) because AAA is not available.

In this chapter, we estimate the rank by cross-validation [23, 126]. Specifically, the

observation set Ω is divided into two disjoint subsets Ω1 and Ω2 such that Ω1∪Ω2 = Ω.

In cross-validation, we just randomly select a portion of the observed entries, i.e., AAAΩ1 ,

as the training data for matrix completion. The portion of training data |Ω1|/|Ω| can

be set to 95%. For a given rank, matrix completion is performed based on AAAΩ1 . We

then compute the mean prediction error on the testing data AAAΩ2 based on multiple

random divisions of Ω1 and Ω2. The rank is chosen as the one which corresponds

to the smallest prediction error. Suppose that L random trials are carried out for

calculating the prediction error. In the lth trial, the two sets are randomly generated,
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which are denoted as Ωl
1 and Ωl

2. A matrix completion algorithm using partial noisy

observations AAAΩl1
and rank r gives the result M̂MM(r). Since AAA is unknown, we cannot

calculate the estimation error of (3.49). Instead, the prediction error of the testing

data AAAΩ2 is evaluated. That is, the rank is estimated by minimizing the following root

mean square prediction error (RMSPE)

r̂ = arg min
r∈Z+

L∑
l=1

∥∥∥[M̂MM(r)]Ωl2 −AAAΩl2

∥∥∥2

F∥∥∥AAAΩl2

∥∥∥2

F

(3.50)

or mean absolute prediction error (MAPE)

r̂ = arg min
r∈Z+

L∑
l=1

∥∥∥[M̂MM(r)]Ωl2 −AAAΩl2

∥∥∥
1∥∥∥AAAΩl2

∥∥∥
1

. (3.51)

The reason why we also adopt the MAPE is that AAAΩ2 can contain outliers and the

`1-norm is a more outlier-robust distance measure. Simulation results on the choice of

r with outliers are provided in Section 3.4.

On the other hand, the optimal choice of p is case-dependent. It relies on the statistical

properties of the noise. As mentioned in Section II, p = 2 is optimal for Gaussian noise.

In the presence of impulsive noise or outliers, p < 2 will bring a better performance.

Consider a special case where the noise satisfies a zero-mean generalized Gaussian

distribution (GGD) [110,115], whose probability density function (p.d.f.) with variance

σ2
v is

pv(v) =
βΓ(4/β)

2πσ2
vΓ

2(2/β)
exp

(
−|v|

β

κσβv

)
(3.52)

where β > 0 is the shape parameter, Γ(·) is the Gamma function, and κ =

(Γ(2/β)/Γ(4/β))β/2 [110]. When β = 2, GGD reduces to the Gaussian distribution.

The case of β < 2 models super-Gaussian distributions. Especially, β = 1 corresponds

to the Laplacian distribution [110]. The smaller the value of β is, the more impulsive

the noise is. If the shape parameter β is known, then we can select p = β which

gives the maximum likelihood (ML) estimate. Since the ML estimate asymptotically

approaches the minimum variance, p = β is statistically optimal for GGD noise. In the

general case with possibly unknown noise statistics, the optimal p aims at minimizing

the estimation error

min
p>0
‖M̂MM(p)−AAA‖2

F. (3.53)

where M̂MM(p) denotes the solution of (3.9) for a given p. Again, it is impractical to

obtain the optimal p because AAA is not available in practice. Roughly speaking, to

select a proper p from (0, 2), we need to consider the following two aspects.
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1) Statistical perspective. The statistical property of the noise needs to be taken

into account. The more impulsive the noise is, the smaller value of p is preferred.

If the noise is not so impulsive, the choice of 1 < p ≤ 2 is suitable. If the noise is

more impulsive, it has a more spike-like property, which is somewhat analogous to

sparsity. As analyzed in the literature on sparse signal recovery and compressed

sensing [39,127], sparsity can be well measured using the `1-norm or even better

using `p-norm with p < 1.

2) Computational perspective. As p decreases to zero, the nonconvexity and non-

smoothness of the `p-norm becomes stronger, which brings more difficulties in

minimization. The computational challenges induced by a very small p includes

increased probability of being trapped into local minima far away from the global

minimum and slow convergence rate. Therefore, it is not recommended to choose

p close to 0.

To summarize, choosing an appropriate p is a trade-off between the statistical and

computational aspects. For ADMM, the proximity operator of the `1-norm is compu-

tationally simplest since it has closed-form expression. Thus, it is preferred to choose

p = 1 for the ADMM. If there is no prior information for the noise, we can resort

to cross-validation, which has been discussed above for rank selection, to determine

p. The reader is referred to the simulation results on the choice of p with outliers in

Section 3.4.

3.4 Experimental Results

All the experiments are conducted using a computer with a 3.2 GHz CPU and 4 GB

memory.

3.4.1 Results of Synthetic Random Data

Under stated otherwise, a typical experimental setting in [45] is considered where m =

150, n = 300, and the rank is r = 10. The proposed algorithms are compared with

SVT [45], SVP [55], and AP [57], WNNM [53], RPCA for matrix completion (RPCA-

MC) [32], PARSuMi [67], VBMFL1 [69]. A noise-free matrix AAA ∈ Rm×n of rank r

is generated by the product of AAA1 ∈ Rm×r and AAA2 ∈ Rr×n whose entries satisfy the

standard Gaussian distribution. We randomly select 45% entries of AAA as the available
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Figure 3.1: Normalized RMSE versus iteration number for noise-free case.

observations. The normalized root mean square error (RMSE) is employed as the

performance measure, which is defined as:

RMSE(M̂MM) =

√√√√E

{
‖M̂MM −AAA‖2

F

‖AAA‖2
F

}
(3.54)

where M̂MM is the result obtained by a matrix completion method, and is computed based

on 100 independent trials.

Figure 3.1 plots the RMSE versus iteration number in the noise-free case where `p-reg

represents the iterative `p-regression method in Algorithm 1. Note that we do not show

the result of the ADMM because for any p, Algorithm 2 converges to the true solution

in one iteration. It is observed that the SVT, SVP, AP with equality projection, and

`p-regression schemes converge to the true matrix with a linear rate. However, our

proposed method converges much faster and only about ten iterations are needed to

obtain an accurate solution. The CPU times for attaining RMSE ≤ 10−5 of the SVT,

SVP, AP with equality projection, `p-reg with p = 2 and p = 1 are 10.7 s, 8.0 s, 6.7 s,

0.28 s, and 4.5 s, respectively.

We then consider the noisy scenario where impulsive components are added to the

available entries in AAA. They are modeled by the two-term zero-mean Gaussian mixture

model (GMM) whose p.d.f. is given by

pv(v) =
2∑
i=1

ci√
2πσi

exp

(
− v2

2σ2
i

)
(3.55)
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Figure 3.2: Normalized RMSE versus iteration number in GMM noise at SNR =
6 dB.

where 0 ≤ ci ≤ 1 and σ2
i are the probability and variance of the ith term, respectively,

with c1 +c2 = 1. If σ2
2 � σ2

1 and c2 < c1 are selected, large noise samples of variance σ2
2

occurring with a smaller probability c2 can be viewed as outliers embedded in Gaussian

background noise of variance σ2
1. Thus, the GMM can well model the phenomenon with

both Gaussian noise and outliers. The total noise variance is σ2
v =

∑
i ciσ

2
i and the

signal-to-noise ratio (SNR) is defined as

SNR =
‖AAAΩ‖2

F

|Ω|σ2
v

. (3.56)

Figure 3.2 plots the RMSE versus iteration number in additive GMM noise at SNR

= 6 dB with σ2
2 = 100σ2

1 and c2 = 0.1. We see that the SVT and SVP cannot stably

converge to a reasonable solution. The iterative `p-regression and ADMM with p = 1

converge fast to a solution with a higher accuracy while those with p = 2 and the

AP with projections onto equality and `2-ball cannot achieve a reliable estimation in

impulsive noise. The AP with projection onto `1-ball is somewhat robust to outliers.

Still, its performance is worse than the proposed schemes. Importantly, we see that

about ten iterations are enough for our two algorithms to converge. That is, a value of

several tens for Kreg and KADMM is enough for convergence. Employing the stopping

criteria of relative change of the current and previous iterations is less than 10−4 and

(3.45) with δ = 10−3 in the `p-regression and ADMM algorithms, respectively, the CPU

times of the SVT, SVP, AP with projections onto equality, `2-ball, and `1-ball, `p-reg
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Figure 3.3: Normalized RMSE versus SNR in GMM noise.

with p = 2 and p = 1, and ADMM with p = 1 are 197.3 s, 10.6 s, 7.5 s, 7.9 s, 8.4 s,

0.25 s, 5.2 s, and 3.1 s, respectively.

Figure 3.3 plots the RMSE versus SNR for different methods. It is seen that the `1-

regression, ADMM with p = 1, PARSuMi and VBMFL1 have comparable performance.

The four schemes have the minimum RMSE for all SNRs and thus they are superior

to the remaining schemes in terms of robustness. Though it is slightly inferior to the

four methods above, the RPCA-MC performs better than the SVT, SVP, AP, and

WNNM. Figure 3.4 plots the RMSE versus percentage of observations, i.e., |Ω|/(mn)

at SNR = 9 dB in GMM noise and r = 5. Again, the two proposed methods with

p = 1, PARSuMi and VBMFL1 have the best performance. Note that the SVT reports

divergence for percentage of 10% and thus the result at this point is not included.

Figure 3.5 plots the average running time versus percentage of observations of the `p-

reg with p = 1, 2 and ADMM with p = 1. We observe that the running time linearly

increases with the percentage of observations. Note that the computational complexity

of the two proposed methods is O(K|Ω|r2) where the number of observations |Ω| is the

product of the observation percentage and the number of total entries of the matrix.

Therefore, the complexity is linearly proportional to the percentage of observations,

which aligns the results of Figure 3.5.

Impact of Rank and p: The impact of p on the performance is investigated. First

a strongly impulsive GMM noise with SNR = 6 dB is used. Figure 3.6 plots the



3.4 Experimental Results 63

10 20 30 40 50 60 70 80 90
10

−2

10
−1

10
0

10
1

N
or

m
al

iz
ed

 R
M

S
E

Percentage of observations (%)

 

 SVT

SVP

AP (equality)

AP (�2-ball)

AP (�1-ball)

WNNM

RPCA-MC

VBMFL1

PARSuMi

�p-reg (p = 2)

�p-reg (p = 1)

�p-reg (p = 0.8)

ADMM (p = 1)

ADMM (p = 0.8)

Figure 3.4: Normalized RMSE versus percentage of observations in GMM noise at
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RMSE versus p ∈ [0.2, 2]. It is seen that using p < 1 is worse than p = 1. This may be

explained from the computational perspective. As p decreases to zero, the nonconvexity

and nonsmoothness of the `p-norm makes its minimization more difficult. Therefore, it

is not recommended to choose p close to 0. Also, as p increases in [1, 2], the robustness

degrades. For computational simplicity and performance improvement, the value of

p = 1 is the best choice for strongly impulsive noise. Then the moderately impulsive

GGD noises at SNR = 6 dB with β = 1.3 and β = 1.6 are used. Figure 3.7 shows

the RMSE versus p ∈ [0.2, 2] in GGD noise. As we see, the optimal p is close to the

shape parameter β of the GGD noise. If the noise is not so impulsive, it is preferred

to employ p ∈ (1, 2) instead of p ≤ 1.

We study how the presumed rank affects the performance of the proposed approaches as

well as SVP and AP, which also require rank information. The experimental setting is

the same as above except SNR = 9 dB. Figure 3.8 shows the normalized RMSE versus

the presumed rank varying from 4 to 16 while the true value is 10. All the methods

degrade when the rank is not accurately estimated. In addition, the performance

degradation when the rank is underestimated (r < 10) is much severer than the case

when the rank is overestimated (r > 10). This result implies that it is not preferred to

underestimate the rank. The `p-reg and ADMM with p = 1 exhibit the best robustness

to the rank estimation error.

Results of Cross-Validation: Rank estimation using cross-validation is investigated.

The experimental setting is the same as above except that only 95% of the observed
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Figure 3.7: Normalized RMSE versus p in moderately impulsive GGD noise.
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Figure 3.9: Normalized RMSPE versus presumed rank in cross-validation.

entries are randomly drawn out as training data while the remaining 5% observed

entries are taken as testing data, i.e., |Ω1|/|Ω| = 0.95. For each rank r ∈ [4, 16], 100

random trials are conducted to compute the average RMSPE of (3.50) and MAPE of

(3.51). Figures 3.9 and 3.10 plot the RMSPE and MAPE versus the presumed rank.

It is clearly observed that all methods, including the proposed algorithms, RMSPE

and MAPE are minimized at r = 10, which is exactly the true rank. The effectiveness

of cross validation for rank estimation is thus verified. Nevertheless, the MAPE gives

more stable result than the RMSPE, indicating that it is more suitable in the presence

of outliers.

Phase Transition: Phase transition figures, i.e., the probability of recovery and normal-

ized RMSE, versus rank and percentage of missing entries, are shown in Figures 3.11

and 3.12, respectively. For each pair of rank and missing percentage, 100 independent

trials are carried out. Since the observations are noisy, we declare a trial to be success-

ful if the normalized RMSE is less than 0.2. The SNR is fixed as 9 dB while the rank

and missing percentage vary. In addition to the two proposed methods with p = 1 and

2, the result of SVP is included for comparison. From Figure 3.11, it is observed that

the “white region” of the `p-reg and ADMM with p = 1 is larger than those of p = 2

and SVP. This means that the proposed methods with p = 1 perform better when the

rank or missing percentage is large. The smaller RMSEs of the `p-reg/ADMM with

p = 1 in Figure 3.12 also validate their superior performance in the presence of outliers.
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Figure 3.10: Normalized MAPE versus presumed rank in cross-validation.
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Figure 3.11: Phase transition of probability of recovery versus missing percentage
and rank.

SVP

R
an

k

Missing percentage (%)
10 20 30 40 50 60 70 80 90

1
2

4

6

8

10

12

14

16

18

20

−12

−10

−8

−6

−4

−2

R
an

k

Missing percentage (%)

�p-reg (p = 2)

10 20 30 40 50 60 70 80 90
1
2

4

6

8

10

12

14

16

18

20

−14

−12

−10

−8

−6

−4

−2

0

�p-reg/ADMM (p = 1)

R
an

k

Missing percentage (%)
10 20 30 40 50 60 70 80 90

1
2

4

6

8

10

12

14

16

18

20

−22

−20

−18

−16

−14

−12

−10

−8

dB dB dB

Figure 3.12: Phase transition of normalized RMSE versus missing percentage and
rank.



68 Chapter 3: Robust Low-Rank Matrix Completion in `p-Space

10
3

10
4

10
5

10
6

10
7

10
0

C
P

U
 ti

m
e 

(s
)

mn

 

 
�p-reg (p = 2)

�p-reg (p = 1)

ADMM (p = 1)

10
3

10
4

10
5

10
6

10
7

10
−2

10
0

N
or

m
al

iz
ed

 R
M

S
E

mn

 

 �p-reg (p = 2)

�p-reg (p = 1)

ADMM (p = 1)

Figure 3.13: Running time and normalized RMSE versus matrix dimension mn.

Scalability: In the era of big data, it is of great interest to know whether a matrix

completion algorithm is scalable to the dimension of the problem. Theoretically, the

computational complexity of the two proposed methods is O(Kpobsmnr
2) where pobs ∈

(0, 1] is the percentage of observations. Herein, simulations are conducted to check

this computational complexity. First we fix pobs = 0.45 and r = 10 while the matrix

dimension mn varies from 103 to 107. In this simulation, we assign m = n, meaning

that m varies from 32 to 3162. Figure 3.13 shows the CPU time and RMSE versus mn.

It is seen that the CPU time is linearly proportional to mn. This result verifies the

linear time-complexity and hence the scalability of the proposed algorithms. Also, it

is observed that the RMSE decreases as the matrix dimension increases provided that

the rank and observation percentage remain unchanged. We then fix m = n = 200 and

pobs = 0.45 while the rank varies from 1 to 29. Figure 3.14 shows the CPU time and

RMSE versus the rank. We observe that the CPU time quadratically increases with

the rank, which aligns the complexity of O(Kpobsmnr
2). In this sense, the proposed

schemes are not scalable to the rank. Fortunately, the rank is often much smaller than

the size of the matrix in practical applications. The low-rank property is helpful to

reduce the computational cost and improve the recovery performance.
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Figure 3.14: Running time and normalized RMSE versus rank.

3.4.2 Image Inpainting in Salt-and-Pepper Noise

Now matrix completion is applied to image inpainting in salt-and-pepper noise. A color

image in [75, 128] is adopted where we first convert it to gray-scale so that it can be

represented by a matrix. As shown in Figure 3.15, the missing data of the original image

correspond to “ICCV”, “2009”, and “LRTC”. The available entries are contaminated by

adding salt-and-pepper noise. We use the function “imnoise(I, ’salt & pepper’,

ρ) ” in MATLAB, where the normalized noise intensity is ρ corresponding to SNR

= 1/ρ, to generate the salt-and-pepper noise. The widely-used peak signal-to-noise

ratio (PSNR)

PSNR = 2552/MSE (3.57)

where 255 is the peak value of a gray-scale image and

MSE =
1

mn
‖M̂MM −AAA‖2

F. (3.58)

Obviously, the smaller MSE, the larger PSNR. That is, a larger PSNR implies a better

image reconstruction. The PSNR of the noisy image with missing values without any

processing can be considered as the baseline. Generally, the PSNR will be increased

after processing by an image inpainting algorithm.

We first set the rank as r = 6. The SVT shows divergence and we cannot include its

result while it is observed that the SVP, AP with equality projection, and WNNM fail
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Original With missing data Missing data + noise SVP

AP (equality) AP (�1-ball) WNNM PARSuMi

VBMFL1
�p-reg (p = 2) �p-reg (p = 1) ADMM (p = 1)

Figure 3.15: Noisy image with missing data and recovered results of SVP, AP,
WNNM, PARSuMi, VBMFL1, iterative `p-regression and ADMM.

in recovering the image. The AP with projection onto `1-ball gives a satisfactory result

but is still inferior to our two methods. Most important, the `p-regression and ADMM

with p = 1 are quite robust to the salt-and-pepper noise and they provide accurate

estimates of the original image. We also see that the `1-regression greatly improves

the performance compared with the `2-regression in impulsive noise environment. The

PARSuMi and VBMFL1 also exhibit robustness to salt-and-pepper noise. The CPU

times for the SVP, AP with projections onto equality and `1-ball, WNNM, PARSuMi,

VBMFL1, `p-regression with p = 2 and p = 1, and ADMM with p = 1 are 20.3 s,

15.6 s, 17.4 s, 140.3 s, 9.0 s, 7.4 s, 0.4 s, 7.8 s and 4.9 s, respectively.

