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Abstract. Ecosystem models are used to understand ecosys-
tem dynamics and ocean biogeochemical cycles and require
optimum physiological parameters to best represent biolog-
ical behaviours. These physiological parameters are often
tuned up empirically, while ecosystem models have evolved
to increase the number of physiological parameters. We de-
veloped a three-dimensional (3-D) lower-trophic-level ma-
rine ecosystem model known as the Nitrogen, Silicon and
Iron regulated Marine Ecosystem Model (NSI-MEM) and
employed biological data assimilation using a micro-genetic
algorithm to estimate 23 physiological parameters for two
phytoplankton functional types in the western North Pa-
cific. The estimation of the parameters was based on a one-
dimensional simulation that referenced satellite data for con-
straining the physiological parameters. The 3-D NSI-MEM
optimized by the data assimilation improved the timing of
a modelled plankton bloom in the subarctic and subtropi-
cal regions compared to the model without data assimilation.
Furthermore, the model was able to improve not only sur-
face concentrations of phytoplankton but also their subsur-
face maximum concentrations. Our results showed that sur-
face data assimilation of physiological parameters from two
contrasting observatory stations benefits the representation of
vertical plankton distribution in the western North Pacific.

1 Introduction

The western North Pacific (WNP) region is a high-nutrient,
low-chlorophyll (HNLC) region where biological productiv-
ity is lower than expected for the prevailing surface macronu-
trient conditions. There are both the Western Subarctic
Gyre and Subtropical Gyre, comprising the Oyashio and the
Kuroshio, respectively (Fig. 1a). Between the gyres (i.e. the
Kuroshio–Oyashio transition region), horizontal gradients of
temperature and phytoplankton concentration in the surface
water are generally large due to meanders in the Kuroshio
extension jet and mesoscale eddy activity (Qiu and Chen,
2010; Itoh et al., 2015). The relatively low productivity in
the HNLC region is due to low dissolved iron concentrations
(e.g. Tsuda et al., 2003) because iron is one of the essential
micronutrients for many phytoplankton species. The source
of iron for the WNP region is not only from airborne dust
but also from iron transported in the intermediate water from
the Sea of Okhotsk to the Oyashio region (Nishioka et al.,
2011). Since the WNP region exhibits many complex phys-
ical and biogeochemical characteristics as referred to above,
it is difficult even for state-of-the-art eddy-resolving models
to reproduce them.

Processes of growth, decay, and interaction by plankton
are critical to understanding the oceanic biogeochemical cy-
cles and the lower-trophic-level (LTL) marine ecosystems.
There are many LTL marine ecosystem models ranging from
simple nutrient, phytoplankton, and zooplankton models to
more complicated models including carbon, oxygen, silicate,
and iron cycles, and so forth (e.g. Fasham et al., 1990; Ed-
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Figure 1. (a) Model domain in the WNP region of the 3-D NSI-
MEM. Blue arrows and symbols depict a schematic representation
of the main circulation features in the WNP (KR: Kuroshio; OY:
Oyashio; KR-OY trans.: the Kuroshio–Oyashio transition region;
STG: Subtropical Gyre region; WSAG: Western Subarctic Gyre;
and SO: the Sea of Okhotsk). (b) Two classified provinces (subarc-
tic and subtropical regions) based on the dominant phytoplankton
species and nutrient limitations by Hashioka et al. (2018). Different
ecosystem parameters (Table 2) are set for each province in the sim-
ulation. (c) Annual mean SST of satellite data used for simulation
of SST-dependent physiological parameters (SST-dependent case).

wards and Brindley, 1996; Lancelot et al., 2000; Yamanaka et
al., 2004; Blauw et al., 2009). Coupling LTL marine ecosys-
tem models to ocean general circulation models (OGCMs)
and Earth system models enables three-dimensional (3-D)
quantitative descriptions of the ecosystem and its temporally
fine variability (e.g. Aumont and Bopp, 2006; Follows et al.,
2007; Buitenhuis et al., 2010; Sumata et al., 2010; Hoshiba
and Yamanaka, 2016).

Physiological parameters are usually fixed in the models
on the basis of local estimations and applied homogeneously
to a basin-scaled ocean, although the values of physiological
parameters should depend on the environments of regions.
Moreover, physiological parameters have often been tuned
up empirically and arbitrarily. The fact that the number of pa-
rameters increases with prognostic and diagnostic variables
makes it more difficult to tune them. In order to reproduce
observed data such as spatial distribution of phytoplankton
biomass and timing of a plankton bloom, it is required to
reasonably estimate the physiological parameters.

In previous studies using LTL marine ecosystem models,
various approaches for data assimilation were introduced as
methods of estimating optimal physiological parameters (e.g.
Kuroda and Kishi, 2004; Fiechter et al., 2013; Toyoda et al.,
2013; Xiao and Friedrichs, 2014). Shigemitsu et al. (2012)
applied a unique assimilative approach to an LTL marine
ecosystem model, using a micro-genetic algorithm (µ-GA)
(Krishnakumar, 1990). For the western subarctic Pacific, they
showed that the µ-GA worked well in the one-dimensional
(1-D) Nitrogen, Silicon and Iron regulated Marine Ecosys-
tem Model (NSI-MEM: Fig. 2), which was based on NE-
MURO (North Pacific Ecosystem Model for Understanding
Regional Oceanography; Kishi et al., 2007) but differed in
the following points: (1) the introduction of an iron cycle,
including dissolved and particulate iron, whereby the dis-
solved iron explicitly regulates phytoplankton photosynthe-
sis; (2) adoption of physiologically more consistent optimal
nutrient-uptake (OU) kinetics (Smith et al., 2009) instead of
the Michaelis–Menten equation (Michaelis et al., 2011); and
(3) the division of detritus into two types of small and large
sizes that exhibit different sinking rates.

Our objective is to improve simulation of the LTL ecosys-
tem in the WNP region by further introducing (1) a physical
field from an eddy-resolving OGCM with a horizontal reso-
lution of 0.1◦ and (2) an assimilated physiological parameter
estimation for two different phytoplankton groups. The de-
tails of the model and µ-GA settings are described in Sect. 2.
We compare the simulation results with and without the pa-
rameter optimization to observed data and confirm the effects
of changing parameters in Sect. 3. We mainly focused on the
seasonal variations in phytoplankton in the pelagic region.
Finally, the results are summarized in Sect. 4.

2 Model and data description

2.1 Three-dimensional NSI-MEM

We used the marine ecosystem model, NSI-MEM, which in-
cludes two phytoplankton functional types (PFTs), namely
non-diatom small phytoplankton (PS) and large phytoplank-
ton representing diatoms (PL) (Fig. 2). In order to run the
NSI-MEM in three-dimensional space, we used a physical
field obtained from the Meteorological Research Institute
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Figure 2. Schematic view of the NSI-MEM interactions among the 14 components. Green boxes and brown boxes indicate phytoplankton
and zooplankton, respectively. Blue boxes are particulate or dissolved matter. Violet boxes show nutrients or essential micronutrients.

Multivariate Ocean Variational Estimation for the WNP re-
gion (MOVE-WNP) (Usui et al., 2006). The MOVE-WNP
system is composed of the OGCM (the Meteorological Re-
search Institute community ocean model) and a multivariate
3-D variational (3-D VAR) analysis scheme. The 3-D VAR
method adds some increments to only the temperature and
salinity fields. The increments are derived so as to minimize
the misfits between the model and observations of tempera-
ture, salinity, and sea surface dynamic height (Fujii and Ka-
machi, 2003). The dynamical fields such as flow speed and
sea surface height are not directly modified by the 3-D VAR
method (i.e. the physical field holds water mass conserva-
tion, which is necessary to run the ecosystem model with a
consistent manner).

