
Università di Pisa
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Abstract

It is well known that, under certain conditions, one can use bit rep-
resentation to transform both integer quadratic programs and mixed-
integer bilinear programs into mixed-integer linear programs (MILPs),
and thereby render them easier to solve using standard software pack-
ages. We show how to convert a more general family of mixed-integer
quadratic programs to MILPs, and present several families of strong
valid linear inequalities that can be used to strengthen the continuous
relaxations of the resulting MILPs.

Keywords: mixed-integer nonlinear programming, linearisation

1 Introduction

A wide range of problems in Operational Research, Statistics, Quantitative
Finance and Engineering can be formulated as mixed-integer quadratic pro-
grams (MIQPs), i.e., optimisation problems with a mixture of continuous
and integer-constrained variables, linear constraints, and a quadratic objec-
tive function. Although some sophisticated algorithms have been developed
to solve MIQPs (see, e.g., [2, 11, 13, 14]), they can still present a formidable
challenge, especially if the objective function is non-convex.

It has been known for some time that, under certain conditions, an MIQP
can be converted into (or “reformulated as”) a mixed-integer linear program
(MILP), via the use of additional variables and constraints. This has been
shown for 0-1 quadratic programs (e.g., [6, 7]), integer quadratic programs
with bounded variables (e.g., [3, 15]), and various integer and mixed-integer
bilinear programs (e.g., [7, 9, 10]). These results are of interest because
a wide range of excellent software packages are now available for solving
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MILPs to optimality. (Prominent examples include CPLEX, Gurobi, LINDO,
SCIP and Xpress.)

The methods in [3, 7, 9, 10, 15] are based on bit representation. In this
paper, we extend them to a broader family of MIQPs; namely, bounded
MIQPs in which the objective function contains no products or squares of
continuous variables. We also present several families of strong valid linear
inequalities that can be used to strengthen the continuous relaxations of the
resulting MILPs.

The paper has a very simple structure. The literature is reviewed in
Section 2, the extensions are given in Section 3, and the valid inequalities
are presented in Section 4. Throughout the paper, we assume that MIQPs
are written in the following form:

min
{
xTQx+ c · x : Ax ≤ b, x ∈ Rn

+, xi ∈ Z (i ∈ I)
}
,

where Q ∈ Qn×n, c ∈ Qn, A ∈ Qm×n, b ∈ Qm and I ⊆ {1, . . . , n}. We also
let N denote {1, . . . , n}.

2 Literature Review

In this section, we review the relevant literature, in chronological order. We
remark that, due to space restrictions, we have had to be rather selective.

In 1959, Fortet [6] showed how to linearise 0-1 quadratic programs (0-1
QPs). We replace each quadratic term, say xixj , with a new binary variable,
say Xij , and add the constraints

Xij ≥ 0, Xij ≤ xi, Xij ≤ xj , xi + xj −Xij ≤ 1. (1)

This leads to a 0-1 linear program (0-1 LP).
In 1967, Watters [15] considered the more general case of integer quadratic

programs (IQPs) with bounded variables. Suppose we know that xi ≤ ui,
where ui is a positive integer. Let ri denote blog2 uic, and replace xi with

blog2 uic∑
s=0

2s x̃is,

where the x̃is are new binary variables. If ui + 1 is not a power of two, one
must also add the constraint:

blog2 uic∑
s=0

2s x̃is ≤ ui.

In this way, we convert the IQP into a 0-1 QP. One can then apply the
method of Fortet to convert the 0-1 QP into a 0-1 LP.
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In 1975, Glover [7] proposed a more parsimonious way to tackle 0-1 QPs.
For i ∈ N , define a new variable, say λi, representing the quantity

xi
∑
j∈N

Qijxj ,

and replace the objective function with
∑

i∈N λi. Then, to link together the
x and λ variables, add the following constraints for i ∈ N :

Lixi ≤ λi ≤ Uixi (2)
n∑

j=1

Qijxj − Ui(1− xi) ≤ λi ≤
n∑

j=1

Qijxj − Li(1− xi), (3)

where Li and Ui are lower and upper bounds on
∑

j∈N Qijxj . (Suitable

values for Li and Ui are
∑

j∈N min
{

0, Qij

}
and

∑
j∈N max

{
0, Qij

}
, respec-

tively.) The result is a mixed 0-1 LP.
In the same paper, Glover considered bounded mixed-integer bilinear

programs (MIBPs) in which, in each bilinear term, at least one of the vari-
ables is integer. He proposed the following approach. First, each integer
variable xi is replaced with binary variables x̃is, à la Watters. Second, for
all i ∈ I and all s, a variable yis is introduced, representing

x̃is
∑
j∈N

Qijxj .