The effect of rank selection to the performance of image inpainting is investigated.

Figure 3.16 shows the PSNR versus rank in salt-and-pepper noise at SNR = 7 dB. The

baseline is also plotted. We see that the two proposed algorithms and the AP with p = 1

have the highest PSNR around r = 6 or 7. The PARSuMi is not sensitive to rank in this

experiment example. The PSNR of VBMFL1 quickly increases as the rank increases

when r ≤ 6 and it slowly decreases when r ≥ 14. Therefore, the rank of VBMFL1

can take values in r ∈ [6, 14]. Because the computational load becomes heavier as the

rank increases, it is preferred to select a smaller rank when the performance is similar.

Figure 3.16 shows the PSNR versus SNR at r = 6. From Figure 3.17, the VBMFL1,
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Figure 3.16: PSNR versus rank in salt-and-pepper noise at SNR = 7 dB.

AP with `1-ball projection, and the two proposed approaches with p = 1 have the

best performance. Since the SVP and WNNM are not robust to the salt-and-pepper

noise and their PSNRs are low, we do not show the corresponding results of them in

Figures 3.16 and 3.17.

We then investigate inpainting of another two images whose original versions are taken

from [75,128]. The color images are converted to gray-scale for a matrix representation.

The first image is a building and the second is a texture. Both of them are structured

and approximately have a low-rank property. The rank is set to r = 6. Figures 3.18 and

3.19 show the original and incomplete images corrupted by salt-and-pepper noise, and

the recovered results of SVP, AP, WNNM, PARSuMi, VBMFL1, iterative `p-regression

and ADMM. Again, we see that the VBMFL1, `p-regression with p = 1 and ADMM are

quite robust to impulsive noise and have the best recovery performance. The PARSuMi

and AP with projection onto `1-ball are inferior to the three methods although they

yield satisfactory results. The SVP, AP with equality projection, WNNM are not

robust to salt-and-pepper noise.

3.4.3 Results of Recommender Systems

The application of our matrix completion methods to recommender systems is consid-

ered. The MovieLens 100K Data set, which is available at [129], is used. This data

set consists of 100,000 ratings from 943 users on 1,682 movies. The rating varies from
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Figure 3.17: PSNR versus SNR in salt-and-pepper noise.

Original With missing data Missing data + noise SVP

AP (equality) AP (�1-ball) WNNM PARSuMi

VBMFL1
�p-reg (p = 2) �p-reg (p = 1) ADMM (p = 1)

Figure 3.18: Noisy image of a building with missing data and recovered results of
SVP, AP, WNNM, PARSuMi, VBMFL1, iterative `p-regression and ADMM.
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Original With missing data Missing data + noise SVP

AP (equality) AP (�1-ball) WNNM PARSuMi

VBMFL1
�p-reg (p = 2) �p-reg (p = 1) ADMM (p = 1)

Figure 3.19: Noisy image of a texture with missing values and recovered results of
SVP, AP, WNNM, PARSuMi, VBMFL1, iterative `p-regression and ADMM.

1 to 5. Each user has rated at least 20 movies. The rating of the ith user to the

jth movie is stored as the (i, j)th entry of the matrix AAA ∈ Rm×n. We have m = 943,

n = 1682, and the number of known entries |Ω| = 105, which is much smaller than

the number of all entries mn = 1.586× 106. That is, the percentage of observations is

only 6.3%. Low-rank matrix completion is applied to infer other unknown entries for

a recommender system. Since the remaining 93.7% entries are unknown, we cannot

judge whether the inferred entries are correct. Like the strategy in cross-validation, Ω

is divided into Ω1 and Ω2 such that Ω1 ∪ Ω2 = Ω. In this experiment, AAAΩ1 and AAAΩ2

are used for matrix completion and prediction error computation, respectively. Define

the result of matrix completion using partial observations AAAΩ1 as M̂MM , we evaluate the

mean absolute error (MAE)

MAE =
1

4|Ω2|
∥∥∥[M̂MM ]Ω2 −AAAΩ2

∥∥∥
1

(3.59)

using AAAΩ2 , where the factor 4 is the difference of the maximum and minimum scores,

namely, 5 and 1. Note that the MAE has been widely used as the performance measure

of recommender systems [50,65].

We first use cross-validation to estimate an appropriate rank, where the portion of

training data |Ω1|/|Ω| is set to 95%. For a given rank, matrix completion is performed

using AAAΩ1 . For each rank r ∈ [1, 15], 100 random divisions of Ω1 and Ω2 are conducted

to compute the average MAE. Figure 3.20 plots the MAE versus the estimated rank.
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Figure 3.20: MAE versus rank in cross-validation with MovieLens data set.

For the AP and two proposed methods, r = 3 is the best rank estimate while for the

SVP the rank estimate is r = 7. These rank estimates are adopted in the following

tests.

Figure 3.21 plots the MAE versus |Ω1|/|Ω| varying from 20% to 80% of the SVP, AP

with equality projection, and `p-regression and ADMM. The prediction accuracy of

two proposed methods is higher than AP and SVP. The performances using p = 1

and p = 2 are quite similar. This is because the ratings are integers whose values are

taken from {1, · · · , 5} and there are no random noises or outliers. In the absence of

noise/outlier, the method with p = 2 is good enough for matrix completion. Still, the

proposed scheme with p = 1 also works well and useful for the case where there is no

noise or outlier.

3.5 Summary

Many existing techniques for matrix completion are not robust to outliers. To over-

come this drawback, we have devised two algorithms for robust matrix completion

using low-rank factorization via the `p-minimization criterion with 0 < p < 2. The

first method tackles the nonconvex factorization with missing data by iteratively solv-

ing multiple independent linear `p-regressions. On the other hand, the second solution

exploits the ADMM for incomplete factorization in `p-space. Each iteration of the
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Figure 3.21: MAE versus |Ω1|/|Ω| with MovieLens data set.

ADMM requires solving an LS factorization problem and calculating the proximity

operator of the `p-norm. The two algorithms have comparable recovery performance

as well as computational efficiency and allow parallel or distributed realization. Their

total complexity is O(K|Ω|r2), where K is a fixed constant of several hundreds to

thousands, which is lower than the popular schemes employing the nuclear/Schatten

p-norm minimization that require SVD. Furthermore, our solutions generalize the con-

ventional matrix factorization based on Frobenius norm minimization. The superiority

of the developed algorithms over the SVT, SVP, and AP in terms of implementation

complexity, recovery capability and outlier-robustness is demonstrated using synthetic

and real-world data.
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Chapter 4

Greedy Pursuit for Approximation of
Multiple Matrices in `2-Space

In many practical applications, the data have the form of two-dimensional array and

thus, can be naturally described by a matrix. To handle multiple data points, we face

with processing a set of matrices. A popular method is based on “vectorization”, where

each matrix is converted into a vector and hence, all data points are reorganized into

a single matrix. In this manner, the low-rank approximation techniques such as the

celebrated singular SVD for a single matrix can be applied. However, the vectorization

strategy yields a long vector and then a matrix with very large size, resulting in a high

time complexity of the SVD. Moreover, this manner breaks the 2D structure and the

innate relation between row and column.

Aiming to overcome the two drawbacks, this chapter investigates how to efficiently find

the common low-rank structure of multiple matrices beginning with in the `2-space.

We devise greedy pursuit (GP) algorithms for joint low-rank approximation of mul-

tiple matrices (LRAMM), where the celebrated singular value decomposition (SVD)

for a single matrix is not applicable. The GP solves the LRAMM by decomposing it

into a series of rank-one approximations. At each iteration, it finds the best rank-one

approximation of the residual matrices and then, the rank-one basis matrices are sub-

tracted from the residual. An alternating optimization approach is designed for the

rank-one fitting. To further reduce the complexity, an economic greedy pursuit (EGP)

that avoids the iterative procedure for rank-one fitting is proposed. The orthogonal

greedy pursuit (OGP) is also developed to accelerate the convergence, where the cost

of weight re-computation is reduced by a recursive update manner. The per-iteration

complexity of the three algorithms is linear with the number and dimension of the

matrices. Thus, they are scalable to large-scale problems. The convergence of the

GP, EGP and OGP is theoretically proved. In particular, the reconstruction error of

each algorithm decays exponentially. A lower bound of the exponential decay factor

or convergence rate is derived. Different from the generalized low rank approximations

of matrices (GLRAM) belonging to non-diagonal and orthogonal decompositions, the

greedy methodology achieves a nonorthogonal but joint diagonal decomposition of mul-

tiple matrices, yielding a higher compression ratio. Experimental results demonstrate

that the superiority of the greedy schemes in terms of computational simplicity, fast

convergence and accurate reconstruction.
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4.1 Introduction

It is known that the celebrated PCA is only applicable to a single matrix, where each

of its columns corresponds to a data point. Thus, it needs to first convert the data into

vectors to apply the PCA if the data points are not in the form of vectors. For two-

dimensional (2D) array data such as images and frames of video, which are represented

by matrices, the “vectorization” yields a long vector and then a matrix with very

large size. This results in a high time complexity of the SVD [35]. In addition, the

vectorization breaks the 2D structure and the innate relation between row and column

To overcome the drawback of the vectorization based approaches, the two-dimensional

PCA (2DPCA) [36], GLRAM [16] and 2D-SVD [70] directly deal with multiple matrices

without vectorization, resulting in a significant complexity reduction. Under the same

compression ratio, the GLRAM and 2D-SVD achieve smaller reconstruction error than

the 2DPCA. The three methods belong to orthogonal transform, where the columns of

the resultant factorized subspaces are orthogonal. Note that unlike SVD, the GLRAM

and 2D-SVD do not achieve diagonal decomposition.

This chapter addresses learning the common low-rank structure of multiple matrices.

The joint low-rank approximation of multiple matrices (LRAMM) can be viewed as

an extension of the single matrix case. As in the 2DPCA, GLRAM and 2D-SVD, the

LRAMM also does not convert matrices into vectors and thus can avoid processing the

matrix with much larger size. Different from the GLRAM and 2D-SVD, the LRAMM

achieves a nonorthogonal but joint diagonal factorization of multiple matrices, which

leads to a more compact representation and a higher compression ratio.

A greedy pursuit (GP) algorithmic framework including three variants is designed for

the learning task. The GP decomposes the problem into a serial of rank-one approxima-

tions and works in an iterative manner. At each iteration, a rank-one approximation of

the residuals is conducted. Then, the rank-one matrices are subtracted from the resid-

uals. It is worth pointing out that the greedy algorithms [130–132] have been widely

applied to numerous signal processing and machine learning problems. The matching

pursuit (MP) [133], orthogonal matching pursuit (OMP) [134] and their robust ver-

sions in `p-space [135] for sparse signal recovery and compressed sensing use the idea

of “one at a time”. They greedily pick up an atom that is most correlated with the

current residual at each iteration. The OMP for recovery of a sparse one-dimensional

vector has been extended to recovering a single low-rank matrix [136,137] with missing

values, which is also referred to as matrix completion. The greedy algorithm of [136]

for square loss function is extended to more general models whose loss function can
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be nonsmooth in [138]. The performance guarantee of greedy pursuit for matrix com-

pletion is theoretically analyzed in [139]. It is worth pointing out that all the existing

greedy pursuit methods [136]– [139] are designed for the completion of a single low-rank

matrix, which are different from the proposed GP for multiple matrices.

A set of matrices can be viewed as a third-order tensor [73]. With the use of existing

low-rank tensor decomposition techniques [73–75] such as higher-order SVD (HOSVD),

one can also obtain a low-rank approximation of the multiple matrices. However, our

methodology for LRAMM is different from the low-rank tensor approximation.

4.2 Problem Formulation and Preliminaries

4.2.1 Problem Formulation

Given K matrices {AAA1, · · · ,AAAK} ∈ Rm×n, we aim at finding a low-rank approximation

of the K matrices. To be more specific, consider the following low-rank approximation

AAAk ≈ UUUSSSkVVV T, k = 1, · · · , K (4.1)

where UUU ∈ Rm×r, VVV ∈ Rn×r, and the diagonal matrix SSSk ∈ Rr×r is

SSSk = diag{sk,1, · · · , sk,r} (4.2)

with r being the target “rank”. Note that it allows that r > min(m,n) but generally

r ≤ mn is required. In this case, r is not the rank but we still use the name of “low-

rank approximation”. As we will see later, (4.1) can still achieve data compression even

when r > min(m,n). Clearly, UUUSSSkVVV
T is an approximation of AAAk. Note that UUU and VVV

are the same for all k but SSSk can be different with each other. The columns of UUU and VVV

span the r-dimensional subspaces of the column and row spaces of {AAAk}Kk=1. Therefore,

the low-rank approximation also achieves subspace learning. Figure 4.1 illustrates the

2D low-rank factorization of multiple matrices given by (4.1).

If the matrices are not strictly low-rank or there exists noise, we solve the following

minimization problem

min
UUU,VVV ,{SSSk}Kk=1

K∑
k=1

∥∥UUUSSSkVVV T −AAAk
∥∥2

F
(4.3)

to obtain the low-rank approximation. One application of the above low-rank ap-

proximation is for data compression. Obviously, it requires mnK real numbers to
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Figure 4.1: 2D low-rank factorization of multiple matrices.

store the K original matrices. Using the low-rank approximation of (4.3), the storage

complexity is reduced to (m + n + K)r numbers since only UUU , VVV , and the diagonal

elements of {SSSk}Kk=1 are needed to store. Thus, the compression ratio of our LRAMM

is mnK/((m + n + K)r). This implies that (4.1) can still achieve data compression

when r > min(m,n) if r � mn. Indeed, the compression ratio and reconstruction

error decrease as r increases. To guarantee a satisfying reconstruction error, we may

use a r > min(m,n).

The GLRAM [16] requires UUU and VVV to be orthonormal, i.e., UUUTUUU = VVV TVVV = IIIr. The

orthonormal constraint results in that r ≤ min(m,n) must be satisfied for GLRAM.

Denoting the ith (i = 1, · · · , r) columns of UUU and VVV as uuui and vvvi, respectively, (4.3) is

rewritten as

min f
(
uuui, vvvi, {sssi}ri=1

)
:=

K∑
k=1

∥∥∥∥∥
r∑
i=1

sk,iuuuivvv
T
i −AAAk

∥∥∥∥∥
2

F

s.t. ‖uuui‖ = ‖vvvi‖ = 1, i = 1, · · · , r
(4.4)

where the vector

sssi = [s1,i, · · · , sK,i]T ∈ RK (4.5)

and the unit-norm constraint is imposed to {uuui, vvvi}ri=1 to eliminate the scaling indeter-

minacy. Because if (UUU,VVV ,SSSk) is an optimal solution of (4.3), then (α1UUU, α2VVV , α3SSSk)

with the scalars {α1, α2, α3} ∈ R satisfying α1α2α3 = 1 is also an solution. This scaling

indeterminacy is avoided by constraining the norms of {uuui, vvvi}ri=1 to be unit.

If the number of matrices is K = 1, by Eckart-Young Theorem [26], the solution of

(4.3) is the truncated SVD of AAA1. That is, {s1,i}ri=1 are the r largest singular values

of AAA1, and {uuui}ri=1 and {vvvi}ri=1 are the corresponding left and right singular vectors,

respectively. When the number of matrices is K > 1, the truncated SVD cannot
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be applied to solving (4.4). In this chapter, we devise greedy pursuit algorithms for

efficiently solving (4.4).

4.2.2 Prior Arts on Low-Rank Representation

The most representative approach for low-rank representation is the PCA [27]. How-

ever, the PCA cannot directly handle multiple matrices whereas each matrix needs to

be converted into a vector aaak = vec(AAAk) ∈ Rmn. Then, the K vectors {aaak}Kk=1 form the

columns of following data matrix

XXX = [aaa1, · · · , aaaK ] ∈ Rmn×K . (4.6)

whose rank satisfies rank(XXX) ≤ min(mn,K). The PCA aims to find a lower rank

matrix X̂XX to best approximate the original data matrix XXX:

min
rank(X̂XX)=r

‖X̂XX −XXX‖2
F (4.7)

where the target rank r is usually taken as r � min(mn,K) to achieve data compres-

sion or dimensionality reduction. Again, by Eckart-Young Theorem [26], the solution

of (4.7) is given by the truncated SVD of XXX, which is expressed as

X̂XX =
r∑
l=1

σl(XXX)tttlyyy
T
l (4.8)

where σl(XXX) is the lth singular value of XXX while tttl ∈ Rmn and yyyl ∈ RK are the

corresponding left and right singular vectors. In data compression, we only need to

store the so-called “principal components”: the largest r singular values and the cor-

responding singular vectors {σl(XXX), tttl, yyyl}rl=1. Clearly, the compression ratio of the

PCA is mnK/((mn + K + 1)r). There are two drawbacks of the traditional PCA

applied to processing multiple matrices. The first drawback is that it needs to handle

a matrix of a much larger size due to transforming the original matrix into a long

vector. Indeed, the truncated SVD of XXX has a high complexity of O(max(m2n2, K2)r).

For high-dimensional data with mn > K, this complexity becomes O(m2n2r), which

quadratically increases as the matrix dimension mn. The second drawback is that the

vectorization breaks the 2D structure and the innate relation between row and column.