The model domain extends from 15 to 65◦ N and 117◦ E
to 160◦W in the WNP region, with a grid spacing of
1/10◦× 1/10◦ around Japan and 1/6◦ to the north of 50◦ N
and to the east of 160◦ E (Fig. 1a). There are 54 vertical
levels with layer thicknesses increasing from 1 m at the sur-
face to 600 m at the bottom. The model was forced by fac-
tors including surface wind, heat flux, and freshwater flux.
The details of the surface forcing are presented by Tsujino
et al. (2011). Shortwave radiation input and dust flux were
the same as those of a global climate model (Model for In-
terdisciplinary Research on Climate, MIROC; Watanabe et
al., 2011). A part of the dust flux (3.5 %; Shigemitsu et al.,
2012) was regarded as iron dust, and 1 % of the iron dust
was assumed to dissolve into the sea surface (Parekh et al.,

2004). The other iron dust was transported to the lower lay-
ers and dissolved, which was the same process as shown in
Shigemitsu et al. (2012). River run-off as a freshwater sup-
ply was from CORE v. 2 forcing (Large and Yeager, 2009),
in which the river source had the nitrate concentration value
of 29 µmol L−1 (Cunha et al., 2007) and the silicate concen-
tration value of 102 µmol L−1 adjusted in the range between
Si /N= 0.2 and 4.3 (Jickells, 1998). Nitrate and silicate
sources were only rivers, and iron supply was only from the
dust in the model setting. In order to buffer artificial high con-
centrations near the side edge of the model domain, nutrients
near the southern and eastern boundaries of the model do-
main were only restored for 43 min to 3.6 h to the values pro-
vided by the Meteorological Research Institute Community
Ocean Model (MEM-MRI.COM) participating in MARine
Ecosystem Model Intercomparison Project (https://pft.ees.
hokudai.ac.jp/maremip/data/MAREMIPh_var_list.html, last
access: 28 May 2018). The physical field used in our ecosys-
tem model had already been confirmed to reproduce realistic
salinity, velocity, and temperature fields in a previous study
(Usui et al., 2006). Using a physical 1-day averaged field, we
ran the NSI-MEM to simulate the years between 1985 and
1998.

We divided the model domain into two provinces (green
and yellow regions in Fig. 1b) using the following province
map instead of maps divided by latitude–longitude lines as
in previous studies (e.g. Longhurst, 1995; Toyoda et al.,
2013). The province map is based on the dominant phyto-
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plankton species and nutrient limitations (Hashioka et al.,
2018) and sets different ecosystem parameters (see details in
Sect. 2.3) for each province (hereafter, “parameter-optimized
case: OPT”; Table 1). For each province, the respective pa-
rameters estimated by theµ-GA and the 1-D NSI-MEM were
employed for those in the 3-D NSI-MEM. A large gap in a
horizontal distribution of phytoplankton can appear on the
boundary of the two provinces in Fig. 1b due to a gap in the
different parameter sets at the boundary. In order to smooth
the gap in parameter values at the boundary between the two
provinces in Fig. 1b, the parameters were varied as a func-
tion of the sea surface temperature (SST) annually averaged
for 1998 (Fig. 1c) for our “SST-dependent case: SST-OPT”
(Table 1). While phytoplankton fluctuate with not only SST
but also other surrounding conditions such as nutrient abun-
dance in the real ocean (Smith and Yamanaka, 2007; Smith
et al., 2009), we chose SST because µ-GA optimization is
conducted for physiological parameters of both phytoplank-
ton and zooplankton (Table 2) and the SST directly affects
physiology of both of them whereas nutrients and light were
essentially related to phytoplankton. The parameters were in-
terpolated and extrapolated according to the following equa-
tion:

P(x)= PSt. S1+ (PSt. KNOT−PSt. S1)

×
SST(x)−SSTSt. S1

SSTSt. KNOT−SSTSt. S1
, (1)

where P(x), PSt. S1, and PSt. KNOT are ecosystem parame-
ters for a point (x), the station S1, and the station KNOT,
respectively. KNOT and S1 are typical observational points
in the subarctic and subtropical regions (green- and yellow-
coloured areas in Fig. 1b, respectively). We also conducted
model experiments with the parameters similar to those in
Shigemitsu et al. (2012) for the whole domain (hereafter
“control case: CTRL”, Table 1). The parameters of all the 3-
D experimental cases, shown in Table 1, were not changed
either vertically or temporally. In the parameter-optimized
and SST-dependent cases, the parameters were the same as
the control case from 1 January 1985 to 31 December 1996.
During the next 1 year (1997), the simulations were spun-up
with the optimized or SST-dependent parameters. Then, sim-
ulation results on 1 January 1998 were used as initial condi-
tions for the 1998 simulations. The parameter values used in
the control case were not changed during the 1985–1998 pe-
riod. The simulation results for the last year (i.e. 1998) were
analysed and compared to observational data of 1998.

2.2 Satellite and in situ data

Global satellite data for 1998 for phytoplankton (i.e.
chlorophyll a) were obtained from the Ocean Colour Cli-
mate Change Initiative, European Space Agency, avail-
able online at http://www.esa-oceancolour-cci.org/ (last ac-
cess: 28 May 2018), which utilized the data archives of
ESA’s MERIS/ENVISAT and NASA’s SeaWiFS/SeaStar and

Table 1. List of experiments.

Experiment
name

Content of experiment

1-D model experiments

Control Use the almost same
parameters as
those in Shigemitsu et
al. (2012).

Parameter-
optimized

Optimize the param-
eters with µ-GA at
KNOT and S1.

3-D model experiments

Control The same as control of
1-D model but applied
to 3-D simulation.

Parameter-
optimized

The same as parameter
optimization of the 1-
D model but applied to
3-D simulation for two
provinces in Fig. 1b.

SST-
dependent

The same as parame-
ter optimization of 3-
D simulation with inter-
polated parameters at
KNOT and S1 with
SST instead of parame-
ters for two provinces.

Aqua/MODIS. The global satellite data, which have the hor-
izontal resolution of 0.042◦, were linearly interpolated to the
grid (size 1/10 and 1/6◦) in the model domain (Fig. 1a),
and the nitrogen-converted concentrations of both PL and PS
were estimated based on a satellite PFT algorithm (Hirata
et al., 2011). The µ-GA cost function was defined from the
1998 monthly averaged PL and PS concentrations. The satel-
lite data of daily temporal resolution were not useful due to
many regions with missing values. Therefore, we discuss the
results of the monthly scale in the present study.

Satellite data of the 1998 mean SST (horizontal grids of
0.088◦) from the AVHRR-Pathfinder project (http://www.
nodc.noaa.gov/SatelliteData/pathfinder4km/, last access: 28
May 2018) were also used to conduct our SST-dependent
case study using the same interpolation procedure as above.
The data were linearly interpolated between satellite and
model grids, which could introduce some uncertainty to the
satellite data. In addition, the use of the global chlorophyll
data in the regional study for the WNP region could be an-
other error source of the observational data: the previous
study (Gregg and Casey, 2004) showed that the regional root
mean square log % errors of the satellite data ranged from
24.7 to 31.6 in the North Pacific.

To validate the vertical distribution of the model results,
we utilized in situ data of phytoplankton and nutrients in
1998 along the 165◦ E section taken from the World Ocean
Database 2013 (https://www.nodc.noaa.gov/OC5/WOD13/,
last access: 28 May 2018), and at KNOT (44◦ N, 155◦ E) ob-
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tained from the website (http://www.mirc.jha.or.jp/CREST/
KNOT/, last access: 28 May 2018) (Tsurushima et al., 2002).