These variables are used to linearise the objective. Finally, constraints sim-
ilar to (2) and (3) are used to link the yis variables with the x̃is variables
and any remaining xi variables. The result is again a mixed 0-1 LP.

Adams & Sherali [1] showed that one can strengthen the LP relaxations
of Fortet-type formulations as follows. Take any linear constraint from the
original 0-1 QP, say α · x ≤ β, and any i ∈ N , and note that the quadratic
inequalities (α·x)xi ≤ βxi and (α·x)(1−xi) ≤ β(1−xi) are valid. Linearising
them yields 2n inequalities of the form:∑

j 6=i αjXij ≤ (β − αi)xi∑
j 6=i αj(xj −Xij) ≤ β(1− xi).

This approach is now called the Reformulation-Linearization Technique (RLT),
and the inequalities are called RLT inequalities [13].

In 1989, Padberg [12] studied the so-called Boolean quadric polytope,

which is the convex hull of pairs (x,X) ∈ {0, 1}n+(n2) satisfying (1). He
derived several families of cutting planes for that polytope, that can be used
to further strengthen Fortet relaxations. (For a survey of additional known
cutting planes, see Section V of [5].)
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In 1997, Harjunkoski et al. [10] gave a new approach for bounded in-
teger bilinear programs (IBPs). First, each integer variable xi is replaced
with binary variables x̃is, as usual. Then, for all pairs i, j ∈ N , and for
s = 0, . . . , ri, an additional continuous variable, say visj , is defined, which
represents the product x̃isxj . They then replace all terms of the form xixj
with

∑ri
s=0 2svisj . Finally, they add the following linear inequalities for all

pairs i, j and for s = 0, . . . , ri:

visj ≥ 0, visj ≤ uj x̃is, visj ≤ xj , visj ≥ uj x̃is + xj − uj . (4)

The result is again a mixed 0-1 LP. We remark that this approach can be
easily extended to bounded IQPs, just by allowing i and j to be identical.

In 2008, Billionnet et al. [3] rediscovered the approach in [10], in the
context of IQPs. They also used the RLT to derive cutting planes for the
resulting mixed 0-1 LPs. In addition, they noted that the following equations
are valid for all {i, j} ⊆ N :

ri∑
s=0

2s visj =

rj∑
s=0

2s vjsi. (5)

In 2012, Günluk et al. [8] found a “hybrid” method for bounded IBPs,
involving a combination of the x̃is and Xij variables. The resulting 0-1
LP has an exponential number of constraints, but they present an efficient
separation algorithm for those constraints.

Finally, in 2013, Gupte et al. [9] adapted the method in [10] to the case
of bounded MIBPs in which each bilinear term is the product of an integer
variable and a continuous variable. They also derived some cutting planes,
as follows. For a given i ∈ I, let S0

i and S1
i be the sets of bits that take

the value zero or one, respectively, in the bit representation of ui. For any
s ∈ S0

i , if we let C(s) denote {t ∈ S1
i : t > s}, then the linear inequality∑

t∈C(s)∪{s}

x̃it ≤ |C(s)| (6)

is valid. Following the RLT, we can multiply each such inequality by either
xj or uj − xj , for any j ∈ N \ I, to obtain the inequalities∑

t∈C(s)∪{s} vitj ≤ |C(s)|xj (7)

uj
∑

t∈C(s)∪{s} x̃it −
∑

t∈C(s)∪{s} vitj ≤ |C(s)|(uj − xj). (8)

3 Linearisations for a Broad Family of MIQPs

In this section, we extend the results in [6, 7, 10, 15] to cover a more general
family of bounded MIQPs. We will need the following definition.
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Definition 1 A bounded MIQP is “nice” if the quadratic term xTQx con-
tains no products or squares of continuous variables.

Note that nice MIQPs include 0-1 QPs, bounded IBPs and bounded IQPs
as special cases, as well as the MIBPs considered by Glover [7] and Gupte
et al. [9]. In the following three subsections, we present three strategies for
converting nice MIQPs into mixed 0-1 LPs.

