
 

Instructions for use

Title Selected configuration interaction method using sampled first-order corrections to wave functions

Author(s) Ohtsuka, Yuhki; Hasegawa, Jun-ya

Citation Journal of Chemical Physics, 147(3), 034102
https://doi.org/10.1063/1.4993214

Issue Date 2017-07-17

Doc URL http://hdl.handle.net/2115/70978

Rights The following article appeared in J. Chem. Phys. 147, 034102, 2017 and may be found at
http://dx.doi.org/10.1063/1.4993214.

Type article

File Information 1.4993214.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Selected configuration interaction method using sampled first-order corrections to
wave functions
Yuhki Ohtsuka and Jun-ya Hasegawa

Citation: The Journal of Chemical Physics 147, 034102 (2017); doi: 10.1063/1.4993214
View online: http://dx.doi.org/10.1063/1.4993214
View Table of Contents: http://aip.scitation.org/toc/jcp/147/3
Published by the American Institute of Physics

Articles you may be interested in
Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference
perturbation theory
The Journal of Chemical Physics 147, 034101 (2017); 10.1063/1.4992127

Incremental full configuration interaction
The Journal of Chemical Physics 146, 104102 (2017); 10.1063/1.4977727

Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for
large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes
The Journal of Chemical Physics 146, 244102 (2017); 10.1063/1.4986975

A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled
cluster singles and doubles theory
The Journal of Chemical Physics 146, 164105 (2017); 10.1063/1.4981521

Coupled cluster valence bond theory for open-shell systems with application to very long range strong
correlation in a polycarbene dimer
The Journal of Chemical Physics 147, 024107 (2017); 10.1063/1.4991797

 Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method
The Journal of Chemical Physics 146, 044107 (2017); 10.1063/1.4974177

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Ohtsuka%2C+Yuhki
http://aip.scitation.org/author/Hasegawa%2C+Jun-ya
/loi/jcp
http://dx.doi.org/10.1063/1.4993214
http://aip.scitation.org/toc/jcp/147/3
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4992127
http://aip.scitation.org/doi/abs/10.1063/1.4992127
http://aip.scitation.org/doi/abs/10.1063/1.4977727
http://aip.scitation.org/doi/abs/10.1063/1.4986975
http://aip.scitation.org/doi/abs/10.1063/1.4986975
http://aip.scitation.org/doi/abs/10.1063/1.4981521
http://aip.scitation.org/doi/abs/10.1063/1.4981521
http://aip.scitation.org/doi/abs/10.1063/1.4991797
http://aip.scitation.org/doi/abs/10.1063/1.4991797
http://aip.scitation.org/doi/abs/10.1063/1.4974177


THE JOURNAL OF CHEMICAL PHYSICS 147, 034102 (2017)

Selected configuration interaction method using sampled first-order
corrections to wave functions

Yuhki Ohtsuka1,a) and Jun-ya Hasegawa1,2
1Institute for Catalysis, Hokkaido University, N21 W10 Kita-ku, Sapporo, Hokkaido 001-0021, Japan
2JST-CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received 18 April 2017; accepted 22 June 2017; published online 17 July 2017)

A new selected configuration interaction (CI) method was proposed for the potential energy surfaces
of quasi-degenerate and excited states. Slater determinants are generated by sampling the first-order
corrections to the target-state wave functions using the quantum Monte Carlo method in determinant
space. As in the Monte Carlo (MC) CI method, the wave function is improved at each iteration by
generating new determinants and applying a pruning step. Compared to the random generation in the
MCCI calculations, the number of iterations before convergence is significantly reduced. Regarding
the potential energy curves of the ground and excited states of C2, the non-parallelity errors were
sufficiently small, thus indicating the method’s applicability to the calculations of potential energy
surfaces. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993214]

I. INTRODUCTION

Wave functions become multi-configurational due to the
static electron correlations in the quasi-degenerate and excited
states. For these complicated electronic structures, the com-
plete active space self-consistent field (CASSCF) method1 has
been employed as a standard theoretical model. However, the
problem in the CASSCF calculation is that the size of the active
space is limited because the number of electronic configura-
tions increases factorially with the number of electrons and
orbitals in the active space. Therefore, a method that can treat
a large active space is greatly desired in the computational
chemistry community.