2.3 One-dimensional NSI-MEM process

The 1-D NSI-MEM used in Shigemitsu et al. (2012) was em-
ployed as an emulator to determine the optimal set of ecosys-
tem parameters at KNOT (44◦ N, 155◦ E) and S1 (30◦ N,
145◦ E), respectively. We modified the 1-D NSI-MEM of
Shigemitsu et al. (2012) by increasing the number of verti-
cal layers to 54 and introducing the vertical advection of the
3-D simulation. Of 107 physiological parameters in the NSI-
MEM, 23 were selected, as shown in Table 2, which were
responsible for PL and PS biomass relevant to the photosyn-
thesis and the grazing of zooplankton. In the previous study,
Yoshie et al. (2007) also suggested that some parameters in
the 23 parameters were relatively influential on PS and PL,
more than the other physiological parameters such as those
for the sinking process of particulate matters (PON, OPAL
in Fig. 2). The other parameters of the NSI-MEM were the
same as those in the control case. The initial (1 January 1998)
and boundary conditions during the integration period were
applied from those in the 3-D model.

2.4 µ-GA implementation

The µ-GA procedure requires a cost function. To define the
cost function (Eq. 2), satellite PFT data were used as refer-
ence values for the µ-GA because satellite data have higher
temporal and spatial resolution than in situ data. The µ-GA
procedure works in such a way that a parameter set of the
lowest cost is retained, and then a new parameter set is deter-
mined by crossover and mutation methods using the retained
set. An optimized parameter set is finally provided by repeat-
ing the process multiple times.

Running the 1-D NSI-MEM with the µ-GA, the 23 opti-
mal parameters were obtained through the following process.

– Step 0. Define a range of parameter values (Table 2)
based on previous studies (e.g. Jiang et al., 2003; Fujii
et al., 2005; Yoshie et al., 2007) and prepare 23 model
runs with the same number of estimated parameters be-
fore running the µ-GA.

– Step 1. Generate 23 initial random parameter sets using
the µ-GA.

– Step 2. Evaluate the 23 model runs with the different
parameter sets using the following cost function:

Cost=
I∑
i

1
Ni

Ni∑
j

1
σ 2
i

(mij − dij )
2, (2)

where mi is the modelled monthly mean of phyto-
plankton type i(i = 1 for PL and 2 for PS) and di is
the monthly satellite data of type i. The index j de-
notes the number of months (Ni) for which satellite

data of type i exist. The assigned weights for PL and
PS were the same low value (σPL= 0.1 µmol L−1 and
σPS = 0.1 µmol l−1) as some weights used in Shigemitsu
et al. (2012).

– Step 3. Determine the best parameter set and carry it
forward to the next model run (or the next “generation”)
(elitist strategy).

– Step 4. Choose the remaining 22 sets for re-
determination of the best parameter sets (or “reproduc-
tion”) based on a deterministic tournament selection
strategy (the best parameter set that gave the highest
model performance in Step 3 also competes for its copy
in the reproduction). In the tournament selection strat-
egy, the parameter sets are grouped randomly and ad-
jacent pairs are made to compete. Apply crossover to
the winning pairs and generate new parameter sets for
the final 22 parameter sets. Two copies of the same set
mating for the next generation should be avoided.

– Step 5. If the difference between the maximum and min-
imum cost function values of the model runs becomes
smaller than a threshold value, renew all the parameter
sets randomly except for the best-performed set for effi-
ciently escaping from a local solution; the cost function
may have local minimums.

– Step 6. Repeat the procedure from Step 2 to Step 5 un-
til the best parameter set is well converged within 2000
generations (times) in the present study.

The 1-D NSI-MEM was used as an emulator to determine
ecosystem parameters through the process described above,
and the parameter sets assimilated by the 1-D model with the
µ-GA at KNOT and S1 were applied to the 3-D simulations,
which were conducted as the parameter-optimized case and
the SST-dependent case in Table 1.

3 Results and discussion

3.1 One-dimensional model

The 1-D NSI-MEM was employed to determine ecosystem
parameters for the 3-D-model simulation. The 1-D simula-
tion results (Fig. 3) of the parameter-optimized case (blue
dashed lines) are clearly closer to satellite data (solid lines)
than those of the control case (orange dashed lines). The cost-
function values estimated by the 1-D simulations in the OPT,
1.61 and 0.17 at KNOT and S1, are also about 8 and 6 times
smaller than those in the CTRL, 13.55 and 1.11, respectively
(not shown).

The total biomass (PL+PS) at KNOT in the subarctic re-
gion is larger than that at S1 in the subtropical region. The PS
biomass (Fig. 3a, c) is larger than the PL biomass (Fig. 3b, d)
at both KNOT and S1. As for the relative ratio of PL to the
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Figure 3. Seasonal variations in surface phytoplankton (PS: small
phytoplankton and PL: large phytoplankton) biomass in the 1-D
NSI-MEM and satellite data at KNOT and S1 shown as typical ob-
servational points of the subarctic and the subtropical regions, re-
spectively. (a) PS at KNOT, (b) PL at KNOT, (c) PS at S1, and (d)
PL at S1, where the concentrations of the two model cases are al-
most zero, and that of the satellite is also remarkably small. The unit
conversion between the simulation data (mol N m−3) and the satel-
lite data (g chl am−3) is referred to as the nitrogen / chlorophyll
ratio of PL= 1 : 1.59 and PS= 1 : 0.636 (Shigemitsu et al., 2012).
The same conversion of nitrogen to chlorophyll is used in Figs. 4,
6, 8, and 10.

total biomass, the relative ratio at KNOT is larger than that at
S1. These results are consistent with the general understand-
ing that biomass in the subarctic region is larger than that in
the subtropical region, and that the ratio of PL to the total
biomass in the subarctic region is also larger than that in the
subtropical region.

Seasonal variations in the OPT for the two stations sim-
ulated with the satellite data assimilation are also improved
drastically in comparison to the CTRL. The seasonal varia-
tions in PS and PL at KNOT (Fig. 3a, b) in the OPT have
relatively high concentrations with a winter peak of 630 and
130 µmol N m−3, respectively. In the CTRL of PS, however,
there is a spring (May) peak of 180 µmol N m−3, and the
PL concentration remains low through the year. At S1, the
PS seasonal variations tend towards a high concentration in
winter and low concentration from summer to autumn in the
OPT, while the PS concentration, in the CTRL, in summer
to autumn is higher than that in winter. The PL concentra-
tions of the two model cases are almost zero, and that of the
satellite is also remarkably small (< 21.5 µmol N m−3). The
parameter-optimization process with the 1-D model works
well in terms of the seasonal variations in surface phyto-
plankton.

3.2 Three-dimensional model

The parameter set estimated by the 1-D model at KNOT
and S1 was applied to the 3-D simulation (Fig. 4). The sea-
sonal features in the 3-D simulation are generally similar to
those seen in the 1-D simulation (i.e. relatively small sea-
sonal variations in PS biomass in the subarctic region and a
relatively high winter biomass in the OPT, compared to the
CTRL). At KNOT, for instance, there is the smaller differ-
ence between the high (575 µmol N m−3 in January) and low
(398 µmol N m−3 in October) concentrations in the OPT than
the high (568 µmol N m−3 in July) and low (59 µmol N m−3

in January) concentrations in the CTRL. The PL biomass fea-
tures are also similar to those of the PS biomass mentioned
above, except that the PL biomass is lower in the subtropical
region in the OPT than in the CTRL. Seasonal peaks of PS
and PL biomass also have the same features as those in the
1-D simulations (i.e. the PS bloom in the OPT occurs from
winter to spring (Fig. 4c, g), but that in the CTRL occurs in
summer (Fig. 4b). The SST-OPT results are discussed later
in Sect. 3.5.

Higher phytoplankton concentrations (> 1000 µmol N m−3)
were found in coastal areas throughout the year in the
satellite data. The model could not simulate these high
concentrations in the coastal areas. This may be due to
the inaccuracy of the satellite data resulting from the high
concentrations of dissolved organic material and inorganic
suspended matter (e.g. sand, silt, and clay), and/or due to
the uncertainty in the model introduced by unaccounted-for
coastal dynamics such as small-scale mixing processes (e.g.
estuary circulation, tidal mixing, and wave by local wind
forcing). Any nutrient flux from the seabed was not consid-
ered in this study, which may also induce the low-biased
phytoplankton biomass close to the coast. Hereafter, we
focus on phytoplankton seasonal fluctuation in the pelagic
and open ocean in this study.

