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Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit
are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera
states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate
that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we
show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear
stability analysis for the stationary multichimera.
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I. INTRODUCTION

Coupled oscillator systems have been studied extensively
in various scientific fields for many years [1,2]. In par-
ticular, chimera states of coupled oscillators have recently
attracted great interest [3–34]. Chimera states can be seen in
a wide variety of systems with different coupling topologies
[4,8,9,11,17,22,28,29,32] and different kinds of constituent
oscillators [14,16,17,20,22,28–30], and are also found experi-
mentally [18,19,22,25]. One of the most basic models among
them is the one-dimensional array of nonlocally coupled phase
oscillators [3,5–7,10,12,13,15,21,23,24,26,31,33,34]. The es-
sential feature of chimera states in phase oscillator systems on
one-dimensional space is the coexistence of coherent regions
of synchronized oscillators and incoherent regions of drifting
oscillators. The morphology of their coexistence depends on
the coupling function corresponding to the interaction between
oscillators and the coupling kernel function characterizing
nonlocality. In many cases, only the fundamental harmonic
component is used for the coupling function, as in the present
paper. However, it is also reported that higher harmonic
components in the coupling function are responsible for a rich
variety of chimera states [26,31,34].

Chimera states for the one-dimensional array of phase
oscillators in the continuum limit N → ∞, where N is the
number of oscillators, are mostly assumed to be stationary
states. This means that the local mean field or the local order
parameter is stationary in the rotating frame with a constant
frequency. This assumption about chimera states plays an
important role in various studies, e.g., the self-consistency
equation of the local mean field [3,5–7] and the linear stability
analysis of chimera states [21,24,33]. However, Abrams et al.
[8] discovered breathing chimeras, whose global order param-
eter of a population oscillates temporally, for two interacting
populations of globally coupled phase oscillators, and posed
the question of whether such breathing chimeras exist in
the case of one-dimensional arrays. To answer this question,
Laing [10] demonstrated that there also appear breathing
chimeras in the one-dimensional system by introducing phase
lag parameter heterogeneity.

In this paper, we focus on chimera states, especially mul-
tichimera states with two coherent and incoherent regions, in

one-dimensional nonlocally coupled phase oscillators. More-
over, it is demonstrated that breathing chimeras can appear
even in homogeneous systems without introducing parameter
heterogeneity. By numerical simulations, we observe that the
appearance of breathing chimeras depends on the coupling
kernel function. Then we show that the system exhibits a Hopf
bifurcation from a stationary chimera to a breathing one by the
linear stability analysis for the stationary chimera.

II. MODEL

We consider the system of nonlocally coupled phase oscil-
lators obeying

θ̇ (x,t) = ω −
∫ π

−π

dy G(x − y) sin[θ (x,t) − θ (y,t) + α],

(1)
with 2π -periodic phase θ (x,t) on the one-dimensional space
x ∈ [−π,π ] under the periodic boundary condition. The cou-
pling between oscillators is assumed to be the sine function
with the phase lag parameter α [35], and the natural frequency
ω can be set to zero without loss of generality. The coupling
kernel function G(x) is generally an even real function de-
scribed as

G(x) =
∞∑

k=0

gk cos(kx), (2)

where gk ∈ R and x ∈ [−π,π ]. Nonlocal coupling is charac-
terized by this kernel, which can be taken as, e.g., the exponen-
tial kernel [3,7,33,34] and the cosine kernel [5,6,10,24]. In this
paper, we particularly use the step kernel [12,13,15,21,23,31],

G(x) =
{

1/(2πr) (|x| � πr)

0 (|x| > πr),
(3)

with 0 < r � 1, where r denotes the coupling range. For
numerical simulation of Eq. (1), we need to discretize x into
xj := −π + 2πj/N (j = 0, . . . ,N − 1). Then Eq. (1) with
the step kernel given by Eq. (3) is rewritten as

θ̇j (t) = ω − 1

2R

j+R∑
k=j−R

sin[θj (t) − θk(t) + α], (4)
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FIG. 1. Multichimera state with two coherent and incoherent
regions for Eq. (4) with N = 10 000, α = 1.480, and r = 0.360.
(a) The snapshot of the phase θ (x,t). (b) The profile of the average
frequency 〈θ̇ (x)〉 with T = 2000.

where θj (t) := θ (xj ,t) and R := rN/2. All the indexes in
Eq. (4) are regarded as modulo N , considering the periodic
boundary condition. In this paper, we use the fourth-order
Runge-Kutta method with time interval �t = 0.01 for all
numerical simulations. Note that chimera states for Eq. (4)
are merely transient for small N , but, when N is larger,
the transient time becomes longer and diverges to infinity
in the continuum limit, where the chimera state appears
stable [13,15,25,31].