One solution for the active space problem is to select
important configurations from a large active space. In the
restricted active space (RAS)2 and generalized active space
(GAS)3 methods, the selection is made by restricting the num-
ber of electrons in each subspace. The perturbation selection
method4 uses a second-order perturbation energy correction,
and configurations that exceed a predefined energy threshold
are selected. This selection method was used in the multi-
reference double (MRD) excitation-configuration interaction
(CI)5 and symmetry adapted cluster (SAC)-CI6 methods, and
was successfully applied to various systems in the ground and
excited states.7,8 In a multi-configurational method (configu-
ration interaction by perturbation with a multiconfigurational
zeroth-order wave function selected by an iterative process,
CIPSI),9 the configuration space is expanded iteratively by
adding important configurations in the first-order corrections
(FOCs) to the wave functions. The Monte Carlo (MC) method
is also used for the configuration selection. In the MCCI
method,10,11 new configurations are selected using the Monte
Carlo technique from the first-order interacting space (FOIS).

a)Author to whom correspondence should be addressed: ohtsuka@cat.
hokudai.ac.jp

In the quantum Monte Carlo (QMC) methods in the deter-
minant space,12–14 configurations are selected by MC simula-
tion of the imaginary-time propagation of the wave function.
Among them, the full CI (FCI) QMC method has been actively
developed and extended to quasi-degenerate electronic states
and excited states.15–18 The algorithm of FCIQMC is also used
for the estimation of the second-order energy correction in
the heat bath CI method.19,20 Recently, the energy difference
between configurations has been used as the selection criterion.
In the lambda (Λ) CI method, the energy difference from the
lowest configurations is evaluated.21 The adaptive CI (ACI)
method,22 which was proposed by the same authors as the
ΛCI, employs the energy and coefficient thresholds for select-
ing configurations and successfully controls the accuracy of
the final results.

Because the configuration space is expanded iteratively,
MCCI is applicable to quasi-degenerate states that require
large active spaces. MCCI has been applied to the calcu-
lations of various potential energy curves (PECs)23–26 and
dissociation energies.27 In the result, MCCI reproduced the
full CI (FCI) results from the equilibrium to dissociated bond
length with similar accuracy by using many fewer configura-
tions. MCCI was also applied to the excited states for small
molecules.28 The accuracy in the excited-state calculations
was similar to that in the ground state, and the excitation
energies are in good agreement with the FCI values. How-
ever, due to the random sampling of new configurations, the
wave functions converge very slowly, and many iterations are
necessary.

In this article, we introduce the QMC method in the deter-
minant space to a new selected CI method, the MC correction
CI (MCCCI or MC3I) method. Because the FOCs to all target
states are sampled and the group sum of the sampled determi-
nants is added to the determinant space, the iterative process
is expected to converge much faster than MCCI for both the
ground and excited state calculations. After the diagonalization
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of the Hamiltonian matrix in the space spanned by the sampled
determinants, the less important determinants are pruned to
reduce the number of determinants without losing much accu-
racy. By repeating the generation of new determinants and the
pruning of the less important determinants, the wave function
is improved iteratively. The idea of the iterative improvement
of the determinant space is similar to the one adopted in CIPSI.
The present MC3I could be considered as a stochastic version
of CIPSI. The convergence of MC3I becomes slower than that
of CIPSI due to the MC sampling of new determinants. How-
ever, the present MC3I method is applicable to systems that
are larger than those which can use CIPSI because the MC
method is less sensitive to the size of the active space.