3.1 Strategy G

The first strategy, which we call “Strategy G”, is an extension of the one in
Glover [7]. It involves the following steps.

1. For i ∈ I, replace xi with
∑ri

s=0 2sx̃is in the objective and constraints.

2. For i ∈ I and s = 0, . . . , ri, introduce a continuous variable, say yis,
representing the quantity x̃is

∑
j∈N Qijxj .

3. In the objective function, replace the term xTQx with

∑
i∈I

ri∑
s=0

2s yis.

4. For i ∈ I, compute lower and upper bounds, say Li and Ui, on the value
that can be taken by

∑
j∈N Qijxj in any feasible solution. (Suitable

values for Li and Ui are
∑

j∈N min
{

0, Qij

}
uj and

∑
j∈N max

{
0, Qij

}
uj ,

respectively.)

5. Add the following constraints for i ∈ I and s = 0, . . . , ri:

Lix̃is ≤ yis ≤ Uix̃is

yis ≥
∑

j∈N\I Qijxj +
∑

j∈I Qij
∑rj

t=0 2tx̃jt − Ui(1− x̃is)

yis ≤
∑

j∈N\I Qijxj +
∑

j∈I Qij
∑rj

t=0 2tx̃jt − Li(1− x̃is).

One can check that these constraints force yis to equal zero when x̃is
is zero, and to equal x̃is

∑
j∈N Qijxj when x̃is is one.

The resulting mixed 0-1 LP has only O(n+L) variables and O(m+ n+L)
constraints, where L denotes

∑
i∈I(ri + 1).

3.2 Strategy H

The second strategy, which we call “Strategy H”, is an extension of the one
in Harjunkoski et al. [10].

1. For i ∈ I, replace xi with
∑ri

s=0 2sx̃is in the objective and constraints.
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2. For i ∈ I, s = 0, . . . , ri and j ∈ N , introduce a continuous variable
visj , representing the product x̃isxj . (We permit j = i here, unlike in
the bilinear case.)

3. For i ∈ I and j ∈ N , replace xixj with
∑ri

s=0 2svisj .

4. For i ∈ I, s = 0, . . . , ri and j ∈ N \ I, add the constraints (4).

5. For i, j ∈ I, not necessarily distinct, and s = 0, . . . , ri, add the con-
straints

visj ≥ 0, visj ≤ uj x̃is, visj ≤
rj∑
t=0

2tx̃jt, visj ≥ uj x̃is +

rj∑
t=0

2tx̃jt − uj .

(9)

The resulting mixed 0-1 LP has O(nL) variables and O(m+nL) constraints.

3.3 Strategy FH

The third and final strategy, which we call “Strategy FH”, is a kind of “hy-
brid” of the ones in Fortet [6] and Harjunkoski et al. [10]. (It also generalises
the approaches in [3, 9].)

1. For i ∈ I, replace xi with
∑ri

s=0 2sx̃is in the objective and constraints.

2. For i ∈ I, s = 0, . . . , ri and j ∈ N \ I, introduce a continuous variable
visj , representing x̃is xj .

3. For all {i, j} ⊆ I with i < j, s = 0, . . . , ri and t = 0, . . . , rj , introduce
a new binary variable X̃isjt, representing x̃is x̃jt.

4. For i ∈ I and 0 ≤ s < t ≤ ri, introduce a binary variable X̃isit,
representing x̃is x̃it.

5. Use the v and X̃ variables to linearise the objective function.

6. For i ∈ I, j ∈ N \ I and s = 0, . . . , ri, add the constraints (4).

7. For all {i, j} ⊆ I with i < j, s = 0, . . . , ri and t = 0, . . . , rj , add the
Fortet-type constraints:

X̃ijst ≤ x̃is, X̃ijst ≤ x̃jt, x̃is + x̃jt − X̃ijst ≤ 1.

8. For i ∈ I and 0 ≤ s < t ≤ ri, add the Fortet-type constraints

X̃isit ≤ x̃is, X̃isit ≤ x̃it, x̃is + x̃it − X̃isit ≤ 1.
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The resulting mixed 0-1 LP has O
(
L(n+L)

)
variables and O

(
m+L(n+L)

)
constraints.

We close this section with a couple of remarks.

Remark 1 Strategy H can be regarded as a “disaggregation” of Strategy G,
in the sense that each λis variable can be expressed as a linear combination
of visj variables. Similarly, Strategy FH can be regarded as a disaggregation
of Strategy H, in the sense that, when both i and j are in I, each visj variable
can be expressed as a linear combination of X̃isjt variables.