For Eq. (4), there appear various types of chimera states
[23], including multichimera states with two or more coherent
and incoherent regions. A typical multichimera state obtained
by numerical simulation is shown in Fig. 1. This multichimera
state has two coherent and incoherent regions, which we call
2-multichimera below. Figure 1(a) shows the snapshot of the
phase θ (x,t). Two coherent regions are separated from each
other by the phase almost exactly π , which is a remarkable
feature of the 2-multichimera and different from merely two
neighboring chimeras. In order to assist the emergence of
2-multichimera for the numerical simulations of Eq. (4), we use
the following initial condition close to a 2-multichimera [6,31]:

θ (x) =
⎧⎨
⎩

exp
[−30

( |x|
2π

− 1
4

)2]
p(x)

(
0 � |x| � π

2

)
exp

[−30
( |x|

2π
− 1

4

)2]
p(x) + π

(
π
2 < |x| � π

)
,

(5)
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FIG. 2. Stability region of 2-multichimera for Eq. (4) obtained by
the numerical simulation with N = 100 000. Black circles denote the
parameter values of Fig. 3. The blue line denotes the Hopf bifurcation
points obtained by the linear stability analysis for the stationary
2-multichimera with fixed α in Sec. IV, but we could not determine
those points for α close to π/2 (dashed line).

where p(x) ∈ [−π,π ] is a uniform random number.
Figure 1(b) shows the profile of the average frequency
〈θ̇ (x)〉 := ∫ T

0 dt ′ θ̇(x,t ′)/T with the measurement time T .
When we refer to time-averaged quantities 〈·〉, we set the
measurement time to T = 2000 and measured those quantities
after the transient time 2000. The stability region of the
2-multichimera for Eq. (4) obtained by the numerical
simulation with N = 100 000 is shown in Fig. 2. This result
is consistent with the phase diagram in [23] as far as the
stability region of 2-multichimera is concerned. However, in
[23], the stationary and breathing 2-multichimeras are not
distinguished, and the region of the breathing one is identified
as a part of the region of the stationary one.

It is mostly assumed that the chimera state for Eq. (1) is a
stationary state in the rotating frame with a frequency �. This
precisely means that the local mean field,

Y (x,t) :=
∫ π

−π

dy G(x − y) eiθ(y,t), (6)

acting on the oscillator located in point x, takes the form
Y (x,t) = Ỹ (x) ei�t . Then the global order parameter,

Z(t) := 1

2π

∫ π

−π

dy eiθ(y,t), (7)

also takes the form Z(t) = Z̃ ei�t . Here, |Z(t)| denotes the
synchronization degree of all oscillators, that is, all oscillators
are completely synchronized in phase for |Z(t)| = 1 and
otherwise for 0 � |Z(t)| < 1. In the case of the stationary
2-multichimera as in Fig. 1, |Z(t)| should vanish in the
continuum limit N → ∞, but we found that |Z(t)| can oscillate
periodically at appropriate parameters (α,r) and sufficiently
large N . Figure 3 shows the time evolution of |Z(t)| for
2-multichimeras with N = 100 000. The blue solid line (α =
1.480 and r = 0.360) exhibits a clear periodic oscillation,
while the orange dashed line (α = 1.480 and r = 0.440)
merely exhibits a small fluctuation around zero. We call the

042212-2



BREATHING MULTICHIMERA STATES IN NONLOCALLY … PHYSICAL REVIEW E 97, 042212 (2018)

0.00

0.01

0.02

 0  50  10012 18 24

|Z
(t)

|

t

r=0.360
r=0.440

FIG. 3. Time evolution of the global order parameter |Z(t)| for
a 2-multichimera for Eq. (4) with N = 100 000 and α = 1.480. The
2-multichimera is breathing for r = 0.360 (blue solid line), while it
is stationary for r = 0.440 (orange dashed line). Vertical dashed lines
correspond to the times t in Fig. 4.

former state breathing 2-multichimera, while we regard the
latter as stationary 2-multichimera.