The 2DPCA computes a linear transformation WWW ∈ Rn×r with r < n, such that each

matrix is projected to CCCk = AAAkWWW ∈ Rm×r. The WWW maximizes the variance in the

transformed space

max
WWWTWWW=IIIr

WWWT

(
K∑
k=1

(
AAAk − ĀAA

)T(
AAAk − ĀAA

))
WWW (4.9)
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where ĀAA =
(∑K

k=1AAAk

)
/K is the mean of the matrices. The columns of the optimal

WWW are the r eigenvectors of
∑K

k=1

(
AAAk − ĀAA

)T(
AAAk − ĀAA

)
corresponding to the largest r

eigenvalues. The matrices can be reconstructed by ÂAAk = CCCkWWW
T. The 2DPCA needs

to store {CCCk}Kk=1 and WWW , implying a compression ratio of (mnK)/((mK + n)r). Its

computational complexity is O(mn2K). We see that the 2DPCA only applies a single-

sided transform to the matrices, which results in a limited compression capability.

The GLRAM solves the constrained problem

min
UUUTUUU=VVV TVVV=IIIr,{SSSk}

K∑
k=1

∥∥UUUSSSkVVV T −AAAk
∥∥2

F
(4.10)

where the orthonormal constraints makes it different from the proposed formulation

of (4.3), where UUU and VVV are not required to be orthogonal. In addition, the matrices

{SSSk}Kk=1 given by the GLRAM are not diagonal whereas those of the LRAMM are

diagonal. Hence, the compression ratio of the GLRAM is mnK/((m+n+Kr)r), which

is lower than the proposed approach for the same r. Exploiting the orthogonality of UUU

and VVV , the GLRAM is reduced to

max
UUUTUUU=VVV TVVV=IIIr

K∑
k=1

∥∥UUUTAAAkVVV
∥∥2

F
(4.11)

where a two-sided transform is performed.

4.3 Greedy Pursuit Algorithms

The idea of greedy algorithms is to decompose the r-term approximation into a series

of rank-one approximations. At each iteration, the greedy algorithms perform rank-one

approximation of the residual matrices obtained from the previous iteration. Then, the

rank-one matrices are subtracted from the residual and never revisited.

4.3.1 Greedy Pursuit

The GP for LRAMM is described in Algorithm 5. It works in an iterative fashion. We

use (uuui, vvvi, sss
i) and {RRRi

k}
K

k=1 to denote the solution and the K residual matrices, respec-

tively, at the ith iteration. In the ith iteration, the GP finds rank-one approximation
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of
{
RRRi−1
k

}K
k=1

, which is formally expressed as

min f(uuu,vvv,sss) :=
K∑
k=1

∥∥skuuuvvvT −RRRi−1
k

∥∥2

F

s.t. ‖uuu‖ = ‖vvv‖ = 1

(4.12)

where sss = [s1, · · · , sK ]T collects the K variables {sk}Kk=1 to be optimized. The optimal

solution of (4.12) is taken as the solution of the ith iteration, which is denoted as

(uuui, vvvi, sss
i). In some applications where the target rank r is given or can be estimated,

the algorithm is terminated when i > r. If the target rank is unavailable, the normalized

reconstruction error (NRE), which is defined as the energy of the K residual matrices

NRE =

∑K
k=1 ‖RRRi

k‖2
F∑K

k=1 ‖RRR0
k‖2

F

≤ δ (4.13)

is adopted instead as the stopping criterion, where δ > 0 is the tolerance. In Section 4.4,

we will prove that the sequence of the reconstruction error
{∑K

k=1 ‖RRRi
k‖2

F

}
i

converges

to zero with an exponential rate. Therefore, (4.13) is well defined for any δ > 0.

Algorithm 5 GP for LRAMM

Input: Matrices {AAAk}Kk=1 and target rank r.
Initialization: Set residual RRR0

k = AAAk for k = 1, · · · , K.

for i = 1, 2, · · · , r do
Solve rank-one approximation

(
uuui, vvvi, sss

i
)

= arg min
‖uuu‖=‖vvv‖=1,sss

K∑
k=1

∥∥skuuuvvvT −RRRi−1
k

∥∥2

F
. (4.14)

Update residual
RRRi
k = RRRi−1

k − sk,iuuuivvvT
i , k = 1, · · · , K. (4.15)

end for
Output: UUU = [uuu1, · · · ,uuur], VVV = [vvv1, · · · , vvvr], and {sssi}ri=1.

The remaining problem is how to efficiently solve the rank-one approximation of mul-

tiple matrices, which is described in the next subsection.

4.3.2 Solution to Rank-One Fitting

For the purpose of simplicity, we omit the superscript (·)i−1 of RRRi−1
k and rewrite (4.12)

as

min
‖uuu‖=‖vvv‖=1,sss

K∑
k=1

∥∥skuuuvvvT −RRRk

∥∥2

F
(4.16)
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which is not easy to solve since the unit-norm constraints are nonconvex and the

product term of the objective function skuuuvvv
T is also nonconvex. We first eliminate sss to

obtain an optimization problem only with uuu and vvv. The kth term of (4.16) is computed

as
fk(uuu,vvv, sk) =

∥∥skuuuvvvT −RRRk

∥∥2

F

= s2
k‖uuuvvvT‖2

F − 2sktr
(
vvvuuuTRRRk

)
+ ‖RRRk‖2

F

= s2
k − 2

(
uuuTRRRkvvv

)
sk + ‖RRRk‖2

F

(4.17)

where we have exploited ‖AAA‖2
F = tr(AAATAAA) and tr(AAABBB) = tr(BBBAAA) as well as the fact

‖uuuvvvT‖2
F = tr

(
vvvuuuTuuuvvvT

)
= ‖uuu‖2‖vvv‖2 = 1. Apparently, {sk}Kk=1 are decoupled with each

other and can be solved independently. For fixed uuu and vvv, the optimal sk minimizing

fk is given by
∂fk
∂sk

= 2
(
sk − uuuTRRRkvvv

)
= 0

yielding

s?k = uuuTRRRkvvv. (4.18)

Plugging (4.18) back into (4.17) yields the minimum value of the objective function{
min
sk

fk(uuu,vvv, sk)

}
= ‖RRRk‖2

F −
(
uuuTRRRkvvv

)2
. (4.19)

Then, we obtain the following problem with sss being eliminated

min
‖uuu‖=‖vvv‖=1

{
K∑
k=1

‖RRRk‖2
F −

K∑
k=1

(
uuuTRRRkvvv

)2

}
(4.20)

where the reconstruction error
∑K

k=1 ‖RRRk‖2
F is a constant at the current iteration. It is

clear that (4.20) amounts to

max
‖uuu‖=‖vvv‖=1

K∑
k=1

(
uuuTRRRkvvv

)2
. (4.21)

For K = 1, the optimal solution of (4.21) uuu? and vvv? are the left and right singular

vectors associated with the largest singular value σmax(RRR1), respectively, which can

be efficiently computed by the power method with a low complexity of O(mn). The

corresponding maximum of the objective function is σ2
max(RRR1). Note that the largest

singular value of a matrix is its spectral norm, i.e., σmax(RRR1) = ‖RRR1‖2.

For K > 1, we use the alternating maximization strategy to solve (4.21), where the

objective function is maximized over one vector while the other vector is fixed. To

be more specific, at the (j + 1)th (j = 0, 1, · · · ) iteration, uuu and vvv are alternately
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maximized:

uuuj+1 = arg max
‖uuu‖=1

K∑
k=1

(
uuuTRRRkvvv

j
)2

(4.22)

vvvj+1 = arg max
‖vvv‖=1

K∑
k=1

((
uuuj+1

)T
RRRkvvv

)2

. (4.23)

It is easy to rewrite (4.22) as

max
‖uuu‖=1

uuuT

(
K∑
k=1

RRRkvvv
j
(
RRRkvvv

j
)T

)
uuu (4.24)

whose optimal solution is the unit-norm eigenvector corresponding to the maximum

eigenvalue of the positive definite matrix
∑K

k=1RRRkvvv
j(RRRkvvv

j)
T

. Similarly, the solution

of (4.23) is the unit-norm eigenvector associated with the maximum eigenvalue of∑K
k=1RRR

T
kuuu

j+1
(
RRRT
kuuu

j+1
)T

. Since (4.21) is nonconvex, the final convergence result relies

on the initial values uuu0 and vvv0. Appropriate selection of the initial values is important.

Suppose that the kmth (km ∈ {1, · · · , K}) matrix RRRkm has the maximum spectral

norm. That is,

‖RRRkm‖2 = max
1≤k≤K

‖RRRk‖2. (4.25)

We use the principal singular vectors of RRRkm as the initial value

uuu0 = LSVmax(RRRkm), vvv0 = RSVmax(RRRkm). (4.26)

The algorithm for solving the rank-one approximation of multiple matrices of (4.16) is

summarized in Algorithm 6.

Computational Complexity: The initialization needs to compute the largest singular

values of K matrices and the principal singular vectors of one matrix, whose complex-

ity is O(mnK) if the power method is employed. The matrix-vector products RRRkvvv
j

and RRRT
kuuu

j+1 require a cost of O(mn). The costs of computing the outer products

RRRkvvv
j(RRRkvvv

j)
T

and RRRT
kuuu

j+1
(
RRRT
kuuu

j+1
)T

are O(m2) and O(n2), respectively. Thus, form-

ing the matrices in (4.27) and (4.28) requires O((mn + m2)K) and O((mn + n2)K)

operations, respectively. Calculation of principal eigenvectors of (4.27) and (4.28)

needs O(m2) and O(n2). In summary, the per-iteration complexity of rank-one

approximation of Algorithm 6 is O((max(m,n))2K) and the total complexity is

O((max(m,n))2KNiter), where Niter is the number of iterations required for conver-

gence. From the simulation results, it is observed that Algorithm 6 converges fast.

Typically, several tens of iterations are enough to converge with high accuracy. Also,

Niter can be viewed as a constant independent of the dimension. Then, it is clear
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Algorithm 6 Rank-One Approximation of Multiple Matrices

Input: Matrices {RRRk}Kk=1.
Initialization: Determine km by

km = arg max
1≤k≤K

‖RRRk‖2.

Set uuu0 = LSVmax(RRRkm) and vvv0 = RSVmax(RRRkm).

for j = 0, 1, 2, · · · do
Update uuu and vvv:

uuuj+1 = EVmax

(
K∑
k=1

RRRkvvv
j
(
RRRkvvv

j
)T

)
(4.27)

vvvj+1 = EVmax

(
K∑
k=1

RRRT
kuuu

j+1
(
RRRT
kuuu

j+1
)T

)
(4.28)

Stop until convergence satisfies.
end for
s?k = (uuuj+1)TRRRkvvv

j+1, k = 1, · · · , K.
Output: uuu? = uuuj+1, vvv? = vvvj+1, and sss? = [s?1, · · · , s?K ]T.

that the complexity of the GP for LRAMM of Algorithm 5 is O((max(m,n))2rKNiter).

When m and n have the same order-of-magnitude, say, O(m) ∼ O(n), it follows

O((max(m,n))2) ∼ O(mn). The complexity is approximately O(mnrKNiter). This

implies that the complexity of the GP algorithm is linear with respect to the matrix

size mn and the number of matrices K. Hence, it is scalable to problem size.

4.3.3 Economic Greedy Pursuit

The dominant cost of the GP is the iterative procedure in Algorithm 6 for solving the

rank-one fitting problem. To reduce the complexity, we develop an economic version of

the GP, namely, the EGP, which is listed in Algorithm 7. It just takes the initial values

of (4.25) and (4.26), i.e., the principal singular value/vectors of the matrix having the

maximum spectral norm, as an approximate solution to the rank-one fitting. It discards

the time-consuming iterative procedure. Surprisingly, using the inexact solution of

(4.25) and (4.26) also makes the EGP converge. The convergence of the EGP will be

proved in Section 4.4. Clearly, the complexity of the EGP is reduced to O(mnrK).

However, exploiting the inexact solution to the rank-one fitting results in a convergence

rate slower than the GP in general.
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Algorithm 7 EGP for LRAMM

Input: Matrices {AAAk}Kk=1 and target rank r.
Initialization: Set residual RRR0

k = AAAk for k = 1, · · · , K.

for i = 1, 2, · · · , r do
Determine km = arg max

1≤k≤K
‖RRRi−1

k ‖2 and set

uuui = LSVmax

(
RRRi−1
km

)
, vvvi = RSVmax

(
RRRi−1
km

)
,

and sk,i = uuuT
i RRR

i−1
k vvvi for k = 1, · · · , K.

Update residual
RRRi
k = RRRi−1

k − sk,iuuuivvvT
i , k = 1, · · · , K.

end for
Output: UUU = [uuu1, · · · ,uuur], VVV = [vvv1, · · · , vvvr], and {sssi}ri=1.

4.3.4 Orthogonal Greedy Pursuit

From Algorithm 5, we see that once a rank-one solution (uuui, vvvi, sss
i) is obtained, it is

never revisited and hence remains unchanged all the time. The OGP is a modification

to the GP. Analogous to the OMP for sparse recovery, the OGP still keeps (uuui, vvvi)

unchanged but re-computes all coefficients {sk,l} by least squares, which achieves so-

called “orthogonalization” to the coefficients. To be more specific, after obtaining

{uuul}il=1 and {vvvl}il=1 at the ith iteration, {sk,l} are re-computed by

min
{sk,l}

K∑
k=1

∥∥∥∥∥
i∑
l=1

sk,luuulvvv
T
l −AAAk

∥∥∥∥∥
2

F

(4.29)

which can be decomposed into the following K independent minimization problems:

min
sk,1,··· ,sk,i

∥∥∥∥∥
i∑
l=1

sk,luuulvvv
T
l −AAAk

∥∥∥∥∥
2

F

(4.30)

for k = 1, · · · , K, since {sk,l} can be separably solved with respect to k. We further

define the vector

sssk = [sk,1, · · · , sk,i]T ∈ Ri (4.31)

which should be distinguished from sssi ∈ RK in (4.5). Obviously, if r = 1, the OGP is

the same as the GP because both of them are just a rank-one approximation problem.

Therefore, we only need to discuss the case of r ≥ 2 for the OGP.

We now derive the solution of (4.29). Recalling aaak = vec(AAAk) ∈ Rmn and defining
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bbbl = vec
(
uuulvvv

T
l

)
∈ Rmn, (4.30) amounts to

min
sssk


∥∥∥∥∥

i∑
l=1

sk,lbbbl − aaak
∥∥∥∥∥

2

= ‖BBBisssk − aaak‖2

 (4.32)

where

BBBi = [bbb1, · · · , bbbi] ∈ Rmn×i. (4.33)

It is worth pointing out that there is no need to convert the matrices in practice and we

just use the vectors for derivation. Note that the column number of BBBi is the iteration

number i and varies during the iteration process. The solution of (4.32) is

sssk =
(
BBBT
i BBBi

)−1
BBBT
i aaak. (4.34)

However, we do not compute sssk by the direct use of (4.34) since it involves matrix

multiplication and inversion, which is computationally expensive. Instead, a recur-

sive calculation is exploited to reduce the complexity. It is clear that BBBT
i aaak can be

recursively calculated as

cccik
∆
= BBBT

i aaak =

[
BBBT
i−1aaak

bbbT
i aaak

]
=

[
ccci−1
k

uuuT
i AAAkvvvi

]
(4.35)

where ccci−1
k = BBBT

i−1aaak ∈ Ri−1 is the result of the (i−1)th iteration, and can be employed

in the current iteration. At the beginning of the iteration, we set ccc0
k = ∅. Note that

bbbT
i aaak can be computed as

bbbT
i aaak = 〈bbbi, aaak〉 =

〈
uuuivvv

T
i ,AAAk

〉
= tr

(
vvviuuu

T
i AAAk

)
= uuuT

i AAAkvvvi
(4.36)

where we have used the fact that 〈vec(AAA), vec(BBB)〉 = 〈AAA,BBB〉 satisfies for two arbitrary

matrices AAA and BBB. When ccci−1
k is available, the cost to obtain cccik is computing bbbT

i aaak,

which requires O(mn) operations.

Next, we discuss how to recursively compute
(
BBBT
i BBBi

)−1
. Obviously, BBBT

i BBBi is the Gram

matrix of the vectors {bbb1, · · · , bbbi} and is denoted as GGGi = BBBT
i BBBi ∈ Ri×i. The GGGi and

GGGi−1 are related via

GGGi = BBBT
i BBBi =

[
BBBT
i−1

bbbT
i

]
[BBBi−1, bbbi]

=

[
BBBT
i−1BBBi−1 BBBT

i−1bbbi

bbbT
i BBBi−1 bbbT

i bbbi

]

=

[
GGGi−1 gggi−1

gggT
i−1 1

] (4.37)
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where

gggi−1 = BBBT
i−1bbbi ∈ Ri−1 (4.38)

and
bbbT
i bbbi = 〈bbbi, bbbi〉 =

〈
uuuivvv

T
i ,uuuivvv

T
i

〉
= tr

(
vvviuuu

T
i uuuivvv

T
i

)
= ‖uuui‖2‖vvvi‖2 = 1

(4.39)

are used. Denoting

hhhi−1 = GGG−1
i−1gggi−1 and β =

1

1− gggT
i−1hhhi−1

(4.40)

we get the inverse of GGGi as

GGG−1
i =

[
GGG−1
i−1 + βhhhi−1hhh

T
i−1 −βhhhi−1

−βhhhT
i−1 β

]
(4.41)

with the use of the block matrix inversion formula [140]. Again, the result of the

(i− 1)th iteration GGG−1
i−1 is already available for the current iteration. The initial value

is set GGG−1
0 = ∅ while GGG−1

1 = 1 at the first iteration. For i ≥ 2, GGG−1
i is recursively

calculated by (4.41). We only need to compute gggi−1, whose pth (p = 1, · · · , i−1) entry

is
[gggi−1]p = bbbT

p bbbi = 〈bbbp, bbbi〉 =
〈
uuupvvv

T
p ,uuuivvv

T
i

〉
= tr

(
vvvpuuu

T
puuuivvv

T
i

)
=
(
uuuT
puuui
)(
vvvT
p vvvi
) (4.42)

which only requires a complexity of O(m+ n) rather than O(mn). Then, we have

gggi−1 =
[(
uuuT

1uuui
)
(vvvT

1 vvvi), · · · ,
(
uuuT
i−1uuui

)(
vvvT
i−1vvvi

)]T
. (4.43)

Computing gggi−1 costs O(i(m + n)). It is either lower than or similar to the cost of

computing bbbT
i aaak in (4.36), namely, O(mn) due to i < r and r ∼ max(m,n) in general.