Remark 2 Recently, Del Pia et al. [4] showed that, given an arbitrary (not
necessarily bounded) MIQP, there exists at least one rational optimal solu-
tion that can be encoded using a number of bits that is bounded by a polyno-
mial of the input size. From this it follows that any MIQP whose objective
function does not include products or squares of continuous variables can be
reformulated as a mixed 0-1 LP of polynomial size.

4 Valid Inequalities

In this section, we present some valid inequalities that can be used to im-
prove the continuous relaxations of the mixed 0-1 LPs that one obtains via
Strategies H and FH.

4.1 Valid inequalities for Strategy H

Consider the mixed 0-1 LP that arises when one uses Strategy H. Recall that
it contains continuous variables xi for i ∈ N \I, binary variables x̃is for i ∈ I
and s = 0, . . . , ri, and continuous variables visj for i ∈ I and s = 0, . . . , ri.

First, we can adapt the inequalities of Billionnet et al. [3] to our setting.
The steps are as follows.

• For i ∈ I, s = 0, . . . , ri and k = 1, . . . ,m, take the kth linear constraint
in the system Ax ≤ b, and multiply it by either x̃is or 1− x̃is, to yield
a quadratic inequality.

• For all i ∈ I such that ui+1 is not a power of two, and for k = 1, . . . ,m,
take the kth linear constraint, and multiply it by ui−xi to yield another
quadratic inequality.

• Linearise the resulting quadratic inequalities, by expressing them in
terms of the x, x̃ and v variables.

For example, multiplying a linear constraint of the form α · x ≤ β by x̃is,
and linearising, yields ∑

j∈N
αj

ri∑
s=0

2s visj ≤ βx̃is.
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Next, we note that the equations (5) are also valid for all {i, j} ⊆ I.
Moreover, following Gupte et al. [9], we can add the inequalities (7) and (8)
for all i ∈ I, all s ∈ S0

i and all j ∈ N \ I.
The inequalities mentioned so far can all be derived via the RLT. The

following proposition shows that two other families of inequalities can be
derived via the RLT.

Proposition 1 We can derive additional valid inequalities in
(
x, x̃, v

)
-space

as follows.

• For all (not necessarily distinct) pairs i, j ∈ I, and for all s ∈ S0
i ,

multiply the inequality (6) by either xj or uj − xj, and linearise.

• For i ∈ I, s ∈ S0
i , and k = 1, . . . ,m, multiply the inequality (6) by the

kth linear inequality in the system Ax ≤ b, and linearise.

For example, multiplying (6) by uj − xj and linearising yields

uj
∑

t∈C(s)∪{s}

x̃it −
∑

t∈C(s)∪{s}

vitj ≤ |C(s)|

(
uj −

rj∑
t=0

2tx̃jt

)
. (10)

We remark that, if the system Ax ≤ b contains any constraints that
involve only integer variables, one can generate still more valid inequalities
via the RLT, by multiplying such constraints by either xi or ui−xi for some
i ∈ N \ I.

The following two propositions present some additional inequalities that
are not derived via the RLT.

Proposition 2 When i = j, we can strengthen the constraints (9) as fol-
lows:

• Replace the first inequality in (9) with

visi ≥ 2s x̃is. (11)

• Replace the second inequality in (9) with

visi ≤ λ1is x̃is, (12)

where λ1is is the largest value that xi can take when x̃is = 1.

• Replace the fourth inequality in (9) with

visi ≥
ri∑
s=0

2sx̃is + λ0is(x̃is − 1), (13)

where λ0is is the largest value that xi can take when x̃is = 0.
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Proof. If x̃is = 0, then visi = 0. If x̃is = 1, then both xi and visi
must lie between 2s and λ1is. Either way, the inequalities (11) and (12) are
satisfied. As for the inequality (13), its right-hand side is equivalent to xi
when x̃is = 1, and to xi − λ0is when x̃is = 0. In either case, the inequality is
satisfied. �

Proposition 3 When i = j, the inequalities (10) can be strengthened to:

λ̃is
∑

t∈{s}∪C(s)

x̃it −
∑

t∈{s}∪C(s)

viti ≤ |C(s)|

(
λ̃is −

rj∑
t=0

2tx̃it

)
, (14)

where λ̃is is the largest value that xi can take when at least two of the bits
in {s} ∪ C(s) must take the value zero.