The detailed periodic behavior of the breathing
2-multichimera can be confirmed as the periodic oscillation
of |Y (x,t)| as shown in Fig. 4. |Y (x,t)| takes a bimodal form,
where the positions of the peaks correspond to each center
of the coherent regions. Within a period of the global order
parameter |Z(t)| approximately corresponding to t = 12 ∼ 24
in Fig. 3, |Y (x,t)| experiences the variation in one-half of its
period, and within the next period of |Z(t)|, |Y (x,t)| completes
its whole period. Therefore, the period of |Y (x,t)| is double
that of |Z(t)|. In the simulation of Fig. 4, the angular frequency
of |Y (x,t)| is calculated as about 0.270, which is compared
with the result of the linear stability analysis in Sec. IV.

We can distinguish between stationary and breathing
2-multichimeras by studying the time evolution of |Z(t)|,
but that is difficult for small N because large fluctuation in
|Z(t)| is unavoidable. To distinguish between these clearly, we
needed 10 000 oscillators at least in our numerical simulation.
Though such breathing properties of the standard chimera
states in one-dimensional phase oscillators systems is observed
by introducing phase lag parameter heterogeneity [10], we
note that the present breathing 2-multichimera does not require
such heterogeneity. In this paper, we focus on this breathing
2-multichimera, and study the bifurcation mechanism from the
stationary 2-multichimera.

III. STATIONARY 2-MULTICHIMERA

Here, we study the basic properties of stationary
2-multichimeras. We first rewrite Eq. (1) as

θ̇(x,t) = ω + Im[e−iθ(x,t)e−iαY (x,t)]. (8)

Furthermore, we define the local order parameter [24],

z(x,t) := lim
δ→0+

1

2δ

∫ x+δ

x−δ

dy eiθ(y,t), (9)

and obtain Y (x,t) = ∫ π

−π
dy G(x − y) z(y,t). |z(x,t)| denotes

the synchronization degree of oscillators around point x,
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FIG. 4. Snapshot of the local mean field |Y (x,t)| for the breathing
2-multichimera for Eq. (4) with N = 100 000, α = 1.480, and r =
0.360. (a) The global view of the snapshot; (b) the upper enlarged
view. The red dashed line (t = 12) and green solid line (t = 24)
lines approximately correspond to peaks of the global order parameter
|Z(t)|, while the blue dotted line (t = 18) approximately corresponds
to a valley, as shown in Fig. 3.

similarly to the global order parameter |Z(t)|. For |z(x,t)| =
1, the oscillators in the neighborhood of x are completely
synchronized in phase. Otherwise, when their phases are
scattered, we obtain 0 � |z(x,t)| < 1. Therefore, we can iden-
tify |z(x,t)| = 1 and 0 � |z(x,t)| < 1 as the coherent and
incoherent regions for chimera states, respectively.

Following the method in [9,13] using the Watanabe-
Strogatz approach [36], we can obtain the evolution equation
of z(x,t) as

ż(x,t) = iωz(x,t) + 1
2e−iαY (x,t) − 1

2eiαz2(x,t)Y ∗(x,t),
(10)

using Eq. (8), where the symbol ∗ denotes the complex con-
jugate. Equation (10) can also be obtained by another method
[10,21] using the Ott-Antonsen ansatz [37,38]. Assuming the
stationary solution z(x,t) = z̃(x) ei�t , Eq. (10) is rewritten as

0 = i�z̃(x) + 1
2e−iαỸ (x) − 1

2eiαz̃2(x)Ỹ ∗(x), (11)

where � := ω − �. Solving Eq. (11) as a quadratic equation
in terms of z̃(x) and integrating the solution, we can obtain the
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self-consistency equation,

Ỹ (x) = ie−iα

∫ π

−π

dy G(x − y) Ỹ (y) h(y), (12)

h(x) :=
{

[� −
√

�2 − R(x)2]/R(x)2 [� > R(x)]