Lagged (within± 2 months) correlation coefficients were
calculated for the monthly time series of the surface phyto-
plankton concentration between the simulations and satellite
data in each grid (Fig. 5a, c, e). Although there are some re-
gions where the correlation values are out of the range in the
95 % significance level (Fig. 5b, d, f) due to the small num-
bers of monthly mean data, the correlation maps of CTRL,
OPT, and SST-OPT can be relatively comparable to each
other because of the same sample numbers of the simulations
in each grid. Spatial distributions of the correlation show
that the larger coefficient-value region (r > 0.7) of the OPT
(Fig. 5c) in 25–45◦ N becomes more extended than that of
the CTRL (Fig. 5a) by 71 %, though the mean value of the
OPT in the north part of 50◦ N (r = 0.18) is smaller than that
in the CTRL (r = 0.66). The result is similar in the SST-OPT
(Fig. 5e). Our parameter estimation significantly improves
the simulation result of the horizontal distribution of phyto-
plankton in the lower latitude (< 45◦ N), but not in the region
(> 50◦ N) closer to the coasts.
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Figure 4. Horizontal distribution of phytoplankton at the surface in 1998. (a) PS (small phytoplankton) from satellite observations, (b) PS
in the control case, (c) PS in the parameter-optimized case, and (d) PS in the SST-dependent case. Panels (e)–(h) are the same except for PL
(large phytoplankton). Areas without satellite data are left blank.

Figure 6a–c show vertical distributions of total phyto-
plankton along the 165◦ E transect. The parameter optimiza-
tion improves the distributions in that the phytoplankton

maximum in the subsurface deepens more than that of CTRL
(Fig. 6b, c). Parameter-optimized total biomass through the
vertical section above 200 m is also closer to the observed
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Figure 5. Horizontal distribution of lagged (within±2 months) cor-
relation coefficients for the monthly time series of phytoplankton
(PL+PS) concentration between the simulation and the satellite
data in each grid at the surface in 1998, and the significance levels.
(a, b) Control case, (c, d) parameter-optimized case, and (e, f) SST-
dependent case. Areas with less than the number of seven monthly
mean satellite data and in the coastal regions where the bottoms are
less than 200 m are left blank.

data than the CTRL. It is an interesting result because the
vertical distribution is improved due to the data-assimilation
process using only surface satellite data. The detailed rea-
son is discussed in Sect. 3.4. In the nutrient distribution
along the 165◦ E (Fig. 6d to i), the concentrations of OPT
(Fig. 6f, i) are lower than those of CTRL (Fig. 6e, h). The
mean values along the transect of nitrate and silicate are
0.011 mol N m−3 and 0.025 mol Si m−3, respectively, in the
OPT, 0.014 mol N m−3 and 0.034 mol Si m−3 in the CTRL,
and 0.012 mol N m−3 and 0.022 mol Si m−3 in the observa-
tion (Fig. 6d, g). OPT is more consistent than CTRL with
the observation, though the nitrate observed value is higher
than the simulations in the surface (< 80 m) and subarctic
(> 42◦ N) regions. While nitrate is not the limiting nutrient
compared with iron and silicate for phytoplankton’s photo-
synthesis in the subarctic region (this detail is also mentioned
in Sect. 3.4), the data-assimilation process improves even the
nutrient field in addition to the phytoplankton field.

As for the temperature and salinity along the vertical sec-
tion (Fig. 7), the physical field used by the model simulations
is well reconstructed in terms of mixed-layer depth and tran-
sition from the subarctic and the subtropical regions. Judging
from the temperature and salinity distributions in the sub-
arctic region (> 42◦ N), the water columns are well mixed
vertically in both the observation and the simulation and in-
tensely stratified in the subtropical region (< 36◦ N). There is
the transition region (36–40◦ N) of temperature between the
subtropical and the subarctic.

3.3 Amplitude and phase of seasonal variation in
phytoplankton

The model performances were significantly improved in
terms of spatial distributions of phytoplankton biomass, as
a result of the parameters optimized in Sect. 3.2. Also at the
specific stations of KNOT and S1, where the parameters were
estimated using the 1-D simulations, seasonal variations in
total phytoplankton concentrations in the OPT are generally
better reproduced to those in the satellite data than those in
the CTRL (Fig. 8). At KNOT (Fig. 8a), the phytoplankton
bloom in the OPT occurs in winter, and the phytoplankton
bloom in the CTRL occurs in summer in an anti-phase to that
of the satellite. At S1 (Fig. 8b), the OPT case reasonably cap-
tures the timing of the phytoplankton bloom by the satellite,
although the amplitude is slightly overestimated. The sea-
sonal variations in the PS and PL concentrations are similar
to those of the total phytoplankton (not shown) in both cases.

Figure 9 shows comparisons of the amplitude and the
phase of seasonal variations between three model cases
(CTRL, OPT, and SST-OPT) and the satellite data. The ra-
dius shows the amplitude of seasonal variation for each of
the modelled cases relative to the satellite data, and the an-
gle from the x axis shows the maximum concentration time
lag for each of the model cases (i.e. the point (1, 0) shown
as “true” is a match within 1 month and 30◦ error range to
the satellite data). At KNOT, the OPT (blue solid vector) ex-
hibits the phase closest to the satellite data among the three
modelled cases. The ratios of the amplitudes to the satel-
lite data are as follows: 1.00 for the OPT (blue solid vec-
tor), 1.08 for the SST-OPT (yellow solid vector), and 1.24
for the CTRL (orange solid vector). The timings of the max-
imum concentration are as follows: a 2-month delay for the
OPT, a 3-month delay for the SST-OPT, and a 6-month delay
(anti-phase) for the CTRL. The timing of the OPT at S1 (blue
dotted vector) is improved, though its seasonal amplitude is
not.

Optimization of the physiological parameters by assimi-
lating the satellite data at the two stations improves the sea-
sonal variations in the phytoplankton concentrations such as
the timing of the maximum concentration and the seasonal
amplitude of the WNP region.
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Figure 6. Vertical distribution of phytoplankton (a–c), nitrate (d–f), and silicate (g–i) along the 165◦ E section in June 1998. (a, d, g) Data
in situ observed during 16 to 21 June 1998 downloaded from the World Ocean Database 2013. (b, e, h) Simulation result of the control case
mean in June 1998. (c, f, i) Simulation result of the parameter-optimized case mean in June 1998. Areas of missing values are left blank.

3.4 Vertical distributions of phytoplankton and
nutrient concentrations at KNOT

The model-simulated vertical distributions of phytoplank-
ton, nitrate, and silicate concentrations at KNOT on 20 July
1998 were compared with the observed ones on the same
day (Fig. 10). The vertical distribution of phytoplankton
(Fig. 10a) from 3-D simulations in the OPT (solid blue line)
is closer to the in situ data (black line) compared to the CTRL
(solid orange line): the maximum phytoplankton concentra-
tion for the OPT and the in situ data is located in the sub-

surface around a depth of 50 m, while there is no subsurface
maximum in the CTRL. The differences in the biomass be-
tween the OPT and CTRL become especially larger in the
subsurface layer (40 to 80 m). Thus, better physiological pa-
rameterization through the data assimilation improves not
only the surface concentration but also the important charac-
teristics of vertical plankton distribution such as the subsur-
face maximum. This is an interesting improvement because
the physiological parameters are optimized using only sur-
face satellite data.
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Figure 7. Vertical distribution of temperature (a, c) and salinity (b,
d) along the 165◦ E section in June 1998. (a, b) Data in situ ob-
served during 16 to 21 June in 1998 downloaded from World Ocean
Database 2013. (c, d) Physical field in June 1998 mean used in the
3-D NSI-MEM.