Proof. Observe that x cannot take a value larger than λ̃is if the inequality
(6) has a positive slack. This implies the following quadratic inequality:|C(s)| −

∑
t∈C(s)∪{s}

x̃it

(λ̃is − x) ≥ 0.

(To see this, note that the first quantity is always non-negative, and the sec-
ond term can only be negative if the first is zero.) Expanding the quadratic
inequality and linearising yields (14). �

4.2 Valid inequalities for Strategy FH

Now consider the mixed 0-1 LP that arises when one uses Strategy FH.
Recall that it contains continuous variables xi for i ∈ N \I, binary variables
x̃is for i ∈ I and s = 0, . . . , ri, continuous variables visj for i ∈ I, s = 0, . . . , ri
and j ∈ N \ I, and binary variables X̃isjt for i, j ∈ I, s = 0, . . . , ri and
t = 0, . . . , rj .

A first observation is that, as in the case of Strategy H, we can add the
inequalities (7) and (8) for all i ∈ I, all s ∈ S0

i and all j ∈ N \ I.
A second observation is that we can again derive several families of in-

equalities using the RLT. Details are given in the following proposition.

Proposition 4 We can derive additional valid inequalities in
(
x, x̃, v, X̃

)
-

space as follows.

• For i ∈ I, s = 0, . . . , ri, and k = 1, . . . ,m, multiply the kth linear
inequality in the system Ax ≤ b by either x̃is or 1− x̃is, and linearise.

• For all (not necessarily distinct) pairs i, j ∈ I, s = 0, . . . , ri and
t = 0, . . . , rj, multiply the inequality (6) by either x̃jt or 1 − x̃jt, and
linearise.
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• For i ∈ I, s ∈ S0
i , and k = 1, . . . ,m, multiply the inequality (6) by the

kth linear inequality in the system Ax ≤ b, and linearise.

• For all (not necessarily distinct) pairs i, j ∈ I, s ∈ S0
i and t ∈ S0

j , mul-
tiply the inequality (6) by the analogous inequality

∑
`∈C(t)∪{t} x̃j` ≤

|C(t)|, and linearise.

For example, if we apply the last operation mentioned, we obtain

|C(s)|
∑

`∈C(t)∪{t}

x̃j` + |C(t)|
∑

k∈C(s)∪{s}

x̃ik

≤ |C(s)||C(t)| +
∑

k∈C(s)∪{s}

∑
`∈C(t)∪{t}

X̃ikj`. (15)

As in the previous subsection, if the system Ax ≤ b contains any con-
straints that involve only integer variables, even more valid inequalities can
be generated via the RLT.

Our last proposition shows how to strengthen (15) in some cases.

Proposition 5 When i = j and s = t, inequality (15) can be strengthened
to: (

|C(s)| − 1
) ∑
k∈C(s)∪{s}

x̃ik ≤
(
|C(s)|

2

)
+

∑
{k,`}⊆C(s)∪{s}

X̃iki`. (16)

Proof. Since p(p− 1) ≥ 0 for all integers p, the quadratic inequality|C(s)| −
∑

k∈C(s)∪{s}

x̃ik

|C(s)| −
∑

k∈C(s)∪{s}

x̃ik − 1

 ≥ 0

is valid. Expanding yields:

(
2|C(s)| − 1

) ∑
k∈C(s)∪{s}

x̃ik ≤ |C(s)|
(
|C(s)| − 1

)
+

 ∑
k∈C(s)∪{s}

x̃ik

2

.

Using the identities x̃2ik = x̃ik and x̃ikx̃i` = X̃iki`, we obtain:(
2|C(s)| − 2

) ∑
k∈C(s)∪{s}

x̃ik ≤ |C(s)|
(
|C(s)| − 1

)
+ 2

∑
{k,`}⊆C(s)∪{s}

X̃iki`.

Dividing by two yields (16). �

To conclude, we mention that a natural topic for future research is to
perform a thorough computational comparison of the various formulations
and cutting planes proposed in this paper, with view to finding out which
tend to be most useful in practice.
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[6] R. Fortet (1959) L’Algèbre de Boole et ses applications en recherche
opérationnelle. Cahiers Centre Etudes Rech. Oper., 1, 5–36.

[7] F. Glover (1975) Improved linear integer programming formulations of
nonlinear integer problems. Mngt. Sci., 22, 455–460.
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