[� − i
√

R(x)2 − �2]/R(x)2 [� � R(x)],
(13)

where R(x) ei	(x) := Ỹ (x) = Y (x,t) e−i�t . These equations
correspond to the self-consistency equation derived by Ku-
ramoto and Battogtokh [3]. Equations (12) and (13) are com-
posed of two equations given by the real and imaginary parts,
but have three real unknowns R(x), 	(x), and �. Therefore,
we need to add the third condition to solve them. The third
condition can be obtained from the fact that Eqs. (12) and (13)
are invariant under any rotation, 	(x) → 	(x) + 	0 [5–7,24].
Based on the above, we have chosen the condition

	(−π ) = −π

2
. (14)

Equations (12) and (13) under Eq. (14) can be numerically
solved by the following iteration procedure [6,7]. First, we
prepare an initial function Ỹ (x), i.e., R(x) and 	(x), and obtain
� satisfying Eq. (14) from Eqs. (12) and (13) by Newton’s
method with respect to �. Second, substituting Ỹ (x) and �

into the right-hand side of Eq. (12), we generate a new Ỹ (x)
from the left-hand side. Third, we obtain a new � satisfying
Eq. (14), again by Newton’s method, using the new Ỹ (x). It
only remains to repeat the second and third steps until both
Ỹ (x) and � converge. Note that space translational symmetry
of Ỹ (x) is not eliminated in this iteration procedure, so the
spatial position of Ỹ (x) depends on the initial condition.

According to [21], it is analytically proved that
2-multichimeras exist under the condition g1 
= 0 for the
coupling kernel given by Eq. (2), and the local mean field Ỹ (x)
of a stationary 2-multichimera is given by an even function,

Ỹ (x) =
∞∑

m=1

C2m−1 cos[(2m − 1)x], (15)

where C2m−1 ∈ C. This means that all 2-multichimera so-
lutions of Eqs. (12) and (13) can be transformed into the
form given by Eq. (15) by the appropriate spatial translation.
Using Eq. (15), h(x) turns out to be an even function because
R(x) = |Ỹ (x)| is also even. Let a set of Ỹ (x) satisfying Eq. (15)
and � be a solution of Eqs. (12) and (13). By substituting
Eqs. (2) and (15) into Eqs. (12) and (13) and eliminating the
terms whose integrands are odd functions of y, we obtain

Ỹ (x) = 2ie−iα

∞∑
k=0

gk cos(kx)
∞∑

m=1

C2m−1

×
∫ π

0
dy cos(ky) cos[(2m − 1)y] h(y). (16)

Changing the variable as y ′ = y − π/2 in the integration in
Eq. (16), the function h(y ′ + π/2) in the integrand is an even
function of y ′ because of Eq. (15). We again eliminate the terms

whose integrands are odd functions of y ′, and obtain

Ỹ (x) = 2ie−iα

∞∑
l=1

g2l−1 cos[(2l − 1)x]
∞∑

m=1

C2m−1(−1)l+m

×
∫ π

2

− π
2

dy ′ sin[(2l − 1)y ′] sin[(2m − 1)y ′]h
(
y ′ + π

2

)
.

(17)

From the above, for Ỹ (x) and � of a stationary 2-multichimera
satisfying Eqs. (12) and (13), we can finally obtain

Ỹ (x) = ie−iα

∞∑
l=1

g2l−1

∞∑
m=1

C2m−1Alm cos[(2l − 1)x], (18)

where Alm is a complex constant. Equation (18) shows that
Ỹ (x) and � of a stationary 2-multichimera depends only on
the odd harmonic coefficients g2m−1, not on the even harmonic
coefficients g2m of the coupling kernel G(x). This is because
we recover Eq. (18) even when we substitute the identical set
of Ỹ (x) and � into Eqs. (12) and (13) with another coupling
kernel, for example,

Godd(x) =
∞∑

m=1

g2m−1 cos[(2m − 1)x], (19)

having the same set of odd harmonic coefficients g2m−1. There-
fore, each stationary 2-multichimera for G(x) and Godd(x)
systems has an identical local mean field. This does not
mean that the stability properties of these 2-multichimeras are
also identical. However, Eqs. (12) and (13) for each system
have an identical solution of the stationary 2-multichimera,
whether or not each chimera is stable. This property of
the coupling kernel Godd(x) is useful in the linear stabil-
ity analysis for the stationary 2-multichimeras mentioned
in Sec. IV.