The vertical profile of phytoplankton obtained from the 3-
D simulation reproduces the observed ones better than the
1-D simulation, too (Fig. 10a). In addition, the difference in
3-D (solid lines) and 1-D (dashed lines) is larger in the up-
per layer (< 80 m) than in the lower layer (> 100 m). More-
over, error bars and shade for the 3-D simulations, which de-
pict the maximum and minimum values in ±0.3◦ around the
exact grid of KNOT, are also larger in the upper layer than
the lower layer. We assume that horizontal advection such
as mesoscale eddies is in the O (100 km) radius scale and
> 16 weeks of lifetime (e.g. Chelton et al., 2011) and can be
detected within the ±0.3◦ range in the physical field. These
suggest that effects of horizontal advection are important for
the daily reconstruction of the profile in the upper layer as
the effects are not included in the 1-D model.

In the NEMURO, the predecessor version of the NSI-
MEM, the amplitude and timing of phytoplankton blooms
are predominantly controlled by the photosynthesis rate (i.e.
bottom-up effect of nutrient dependence) rather than the
grazing rate (i.e. top-down effect of zooplankton) (Hashioka
et al., 2013). The former is determined by the limited growth
rate, which is a limitation function of growth rate by nitrogen
(NH4+NO3), silicate (Si(OH)4), or dissolved iron (FeD)
(refer to Eqs. (A15) and (A23) in Shigemitsu et al., 2012).
The smallest limited growth rate among the three nutrient
groups (i.e. NH4+NO3, Si(OH)4, and FeD) is used to limit
the rate of phytoplankton’s photosynthesis. For PS and PL in

Figure 8. Time series of phytoplankton (PL+PS) concentration in
the 3-D NSI-MEM and satellite data at (a) KNOT and (b) S1. Error
bars and shade of the simulations show the maximum and minimum
values in ±0.3◦ around the grids of KNOT and S1.

the OPT and CTRL, the dissolved-iron-limited growth rates
(red lines in Fig. 11) dominate the photosynthesis, while the
silicate growth rate is the second-largest limiting factor for
PL (green lines in Fig. 11b). The mean iron-growth rates in-
crease remarkably below a depth of 50 m (e.g. 0.37 to 1.86
and 0.48 to 2.47 day−1 in PS and PL, respectively) because of
the parameter optimization of the potential maximum growth
rate (V0) and the affinity (A0) as shown in Table 2. As a re-
sult, the uptake of dissolved iron seems to be accelerated,
particularly in the subsurface layer, leading to an increase
in the phytoplankton biomass (Fig. 10a). The larger biomass
of phytoplankton may also consume more nitrate and sili-
cate nutrients, resulting in lower nitrate (Fig. 10b) and sili-
cate (Fig. 10c) concentrations above a depth of 140 m com-
pared to that in the CTRL. The vertical gradients of nitrate
and silicate in the OPT are closer to the observed data than
those in the CTRL. In the OPT, nitrate and silicate concen-
trations are less than the data in situ, at the depth of both
around 50 m (0.010 mol N m−3 and 0.015 mol Si m−3 in the
OPT; 0.015 mol N m−3 and 0.025 mol Si m−3 in the obser-
vation) and 200 m (0.031 mol N m−3 and 0.069 mol Si m−3;
0.038 mol N m−3 and 0.085 mol Si m−3, respectively), while
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Figure 9. Diagram showing the amplitude and the phase of sea-
sonal variations in the three model cases compared with those in
the satellite data. Based on the seasonal variation in the satellite
data, the radius indicates the relative amplitude (model/satellite) of
seasonal variation for each model case and the angle from the pos-
itive x axis shows the time lag of the maximum concentration for
each model case (i.e. the point (1, 0) shown as “true” is a match
within 1 month and a 30◦ error range to the satellite data). The blue
dotted line (parameter-optimized case at S1) and yellow dotted line
(SST-dependent case at S1) overlap on the no-lagged x axis.

those at the depth of around 50 m in the CTRL
(0.017 mol N m−3 and 0.037 mol Si m−3) are higher than
those in the observed data, in which smaller vertical gradi-
ents of CTRL than the OPT are found. In the upper layer, the
nutrients are adequately supplied to phytoplankton as a result
of the parameter optimization. As in the lower layer below
the depth of 120 m, the nutrient concentrations seem to also
be determined by physical processes at the ocean-basin scale,
not only local biological processes.

The change of the dissolved-iron-limited growth rates by
optimization results in the lower concentration of dissolved
iron in the subarctic area (Fig. 12) because of the greater con-
sumption of FeD by the phytoplankton than in the CTRL.
The result is so far consistent with the conception of an
HNLC region in the North Pacific Ocean (Moore et al.,
2013), in spite of the fact that our model does not include
the Sea of Okhotsk as another iron source to the WNP region
(Nishioka et al., 2011). A further improvement is expected
by adding such an iron supply into our model.

3.5 Physiological parameter changes with ambient
conditions

The SST-OPT (i.e. smoothed changing parameters) was com-
pared to the OPT (i.e. boundary-gap parameters). The hori-

Figure 10. Vertical distributions of (a) phytoplankton (PL+PS)
from the 3-D model (solid line), 1-D model (dashed line), and in
situ data; (b) nitrate and (c) silicate concentrations from the 3-D
model (solid line) and in situ data at KNOT on 20 July 1998. Error
bars and shade of the 3-D simulations show the same mean as those
of Fig. 8.

zontal distribution of the PS and PL concentrations in the
SST-OPT are not significantly different from those in the
OPT (Fig. 4) except in two regions – the western region of
low latitude (15 to 25◦ N and 120 to 150◦ E during January
and April in Fig. 4h), and the region adjacent to the Kuroshio
Extension (around 40◦ N during July to October in Fig. 4h).
The former exception is due to the extrapolation of param-
eters with high SST and the latter is due to smoothing of
parameters between the KNOT and S1 stations. The simu-
lated seasonal variations in phytoplankton concentration in
the SST-OPT are slightly worse than those in the OPT at the
two stations (Fig. 9). The ratios of the seasonal amplitudes at
S1, for instance, were 2.33 for the OPT and 2.39 for the SST-
OPT. The maximum concentrations for both cases are found
in the same month (March) as that for the satellite data (they
overlap each other on the no-lagged x axis in Fig. 9). How-
ever, a smoothed set of parameters dependent on the SST
prevents the artificial gap of the parameter value at the fixed
boundary between the two provinces.

Physiological parameters represented in ecosystem mod-
els were optimized in reference to 1998 while they may
change with time. In addition, they may change with the
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Table 2. NSI-MEM physiological parameters estimated by the µ-GA. Maximum and minimum values prescribe the upper and lower bounds
of the parameter variations used in the previous studies. KNOT and S1 indicate optimal estimated values in the provinces of Fig. 1b while
control values are not optimized parameter values, and the values of Shigemitsu et al. (2012) are the parameters of the previous study.