In summary, the dominant computational load for re-computation of the coefficients

in the OGP is calculating
{
bbbT
i aaak
}K
k=1

, which is O(mnK).

The OGP for LRAMM is summarized in Algorithm 8. The compression ratios and

computational complexities of the PCA, 2DPCA, GLRAM, GP/OGP and EGP are

compared in Table I.

4.3.5 Feature Extraction for Pattern Classification

In addition to the direct application to data compression, the greedy pursuit algorithms

can also be applied to feature extraction for classification. Suppose we have obtained

a set of basis matrices
{
uuuivvv

T
i

}r
i=1

from the training data {AAAk}Kk=1 using the GP, EGP

or OGP. In the training stage, we do not use the class label information of the training
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Algorithm 8 OGP for LRAMM

Input: Matrices {AAAk}Kk=1 and target rank r.
Initialization: Set residual RRR0

k = AAAk for k = 1, · · · , K.

For i = 1, use Algorithm 1 to obtain (uuu1, vvv1) and {RRR1
k}

K
k=1.

Set GGG−1
1 = 1 and ccc1

k = uuuT
i AAAkvvvi for k = 1, · · · , K.

for i = 2, 3, · · · , r do
Solve rank-one approximation

(uuui, vvvi) = arg min
‖uuu‖=‖vvv‖=1,sss

K∑
k=1

∥∥skuuuvvvT −RRRi−1
k

∥∥2

F
.

Compute

gggi−1 =
[(
uuuT

1uuui
)
(vvvT

1 vvvi), · · · ,
(
uuuT
i−1uuui

)(
vvvT
i−1vvvi

)]T
hhhi−1 = GGG−1

i−1gggi−1

β = 1/
(
1− gggT

i−1hhhi−1

)
GGG−1
i =

[
GGG−1
i−1 + βhhhi−1hhh

T
i−1 −βhhhi−1

−βhhhT
i−1 β

]

cccik =

[
ccci−1
k

uuuT
i AAAkvvvi

]
, k = 1, · · · , K

[sk,1, · · · , sk,i]T = GGG−1
i ccc

i
k, k = 1, · · · , K.

Calculate residual

RRRi
k = AAAk −

i∑
l=1

sk,luuulvvv
T
l , k = 1, · · · , K. (4.44)

end for
Output: UUU = [uuu1, · · · ,uuur], VVV = [vvv1, · · · , vvvr], and {sk,l} with 1 ≤ k ≤ K, 1 ≤ l ≤ r.

Table 4.1: Compression ratio and computational complexity.

Methods Compression ratio Complexity

PCA mnK
(mn+K+1)r

O(max(m2n2, K2)r)

2DPCA mnK
(mK+n)r

O(mn2K)

GLRAM mnK
(m+n+Kr)r

O((m+ n)2rKNiter)

GP/OGP mnK
(m+n+K)r

O((max(m,n))2rKNiter)

EGP mnK
(m+n+K)r

O(mnrK)
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data. Thus, the greedy pursuit belongs to unsupervised learning. The tested matrix

ZZZ is deemed to have the similar low-rank structure as the training matrices {AAAk}Kk=1.

We do not handle the original matrices any more but use the following reconstructions

instead

ÂAAk =
r∑
i=1

sk,iuuuivvv
T
i , ẐZZ =

r∑
i=1

sz,iuuuivvv
T
i (4.45)

where {sz,i} is the solution of min
∥∥∑r

i=1 s
z
iuuuivvv

T
i −ZZZ

∥∥2

F
. Like (4.34), this solution is

expressed as

sssz = GGG−1
r BBB

T
r zzz (4.46)

where sssz = [sz,1, · · · , sz,r]T collects the r coefficients, zzz = vec(ZZZ), BBBr has the same form

as (4.33) with i = r, and GGGr = BBBrBBB
T
r is the Gram matrix of the basis matrices. The

distance between ẐZZ and ÂAAk is taken as the similarity measure after rank reduction,

which is computed as∥∥∥ẐZZ − ÂAAk∥∥∥2

F
=
∥∥∥vec(ẐZZ − ÂAAk)

∥∥∥2

= ‖BBBr(sssz − sssk)‖2

= (sssz − sssk)TGGGr(sssz − sssk) =
∥∥∥GGG 1

2
r (sssz − sssk)

∥∥∥2
(4.47)

whereGGG
1
2
r ∈ Rr×r is the square root matrix ofGGGr. Thus,GGG

1
2
r sssz ∈ Rr can be viewed as the

“feature vector” of ZZZ extracted by the greedy algorithm. Since we have sssk = GGG−1
r BBB

T
r aaak

for the OGP, (4.47) is further simplified to∥∥∥ẐZZ − ÂAAk∥∥∥2

F
= (dddz − dddk)TGGG−1

r (dddz − dddk) (4.48)

where

dddz = BBBT
r zzz =

[
uuuT

1ZZZvvv1, · · · ,uuuT
rZZZvvvr

]T
. (4.49)

The dddk has similar expression as dddz. Noting that the OGP already outputs GGG−1
r , only

dddz and dddk need to calculate. The feature vector of ZZZ extracted by the OGP can also be

expressed asGGG
− 1

2
r dddz. In the test stage, the nearest neighbor (NN) classifier is employed.

The tested sample is assigned to the class of its closest neighbor that has the minimum

distance of the reconstructed matrices ẐZZ and ÂAAk. However, we do not need to perform

reconstruction in practice. Instead, the distance can be efficiently computed according

to (4.47) or (4.48), where only r-dimensional vectors are involved.

4.4 Convergence Analysis

4.4.1 Key Lemma

Prior to presenting the convergence results of the GP and OGP, we prove the following

key lemma which facilitates the convergence analysis.
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Lemma 1 At the ith iteration, when applying Algorithm 6 to the rank-one approxi-

mation of matrices
{
RRRi−1
k

}K
k=1

, the objective function of the subproblem (4.21) at the

solution (uuui, vvvi) is guaranteed

K∑
k=1

(
uuuT
i RRR

i−1
k vvvi

)2 ≥ 1

min(m,n)K

K∑
k=1

‖RRRi−1
k ‖2

F. (4.50)

Proof. Note that when we emphasize the iteration number, (uuui, vvvi) denotes the solution

of rank-one approximation at the ith iteration, as well as the solution of subproblem

(4.21) given by Algorithm 6. Because Algorithm 6 adopts the manner of alternating

maximization, it non-decreases the objective function and indicates that the objective

function at (uuui, vvvi) is no less than that at the initial value (uuu0, vvv0). Hence, we have

K∑
k=1

(
uuuT
i RRR

i−1
k vvvi

)2 ≥
K∑
k=1

(
(uuu0)TRRRi−1

k vvv0
)2

(4.51)

≥ max
1≤k≤K

(
(uuu0)TRRRi−1

k vvv0
)2

=
(
(uuu0)TRRRi−1

km
vvv0
)2

= σ2
max(RRRi−1

km
) (4.52)

≥ 1

K

K∑
k=1

σ2
max(RRRi−1

k ) (4.53)

≥ 1

K

K∑
k=1

1

rank(RRRi−1
k )

rank(RRRi−1
k )∑

l=1

σ2
l (RRR

i−1
k )

=
1

K

K∑
k=1

1

rank(RRRi−1
k )
‖RRRi−1

k ‖2
F (4.54)

≥ 1

min(m,n)K

K∑
k=1

‖RRRi−1
k ‖2

F

where (4.52) exploits that the initial value uuu0 and vvv0 are the principal singular vec-

tors of RRRi−1
km

and (4.53) follows from that RRRi−1
km

has the maximum spectral norm, i.e.,

σ2
max(RRRi−1

km
) = max

k
σ2

max(RRRi−1
k ). Equation (4.54) is based on the fact the square of the

Frobenius norm of a matrix equals the sum of the squared singular values and the last

inequality is due to rank(RRRi−1
k ) ≤ min(m,n). �

4.4.2 Convergence Analysis for GP and EGP

Now we are ready to prove the following theorem, which guarantees the convergence

of the GP for LRAMM and gives a lower bound on the convergence rate.
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Theorem 3 The reconstruction error, i.e., the energy of the residual matrices of the

GP for LRAMM in Algorithm 5 decays exponentially:1

K∑
k=1

‖RRRi
k‖2

F ≤ γiGP

K∑
k=1

‖AAAk‖2
F (4.55)

for the iteration number i = 0, 1, 2, · · · , where

γGP = 1− 1

min(m,n)K
(4.56)

satisfying 0 < γGP < 1 is a lower bound of the convergence rate.

Proof. Starting with the residual update formula in (4.15), it follows that

K∑
k=1

‖RRRi
k‖2

F =
K∑
k=1

∥∥RRRi−1
k − sk,iuuuivvvT

i

∥∥2

F

= min
‖uuu‖=‖vvv‖=1,sss

K∑
k=1

∥∥skuuuvvvT −RRRi−1
k

∥∥2

F
(4.57)

= min
‖uuu‖=‖vvv‖=1

{
K∑
k=1

‖RRRi−1
k ‖2

F −
K∑
k=1

(
uuuTRRRi−1

k vvv
)2

}
(4.58)

=
K∑
k=1

‖RRRi−1
k ‖2

F − max
‖uuu‖=‖vvv‖=1

K∑
k=1

(
uuuTRRRi−1

k vvv
)2

=
K∑
k=1

‖RRRi−1
k ‖2

F −
K∑
k=1

(
uuuT
i RRR

i−1
k vvvi

)2
(4.59)

≤
K∑
k=1

‖RRRi−1
k ‖2

F −
1

min(m,n)K

K∑
k=1

‖RRRi−1
k ‖2

F (4.60)

=

(
1− 1

min(m,n)K

) K∑
k=1

‖RRRi−1
k ‖2

F

= γGP

K∑
k=1

‖RRRi−1
k ‖2

F

where (4.57) and (4.59) follow from (4.14), i.e., (uuui, vvvi, sss
i) is the minimizer of the rank-

one approximation or equivalently is the maximizer of (4.21) at the ith iteration.

Meanwhile, (4.58) is a reduced result of (4.57) with sss being eliminated, which follows

1In optimization literature, the exponential convergence is also referred to geometric convergence
or linear convergence.
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from (4.20). The key inequality of (4.60) is according to Lemma 1. Successively

applying the above relation, we at once obtain

K∑
k=1

‖RRRi
k‖2

F ≤ γiGP

K∑
k=1

‖RRR0
k‖2

F = γiGP

K∑
k=1

‖AAAk‖2
F (4.61)

where we have used RRR0
k = AAAk for k = 1, · · · , K. Since the decay ratio satisfies 0 <

γGP < 1, the reconstruction error strictly decreases at each iteration and the GP

algorithm converges with a worst decay rate of γGP. �

By Theorem 3, it is apparent that the reconstruction error approaches zero:

lim
i→∞

K∑
k=1

‖RRRi
k‖2

F = 0 (4.62)

due to γGP ∈ (0, 1). This implies that the stopping criterion in (4.13) is well defined

for any δ > 0. Obviously, (4.62) also indicates

lim
i→∞
‖RRRi

k‖2
F = 0, and lim

i→∞
RRRi
k = 000, k = 1, · · · , K. (4.63)

As a direct conclusion obtained from Theorem 1, the following corollary allows an

infinite series expansion for an arbitrary set of matrices {AAAk}Kk=1.

Corollary 1 For any matrix set {AAAk}Kk=1, the GP algorithm leads to an infinite series

expansion, which is shown as

AAAk =
∞∑
i=1

sk,iuuuivvv
T
i , k = 1, · · · , K (4.64)

where (uuui, vvvi, sss
i) is the result obtained by Algorithm 5 at the ith iteration.

Proof. Successive application of the residual update formula of (4.15) results in

RRRi
k = RRRi−1

k − sk,iuuuivvvT
i

= RRR0
k −

i∑
l=1

sk,luuulvvv
T
l

= AAAk −
i∑
l=1

sk,luuulvvv
T
l

which is rewritten as

AAAk =
i∑
l=1

sk,luuulvvv
T
l +RRRi

k. (4.65)
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Exploiting lim
i→∞

RRRi
k = 000 in (4.63) and taking limits as i → ∞ on both sides of (4.65)

yields (4.64). �

Remark: Theoretically, the EGP has the same convergence result in Theorem 1. To

prove the convergence of the EGP, we just need to modify the “≥” in (4.51) to “=”

while other steps remain the same as the GP. It should be pointed out that the GP

and EGP merely have the worst-case lower bounds of the convergence rates. Their

practical convergence rates are different in general. The worst case refers to that there

is no improvement using the iterative procedure in Algorithm 6 compared with merely

using the initial value of (4.26). This case happens when vvv0 is in the intersection of the

null spaces of
{
RRRi−1
k

}
k 6=km

, resulting in RRRi−1
k vvv0 = 000 for k 6= km. However, if

{
RRRi−1
k

}
k

have similar low-rank structure, as considered in this chapter, the principal singular

vector of one matrix lies in all null spaces of other matrices does not happen. That

is, the iterative procedure in Algorithm 6 will improve the rank-one solution, which

makes the GP converge faster than the EGP, in general. It is also observed that the

convergence rate of the GP is faster than the EGP in the numerical results in Section

4.5.

4.4.3 Convergence Analysis for OGP

It is clear that the convergence of the OGP is guaranteed since its reconstruction error

decreases faster than that of the GP due to the re-minimization with respect to the

weight coefficients of (4.29) at each iteration. This means that the convergence rate of

the OGP is faster than the GP. Theorem 4 further states how much the OGP is faster

than the GP, where the acceleration factor is quantitatively given.

Theorem 4 The reconstruction error of the OGP for LRAMM in Algorithm 8 decays

exponentially
K∑
k=1

‖RRRi
k‖2

F ≤ γi−1
OGPγGP

K∑
k=1

‖AAAk‖2
F (4.66)

for the iteration number i = 0, 1, 2, · · · , where a lower bound of the convergence rate

γOGP = 1− ρ

min(m,n)K
(4.67)

satisfies 0 < γOGP < 1 with ρ > 1 being the acceleration factor. Also, it follows that

γOGP < γGP due to ρ > 1 and hence the OGP converges faster than the GP.

Proving Theorem 4 requires the following lemma.
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Lemma 2 For the OGP, the squared Frobenius norms of RRRi
k and RRRi−1

k for i = 1, 2, · · · ,
are linked by

‖RRRi
k‖2

F = ‖RRRi−1
k ‖2

F − ρi
(
uuuT
i RRR

i−1
k vvvi

)2
(4.68)

where ρ1 = 1 and for i ≥ 2

ρi =
1

sin2 θi
> 1 (4.69)

with θi being the angle between vec(uuuivvv
T
i ) and the subspace spanned by

{
vec(uuulvvv

T
l )
}i−1

l=1
.

Proof. At the first iteration or i = 1, the OGP obtains the same result as the GP. By

(4.19), we at once get ρ1 = 1. We then discuss the case of i ≥ 2. Denoting rrrik = vec(RRRi
k)

and rrri−1
k = vec(RRRi−1

k ), clearly we have ‖RRRi
k‖2

F = ‖rrrik‖2 and ‖RRRi−1
k ‖2

F = ‖rrri−1
k ‖2. We now

derive the relation between ‖rrrik‖2 and ‖rrri−1
k ‖2. Recalling rrrik = BBBisss

i − aaak, by (4.34) it

follows that

rrrik = (ΠΠΠi − III)aaak = −ΠΠΠ⊥i aaak (4.70)

where

ΠΠΠi = BBBi

(
BBBT
i BBBi

)−1
BBBT
i ∈ Rmn×mn (4.71)

is the orthogonal projection matrix onto range(BBBi), i.e., the column space of BBBi, while

ΠΠΠ⊥i = III −ΠΠΠi (4.72)

is the projection matrix onto the complementary subspace of range(BBBi), i.e., range(BBB⊥i ).

Then, we get

‖rrrik‖2 = ‖ΠΠΠ⊥i aaak‖2 = aaaT
k (ΠΠΠ⊥i )TΠΠΠ⊥i aaak = aaaT

kΠΠΠ⊥i aaak (4.73)

where we have exploited that the projection matrix is symmetric and idempotent, i.e.,

ΠΠΠ⊥i = (ΠΠΠ⊥i )T = (ΠΠΠ⊥i )2. Similarly, we have ‖rrri−1
k ‖2 = aaaT

kΠΠΠ⊥i−1aaak where

ΠΠΠi−1 = BBBi−1

(
BBBT
i−1BBBi−1

)−1
BBBT
i−1. (4.74)

Plugging BBBi = [BBBi−1, bbbi] into (4.71) and using the block matrix inversion formula [140],

we obtain

ΠΠΠi = ΠΠΠi−1 + ρiΠΠΠ
⊥
i−1bbbibbb

T
i ΠΠΠ⊥i−1 (4.75)

and

ΠΠΠ⊥i = ΠΠΠ⊥i−1 − ρiΠΠΠ⊥i−1bbbibbb
T
i ΠΠΠ⊥i−1 (4.76)

after some tedious but straightforward derivations, where

ρi =
1

bbbT
i ΠΠΠ⊥i−1bbbi

. (4.77)



4.4 Convergence Analysis 97

Now we prove ρi > 1. The non-expansive property of projection onto convex sets2 [79]

elicits

bbbT
i ΠΠΠ⊥i−1bbbi = ‖ΠΠΠ⊥i−1bbbi‖2 ≤ ‖bbbi‖2 = 1 (4.78)

where ‖bbbi‖2 = 1 is due to (4.39). Only when bbbi is orthogonal to range(BBBi) or 〈bbbi, bbbl〉 = 0

for all l = 1, · · · , i− 1, ‖ΠΠΠ⊥i−1bbbi‖2 = ‖bbbi‖2 happens and ρi = 1 in this case. Since

〈bbbi, bbbl〉 =
〈
uuuivvv

T
i ,uuulvvv

T
l

〉
= 〈uuui,uuul〉〈vvvi, vvvl〉 (4.79)

〈bbbi, bbbl〉 = 0 implies 〈uuui, vvvl〉 = 0 or 〈vvvi, vvvl〉 = 0 for all l = 1, · · · , i − 1. However, unlike

the orthogonal requirement in the GLRAM, we never perform orthogonalization to the

columns of UUU or VVV . For random matrices or matrices containing random components,

the probability of 〈uuui, vvvl〉 = 0 or 〈vvvi, vvvl〉 = 0 is zero. Hence, we have ‖ΠΠΠ⊥i−1bbbi‖2 < ‖bbbi‖2

and ρi > 1 in general. The cosine of the angle between bbbi and the subspace range(BBB⊥i−1)

is

cosφi =

〈
bbbi,ΠΠΠ

⊥
i−1bbbi

〉
‖bbbi‖‖ΠΠΠ⊥i−1bbbi‖

= ‖ΠΠΠ⊥i−1bbbi‖ =
1√
ρi

(4.80)

where we have used
〈
bbbi,ΠΠΠ

⊥
i−1bbbi

〉
= bbbT

i ΠΠΠ⊥i−1bbbi = ‖ΠΠΠ⊥i−1bbbi‖2 and ‖bbbi‖ = 1. Hence,

ρi =
1

cos2 φi
=

1

sin2 θi
(4.81)

where θi is the angle between bbbi and the subspace range(BBBi−1) and clearly it has θi+φi =

π/2 since range(BBB⊥i−1) is the orthogonal compliment of range(BBBi−1).