To illustrate the above property for our step kernel given
by Eq. (3), we performed a numerical simulation using a new
coupling kernel Godd(x) with the same set of odd harmonic
coefficients g2m−1 as for Eq. (3). By regarding Eq. (3) as
a 2π -periodic function of x, Godd(x) can also be obtained
as Godd(x) = [G(x) − G(x − π )]/2, which we used in the
numerical simulation instead of the Fourier expansion in
Eq. (19). Then, also for this Godd(x), we observed stationary
2-multichimeras. Figure 5 shows the time-averaged local mean
fields 〈Ỹ (x)〉 of the stationary 2-multichimeras using the step
kernel G(x) and the corresponding Godd(x). They are clearly
identical and also agree with the numerical solution Ỹ (x)
to the self-consistency equations given by Eqs. (12) and
(13) with Godd(x). Note that the solid lines in Fig. 5 are
obtained for Godd(x), not for G(x). We tried to numerically
solve Eqs. (12) and (13) with the step kernel G(x), but we
could not obtain a stationary solution Ỹ (x) of 2-multichimera
because Ỹ (x) converged to another solution corresponding to
a standard chimera state with one coherent and one incoherent
region, under any initial conditions. Note that since where
the iteration converges is attributed to the property of the
iteration procedure, this does not mean that the stationary
2-multichimera solution does not exist for the G(x) system.
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FIG. 5. Local mean field Ỹ (x) of a stationary 2-multichimera.
(a) The amplitude R(x); (b) the argument 	(x). Open circles denote
the time-averaged local mean field 〈Ỹ (x)〉 for Eq. (1) with the
step kernel G(x), namely, Eq. (4), with N = 100 000, α = 1.480,
and r = 0.440, and open squares denote 〈Ỹ (x)〉 for Godd(x) with
the same parameters. Note that those are plotted once every 2000
oscillators. The solid line denotes the numerical solution Ỹ (x) to the
self-consistency equations given by Eqs. (12) and (13) with Godd(x).

2-multichimeras can also appear for Eq. (1) with
other Godd(x), e.g., Godd(x) = g1 cos(x) [24], Godd(x) =
g1 cos(x) + g3 cos(3x) as shown in Fig. 6, and so on. In
our numerical simulations for various Godd(x) systems, we
found an interesting property common to 2-multichimeras for
Godd(x), which is an exact relationship between the phase
θ (x,t) as

|θ (x,t) − θ (x − π,t)| = π, (20)

on any point x. In fact, from Eq. (8) with any Godd(x),
we obtain θ̇ (x,t) − θ̇(x − π,t) = 0 for Eq. (20) by using the
relation Y (x,t) = −Y (x − π,t) satisfied at any time. This
implies that Eq. (20) can be a solution to Eq. (1) with Godd(x)
whether stable or not, but our simulations show that the
system with Godd(x) always converges to the solution given
by Eq. (20) under any initial conditions. For the kernel other
than Godd(x), this property given by Eq. (20) is not exact, but
seems to be satisfied only in the meaning of average, as seen
in Fig. 1(a).

0.0

 0 π-π

π

-π

θ(
x)

x

FIG. 6. Snapshot of a 2-multichimera for Eq. (1) with Godd(x) =
g1 cos(x) + g3 cos(3x) with N = 10 000, α = 1.500, g1 = 1, and
g3 = −0.0916. The phase θ (x,t) on any point x satisfies Eq. (20).

IV. BREATHING 2-MULTICHIMERA

As described above, 2-multichimeras for Eq. (1) with the
step kernel G(x) do not satisfy Eq. (20). In our simulations,
however, we often observed breathing 2-multichimeras instead
of stationary 2-multichimeras, as shown in Fig. 3. This breath-
ing 2-multichimera is characterized by the global order param-
eter |Z(t)| oscillating periodically. Therefore, 2-multichimeras
for Godd(x) satisfying Eq. (20) cannot breathe because the
global order parameter of Eq. (20) exactly vanishes.