Parameter Symbol Min. KNOT S1 Control Shigemitsu Max. Unit Sources of min.
et al. (2012) and max. range

PS potential maximum growth rate V0, PS 0.1 2.7 0.7 0.6 0.6 3.2 day−1 Shigemitsu et al. (2012)
at 0 ◦C

PS potential maximum affinity A0, NO3, PS 1 454 436 30 282 512 L mol N−1 s−1 Shigemitsu et al. (2012)
for NO3

PS half saturation constant KNO3, PS 0.5 1.871 2.9194 1 1 3 µmol N L−1 Chai et al. (2002),
for NO3 Eslinger et al. (2000)

PS half saturation constant KNH4, PS 0.05 0.1225 0.2582 0.1 0.1 1 µmol N L−1 Chai et al. (2002),
for NH4 Eslinger et al. (2000)

PS half saturation constant KFed, PS 0.035 0.1 0.0602 0.04 0.05 0.1 nmol L−1 Kudo et al. (2006),
for FeD Price et al. (1994)

PS temperature coefficient kPS 0.0392 0.0693 0.065 0.0693 0.0693 0.0693 ◦C−1 Eslinger et al. (2000),
for photosynthetic rate Fujii et al. (2005)

PS mortality rate at 0 ◦C MPS0 0.012075 0.012075 0.043212 0.0585 0.0585 0.05878 L µmol N−1 day−1 Fujii et al. (2005),
Sugimoto et al. (2010)

PL potential maximum growth rate V0, PL 0.1 3.2 1.5 1.2 0.8 3.2 day−1 Shigemitsu et al. (2012)
at 0 ◦C

PL potential maximum affinity A0, NO3, PL 1 437 171 10 252 512 L mol N−1 s−1 Shigemitsu et al. (2012)
for NO3

PL half saturation constant KNO3, PL 0.5 3 2.9194 3 3 3 µmol N L−1 Eslinger et al. (2000),
for NO3 Jiang et al. (2003)

PL half saturation constant KNH4, PL 0.5 0.5 1.3129 0.3 0.3 2.3 µmol N L−1 Eslinger et al. (2000),
for NH4 Fujii et al. (2005)

PL half saturation constant KSiL, PL 3 6 4.2857 6 6 6 µmol L−1 Yoshie et al. (2007)
for Si(OH)4

PL half saturation constant for FeD KFed, PL 0.05 0.05 0.0887 0.09 0.1 0.2 nmol L−1 Coale et al. (2003)

PL temperature coefficient kPL 0.0392 0.0693 0.0392 0.0693 0.0693 0.0693 ◦C−1 Eslinger et al. (2000),
for photosynthetic rate Fujii et al. (2005)

PL mortality rate at 0 ◦C MPL0 0.029 0.036941 0.034956 0.029 0.029 0.05878 L µmol N−1
· day−1 Fujii et al. (2005),

Yamanaka et al. (2004)

ZS maximum rate of grazing PS GRmaxS 0.3 0.7933 0.3 0.31 0.4 4 day−1 Yoshie et al. (2007),
at 0 ◦C Yoshikawa et al. (2005)

ZS threshold value for grazing PS PSZS∗ 0.04 0.364 0.364 0.043 0.043 0.364 µmol N L−1 Eslinger et al. (2000),
Sugimoto et al. (2010)

ZL maximum rate of grazing PS GRmaxL, PS 0.05 0.05 0.05 0.1 0.1 0.541 day−1 Eslinger et al. (2000),
at 0 ◦C Fujii et al. (2005)

ZL maximum rate of grazing PL GRmaxL, PL 0.135 0.251 0.135 0.49 0.4 0.541 day−1 Fujii et al. (2005)
at 0 ◦C

ZL threshold value for grazing PS PSZL∗ 0.01433 0.043 0.043 0.04 0.04 0.043 µmol N L−1 Eslinger et al. (2000),
Fujii et al. (2005)

ZL threshold value for grazing PL PLZL∗ 0.01433 0.043 0.018426 0.04 0.04 0.043 µmol N L−1 Eslinger et al. (2000),
Fujii et al. (2005)

ZP maximum rate of grazing PL GRmaxP, PL 0.1 0.4 0.1429 0.2 0.2 0.4 day−1 Eslinger et al. (2000)
at 0 ◦C

ZP threshold value for grazing PL PLZP∗ 0.01433 0.043 0.018426 0.04 0.04 0.043 µmol N L−1 Eslinger et al. (2000),
Fujii et al. (2005)
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Figure 11. Vertical distributions of limited growth rates by nitrogen,
silicate, and dissolved iron simulated from the 3-D model of (a) PS
and (b) PL at KNOT on 20 July 1998. The smallest rate of dissolved
iron most heavily limits the rate of phytoplankton’s photosynthesis.
These limited growth rates (mol N m−3 day−1) were divided by the
PS or PL biomass (mol N m−3) to standardize.

surrounding conditions in the real ocean (e.g. SST, nutrient
abundance, and light intensity). Smith and Yamanaka (2007)
and Smith et al. (2009) suggest the significance of photo-
acclimation and nutrient affinity acclimation. Phytoplankton
cells change their traits (e.g. nutrient channel, enzyme) in re-
sponse to ambient nutrient concentrations, and typically large
(small) cells adapt to low (high) light and high (low) nutri-
ent concentrations (Smith et al., 2015). In the NSI-MEM, the
effect of nutrient-uptake responses by plankton acclimated
to different ambient nutrient conditions is applied as an OU
kinetic formulation, but the effect of photo-acclimation has
not yet been introduced. Incorporation of temporal variation
in the physiological parameters may be effective in precisely
reproducing distributions and variations in phytoplankton. In
other words, data assimilation through the physiological pa-
rameter change with environmental conditions might play the
part in a calibration of simplified formulations of LTL marine
ecosystem models. However, four-dimensional changes of
physiological parameters complicate scientific interpretation
(Schartau et al., 2017), even though marine ecosystem mod-
els have been developed in order to simplify real-world ma-
rine ecosystems and facilitate scientific interpretation. The
spatial parameter estimation was conducted in this study be-
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Figure 12. Horizontal distribution of dissolved iron in the surface
seawater layer for July 1998; (a) control case and (b) parameter-
optimized case.

cause we would like to also discuss the physiological effects
of parameters changing in detail.

4 Conclusions

We extended an LTL marine ecosystem model, NSI-MEM,
into a 3-D coupled OGCM. We also used a data assimila-
tion approach for two different PFTs in the WNP region:
non-diatom PS and PL. In the NSI-MEM, 23 ecosystem pa-
rameters were estimated using a 1-D emulator with a µ-
GA parameter-optimization procedure. By applying the op-
timized parameters to the 3-D NSI-MEM, the model perfor-
mances were improved in terms of the seasonal variations in
phytoplankton biomass, including the timing of the plankton
bloom in the surface layer, compared to those using prior pa-
rameter values (control case). Notably, the vertical distribu-
tion of phytoplankton such as the subsurface maximum layer
was also improved via the parameter optimization, compared
to that in the control case. Thus, it was demonstrated that

www.ocean-sci.net/14/371/2018/ Ocean Sci., 14, 371–386, 2018



384 Y. Hoshiba et al.: Biological data assimilation for parameter estimation of NSI-MEM

the 3-D simulation performed better than the 1-D simulation
even to reproduce the vertical profile of phytoplankton.

Physiological parameters in this study were systematically
determined by a µ-GA within the range of those used by nu-
merical models in previous studies. While our parameter es-
timation improved the modelling skill of temporal and spatial
variability in PL and PS in the WNP, the estimated parame-
ter values themselves should also be confirmed with a suffi-
cient number of data when they become available, in order to
increase our confidence towards mechanistic and numerical
understanding of the phytoplankton dynamics observed.

Data availability. The phytoplankton satellite data were down-
loaded from the Ocean Colour Climate Change Initiative,
ESA (European Space Agency), available online at http://www.
esa-oceancolour-cci.org/ (last access: 28 May 2018) (free access).
The SST satellite data were downloaded from the National Oceanic
and Atmospheric Administration Pathfinder project in GHRSST
(The Group for High Resolution Sea Surface Temperature) and the
US National Oceanographic Data Center, available online at http:
//www.nodc.noaa.gov/SatelliteData/pathfinder4km/ (last access: 28
May 2018) (free access). The in situ data along the 165◦ E section
were provided by the World Ocean Database 2013 https://www.
nodc.noaa.gov/OC5/WOD13 (last access: 28 May 2018) (free ac-
cess). The in situ data at KNOT are available for the only mem-
bers of the Core Research for Evolutional Science and Technology
(CREST) program. The files necessary to reproduce the simulations
are available from the authors upon request.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This study was supported by Core Research
for Evolutional Science and Technology (CREST), Japan Science
and Technology Agency, grant number JPMJCR11A5. The first
author developed the 3-D NSI-MEM and conducted simulations
using this model at Hokkaido University and analysed the results
supported by the Center for Earth Surface System Dynamics, At-
mosphere and Ocean Research Institute, The University of Tokyo.
The phytoplankton satellite data were gathered by the Ocean
Colour Climate Change Initiative, ESA (European Space Agency).
The SST satellite data were provided by the National Oceanic
and Atmospheric Administration Pathfinder project in GHRSST
(The Group for High Resolution Sea Surface Temperature) and the
US National Oceanographic Data Center. Data in situ used in this
study were taken from World Ocean Database 2013 and Ocean
Time-Series program in the western North Pacific.