By (4.76), it follows that

aaaT
kΠΠΠ⊥i aaak = aaaT

kΠΠΠ⊥i−1aaak − ρiaaaT
kΠΠΠ⊥i−1bbbibbb

T
i ΠΠΠ⊥i−1aaak (4.82)

Substituting (4.70) and (4.73) into (4.82) yields

‖rrrik‖2 = ‖rrri−1
k ‖2 − ρi

(
bbbT
i rrr

i−1
k

)2
. (4.83)

Since
bbbT
i rrr

i−1
k =

〈
bbbi, rrr

i−1
k

〉
=
〈
uuuivvv

T
i ,RRR

i−1
k

〉
= tr

(
vvviuuu

T
i RRR

i−1
k

)
= uuuT

i RRR
i−1
k vvvi

(4.84)

(4.83) in the form of vector is equivalent to the following matrix form

‖RRRi
k‖2

F = ‖RRRi−1
k ‖2

F − ρi
(
uuuT
i RRR

i−1
k vvvi

)2

which completes the proof. �

2Denote the projection onto a convex set C as ΠΠΠC(·). The non-expansiveness states that ‖ΠΠΠC(bbb)‖ ≤
‖bbb‖ is true for any vector bbb [79]. Since range(BBBi−1) is a subspace and also a convex set, the projections
ΠΠΠi−1 and ΠΠΠ⊥i−1 are non-expansive.
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Proof of Theorem 4. Now we are ready to prove Theorem 4. Summing (4.68) in Lemma

2 from k = 1 to K and using the key inequality (4.50) in Lemma 1 leads to

K∑
k=1

‖RRRi
k‖2

F =
K∑
k=1

‖RRRi−1
k ‖2

F − ρi
K∑
k=1

(
uuuT
i RRR

i−1
k vvvi

)2

≤
K∑
k=1

‖RRRi−1
k ‖2

F −
ρi

min(m,n)K

K∑
k=1

‖RRRi−1
k ‖2

F

=

(
1− ρi

min(m,n)K

) K∑
k=1

‖RRRi−1
k ‖2

F

(4.85)

which holds true for i, i− 1, · · · , 2. Successively applying (4.85) results in

K∑
k=1

‖RRRi
k‖2

F ≤
i∏
l=2

(
1− ρl

min(m,n)K

) K∑
k=1

‖RRR1
k‖2

F

≤
(

1− ρ

min(m,n)K

)i−1 K∑
k=1

‖RRR1
k‖2

F

= γi−1
OGP

K∑
k=1

‖RRR1
k‖2

F

(4.86)

where ρ = min{ρ2, · · · , ρi} and ρ > 1. For i = 1, the OGP is the same as GP and thus

the reconstruction error obeys

K∑
k=1

‖RRR1
k‖2

F ≤ γGP

K∑
k=1

‖AAAk‖2
F. (4.87)

Combining (4.86) and (4.87) yields (4.66). �

From the second iteration (i ≥ 2), the OGP converges faster than the GP because of

γOGP < γGP. The acceleration ratio depends on ρ. The larger ρ, the faster the OGP

is. Furthermore, the OGP has finite convergence property, as stated in the following

theorem.

Theorem 5 The current residual matrices {RRRi
k}Kk=1 generated by the OGP are orthog-

onal to all rank-one matrices
{
uuulvvv

T
l

}i
l=1

that have been chosen. These selected rank-one

matrices are linearly independent with each other. The reconstruction error of the OGP

will be zero after at most mn iterations.

Proof. Two matrices AAA and BBB are orthogonal if their inner product 〈AAA,BBB〉 = 0, or

equivalently, 〈vec(AAA), vec(BBB)〉 = 0. According to (4.70), it follows that

BBBT
i rrr

i
k = −BBBT

i ΠΠΠ⊥i aaak = 000, k = 1, · · · , K (4.88)
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where BBBT
i ΠΠΠ⊥i = 000 is used, which is obviously true because ΠΠΠ⊥i is the projection onto

the orthogonal complement of range(BBBi). Then, (4.88) amounts to 〈bbbl, rrrik〉 = 0 or〈
uuulvvv

T
l ,RRR

i
k

〉
= 0, for l = 1, · · · , i. This completes the proof of {RRRi

k}Kk=1 being orthogonal

to
{
uuulvvv

T
l

}i
l=1

. To prove that
{
uuulvvv

T
l

}
are linearly independent with each other, we only

need to prove the rank-one matrix obtained in the next iteration is linearly independent

of all rank-one matrices in previous iterations. Now, we prove uuui+1vvv
T
i+1 is linearly

independent of
{
uuulvvv

T
l

}i
l=1

by contradiction. Suppose that uuui+1vvv
T
i+1 is linearly dependent

of
{
uuulvvv

T
l

}i
l=1

. Then, it can be represented by the linear combination of
{
uuulvvv

T
l

}i
l=1

, i.e.,

uuui+1vvv
T
i+1 =

∑i
l=1 αluuulvvv

T
l with αl ∈ R. The inner product

〈
uuui+1vvv

T
i+1,RRR

i
k

〉
=

i∑
l=1

αl
〈
uuulvvv

T
l ,RRR

i
k

〉
= 0 (4.89)

implies uuuT
i+1RRR

i
kvvvi+1 = 0 for k = 1, · · · , K as well as

∑K
k=1

(
uuuT
i+1RRR

i
kvvvi+1

)2
= 0. According

to (4.21), the OGP selects (uuui+1, vvvi+1) such that

(uuui+1, vvvi+1) = arg max
‖uuu‖=‖vvv‖=1

K∑
k=1

(
uuuTRRRi

kvvv
)2
. (4.90)

But
∑K

k=1

(
uuuT
i+1RRR

i
kvvvi+1

)2
= 0 attains the minimum value 0 due to the assumption that

uuui+1vvv
T
i+1 is linearly dependent of

{
uuulvvv

T
l

}i
l=1

. This case only happens when all residual

matrices {RRRi
k}Kk=1 vanish and the reconstruction error becomes zero. In this case,

the algorithm has already converged and terminated. Otherwise, it contradicts. We

complete the proof that
{
uuulvvv

T
l

}
l

or
{
bbbl = vec(uuulvvv

T
l )
}
l

are linearly independent with

each other provided that any residual matrix does not vanish. After i = mn iterations,

BBBi contains mn linearly independent columns which span the whole space of Rmn.

Then, the residual rrrik = −ΠΠΠ⊥i aaak = 000 due to ΠΠΠ⊥i = 000, which also implies RRRi
k = 000 and∑K

k=1 ‖RRRi
k‖2

F = 0 after at most mn iterations. �

In practical applications, mn is usually very large. Generally, a target rank r � mn

is enough to capture the low-rank structure of natural images and achieves a small

reconstruction error.

4.5 Experimental Results

All experiments are conducted using a computer with a 2.2 GHz CPU and 4 GB

memory. In addition to synthetic random data, the following four real-world databases,

including two face datasets, one dataset of handwritten digits and one object dataset,

are employed.
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• ORL face database [141]. It consists of 10 different images of each of 40 distinct

subjects for a total of 400 images. The resolution of the gray-scale images is

112×92 and we have m = 92, n = 112, and K = 400.

• Georgia Tech face database [142]. It contains 750 images of 50 individuals. There

are 15 images for each individual. The original images are colored and with

different sizes. We convert them to gray-scale with the same size of 111×156

so that they can be represented by matrices. We have m = 156, n = 111, and

K = 750.

• MNIST database of handwritten digits [143]. It is composed of images of digits 0

to 9 written by 500 different people. There are 70,000 images with size of 28×28

in total while here we select a smaller subset of 2000 samples, which results in

m = n = 28 and K = 2000.

• COIL-20 database [144]. There are 1440 gray-scale images of 20 different objects,

which corresponds to 72 images per object. The image resolution is 128×128 and

it follows m = n = 128 and K = 1440.

4.5.1 Convergence Behaviors

The convergence behaviors are investigated. First random data are used. We set

m = 100, n = 120, and K = 15. A set of noise-free matrices of rank 10 is generated

by AAAk = UUUSSSkVVV
T, k = 1, · · · , K, where the entries of UUU ∈ Rm×10 and VVV ∈ R10×n

satisfy the standard Gaussian distribution while the diagonal entries of SSSk are uniformly

distributed in [1, 2] to avoid any diagonal entry being too close to zero.

Figure 4.2 plots the NRE of (4.13) versus iteration number for noise-free case. We see

that the reconstruction error rapidly decreases when the iteration number is not larger

than the rank. The reconstruction error approaches zero as the iteration proceeds. The

OGP converges fastest while the EGP converges slowest, although all of them have

linear convergence rates. Then, the noise matrices NNNk whose entries are independent

and identically distributed Gaussian with variance σ2
n are added to AAAk. The signal-

to-noise ratio (SNR) is defined as SNR =
(∑K

k=1 ‖AAAk‖2
F

)
/(mnKσ2

n). In the presence

of noise, the oracle bound of the NRE is dominated by the noise level. Figure 4.3

shows the NRE as well as the oracle bound versus iteration number at SNRs of 10,

20, and 30 dB. The oracle bounds equal the reciprocal of the SNRs. As we see,

the reconstruction error rapidly decreases when i ≤ 10. After approaching the oracle

bounds, the NREs decrease slowly. This means that the greedy methods have captured
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Figure 4.2: NRE versus iteration number using random data for noise-free case.

the dominating low-rank structure and the iteration procedure can be stopped since

little improvement will be achieved due to the impact of the noise.

Figure 4.4 shows the NREs versus iteration number on the four real-world image

databases. It is observed that the three greedy algorithms significantly decrease the

reconstruction error at the beginning stage. This implies that these real-world im-

ages exhibit several “principal components” and the proposed methods successfully

find these components although they are not strictly low-rank. The maximum itera-

tion numbers r are set to 149, 231, 53, and 378 for the ORL face, Georgia Tech face,

MNIST, and COIL-20 databases, respectively. To achieve a sufficiently small recon-

struction error, the maximum iteration number r needs to be larger than min(m,n)

but we still have r � mn. Again, the OGP has the fastest convergence rate while the

EGP is the slowest one.

4.5.2 Results of Image Reconstruction

The reconstruction performances of the three greedy algorithms are compared with the

PCA, 2DPCA, and GLARM. For fair comparison, the NREs of the six methods are

computed under the same (or close) compression ratios. According to Table I, r1, r2, r3,

and r4, which denote the target ranks of PCA, 2DPCA, GLARM, and GP/EGP/OGP,
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Figure 4.3: NRE versus iteration number using random data in Gaussian noise at
SNRs of 10, 20, and 30 dB.
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Figure 4.4: NRE versus iteration number on ORL face, Georgia Tech face, MNIST
handwritten digit, and COIL-20 databases.
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Reconstruction on ORL database
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GLRAM

Original

EGP

OGP

PCA

GP

Figure 4.5: Samples of reconstructed images on ORL face database. The compression
ratios of the PCA, 2DPCA, GLARM, and EGP/GP/OGP are 48.1, 45.9, 44.3, and 45.8
corresponding to the ranks of 8, 2, 15, and 149. The NREs of the above six methods
are 4.56 × 10−2, 5.02 × 10−2, 1.63 × 10−2, 2.75 × 10−2, 1.82 × 10−2, and 1.66 × 10−2,
respectively.

respectively, should satisfy

(mn+K + 1)r1 = (mK + n)r2

= (m+ n+Kr3)r3 = (m+ n+K)r4.
(4.91)

to make the compression ratios of the six methods the same. Noting that r1, · · · , r4 are

positive integers, (4.91) may not be strictly satisfied. We select the positive integers

such that the compression ratios are as close as possible.

Figures 4.5, 4.6, 4.7, and 4.8 display several samples of the reconstructed images ob-

tained by the six algorithms on the ORL face, Georgia Tech face, MNIST, and COIL-

20 databases, respectively. The corresponding samples of the original images are also

shown for comparison. Obviously, the three greedy algorithms have much smaller recon-

struction error than the PCA and 2DPCA under similar compression ratios. In other

words, the greedy methods can achieve higher compression ratio if the reconstruction

errors are constrained to the same. This is because the reconstruction error monotoni-

cally increases with the compression ratio. In general, the GP, OGP and GLRAM have

comparable performance. Note that for the COIL-20 database, the NRE of the OGP,

9.70× 10−3, is moderately smaller than that of the GLRAM, 1.22× 10−2, while their

compression ratios are nearly the same.
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Reconstruction on GeorgiaTech database
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Figure 4.6: Samples of reconstructed images on Georgia Tech face database. The
compression ratios of the PCA, 2DPCA, GLARM, and EGP/GP/OGP are 55.3, 55.4,
58.7, and 55.5 corresponding to the ranks of 13, 2, 17, and 230. The NREs of the above
six methods are 5.51 × 10−2, 6.69 × 10−2, 1.82 × 10−2, 3.15 × 10−2, 1.94 × 10−2, and
1.72 × 10−2, respectively. A compression ratio of 55.5 implies that only 1.8% storage
space of the original data is needed after compression.

Reconstruction on MNIST database

Original
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EGP
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OGP

Figure 4.7: Samples of reconstructed images on MNIST database of handwritten
digits. The compression ratios of the PCA, 2DPCA, GLARM, and EGP/GP/OGP
are 14.1, 14.0, 15.9, and 13.9 corresponding to the ranks of 40, 2, 7 and 55. The NREs
of the above six methods are 0.129, 0.363, 0.15, 0.218, 0.128, and 0.117, respectively.
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Reconstruction on COIL−20 database
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EGP

GP

OGP

Figure 4.8: Samples of reconstructed images on COIL-20 database of objectives. The
compression ratios of the PCA, 2DPCA, GLARM, and EGP/GP/OGP are 31.3, 32.0,
33.3, and 32.0 corresponding to the ranks of 22, 4, 22, and 378. The NREs of the above
six methods are 3.45 × 10−2, 4.63 × 10−2, 1.22 × 10−2, 2.29 × 10−2, 1.17 × 10−2, and
9.70× 10−3, respectively.

We then investigate how the reconstruction error varies with the compression ratio.

Figure 4.9 plots the NREs of the six methods versus compression ratio on the four im-

age databases. The reconstruction errors of all schemes monotonically increase with the

compression ratio. The OGP has the best reconstruction performance for all databases.

The GP and GLRAM have similar performance as the OGP. Despite the low compu-

tational cost of the 2DPCA, its performance is not satisfactory because it only uses a

single side transform resulting limited compression capability. Note that for the MNIST

database, the performance of the PCA is good and comparable to the GLRAM, GP,

and OGP, where mn = 788 is less than K = 2000. For other three databases where

mn � K, the performance of the PCA has a large gap compared with the GLRAM

and greedy methods. Therefore, for high-dimensional data with very large mn, the

advantage of 2D based methods over the vectorization based one is more evident.

4.5.3 Results of Face Recognition

Figure 4.10 plots the recognition rate versus compression ratio on the ORL face

database. The 60% samples of each class are randomly selected as training samples

while the remaining 40% are used for test samples. The six methods learn the low-

rank structure using the training set and then the NN classifier is employed to the test



106 Chapter 4: Greedy Pursuit for Approximation of Multiple Matrices in `2-Space

20 40 60 80 100
0

0.02

0.04

0.06

0.08

Compression ratio

N
R

E

ORL face database

 

 
PCA
2DPCA
GLRAM
EGP
GP
OGP

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

Compression ratio

N
R

E

Georgia Tech face database

 

 

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Compression ratio

N
R

E

MNIST handwritten digit database

 

 

20 40 60 80 100 120 138
0

0.05

0.1

0.15

Compression ratio

N
R

E

COIL−20 database

 

 

Figure 4.9: NREs of PCA, 2DPCA, GLARM, EGP, GP and OGP versus compression
ratio on four real-world databases.
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Figure 4.10: Recognition rate versus compression ratio on ORL face database.

samples. We observe that the performance of the PCA is the worst for classification.

The performances of the other five methods are similar for small compression ratios.

For large compression ratios, the 2DPCA becomes slightly worse. It is also seen that

the recognition performance is not so sensitive to the compression ratio or reduced

dimension.

4.6 Summary

Three greedy algorithms, namely, GP, EGP, and OGP are devised for LRAMM. They

are scalable to the problem size and achieve a higher compression ratio. We also

develop the corresponding convergence theories of the three algorithms. We prove that

the reconstruction errors of the three algorithms decay exponentially. The lower bound

of the worst-case convergence rate is derived. The acceleration mechanism of the OGP

over GP is revealed and quantitatively determined. Furthermore, the finite convergence

property of the OGP is proved.
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Chapter 5

`p-Greedy Pursuit for Robust
Approximation of Multiple Matrices

In Chapter 4, we have discussed three greedy pursuit algorithms for multiple matrix

approximation. Compared with the vectorization based methods such as PCA, the

GP, EGP and OGP for LRAMM are more “robust” to the 2D data structure and

provide higher compression ratio by directly handling multiple matrices. However,

they are not robust to outliers. In this Chapter, the GP algorithm is generalized

from the `2-space to `p-space with 0 < p < 2 to enhance the outlier-robustness. We

propose `p-greedy pursuit (`p-GP) algorithms for robust low-rank approximation of

multiple matrices (RLRAMM). The `p-GP with p ∈ (0, 2) solves the RLRAMM by

decomposing it into a series of rank-one approximations. At each iteration, it finds the

best rank-one approximation by minimizing the `p-norm of the residual and then, the

rank-one basis matrices are subtracted from the residual. A successive minimization

approach is designed for the `p-rank-one fitting. Only computation of weighted medians

is required for solving the most attractive case with p = 1, yielding that the complexity

is near-linear with the number and dimension of the matrices. Thus, the `1-GP is near-

scalable to large-scale problems. The convergence of the `p-GP is theoretically proved.