It is known that the breathing chimeras in the other
studies [8,10,32] branch via Hopf bifurcation from stable
stationary chimeras. If the present breathing 2-multichimera
also branches via Hopf bifurcation, an unstable stationary
2-multichimera should exist in the neighborhood of the bifur-
cation point. The local mean field of this unstable stationary
2-multichimera should be a solution to the self-consistency
equations given by Eqs. (12) and (13), and identical with that
of the stationary 2-multichimera for the Godd(x) system.

In order to investigate this bifurcation, we analyze the
linear stability of stationary 2-multichimeras. By substitut-
ing z(x,t) = [z̃(x) + v(x,t)] ei�t with the stationary solution
z̃(x) ei�t and a small perturbation v(x,t) into Eq. (10), we
obtain a linear evolution equation for v(x,t),

v̇(x,t) = g(x)z̃(x) + 1
2e−iαV (x,t) − 1

2eiαz̃2(x)V ∗(x,t),
(21)

g(x) :=
{

i
√

�2 − R(x)2 [� > R(x)]

−
√

R(x)2 − �2 [� � R(x)],
(22)

V (x,t) :=
∫ π

−π

dy G(x − y)v(y,t), (23)

where � = ω − �. We rewrite Eqs. (21)–(23) as v̇ = L v us-
ing v(x,t) = [Re v(x,t), Im v(x,t)]T and solve the eigenvalue
problem of L. According to [21,24], the spectrum of L consists
of the essential spectrum and the point spectrum. In the present
case, the essential spectrum is given by g(x) consisting of pure
imaginary and negative real eigenvalues, which correspond to
incoherent and coherent regions, respectively. Therefore, the
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FIG. 7. Complex eigenvalues λ of Ld with M = 5000 and α =
1.480 using Ỹ (x) with N = 200 000. (a) All eigenvalues for the
unstable stationary 2-multichimera that changes to a breathing one
(r = 0.360); (b) those for the stable stationary 2-multichimera (r =
0.440). (c) The enlarged view of (a) and (b) denoted by the blue and
orange points, respectively. The dashed lines in each panel are drawn
only for reference.

stability of stationary 2-multichimeras should be determined
only by the point spectrum.

If the number of nonzero gk in Eq. (2) is finite, we may solve
the eigenvalue problem of a finite size matrix to obtain the point
spectrum [21,24]. However, the step kernel given by Eq. (3)
has infinite numbers of nonzero gk . Therefore, we discretize
the space coordinate x → xj = −π + 2πj/M (j = 0, . . . ,

M − 1) and compute all eigenvalues λ by solving the
eigenvalue problem of 2M × 2M matrix Ld such that
v̇d = Ld vd with vd (t) = [. . . , Re v(xj ,t), Im v(xj ,t), . . . ]T

[33,39]. In order to solve this problem, we first need to
prepare Ỹ (x) and � of the stationary 2-multichimera for
Eq. (4) numerically, but could not obtain them by solving

 0.001

 0.01

 1000  10000

R
e λ

M

group 1
group 2

FIG. 8. Transition of the positive real parts of the eigenvalues
of Ld for an unstable stationary 2-multichimera (α = 1.480 and r =
0.360) with increasing M . Open circles denote the maximum values of
the real parts of the eigenvalues in group 1, and open triangles denote
those in group 2. The data for group 1 are fitted linearly (dashed line)
in the log-log plot, and go to zero with increasing M . In contrast, the
data for group 2 converge to a positive constant 1.175 × 10−3 (solid
line).

the self-consistency equations given by Eqs. (12) and (13)
with the step kernel G(x) because Ỹ (x) converged to another
solution by the iteration procedure, as mentioned in Sec. III.
We accordingly used Ỹ (x) and � of Eqs. (12) and (13) with
the corresponding Godd(x), instead of G(x). Although Godd(x)
is used for computing Ỹ (x) and �, we note that we insert
the original kernel G(x) into Eqs. (21)–(23) to solve the
eigenvalue problem. Figure 7(a) shows all the eigenvalues λ of
Ld with M = 5000, α = 1.480, and r = 0.360 on the complex
plane. As seen from the figure, we have some eigenvalues with
positive real part, because the stationary 2-multichimera is
unstable and changes into a breathing one at these parameters.
We can regard those eigenvalues as roughly separating into two
groups. Group 1 consists of some eigenvalues around the real
axis and group 2 consists of others around the imaginary values
about 0.270 and their complex conjugate, as shown in Fig. 7(c).