Edited by: Eric J. M. Delhez
Reviewed by: two anonymous referees

References

Aumont, O. and Bopp, L.: Globalizing results from ocean in situ
iron fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.

Blauw, A. N., Los, H. F. J., Bokhorst, M., and Erftemeijer, P. L.
A.: GEM: a generic ecological model for estuaries and coastal
waters, Hydrobiologia, 618, 175–198, 2009.

Buitenhuis, E. T., Rivkin, R. B., Sailley, S., and Le
Quéré, C.: Biogeochemical fluxes through micro-
zooplankton, Global Biogeochem. Cy., 24, GB4015,
https://doi.org/10.1029/2009GB003601, 2010.

Chai, F., Dugdale, R., Peng, T., Wilkerson, F., and Barber, R.: One-
dimensional ecosystem model of the equatorial Pacific upwelling
system, Part I: model development and silicon and nitrogen cy-
cle, Deep-Sea Res. Pt. II, 49, 2713–2745, 2002.

Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global ob-
servations of nonlinear mesoscale eddies, Prog. Oceanogr., 91,
167–216, 2011.

Coale, K. H., Wang, X., Tanner, S. J., and Johnson, K. S.: Phyto-
plankton growth and biological response to iron and zinc addi-
tion in the Ross Sea and Antarctic Circumpolar Current along
170 W, Deep-Sea Res. Pt II, 50, 635–653, 2003.

Cotrim da Cunha, L., Buitenhuis, E. T., Le Quéré, C., Giraud, X.,
and Ludwig, W.: Potential impact of changes in river nutrient
supply on global ocean biogeochemistry, Global Biogeochem.
Cy., 21, GB4007, https://doi.org/10.1029/2006GB002718, 2007.

Edwards, A. M. and Brindley, J.: Oscillatory behaviour in a three-
component plankton population model, Dynam. Stabil. Syst., 11,
347–370, 1996.

Eslinger, D. L., Kashiwai, M. B., Kishi, M. J., Megrey, B. A., Ware,
D. M., and Werner, F. E.: Final report of the international work-
shop to develop a prototype lower trophic level ecosystem model
for comparison of different marine ecosystems in the north Pa-
cific, PICES Scientific Report, 15, 1–77, 2000.

Fasham, M., Ducklow, H., and McKelvie, S.: A nitrogen-based
model of plankton dynamics in the oceanic mixed layer, J. Mar.
Res., 48, 591–639, 1990.

Fiechter, J., Herbei, R., Leeds, W., Brown, J., Milliff, R., Wikle,
C., Moore, A., and Powell, T.: A Bayesian parameter estimation
method applied to a marine ecosystem model for the coastal Gulf
of Alaska, Ecol. Model., 258, 122–133, 2013.

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.:
Emergent biogeography of microbial communities in a model
ocean, Science, 315, 1843–1846, 2007.

Fujii, M., Yoshie, N., Yamanaka, Y., and Chai, F.: Simulated bio-
geochemical responses to iron enrichments in three high nutrient,
low chlorophyll (HNLC) regions, Prog. Oceanogr., 64, 307–324,
2005.

Fujii, Y. and Kamachi, M.: Three-dimensional analysis of temper-
ature and salinity in the equatorial Pacific using a variational
method with vertical coupled temperature-salinity empirical or-
thogonal function modes, J. Geophys. Res.-Oceans, 108, 3297,
https://doi.org/10.1029/2002JC001745, 2003.

Gregg, W. W. and Casey, N. W.: Global and regional evaluation of
the SeaWiFS chlorophyll data set, Remote Sens. Environ., 93,
463–479, 2004.

Hashioka, T., Hirata, T., Chiba S., Noguchi-Aita, M., Nakano, H.,
and Yamanaka, Y.: Biogeochemical classification of the global

Ocean Sci., 14, 371–386, 2018 www.ocean-sci.net/14/371/2018/

http://www.esa-oceancolour-cci.org/
http://www.esa-oceancolour-cci.org/
http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/
http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/
https://www.nodc.noaa.gov/OC5/WOD13
https://www.nodc.noaa.gov/OC5/WOD13
https://doi.org/10.1029/2005GB002591
https://doi.org/10.1029/2009GB003601
https://doi.org/10.1029/2006GB002718
https://doi.org/10.1029/2002JC001745


Y. Hoshiba et al.: Biological data assimilation for parameter estimation of NSI-MEM 385

ocean based on nutrient limitation of phytoplankton growth, Bio-
geosciences, in preparation, 2018.

Hashioka, T., Vogt, M., Yamanaka, Y., Le Quéré, C., Buitenhuis,
E. T., Aita, M. N., Alvain, S., Bopp, L., Hirata, T., Lima, I.,
Sailley, S., and Doney, S. C.: Phytoplankton competition dur-
ing the spring bloom in four plankton functional type models,
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-
6833-2013, 2013.

Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken,
J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T.,
Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships be-
tween surface Chlorophyll-a and diagnostic pigments specific
to phytoplankton functional types, Biogeosciences, 8, 311–327,
https://doi.org/10.5194/bg-8-311-2011, 2011.

Hoshiba, Y. and Yamanaka, Y.: Simulation of the effects of bottom
topography on net primary production induced by riverine input,
Cont. Shelf Res., 117, 20–29, 2016.

Itoh, S., Yasuda, I., Saito, H., Tsuda, A., and Komatsu, K.: Mixed
layer depth and chlorophyll a: Profiling float observations in the
Kuroshio-Oyashio Extension region, J. Marine Syst., 151, 1–14,
2015.

Jiang, M., Chai, F., Dugdale, R., Wilkerson, F., Peng, T., and Barber,
R.: A nitrate and silicate budget in the equatorial Pacific Ocean:
a coupled physical-biological model study, Deep-Sea Res. Pt. II,
50, 2971–2996, 2003.

Jickells, T. D.: Nutrient biogeochemistry of the coastal zone, Sci-
ence, 281, 217–221, 1998.

Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger,
D. L., Werner, F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M.,
and Hashimoto, S.: NEMURO – a lower trophic level model for
the North Pacific marine ecosystem, Ecol. Model., 202, 12–25,
2007.

Krishnakumar, K.: Micro-genetic algorithms for stationary
and non-stationary function optimization, Proc. SPIE, 1196,
https://doi.org/10.1117/12.969927, 1990.

Kudo, I., Noiri, Y., Nishioka, J., Taira, Y., Kiyosawa, H., and Tsuda,
A.: Phytoplankton community response to Fe and temperature
gradients in the NE (SERIES) and NW (SEEDS) subarctic Pa-
cific Ocean, Deep-Sea Res. Pt. II, 53, 2201–2213, 2006.

Kuroda, H. and Kishi, M. J.: A data assimilation technique ap-
plied to estimate parameters for the NEMURO marine ecosystem
model, Ecol. Model., 172, 69–85, 2004.

Lancelot, C., Hannon, E., Becquevort, S., Veth, C., and De Baar, H.
J. W.: Modeling phytoplankton blooms and carbon export pro-
duction in the Southern Ocean: dominant controls by light and
iron in the Atlantic sector in Austral spring 1992, Deep-Sea Res.
Pt. I, 47, 1621–1662, 2000.

Large, W. G. and Yeager, S. G.: The global climatology of an in-
terannually varying air-sea flux data set, Clim. Dynam., 33, 341–
364, 2009.

Longhurst, A.: Seasonal cycles of pelagic production and consump-
tion, Prog. Oceanogr., 36, 77–167, 1995.