In particular, the sum of the `p-norms of the residuals decays exponentially. We reveal

that the worst-case bound of the exponential decay factor or convergence rate is related

to the `p-correlation of the residual and the current iterates. Experimental results on

image reconstruction with outliers demonstrate the super robustness of the `p-GP.

5.1 Introduction

A flaw of the square loss based low-rank approximation techniques, including the PCA,

2DPCA, GLRAM, and GP, is that it is not robust to outliers or impulsive noise. To

enhance the robustness, the convex and nonconvex RPCAs [32,38] aims to separate the

low-rank component from the sparse outliers. The RPCA requires to solve a minimiza-

tion of the sum of nuclear norm and `1-norm, which leads to a high time complexity. To

avoid the computationally expensive nuclear norm minimization, the robust low-rank

approximation approach of Chapter 2 utilizes direct matrix factorization, where the

target matrix is represented by the product of two or more matrices with smaller sizes

so that the low-rank constraint is automatically fulfilled. Nevertheless, the algorithms



110 Chapter 5: `p-Greedy Pursuit for Robust Approximation of Multiple Matrices

of Chapter 2 are designed for a single matrix and hence, cannot be applied to directly

handle multiple matrices.

This chapter addresses robustly learning the common low-rank structure of multiple

matrices in the presence of outliers. Our proposed RLRAMM can be viewed as an

extension of the RPCA from single matrix to multiple matrices. It can be viewed as

a robust version of the techniques of Chapter 4 as well. As in the 2DPCA, GLRAM

and 2D-SVD, the RLRAMM does not convert matrices into vectors and thus can avoid

processing the matrix with much larger size. Different from the GLRAM and 2D-SVD,

the RLRAMM achieves a nonorthogonal but joint diagonal decomposition of multiple

matrices, which leads to a more compact representation and a higher compression

ratio. An `p-GP algorithm based on the minimization of the sum of the entry-wise

`p-norms (0 < p < 2) of the residuals is designed for this robust learning task. The

linear convergence of `p-GP is theoretically proved and the worst-case bound of the

convergence rate is derived in terms of `p-correlation.

5.2 Problem Formulation and Preliminaries

5.2.1 Problem Formulation

Given a set of matrices {AAA1, · · · ,AAAK} ∈ Rm×n, we consider finding a low-rank approx-

imation of the K matrices

AAAk ≈ UUUSSSkVVV T, k = 1, · · · , K (5.1)

where UUU ∈ Rm×r, VVV ∈ Rn×r, and the diagonal matrix SSSk ∈ Rr×r is

SSSk = diag{sk,1, · · · , sk,r}

with r being the target “rank”. Here we allow that r > min(m,n) but generally

r ≤ mn is required. Note that r is not the rank if r > min(m,n), but we still use the

name of “low-rank approximation”. As we will see later, (5.1) can still achieve data

compression even when r > min(m,n). Note that UUU and VVV are the same for all k but

SSSk can be different with each other. The columns of UUU and VVV span the r-dimensional

subspaces of the column and row spaces of {AAAk}Kk=1. If the matrices are not strictly

low-rank or there exists noise/outlier, we solve the following minimization problem

min
UUU,VVV ,{SSSk}Kk=1

K∑
k=1

∥∥UUUSSSkVVV T −AAAk
∥∥p
p

(5.2)
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to obtain the low-rank approximation, where ‖·‖p with 0 < p ≤ 2 denotes the element-

wise `p-norm of a matrix, which has the form of

‖AAA‖p =

(∑
i,j

|AAAij|p
)1/p

.

Note that (5.2) is nonconvex even for p ≥ 1 due to the product term UUUSSSkVVV
T. For

p = 2, ‖ · ‖p becomes the Frobenius norm and it is suitable for noise-free or Gaussian

noise case, which has been discussed in Chapter 4. A benefit of using the Frobenius

norm is the computational convenience. However, this choice is not robust to outliers.

To achieve outlier-robustness, we consider the use of 0 < p < 2, especially p = 1. For

p ≤ 1, (5.2) becomes more challenging since the `p-norm is nonsmooth in the case.

One application of the above low-rank approximation is for robust data compression.

Obviously, it requires mnK real numbers to store the K original matrices. Using the

low-rank approximation of (5.2), the storage complexity is reduced to (m + n + K)r

numbers since only UUU , VVV , and the diagonal elements of {SSSk}Kk=1 are needed to store.

Thus, the compression ratio of our RLRAMM is mnK/((m + n + K)r). This implies

that (5.1) can still achieve data compression when r > min(m,n) if r � mn. Indeed,

the compression ratio and reconstruction error decrease as r increases. To guarantee a

satisfying reconstruction error, we may use a r > min(m,n). Recall that the GLRAM

[16] requires UUU and VVV to be orthonormal, i.e., UUUTUUU = VVV TVVV = IIIr, which results in that

r ≤ min(m,n) must be satisfied for GLRAM.

Denoting the ith (i = 1, · · · , r) columns of UUU and VVV as uuui and vvvi, respectively, (5.2) is

rewritten as

min
{sssi,uuui,vvvi}

K∑
k=1

∥∥∥∥∥
r∑
i=1

sk,iuuuivvv
T
i −AAAk

∥∥∥∥∥
p

p

(5.3)

where the vector

sssi = [s1,i, · · · , sK,i]T ∈ RK . (5.4)

If p = 2 and the number of matrices is K = 1, the solution of (5.2) is the truncated

SVD of AAA1 by Eckart-Young Theorem [26]. That is, {s1,i}ri=1 are the r largest singular

values of AAA1, and {uuui}ri=1 and {vvvi}ri=1 are the corresponding left and right singular

vectors, respectively. When p 6= 2 or the number of matrices is K > 1, the truncated

SVD cannot be applied to solving (5.3). The goal of this chapter is to devise greedy

pursuit algorithms for efficiently solving (5.3).
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5.2.2 RPCA for Multiple Matrix Approximation

The PCA, 2DPCA and GLRAM for low-rank representation have been discussed in

Chapter 4. They are not robust to outliers since they are based on Frobenius norm

minimization. Here we review the RPCA. Like the PCA, the RPCA cannot directly

handle multiple matrices whereas each matrix needs to be converted into a vector

aaak = vec(AAAk) ∈ Rmn. Then, the K vectors {aaak}Kk=1 form the columns of following data

matrix

XXX = [aaa1, · · · , aaaK ] ∈ Rmn×K . (5.5)

The RPCA achieves robustness against outliers by modeling the matrix XXX as the

superposition of a low-rank matrix and a sparse matrix which represents the outliers

[32, 33]. It minimizes the nuclear norm of the unknown low-rank matrix plus the `1-

norm of the outlier component as a regularization term to robustly recover the low-rank

matrix:
min
LLL,OOO
‖LLL‖∗ + α‖OOO‖1

s.t. LLL+OOO = XXX
(5.6)

where α > 0 is the regularization parameter that needs to estimate in practice. The

nuclear norm, which is the convex envelop of the rank, prompts low-rank while the

`1-norm encourages sparsity. Although (5.6) is a convex optimization and the global

minimum is guaranteed, it has a high computational cost even fast algorithms are

employed because the full SVD to an mn × K matrix is required at each iteration

[32,33,37]. The complexity of the full SVD is O(max3(mn2, K)). After separating the

outlier component OOO, the truncated SVD may be required to the “clean” data matrix

LLL to ensure the rank to be r to achieve data compression or dimensionality reduction,

where r is usually taken as r � min(mn,K). Then, the reconstruction given by the

RPCA is

X̂XX =
r∑
l=1

σl(LLL)yyylzzz
T
l

where σl(LLL) is the lth singular value of LLL while yyyl ∈ Rmn and zzzl ∈ RK are the corre-

sponding left and right singular vectors. In data compression, it only needs to store the

so-called “principal components”, i.e., the largest r singular values and the correspond-

ing singular vectors {σl(LLL), yyyl, zzzl}rl=1. Clearly, the compression ratio of the RPCA is

the same as the PCA, which is mnK/((mn+K + 1)r). Although the RPCA achieves

outlier-robustness, it belongs to the vectorization based methods and thus, needs to

handle a matrix of a much larger size due to transforming the original matrix into a

long vector. Also, the RPCA breaks the 2D structure and the innate relation between

row and column due to vectorization.
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5.3 Greedy Pursuit Algorithms in `p-Space

The idea of greedy algorithms is to decompose the r-term approximation into a series

of rank-one approximations. At each iteration, the greedy algorithms perform robust

rank-one approximation in `p-space of the residual matrices obtained from the previous

iteration. Then, the rank-one matrices are subtracted from the residual and never

revisited.

5.3.1 Greedy Pursuit in `p-Space

The `p-GP for RLRAMM is described in Algorithm 9. It works in an iterative fashion.

We use (sssi,uuui, vvvi) and {RRRi
k}

K

k=1 to denote the solution and the K residual matrices,

respectively, at the ith iteration. In the ith iteration, the GP finds rank-one approxi-

mation of
{
RRRi−1
k

}K
k=1

, which is formally expressed as

min f(sss,uuu,vvv) :=
K∑
k=1

∥∥skuuuvvvT −RRRi−1
k

∥∥p
p

(5.7)

where sss = [s1, · · · , sK ]T collects the K variables {sk}Kk=1 to be optimized. The optimal

solution of (5.7) is taken as the solution of the ith iteration, which is denoted as

(sssi,uuui, vvvi). In some applications where the target rank r is given or can be estimated,

the algorithm is terminated when i > r. If the target rank is unavailable, the normalized

objective function, i.e., the sum of the pth power of the `p-norms of the K residual

matrices ∑K
k=1 ‖RRRi

k‖pp∑K
k=1 ‖AAAk‖pp

≤ δ (5.8)

is adopted instead as the stopping criterion, where δ > 0 is the tolerance. In Section 5.4,

we will prove that the sequence
{∑K

k=1 ‖RRRi
k‖pp
}
i

converges to zero with an exponential

rate. Therefore, (5.8) is well defined for any δ > 0.

The remaining problem is how to efficiently solve the rank-one approximation of multi-

ple matrices in the sense of `p-minimization, which is described in the next subsection.

5.3.2 Solution to `p-Rank-One Fitting

For the purpose of notational simplicity, we omit the superscript (·)i−1 of RRRi−1
k and

rewrite (5.7) as

min f(sss,uuu,vvv) :=
K∑
k=1

∥∥skuuuvvvT −RRRk

∥∥p
p

(5.11)
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Algorithm 9 `p-GP for RLRAMM

Input: Matrices {AAAk}Kk=1 and target rank r.
Initialization: Set residual RRR0

k = AAAk for k = 1, · · · , K.

for i = 1, 2, · · · , r do
Solve `p-rank-one fitting

(sssi,uuui, vvvi) = arg min
(sss,uuu,vvv)

K∑
k=1

∥∥skuuuvvvT −RRRi−1
k

∥∥p
p
. (5.9)

Update residual
RRRi
k = RRRi−1

k − sk,iuuuivvvT
i , k = 1, · · · , K. (5.10)

end for
Output: UUU = [uuu1, · · · ,uuur], VVV = [vvv1, · · · , vvvr], and {sssi}ri=1.

which is not easy to solve since the product term skuuuvvv
T is nonconvex and the `p-norm

is nonsmooth when p ≤ 1. The task of (5.11) is to robustly find the common dominant

(rank-one) principal component of {RRRk}Kk=1. By observing that there are three vectors

to be optimized in (5.11), we use successive minimization strategy to solve it. That

is, the objective function is minimized over one vector while the other two vectors are

fixed. To be more specific, at the (j + 1)th (j = 0, 1, · · · ) iteration, f is successively

minimized over sss, uuu, and vvv:

sssj+1 = arg min
sss
f(sss,uuuj, vvvj) (5.12)

uuuj+1 = arg min
uuu
f(sssj+1,uuu,vvvj) (5.13)

vvvj+1 = arg min
vvv
f(uuuj+1, sssj+1, vvv). (5.14)

Observing that {sk}Kk=1 are decoupled with each other and can be solved independently,

for fixed uuuj and vvvj, the optimal sk minimizing the kth term of (5.11) is given by

sj+1
k = arg min

sk∈R

∥∥skuuuj(vvvj)T −RRRk

∥∥p
p

which amounts to the following scalar minimization problem

sj+1
k = arg min

sk∈R

∥∥skbbbj − rrrk∥∥pp (5.15)

where rrrk = vec(RRRk) ∈ Rmn and bbbj = vec
(
uuuj(vvvj)T

)
∈ Rmn. When p = 2, sj+1

k has the

following closed-form solution

sj+1
k =

〈bbbj, rrrk〉
〈bbbj, bbbj〉 =

(uuuj)TRRRkvvv
j

‖uuuj‖2‖vvvj‖2



5.3 Greedy Pursuit Algorithms in `p-Space 115

which merely needs O(mn) operations. When p = 1, denoting the lth elements of bbbj

and rrrk as bbbj(l) and rrrk(l), respectively, (5.15) is rewritten as

min
sk

mn∑
l=1

∣∣bbbj(l)∣∣∣∣∣∣sk − rrrk(l)

bbbj(l)

∣∣∣∣ (5.16)

where |bbbj(l)| > 0 is the positive weight1. Defining a new vector

tttk(l) =
rrrk(l)

bbbj(l)
, l = 1, · · · ,mn (5.17)

the optimal solution of (5.16) is the weighted median of tttk associated with the weight

|bbbj|. We use the notation

sj+1
k = WMED

(∣∣bbbj∣∣, tttk) (5.18)

to represent the weighted median, which can be computed by Algorithm 10 [135]. The

major operation in the weighted median calculation is to sort the weighting coeffi-

cients. Thus, the computational complexity for exactly solving (5.15) with p = 1 is

O(mn log(mn)) if the quick sorting algorithm is adopted.

Algorithm 10 Computation of Weighted Median

Input: Weight vector |bbbj| and data vector tttk.
Output: Weighted median sj+1

k = WMED(|bbbj|, tttk).

1. Determine the threshold b0 = ‖bbbj‖1/2.

2. Sort tttk in ascending order with the corresponding concomitant weight |bbbj|.

3. Sum the concomitant weights, beginning with |bbbj(1)| and increasing the order.

4. The weighted median is tttk(q) whose weight leads to the inequality
∑q

l=1|bbbj(l)| ≥
b0 to hold first.

When p > 1, (5.15) is a scalar convex optimization problem. Since the objective

function is twice differentiable and strictly convex, its unique global minimum can be

obtained by the gradient or Newton’s method. The complexity to obtain an ε-accuracy2

solution is at most O(mn log(1/ε)) because the gradient and Newton’s methods have a

global linear convergence rate at least for smooth convex optimization problems [145].

An algorithm with a complexity of O(m2n2) has been provided in Appendix A.1 to

1Note that the zero element of bbbj has no effect on the minimizer of (5.15). As a result, without
loss of generality, it is assumed that bbbj does not contain zero elements when finding the minimizer of
(5.15).

2The tolerance ε denotes the accuracy of a solution obtained by an iterative algorithm, which is a
small positive number, e.g., 10−6.
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exactly solve the more challenging case of 0 < p < 1, where the objective function is nei-

ther differentiable nor convex. In summary, the complexities for calculating
{
sj+1
k

}K
k=1

are O(mnK), O(mnK log(mn)), O(mnK log(1/ε)), and O(m2n2K) for p = 2, p = 1,

p ∈ (1, 2), and p ∈ (0, 1), respectively. The choice of p = 1 is more robust and computa-

tionally simpler than the setting of p ∈ (1, 2). In addition, the choice of p < 1 results in

a quadratic complexity and it is not preferred unless the noise is very impulsive. Thus,

it is preferred to choose p = 1 by taking into account both robustness and complexity.

Now we discuss how to solve (5.13). Denoting cccjk = sj+1
k vvvj ∈ Rn, (5.13) is rewritten as

min
uuu∈Rm

K∑
k=1

∥∥cccjkuuuT −RRRT
k

∥∥p
p

which amounts to the following m independent scalar minimization problems

min
ul∈R

K∑
k=1

∥∥cccjkul −RRRT
k (:, l)

∥∥p
p
, l = 1, · · · ,m

where ul is the lth entry of uuu and RRRT
k (:, l) stands for the lth column of RRRT

k . Defining

(cccj)T =
[
(cccj1)T, · · · , (cccjK)T

]
and collecting RRRT

1 (:, l), · · · ,RRRT
K(:, l) into a vector gggl ∈ RnK ,

ul is updated by

uj+1
l = arg min

ul∈R

∥∥ulcccj − gggl∥∥pp, l = 1, · · · ,m (5.19)

which can be solved with the use of the same method for solving (5.15). The complex-

ities for calculating
{
uj+1
l

}m
l=1

are O(mnK), O(mnK log(nK)), O(mnK log(1/ε)), and

O(mn2K2) for p = 2, p = 1, p ∈ (1, 2), and p ∈ (0, 1), respectively. Similarly, the qth

element of vvv, i.e., vq is updated by

vj+1
q = arg min

vq∈R

∥∥vqdddj − hhhq∥∥pp, q = 1, · · · , n (5.20)

where (dddj)T =
[
(dddj1)T, · · · , (dddjK)T

]
with dddjk = sj+1

k uuuj+1 ∈ Rm and hhhq ∈ RmK is formed

by concatenating RRR1(:, q), · · · ,RRRK(:, q). It is seen that the complexities for calculating{
vj+1
q

}n
l=1

are O(mnK), O(mnK log(mK)), O(mnK log(1/ε)), and O(m2nK2) for p =

2, p = 1, p ∈ (1, 2), and p ∈ (0, 1), respectively. The per-iteration costs of the `p-rank-

one approximation with p = 1 and p ∈ (0, 1) are

O(mnK(log(mn) + log(nK) + log(mK)))

= O
(
mnK log(m2n2k2)

)
= O(mnK log(mnK))

and
O
(
m2n2K +mn2K2 +m2nK2

)
= O(mnKmax2(m,n,K))
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Table 5.1: Compression ratio and computational complexity.