Even though we can observe the eigenvalues with a positive
real part, we cannot easily tell whether they belong to the point
spectrum or a fluctuation of the essential spectrum caused by
finite discretization. If an eigenvalue with a positive real part
belongs to such a fluctuation, its real part should go to zero in
the continuum limit M → ∞, while an eigenvalue in the point
spectrum keeps the positive real part in that limit. We computed
the eigenvalues of Ld with various M and found their limiting
behaviors as M is increased, as shown in Fig. 8.

From Fig. 8, we can see that the maximum value of the
real parts of the eigenvalues in group 1 tends to go to zero,
while that value in group 2 converges to a positive constant.
Therefore, it turns out that at least a pair of the complex
conjugate eigenvalues in group 2 belongs to the point spectrum,
while the eigenvalues in group 1 belong to the fluctuation of
the essential spectrum by finite discretization. At the other
parameters where the stationary 2-multichimera is stable, the
point spectrum contains only the eigenvalues with a negative
real part, as shown in Fig. 7(b).
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FIG. 9. Hopf bifurcation for fixed α = 1.480. Each point shows
the eigenvalue with the positive imaginary part and the maximum
absolute value of the real part in the point spectrum for r = 0.440
(orange circle), r = 0.420 (orange triangle), r = 0.380 (blue trian-
gle), and r = 0.360 (blue circle), and corresponds to the black solid
line in Fig. 2. The point for r = 0.400 is omitted in the figure because
we could not distinguish the point spectrum from other eigenvalues
for r = 0.400 that is very close to the Hopf bifurcation point. The
dashed line is the imaginary axis.

Figure 9 shows that a Hopf bifurcation from a stationary
2-multichimera to a breathing one occurs for α = 1.480,
denoted by the vertical black solid line in Fig. 2. The Hopf
bifurcation points for α = 1.480 and other values are shown
as the blue line in Fig. 2. However, we could not determine the
bifurcation points for α close to π/2 because it is difficult to
distinguish the point spectrum whose real parts are almost zero
for those α. We note that the absolute values of the imaginary
parts of the point spectrum, as shown in Fig. 7(a), are nearly
equal to the angular frequency of the local mean field |Y (x,t)|,
as shown in Fig. 4, which is calculated to be about 0.270.

This result agrees with the occurrence of a supercritical Hopf
bifurcation.

V. SUMMARY

We studied 2-multichimera with two coherent and inco-
herent regions in one-dimensional nonlocally coupled phase
oscillators described as Eq. (1). First, we showed that the
local mean field Ỹ (x) of stationary 2-multichimeras depends
on only odd harmonic coefficients g2m−1 of the coupling
kernel function G(x). This implies that if G(x) has the same
set of the odd harmonic coefficients, then Ỹ (x) of stationary
2-multichimeras are common to all those G(x) systems for
the same parameters. We could actually apply Ỹ (x) of the
Godd(x) system to the linear stability analysis of stationary
2-multichimeras for the G(x) system, even though we could
not obtain Ỹ (x) of stationary 2-multichimeras for the G(x)
system. The method used in this paper is based on the fact that
Ỹ (x) of stationary 2-multichimeras is characterized by only
odd harmonic components, namely, Eq. (15). We expect that
a similar method is applied to other stationary multichimera
states because their local mean fields are also characterized by
a set of specific harmonic components [21].

Next, we numerically found that breathing 2-multichimeras
with oscillatory global order parameter |Z(t)| appear for Eq. (1)
with the step kernel given by Eq. (3) without introducing
parameter heterogeneity [10]. Moreover, we clarified that
the system exhibits a Hopf bifurcation from a stationary
2-multichimera to a breathing one by the linear stability
analysis for the stationary 2-multichimera. In contrast to the
G(x) system, 2-multichimeras for Godd(x) cannot breathe
because the system converges to the solution given by Eq. (20)
with vanishing |Z(t)|. Therefore, it is inferred that the coupling
kernel is an important factor for the appearance of breathing
chimeras in the one-dimensional system. It may be interesting
to find other breathing chimeras by using the appropriate
coupling kernel similarly, but it is an open problem.
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