Michaelis, L., Menten, M. L., Johnson, K. A., and Goody, R. S.: The
original Michaelis constant: translation of the 1913 Michaelis-
Menten paper, Biochemistry, 50, 8264–8269, 2011.

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp,
L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jac-
card, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Ma-
howald, N. M., Marañón, E., Marinov, I., Moore, J. K., Nakat-

suka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A.,
and Ulloa, O.: Processes and patterns of oceanic nutrient limita-
tion, Nat. Geosci., 6, 701–710, 2013.

Nishioka, J., Ono, T., Saito, H., Sakaoka, K., and Yoshimura,
T.: Oceanic iron supply mechanisms which support the
spring diatom bloom in the Oyashio region, western sub-
arctic Pacific, J. Geophys. Res.-Oceans, 116, C02021,
https://doi.org/10.1029/2010JC006321, 2011.

Parekh, P., Follows, M., and Boyle, E.: Modeling the global
ocean iron cycle, Global Biogeochem. Cy., 18, GB1002,
https://doi.org/10.1029/2003GB002061, 2004.

Price, N., Ahner, B., and Morel, F.: The equatorial Pacific Ocean:
Grazercontrolled phytoplankton populations in an iron-limited
ecosystem, Limnol. Oceanogr., 39, 520–534, 1994.

Qiu, B. and Chen, S.: Eddy-mean flow interaction in the decadally
modulating Kuroshio Extension system, Deep-Sea Res. Pt. II, 57,
1098–1110, 2010.

Schartau, M., Wallhead, P., Hemmings, J., Löptien, U., Kriest, I.,
Krishna, S., Ward, B. A., Slawig, T., and Oschlies, A.: Re-
views and syntheses: parameter identification in marine plank-
tonic ecosystem modelling, Biogeosciences, 14, 1647–1701,
https://doi.org/10.5194/bg-14-1647-2017, 2017.

Shigemitsu, M., Okunishi, T., Nishioka, J., Sumata, H., Hash-
ioka, T., Aita, M., Smith, S., Yoshie, N., Okada, N., and Ya-
manaka, Y.: Development of a onedimensional ecosystem model
including the iron cycle applied to the Oyashio region, west-
ern subarctic Pacific, J. Geophys. Res.-Oceans, 117, C06021,
https://doi.org/10.1029/2011JC007689, 2012.

Smith, S. L. and Yamanaka, Y.: Quantitative comparison of pho-
toacclimation models for marine phytoplankton, Ecol. Model.,
201, 547–552, 2007.

Smith, S. L., Yamanaka, Y., Pahlow, M., and Oschlies, A.: Optimal
uptake kinetics: physiological acclimation explains the pattern of
nitrate uptake by phytoplankton in the ocean, Mar. Ecol.-Prog.
Ser., 384, 1–12, 2009.

Smith, S. L., Pahlow, M., Merico, A., Acevedo-Trejos, E., Sasai,
Y., Yoshikawa, C., Sasaoka, K., Fujiki, T., Matsumoto, K., and
Honda, M. C.: Flexible phytoplankton functional type (FlexPFT)
model: size-scaling of traits and optimal growth, J. Plankton
Res., 38, 977–992, 2015.

Sugimoto, R., Kasai, A., Miyajima, T., and Fujita, K.: Modeling
phytoplankton production in Ise Bay, Japan: Use of nitrogen iso-
topes to identify dissolved inorganic nitrogen sources, Estuar.
Coast. Shelf. S., 86, 450–466, 2010.

Sumata, H., Hashioka, T., Suzuki, T., Yoshie, N., Okunishi, T., Aita,
M. N., Sakamoto, T. T., Ishida, A., Okada, N., and Yamanaka, Y.:
Effect of eddy transport on the nutrient supply into the euphotic
zone simulated in an eddy-permitting ocean ecosystem model, J.
Mar. Syst., 83, 67–87, 2010.

Toyoda, T., Awaji, T., Masuda, S., Sugiura, N., Igarashi, H., Sasaki,
Y., Hiyoshi, Y., Ishikawa, Y., Saitoh, S., and Yoon, S.: Improved
state estimations of lower trophic ecosystems in the global ocean
based on a Green’s function approach, Prog. Oceanogr., 119, 90–
107, 2013.

Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I.,
Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A.,
Tsumune, D., Yoshimura, T., Aono, T., Hinuma, A., Kinugasa,
M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., Tsu-
rushima, N., Ogawa, H., Fukami, K., Kuma, K., and Saino, T.:

www.ocean-sci.net/14/371/2018/ Ocean Sci., 14, 371–386, 2018

https://doi.org/10.5194/bg-10-6833-2013
https://doi.org/10.5194/bg-10-6833-2013
https://doi.org/10.5194/bg-8-311-2011
https://doi.org/10.1117/12.969927
https://doi.org/10.1029/2010JC006321
https://doi.org/10.1029/2003GB002061
https://doi.org/10.5194/bg-14-1647-2017
https://doi.org/10.1029/2011JC007689


386 Y. Hoshiba et al.: Biological data assimilation for parameter estimation of NSI-MEM

A mesoscale iron enrichment in the western subarctic Pacific
induces a large centric diatom bloom, Science, 300, 958–961,
2003.

Tsujino, H., Hirabara, M., Nakano, H., Yasuda, T., Motoi, T., and
Yamanaka, G.: Simulating present climate of the global ocean-
ice system using the Meteorological Research Institute Commu-
nity Ocean Model (MRI. COM): simulation characteristics and
variability in the Pacific sector, J. Oceanogr., 67, 449–479, 2011.

Tsurushima, N., Nojiri, Y., Imai, K., and Watanabe, S.: Seasonal
variations of carbon dioxide system and nutrients in the surface
mixed layer at station KNOT (44 N, 155 E) in the subarctic west-
ern North Pacific, Deep-Sea Res. Pt. II, 49, 5377–5394, 2002.

Usui, N., Ishizaki, S., Fujii, Y., Tsujino, H., Yasuda, T., and Ka-
machi, M.: Meteorological Research Institute multivariate ocean
variational estimation (MOVE) system: Some early results, Adv.
Space Res., 37, 806–822, 2006.

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T.,
Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T.,
Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya,
M.: MIROC-ESM 2010: model description and basic results of
CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872,
https://doi.org/10.5194/gmd-4-845-2011, 2011.

Xiao, Y. and Friedrichs, M. A. M.: The assimilation of satellite-
derived data into a one-dimensional lower trophic level marine
ecosystem model, J. Geophys. Res.-Oceans, 119, 2691–2712,
2014.

Yamanaka, Y., Yoshie, N., Fujii, M., Aita, M. N., and Kishi, M.
J.: An ecosystem model coupled with Nitrogen-Silicon-Carbon
cycles applied to Station A7 in the Northwestern Pacific, J.
Oceanogr., 60, 227–241, 2004.

Yoshie, N., Yamanaka, Y., Rose, K. A., Eslinger, D. L., Ware, D. M.,
and Kishi, M. J.: Parameter sensitivity study of the NEMURO
lower trophic level marine ecosystem model, Ecol. Model., 202,
26–37, 2007.

Yoshikawa, C., Yamanaka, Y., and Nakatsuka, T.: An ecosystem
model including nitrogen isotopes: perspectives on a study of the
marine nitrogen cycle, J. Oceanogr., 61, 921–942, 2005.

Ocean Sci., 14, 371–386, 2018 www.ocean-sci.net/14/371/2018/

https://doi.org/10.5194/gmd-4-845-2011

	Abstract
	Introduction
	Model and data description
	Three-dimensional NSI-MEM
	Satellite and in situ data
	One-dimensional NSI-MEM process
	-GA implementation

	Results and discussion
	One-dimensional model
	Three-dimensional model
	Amplitude and phase of seasonal variation in phytoplankton
	Vertical distributions of phytoplankton and nutrient concentrations at KNOT
	Physiological parameter changes with ambient conditions

	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