Method Compression ratio Complexity

PCA mnK
(mn+K+1)r

O(max(m2n2, K2)r)

RPCA mnK
(mn+K+1)r

O(max3(mn,K)NRPCA)

2DPCA mnK
(mK+n)r

O(mn2K)

GLRAM mnK
(m+n+Kr)r

O((m+ n)2KrNiter)

`2-GP mnK
(m+n+K)r

O(mnKrNiter)

`1-GP mnK
(m+n+K)r

O(mnK log(mnK)rNiter)

p ∈ (1, 2) mnK
(m+n+K)r

O(mnK log(1/ε)rNiter)

p ∈ (0, 1) mnK
(m+n+K)r

O(mnK max2(m,n,K)rNiter)

respectively. The algorithm for solving the rank-one fitting of multiple matrices of

(5.11) is summarized in Algorithm 11, where Niter is the number of iterations for

convergence. From the simulation results, Algorithm 11 converges fast. Typically,

several tens of iterations are enough to converge with high accuracy. Furthermore, Niter

can be viewed as a constant independent of the dimension. Since (5.11) is nonconvex,

the final convergence result relies on the initial values uuu0 and vvv0 theoretically. However,

we find that random initialization always achieves good performance. Thus, random

Gaussian vectors are adopted as the initial value in the numerical experiments.

The compression ratios and computational complexities of the PCA, RPCA, 2DPCA,

GLRAM, and `p-GP with different values of p are compared in Table I. We see that

the complexity of the most attractive setting of p = 1 is near-linear with the number

and dimension of the matrices. Thus, the `1-GP which exhibits good robustness to

outliers is near-scalable to problem size. The NRPCA is the number of iterations of the

ALM applied to solving the RPCA for convergence. It is known that the ALM is a

first-order method and its convergence rate is generally slow. Thus, NRPCA may be

large for attaining a satisfactory solution.

5.3.3 Selection of p

The optimal p relies on the statistical properties of the noise. In the presence of outliers,

p < 2 will bring a better performance than the most frequently used setting of p = 2.

Roughly speaking, to select a proper p from (0, 2), we need to consider the following

two aspects.
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Algorithm 11 `p-Rank-One Fitting of Multiple Matrices

Input: Matrices {RRRk}Kk=1.
Initialization: Set uuu0 and vvv0 randomly.

Form

rrrk = vec(RRRk), gggl =


RRRT

1 (:, l)
...

RRRT
K(:, l)

, hhhq =


RRR1(:, q)

...

RRRK(:, q)


for k = 1, · · · , K, l = 1, · · · ,m, and q = 1, · · · , n.
for j = 0, 1, 2, · · · do

Form bbbj = vec
(
uuuj(vvvj)T

)
.

Update sss:
sj+1
k = arg min

sk∈R

∥∥skbbbj − rrrk∥∥pp, k = 1, · · · , K.

Form (cccj)T =
[
(cccj1)T, · · · , (cccjK)T

]
with cccjk = sj+1

k vvvj.
Update uuu:

uj+1
l = arg min

ul∈R

∥∥ulcccj − gggl∥∥pp, l = 1, · · · ,m.

Form (dddj)T =
[
(dddj1)T, · · · , (dddjK)T

]
with dddjk = sj+1

k uuuj+1.
Update vvv:

vj+1
q = arg min

vq∈R

∥∥vqdddj − hhhq∥∥pp, q = 1, · · · , n.

Stop until convergence satisfies.
end for

Output: (sssj+1,uuuj+1, vvvj+1).
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1) Statistical perspective. The more impulsive the noise is, the smaller value of p

is preferred. If the noise is not so impulsive, the choice of 1 ≤ p < 2 is suitable.

If the noise is too impulsive and has a more spike-like property, p < 1 may be

required.

2) Computational perspective. As p decreases to zero, the nonconvexity and non-

smoothness of the `p-norm becomes stronger, which brings more difficulties in

minimization. The computational challenges induced by a very small p includes

increased probability of being trapped into local minima far away from the global

minimum and slow convergence rate. Therefore, it is not recommended to choose

p close to 0.

To summarize, choosing an appropriate p is a trade-off between the statistical and

computational aspects. It is preferred to choose p = 1 since the resultant subproblems

can be efficiently solved based on weighted medians and the `1-norm is quite robust

to outliers. If there is no prior information for the noise, we can resort to cross-

validation [31] to determine p.

5.4 Convergence Analysis

5.4.1 `p-Correlation

We use the concept of `p-correlation [135] to prove the convergence of the `p-GP. The

normalized `p-correlation coefficient of two vectors aaa and bbb is defined as

θp(aaa, bbb)
∆
= 1−

min
α∈R
‖bbb− αaaa‖pp
‖bbb‖pp

(5.21)

which satisfies 0 ≤ θp(aaa, bbb) ≤ 1. When θp(aaa, bbb) = 0, aaa and bbb are called `p-orthogonal

[135]. When θp(aaa, bbb) = 1, aaa and bbb are colinear, i.e., bbb = βaaa with β ∈ R. If aaa or bbb is

random, the probability of θp(aaa, bbb) = 0 or θp(aaa, bbb) = 1 is zero. That is, the probability

of 0 < θp(aaa, bbb) < 1 is 1 for random aaa and bbb. When p = 2, θp(aaa, bbb) has the closed-form

expression

θ2(aaa, bbb) =
〈aaa, bbb〉2
‖aaa‖2‖bbb‖2

that we are familiar with. The minimum is then formulated as{
min
α∈R
‖bbb− αaaa‖pp

}
= (1− θp(aaa, bbb))‖bbb‖pp. (5.22)
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The larger θp(aaa, bbb), the more “similar” (correlated) aaa and bbb are in the `p-space and the

smaller value {minα ‖bbb− αaaa‖pp} can attain. Armed with (5.22), we are ready to prove

the following descent lemma for convergence analysis. The lemma states that each

iteration of Algorithm 11 guarantees a decrease of the objective function.

5.4.2 Descent Lemma

Lemma 3 At the (j + 1)th iteration of Algorithm 11 for solving the rank-one approx-

imation to
{
RRRi−1
k

}K
k=1

, the objective function achieves a decrease of

f(sssj+1,uuuj+1, vvvj+1) ≤ ζji−1

K∑
k=1

‖RRRi−1
k ‖pp (5.23)

where 0 < ζji−1 < 1 is the decay factor of the (j + 1)th iteration, whose subscript (·)i−1

implies that its value relates to
{
RRRi−1
k

}K
k=1

. Algorithm 11 monotonically decreases the

objective function indicates that
{
ζji−1

}
is a monotonically decreasing sequence. After

j = Niter or j →∞ iterations, the minimum that Algorithm 11 finds is guaranteed as

K∑
k=1

‖RRRi
k‖pp = min

sss,uuu,vvv
f(sss,uuu,vvv)

≤ ζi−1

K∑
k=1

‖RRRi−1
k ‖pp

(5.24)

with ζi−1 = ζNiter
i−1 or ζi−1 = lim

j→∞
ζji−1 and 0 < ζi−1 < 1.

Proof. It is seen that minimizing f with respect to sss at the jth iteration in Algorithm

11 yields {
min
sss∈RK

f(sss,uuuj, vvvj)

}
=

K∑
k=1

min
sk∈R

∥∥skbbbj − rrrk∥∥pp
=

K∑
k=1

(
1− θp

(
bbbj, rrrk

))
‖rrrk‖pp

≤ αp
(
bbbj
) K∑
k=1

‖rrrk‖pp

= αp
(
bbbj
) K∑
k=1

‖RRRi−1
k ‖pp

(5.25)

where

αp
(
bbbj
)

= max
1≤k≤K

(
1− θp

(
bbbj, rrrk

))
(5.26)
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and ‖rrrk‖pp = ‖RRRi−1
k ‖pp due to rrrk = vec(RRRi−1

k ). Observing that bbbj is random since the

initialization is random, we have 1 < θp(bbb
j, rrrk) < 1 and thus, 0 < αp(bbb

j) < 1. This

yields a strict decrease of the objective function. Similarly, minimizing f with respect

to uuu leads to {
min
uuu∈Rm

f(sssj+1,uuu,vvvj)

}
=

m∑
l=1

min
ul∈R

∥∥ulcccj − gggl∥∥pp
=

m∑
l=1

(
1− θp

(
cccj, gggl

))
‖gggl‖pp

≤ βp
(
cccj
) m∑
l=1

‖gggl‖pp

= βp
(
cccj
) K∑
k=1

‖RRRi−1
k ‖pp

(5.27)

where

βp
(
cccj
)

= max
1≤l≤m

(
1− θp

(
cccj, gggl

))
(5.28)

and
∑m

l=1 ‖gggl‖pp =
∑K

k=1 ‖RRRi−1
k ‖pp has been used. Again, 0 < βp(ccc

j) < 1 leads to a strict

decrease of the objective function. Minimizing f with respect to vvv results in{
min
vvv∈Rn

f(sssj+1,uuuj+1, vvv)

}
=

n∑
q=1

min
vq∈R

∥∥vqdddj − hhhq∥∥pp
=

n∑
q=1

(
1− θp

(
dddj,hhhq

))
‖hhhq‖pp

≤ γp
(
dddj
) n∑
q=1

‖hhhq‖pp

= γp
(
dddj
) K∑
k=1

‖RRRi−1
k ‖pp

(5.29)

where

γp
(
dddj
)

= max
1≤q≤n

(
1− θp

(
dddj,hhhq

))
(5.30)

and
∑n

q=1 ‖hhhq‖pp =
∑K

k=1 ‖RRRi−1
k ‖pp has been used. Once again, 0 < γp(ddd

j) < 1 strictly

decreases of the objective function. Combining (5.25), (5.27), and (5.29), we obtain

f(sssj+1,uuuj+1, vvvj+1) ≤ αp
(
bbbj
)
βp
(
cccj
)
γp
(
dddj
) K∑
k=1

‖RRRi−1
k ‖pp

= ζji−1

K∑
k=1

‖RRRi−1
k ‖pp

and hence the upper bound of the minimum in (5.24) by incorporating (5.11). �
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Note that the decay ratio 0 < ζi−1 < 1 depends on the `p-correlation of the inter-

mediate variables and the vectorization forms of the residual matrices
{
RRRi−1
k

}K
k=1

. As

the iteration progress, the iterates approximate the common principal component of{
RRRi−1
k

}K
k=1

better as the iteration progress. Hence, the `p-correlation of the iterates

and the principal component is improved and the decay ratio ζi−1 becomes smaller.

5.4.3 Convergence of `p-GP

Theorem 6 The objective function of the `p-GP for RLRAMM in Algorithm 9 decays

exponentially:
K∑
k=1

‖RRRi
k‖pp ≤ ρi

K∑
k=1

‖AAAk‖pp (5.31)

for the iteration number i = 0, 1, 2, · · · , where 0 < ρ < 1 is a worst-case bound of the

convergence rate.

Proof. Successively applying (5.24), we at once obtain

K∑
k=1

‖RRRi
k‖pp ≤

(
i−1∏
l=0

ζl

)
K∑
k=1

‖RRR0
k‖pp = ρi

K∑
k=1

‖AAAk‖pp (5.32)

where

ρ = max
0≤l≤i−1

ζl (5.33)

and RRR0
k = AAAk has been used. Since the decay ratio satisfies 0 < ρ < 1, the reconstruc-

tion error strictly decreases at each iteration and the GP algorithm converges with a

worst decay rate of ρ. �

Note that the decay rate 0 < ρ < 1 depends on the `p-correlation of the intermedi-

ate variables (sss,uuu,vvv) and the vectorization forms of the residual matrices
{
RRRi−1
k

}K
k=1

.

The higher the correlation is, the faster the algorithm converges. By Theorem 6, the

reconstruction error approaches zero

lim
i→∞

K∑
k=1

‖RRRi
k‖pp = 0 (5.34)

due to ρ ∈ (0, 1). This implies that the stopping criterion in (5.8) is well defined for

any δ > 0. Obviously, (5.34) also indicates

lim
i→∞
‖RRRi

k‖pp = 0, and lim
i→∞

RRRi
k = 000, k = 1, · · · , K. (5.35)

As a direct conclusion obtained from Theorem 6, the following corollary allows an

infinite series expansion for an arbitrary set of matrices {AAAk}Kk=1.
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Corollary 2 For any matrix set {AAAk}Kk=1, the `p-GP algorithm leads to an infinite

series expansion, which is shown as

AAAk =
∞∑
i=1

sk,iuuuivvv
T
i , k = 1, · · · , K (5.36)

where (uuui, vvvi, sss
i) is the result obtained by Algorithm 9 at the ith iteration.

Proof. Successive application of the residual update formula of (5.10) results in

RRRi
k = RRRi−1

k − sk,iuuuivvvT
i

= RRR0
k −

i∑
l=1

sk,luuulvvv
T
l

= AAAk −
i∑
l=1

sk,luuulvvv
T
l

which is rewritten as

AAAk =
i∑
l=1

sk,luuulvvv
T
l +RRRi

k. (5.37)

Exploiting lim
i→∞

RRRi
k = 000 in (5.35) and taking limits as i → ∞ on both sides of (5.37)

yields (5.36). �

In practical applications, mn is usually very large. Generally, a target rank r � mn

is enough to capture the low-rank structure of natural images and achieves a small

reconstruction error.

5.5 Experimental Results

In addition to synthetic random data, the following three real-world databases, includ-

ing two face datasets, and one object dataset, are used in the experiments.

• ORL face database [141]. It consists of 10 different images of each of 40 distinct

subjects for a total of 400 images. The resolution of the gray-scale images is

112×92 and we have m = 92, n = 112, and K = 400.

• Georgia Tech face database [142]. It contains 750 images of 50 individuals. There

are 15 images for each individual. The original images are colored and with

different sizes. We convert them to gray-scale with the same size of 111×156

so that they can be represented by matrices. We have m = 156, n = 111, and

K = 750.
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• COIL-20 database [144]. There are 1440 gray-scale images of 20 different objects,

which corresponds to 72 images per object. The image resolution is 128×128 and

it follows m = n = 128 and K = 1440.

The normalized mean square error (NMSE) defined by

NMSE =

∑K
k=1 ‖UUUSSSkVVV T −AAA0

k‖2
F∑K

k=1 ‖AAA0
k‖2

F

is adopted as the performance measure, where {AAA0
k}

K
k=1 are the true (noiseless) matrices.

The noisy observed version is AAAk = AAA0
k +NNNk where NNNk is the noise matrix containing

outliers.

5.5.1 Convergence Behaviors

The convergence behaviors are investigated using random data. We set m = 40, n = 50,

and K = 20. A set of noise-free matrices of rank 10 is generated by AAA0
k = UUUSSSkVVV

T, k =

1, · · · , K, where the entries of UUU ∈ Rm×5 and VVV ∈ R5×n satisfy the standard Gaussian

distribution while the diagonal entries of SSSk are uniformly distributed in [1, 2] to avoid

any diagonal entry being too close to zero. Then, the noise matrices NNNk are added to

AAA0
k to obtain AAAk. Each entry of NNNk satisfies the two-term zero-mean Gaussian mixture

model (GMM) whose probability density function is given by

pν(ν) =
2∑
i=1

ci√
2πσνi

exp

(
− ν2

2σ2
νi

)
where 0 ≤ ci ≤ 1 and σ2

νi
are the probability and variance of the ith term, respectively,

with c1+c2 = 1. If σ2
ν1
� σ2

ν2
and c2 < c1 are selected, large noise samples of variance σ2

ν2

occurring with a smaller probability c2 can be viewed as outliers embedded in Gaussian

background noise of variance σ2
ν1

. Thus, the GMM well models the phenomenon with

both Gaussian noise and outliers. The total noise variance is σ2
ν =

∑
i ciσ

2
νi

and the

signal-to-noise ratio (SNR) is defined as SNR =
(∑K

k=1 ‖AAA0
k‖2

F

)
/(mnKσ2

v).

Figures 5.1 and 5.2 plot the normalized objective function defined in (5.8) versus it-

eration number with p = 2, 1.5, 1, and 0.8 at SNR = 3 dB. Note that the normalized

objective function is different from the NMSE. The former uses the noisy observations

but the latter employs the true matrices. The latter reflects the estimation accuracy

while the former does not. As we see, the normalized objective functions for all values

of p monotonically decrease, which validates Theorem 6. The NMSE rapidly decreases
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Figure 5.1: Normalized objective function versus iteration number.

when i ≤ 5. For p = 1 and p = 0.8, the NMSE continues to decrease to a lower value

after capturing the dominant low-rank structure, achieving a robust estimation. But

for p = 2 and p = 1.5, the NMSE cannot further decrease. As the iteration progresses,

the NMSEs of p = 2 and p = 1.5 even increases, implying that overfitting is easier to

appear for larger p. Therefore, the `p-GP with larger p is not robust against to outliers

while that with smaller p has good robustness.

5.5.2 Results of Robust Image Reconstruction

The performances of image reconstruction of the `p-GP are compared with the PCA,

RPCA, 2DPCA, and GLARM in the presence of outliers. For RPCA, after separating

the outlier components, the truncated SVD is performed to calculate principal compo-

nents to achieve data compression. When processing image data, we first linearly map

the pixel values from [0, 255] to [−0.5, 0.5], which is achieved by AAAk → AAAk/255 − 0.5.

The salt-and-pepper noise is used as the outliers and is added to the images. We use the

function “imnoise(AAAk, ’salt & pepper’, σ2
n)” in MATLAB, where the normalized

noise intensity is σ2
n corresponding to SNR = 1/σ2

n, to generate the salt-and-pepper

noise. For fair comparison, the NMSEs of the six methods are computed under the

same (or close) compression ratios. According to Table I, r1, r2, r3, and r4, which are

the target ranks of PCA/RPCA, 2DPCA, GLARM, and `p-GP, respectively, should
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Figure 5.2: NMSE versus iteration number.

satisfy
(mn+K + 1)r1 = (mK + n)r2

= (m+ n+Kr3)r3 = (m+ n+K)r4.
(5.38)

to make the compression ratios of the six methods the same. Noting that r1, · · · , r4 are

positive integers, (5.38) may not be strictly satisfied. We select the positive integers

such that the compression ratios are as close as possible.

We set SNR = 6 dB. Figure 5.3 shows the NMSEs versus the iteration number on the

three real-world image databases. It is observed that the `2-GP and `1-GP significantly

decrease the NMSE at the beginning stage. This implies that these real-world images

exhibit several “principal components” and the `1-GP successfully capture these com-

ponents although they are not strictly low-rank. The maximum iteration numbers r

are set to 149, 231, and 378 for the ORL, Georgia Tech, and COIL-20 databases, re-

spectively. To achieve a sufficiently small NMSE, the maximum iteration number r

needs to be larger than min(m,n) but we still have r � mn. Again, the `1-GP is much

more robust to outliers than the `2-GP since the former attains much smaller NMSEs.

The ranks, compression ratios, and NMSEs of the PCA, RPCA, 2DPCA, GLARM,

`2-GP for the three image databases, are listed in Table II. Figures 5.4, 5.5, and 5.6

display several samples of the reconstructed images obtained by the six algorithms

on the ORL, Georgia Tech, and COIL-20 databases, respectively. The corresponding

samples of the original and noisy images are also shown for comparison. Evidently, the
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Figure 5.3: NMSEs versus iteration number of `2-GP and `1-GP on ORL, Georgia
Tech, and COIL-20 databases.

`1-GP has the best performance in the presence of outliers. Although the RPCA also

exhibits robustness against outliers, it is inferior to the `1-GP. Among the four non-

robust methods, the GLRAM and `2-GP perform better than the PCA and 2DPCA

under similar compression ratios.

We then investigate how the NMSE varies with the compression ratio. Figure 5.7 plots

the NMSEs of the six methods versus compression ratio on the three image databases.

The `1-GP has the best reconstruction performance for all databases. The `2-GP loses

robustness since the Frobenius norm is sensitive to outliers. The NMSEs of two robust

schemes, say, RPCA and `1-GP monotonically increase with the compression ratio.

However, those of the four non-robust schemes do not monotonically increase with the

compression ratio. Sometimes, lower compression ratios yields worse NMSEs. This

is because the non-robust schemes cannot eliminate the adverse affect induced by the

outliers. The principal components found by the four schemes do not capture the true

low-rank structure but reflect the outliers. Despite the low computational cost of the

2DPCA, its performance is not satisfactory because it only uses a single side transform

resulting limited compression capability. Although the RPCA is more robust than the

PCA, it has a large performance gap compared with the `1-GP. Sometimes it is even

inferior to the GLRAM. The advantage of 2D based methods over the vectorization

based one is evident when handling multiple matrices.
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Table 5.2: Compression ratio (CR) and NMSE.

PCA RPCA 2DPCA GLRAM `2-GP `1-GP

ORL

rank 8 8 2 15 149 149

CR 48.1 48.1 45.9 44.3 45.8 45.8

NMSE (10−2) 6.06 4.82 6.50 3.37 4.31 2.29

Georgia
Tech

rank 13 13 2 17 230 230

CR 55.3 55.3 55.4 58.7 55.5 55.5

NMSE (10−2) 9.20 5.75 10.26 5.68 7.24 2.68

COIL-20

rank 22 22 4 22 378 378

CR 31.3 31.3 32.0 33.3 32.0 32.0

NMSE (10−2) 8.51 3.94 9.61 6.42 7.98 2.16

Reconstruction on ORL database

�1-GP

�2-GP

Original

GLRAM

2DPCA

RPCA

PCA

Noisy

Figure 5.4: Samples of original, noisy, and reconstructed images on ORL face
database.
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Original

Noisy
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2DPCA
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�2-GP

�1-GP

Figure 5.5: Samples of original, noisy, and reconstructed images on Georgia Tech
face database. The compression ratio of the six methods is around 55.5, which implies
that only 1.8% storage space of the original data is needed after compression.

Reconstruction on COIL−20 database

Original

Noisy

PCA

2DPCA

RPCA

GLRAM
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Figure 5.6: Samples of original, noisy, and reconstructed images on COIL-20 database
of objectives.
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Figure 5.7: NMSEs of PCA, RPCA, 2DPCA, GLARM, `2-GP, and `1-GP versus
compression ratio on three real-world databases.
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5.6 Summary

An `p-GP algorithm with tunable value of p is devised for RLRAMM. It is near-scalable

to the problem size and computationally more efficient than the vectorization based

counterpart RPCA. Compared with the RPCA, it provides a different perspective for

robust low-rank representation. It has a higher compression ratio and more robust to

outliers than the 2DPCA and GLRAM. The convergence theory of the `p-GP, which

is different from that of Chapter 4, is developed. We prove that the sum of the `p-

norms of the residuals converges exponentially. We reveal that the worst-case bound

of the convergence rate is related to the `p-correlation of the residual and the current

iterates.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation contributes to devising effective and efficient algorithms for outlier-

robust low-rank approximation of matrices with theoretical convergence analysis. A

variety of applications to signal processing, computer vision and machine learning are

also investigated.

In Chapter 1, the background, motivation and organization of the thesis were intro-

duced and an overview of the state-of-the-art techniques for low-rank approximation

were given.

Chapter 2 focuses on low-rank approximation of a single matrix whose all entries

are known. Using entry-wise `p-norm minimization, three algorithms are designed

to achieve outlier-robustness. The first algorithm is the IR-SVD, where the SVD of a

reweighted data matrix is performed at each iteration. The second is the AM, where

the objective function is minimized over one factored matrix while the other factor

is fixed. Convergence of the AM is proved. Two complex-valued Newton’s methods

with optimal step size are proposed to solve the resulting `p-fitting problems. It is

revealed that the IRLS is a special case of the pseudo-Newton’s method. The third is

the ADMM. It casts the difficult nonsmooth `1-subspace decomposition into an `2-one,

which can be efficiently solved via the truncated SVD with a marginal computational

increase of soft-thresholding. Experimental results on random data verify the superior

performance of the proposed methodology. Wide applicability of the techniques of

this chapter is demonstrated by the application examples to DOA estimation, image

demixing and video surveillance.

Chapter 3 addresses the problem of low-rank approximation where there are missing

entries, which is referred to as matrix completion. We devise two algorithms for robust

matrix completion using low-rank factorization via `p-minimization. The first method

tackles the nonconvex factorization with missing data by iteratively solving multiple

independent linear `p-regressions. On the other hand, the second solution exploits the

ADMM for incomplete factorization in `p-space. Each iteration of the ADMM requires

solving a least squares factorization problem and calculating the proximity operator
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of the `p-norm. The two algorithms have comparable recovery performance as well as

computational efficiency and allow parallel or distributed realization. Their total time

complexity is O(K|Ω|r2), where |Ω| is the number of observations, r is the rank, and

K is a fixed constant of several hundreds to thousands. It is lower than the popular

schemes employing the nuclear norm and Schatten p-norm minimization that require

full SVD. Furthermore, our solutions generalize the conventional matrix factorization

based on Frobenius norm minimization. The superiority of the developed algorithms

over the SVT, SVP, and AP in terms of implementation complexity, recovery capability

and outlier-robustness, is demonstrated using synthetic and real-world data.

Chapter 4 investigates learning the common low-rank structure of multiple matrices,

which is an extension of the single matrix case. A main advantage of the LRAMM

is that it does not convert matrices into vectors and thus can avoid processing the

matrix with much larger size than the original ones. A greedy algorithmic framework

including three variants, GP, EGP and OGP is designed for this learning task. The

GP works in an iterative manner. At each iteration, it finds a rank-one approximation

of the residuals. For GP and OGP, an alternating optimization scheme is devised for

the rank-one fitting problem while for the EGP, just an approximate solution is em-

ployed to reduce the complexity. To accelerate the convergence, the OGP re-computes

the weights of the basis matrices, where least squares orthogonalization is recursively

solved. The per-iteration complexity of the three algorithms linearly increases with the

number and dimension of the matrices, indicating that they are scalable to problem

size. We theoretically prove that the reconstruction error of each algorithm decays

exponentially. The lower bound of the convergence rate or decay factor of the GP and

EGP is derived. In addition, we prove the finite convergence of the OGP. We also

quantitatively show that how much faster the OGP converges than the GP. It is re-

vealed that the acceleration factor of the OGP over GP/EGP is dominated by the angle

between the current iterate and the subspace spanned by the previous iterates. Unlike

the non-diagonal decompositions of the GLRAM, the proposed methodology achieves

a nonorthogonal but joint diagonal decomposition of multiple matrices, which allows

a more parsimonious representation and a higher compression ratio. Experimental re-

sults on random data and real-world image databases demonstrate the attractiveness

of the greedy framework.

Chapter 5 develops the RLRAMM, i.e., a generalization of the LRAMM of Chapter

4 from the `2-space to the `p-space, achieving outliers robustness. This generalization

is neither trivial nor straightforward since the resultant optimization problems of the

`p-case is more complicated than the `2-case. The `p-GP is designed for the robust

learning task. It works in an iterative manner. At each iteration, it finds the best

rank-one approximation of the residuals based on `p-norm minimization. A successive
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optimization scheme is devised for the `p-rank-one fitting problem. The case of p = 1 is

particularly attractive since it only requires computation of weighted medians, leading

to a near-linear per-iteration complexity and thus, making the `1-GP near-scalable to

problem size. We theoretically prove that the sum of the `p-norms of the residuals

decays exponentially, where the proof is totally different from that of GP/EGP/OGP

in Chapter 4. We reveal that the worst-case bound of the convergence rate or decay

factor of depends on the `p-correlation of the residual and the current iterates. Like

the GP, EGP and OGP, the `p-GP also provides a nonorthogonal but joint diagonal

decomposition of multiple matrices, which allows a higher compression ratio than the

GLRAM. Experimental results on random data and image databases demonstrate the

outlier-robustness of the `p-GP.

6.2 Future Work

There are some key unsolved issues and various related topics worthy of future research.

We summarize several open problems as follows.

1. In-depth convergence analysis of the alternating minimization algorithm in Chap-

ter 2 and the iterative `p-regression algorithm in Chapter 3. We only show that

the sequence of the objective function {fp(UUUk,VVV k)} of the two algorithms con-

verge to a limit point. Further theoretical work is required to solve the following

three open problems on the convergence of the two algorithms.

i) Does the sequence of the argument variable {(UUUk,VVV k)} converge for the

nonsmooth case with p ≤ 1? It is observed that {(UUUk,VVV k)} converges from

numerical simulation results. We need to establish this convergence theo-

retically.

ii) For the smooth case where p > 1, we can show that the limit point that the

two algorithms converge to is a stationary point. How about the nonsmooth

case with p ≤ 1?

iii) Under what condition, will the limit point be a local or even a global opti-

mum point of the nonconvex optimization problem?

2. Convergence analysis of the ADMM for nonconvex optimization. It is known that

the convergence of the ADMM has only been proved for convex optimization [81].

Although the convergence of the ADMM for a certain class of nonconvex and

nonsmooth optimization problems has been established very recently in [124],
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the corresponding results are not applicable to our problem. The nonconvexity

of our problem is not only due to the `p-norm with p < 1 but also induced by

the matrix product UUUVVV . These two reasons make the theoretical proof of the

convergence of the ADMM for low-rank approximation problems challenging.

3. Performance guarantee of the low-rank approximation in `p-space. Suppose that

data matrix is a superposition of a low-rank component and a sparse component.

Under what assumptions, can the `p-matrix factorization methods in Chapter 2

exactly separate the two components?

4. Performance guarantee of the matrix completion in `p-space. Suppose that data

matrix is a superposition of a low-rank component and a sparse component. Un-

der what conditions, can the `p-matrix completion methods in Chapter 3 exactly

recover the true matrix in the noiseless case? It is also of importance to derive

the bound of the estimation error in the presence of outliers.

5. Tighter bound of the convergence rate of the GP for LRAMM. We have derived

the worst-case bound of the convergence rate of the GP, which is the same as

the EGP. However, in practice, GP always converges faster than the EGP. It is

worth finding the tighter bound in average for the GP.

6. Quantitative analysis of the `p-correlation, which dominates the convergence rate

of the `p-GP for RLRAMM. It is important to study how the `p-correlation

quantitatively varies as the iteration progresses and derive more accurate bounds

of the convergence rate.

7. Parallel and distributed implementation of the proposed algorithms, especially

the asynchronous parallel implementation.
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Appendix

A.1 Polynomial-Time Algorithm for Univariate `p-

Regression

Given aaa, bbb ∈ Rn, consider the following univariate `p-regression

min
α∈R
‖bbb− αaaa‖pp

which is nonconvex and nonsmooth and has multiple local minima when 0 < p < 1.

However, it is not NP-hard and its global minimum can be found with a complexity

of O(n2). Since the zero element of aaa has no effect on the minimizer, without loss

of generality, we can assume that aaa does not contain zero elements when finding the

minimizer. The univariate `p-regression is reformulated as

min
α
fp(α) :=

n∑
i=1

|ai|p
∣∣∣∣α− bi

ai

∣∣∣∣p.
Define the sequence di = bi/ai and assume that {di}ni=1 has been sorted in ascending

order. The function fp(α) is piecewise with the break points being {di}ni=1. The domain

of fp(α), is divided into n + 1 intervals, i.e., (−∞, d1], (d1, d2], · · · , (dn−1, dn], and

(dn,∞). In each interval, the sign of {α−di}ni=1 is determined and the absolute operator

| · | can be removed. For example, consider α ∈ (−∞, d1], then for all i = 1, · · · , n,

we have |α− di|p = (di − α)p. Note that (α − di)p or (di − α)p is a concave function

due to p < 1. It turns out that fp(α) is concave because the non-negative combination

preserves concavity. Therefore, the piecewise function fp(α) is concave in each interval,

although it is not concave in the whole domain R. Recall that a concave function

attains its the minimum at the boundary points. It is evident that the minimizer of

fp(α) belongs to {d1, · · · , dn} since fp(−∞) = fp(∞) =∞. Then the global minimizer

is selected from the n candidates min
1≤i≤n

fp(di). It is obvious that the complexity is

O(n2).

Figure 1 gives an example of fp(α) with p = 0.5, where the 4-dimensional

data are randomly generated as aaa = [0.2939,−0.7873, 0.8884,−1.1471]T and bbb =

[0.4889, 1.0347, 0.7269,−0.3034]T . To find the global minimum of fp(α), we only need

to compute the function value at the sorted ddd = [−1.3143, 0.2645, 0.8182, 1.6636]T. We

see that fp(α) attains its minimum at d2 = 0.2645.
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Figure 1: Objective function ‖bbb− αaaa‖pp versus α with p = 0.5.
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List of Acronyms

2D two-dimensional

2DPCA two-dimensional principal component analysis

ADMM alternating direction method of multipliers

ALM augmented Lagrange method

AM alternating minimization

AP alternating projection

CRB Cramér-Rao bound

DOA direction-of-arrival

EGP economic greedy pursuit

ESPRIT estimating signal parameters via rotational invariance techniques

EVD eigenvalue decomposition

FLOM fractional lower-order moments

FPC fixed point continuation

GLRAM generalized low-rank approximations of matrices

GGD generalized Gaussian distribution

GMM Gaussian mixture model

GP greedy pursuit

HOSVD higher-order singular value decomposition

IHT iterative hard thresholding

i.i.d. independent and identically distributed

IRLS iteratively reweighted least squares
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IR-SVD iteratively reweighted singular value decomposition

IST iterative soft thresholding

`p-GP `p-greedy pursuit

LAD least absolute deviation

LRAMM low-rank approximation of multiple matrices

LS least squares

MAE mean absolute error

MAPE mean absolute prediction error

ML maximum likelihood

MP matching pursuit

MUSIC multiple signal classification

NMSE normalized mean square error

NRE normalized reconstruction error

OGP orthogonal greedy pursuit

OMP orthogonal matching pursuit

PARSuMi proximal alternating robust subspace minimization

p.d.f. probability density function

PCA principal component analysis

RLRAMM robust low-rank approximation of multiple matrices

RMSE root mean square error

RMSPE root mean square prediction error

RPCA robust principal component analysis

SDP semi-definite programming
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SNR signal-to-noise ratio

SVD singular value decomposition

SVP singular value projection

SVT singular value thresholding

ULA uniform linear array

VBMFL1 variational Bayesian matrix factorization based on L1-norm

WNNM weighted nuclear norm minimization
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List of Symbols

The following list contains the most important symbols in the dissertation in alpha-

betical order. The remaining symbols are introduced where they are used.

(·)∗ complex conjugate

(·)? optimal value or optimal point

(·)−1 inverse

(·)† pseudo-inverse of a matrix

(·)H Hermitian transpose

(·)T transpose

(̂·) estimate of a quantity

� Hadamard (element-wise) product

| · | cardinality of a set or absolute value of a real number or modulus of
a complex number

‖ · ‖ Euclidean norm of a vector or entry-wise `2-norm of a matrix

‖ · ‖2 spectral norm of a matrix

‖ · ‖p `p-norm of a vector or entry-wise `p-norm of a matrix

‖ · ‖F Frobenius norm

‖ · ‖∗ nuclear norm

‖ · ‖Sp Schatten p-norm

〈·, ·〉 inner product

000 zero vector or zero matrix

111 vector of all ones

C set of complex numbers

R set of real numbers

R+ set of non-negative real numbers

Z set of integers

Z+ set of non-negative integers

III identity matrix

ı imaginary unit

E{·} expectation

EVmax(·) unit-norm eigenvector corresponding to maximum eigenvalue

Im(·) imaginary part of a complex scalar, vector, or matrix

λmax(·) maximum eigenvalue of a matrix
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LSVmax(·) unit-norm left singular vector corresponding to maximum singular
value

range(·) range space

rank(·) rank of a matrix

Re(·) real part of a complex scalar, vector, or matrix

RSVmax(·) unit-norm right singular vector corresponding to maximum singular
value

σl(·) the lth singular value of a matrix

σmax(·) maximum singular value of a matrix

tr(·) trace of a matrix

TSVDr(·) truncated rank-r singular value decomposition of a matrix

vec(·) concatenating all columns of a matrix into a vector
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