The present paper has the following structure. In Sec. II,
a theoretical description is provided. After the computational
details are provided in Sec. III, the results are discussed in
Sec. IV. To assess the accuracy and convergence, we applied
the MC3I method to the ground state of H2O and the ground
and excited states of C2. The sampling efficiency was deter-
mined by comparing the sampled and exact FOCs to the
Hartree-Fock (HF) wave function of H2O. The energy conver-
gence of the MC3I calculations was examined by comparing
the number of iterations before convergence with the MCCI
calculations for the ground and excited states in the same con-
dition. The applicability to dissociation was investigated using
the non-parallelity errors (NPEs) of the PECs of C2 for the
ground and excited states. A summary of the study is provided
in Sec. V.

II. THEORY

In the MC3I method, the walker distribution on the
determinants is generated from the CI wave function,

ΨK = CK ,0 |Φ0〉 + CK ,1 |Φ1〉 + CK ,2 |Φ2〉 + · · · + CK ,N |ΦN 〉,

(1)

where {CK ,I} denotes the CI coefficient of the determinantΦI

for the K th state. The wave function in Eq. (1) is redefined in
terms of the number of walkers,

Ψ
′
K = RK ,0 |Φ0〉 + RK ,1 |Φ1〉 + RK ,2 |Φ2〉 + · · · + RK ,N |ΦN 〉,

(2)

where {RK ,I} represents the number of walkers on determinant
|ΦI 〉 and is proportional to the coefficient {CK ,I},

RK ,I = CK ,I × NW , (3)

where Nw is an integer parameter and determines the number
of walkers on each determinant.

As shown in Fig. 1, the FOCs to the wave functions
in the preceding iteration are generated by using MC sam-
pling for target states that involve not only the ground state
but also excited states. The quality of the sampled FOC can
be improved as Nw increases because more determinants are
generated by the sampling. The group sum of the newly gen-
erated determinants and the selected determinants in the pre-
ceding iteration is the selected determinants in the present
iteration.

One of the crucial parts of the MC3I method is the selec-
tion of the determinants from those generated by the MC sam-
pling. Our idea is to invoke perturbation theory for improving
the sampling. As the zero-th order wave function, we assume
the CI wave functions in the preceding iteration which reason-
ably approximate the target state. In perturbation theory, the
FOC to the K th state wave function, ΨK , is defined as

Ψ
(1)
K =

∑
I

〈ΦI | Ĥ |ΨK 〉

EK − 〈ΦI | Ĥ |ΦI 〉
|ΦI 〉 =

∑
I

C(1)
K ,I |ΦI 〉. (4)

Here, EK is the energy of ΨK . ΦI runs over the determinants
that interact with ΨK . Our key idea is to use the stochasti-
cally evaluated coefficient

{
C(1)

K ,I

}
to select the determinants.

As shown in Fig. 2, the Monte Carlo simulation is performed
from the walker distribution which represents the CI wave
function in Eq. (2) to obtain the FOC to the CI wave function.

FIG. 1. Schematic representation of sampling of first-order corrections to wave functions by the QMC method in the determinant space.
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FIG. 2. Relation between the sampled
CI wave function and sampled first-
order corrections to CI wave function.

The determinant whose expansion coefficient in the FOC is
larger is sampled more frequently, and the resultant number of
walkers on the determinant ΦI corresponds to the expansion
coefficient, C(1)

I , in Eq. (4)
In the below discussion, we explain a part of the selection

procedure in the case of a single walker on the determinant
|ΦI 〉 of the K th state. First, a determinant |ΦJ〉 is selected
randomly from the FOIS of |ΦI 〉. The probability of the candi-
date |ΦJ〉 being selected is (NI )−1, where N I is the number of
determinants that interact with |ΦI 〉 (|ΦI 〉 itself is excluded).

Next, the transition probability of a walker moving from
|ΦI 〉 to |ΦJ〉, PTransition, is calculated as follows:

QTransition =
S × rI × NI × 〈ΦJ | Ĥ |ΦI 〉/ (

EK −
〈
ΦJ

���Ĥ
���ΦJ

〉)
,

(5)

PTransition = |QTransition |. (6)

Here, S is a scale parameter that controls the acceptance ratio
for the transition [usually of a similar magnitude to (NI )−1] and
rI is a weight parameter that is introduced to account for the
decimal part of RK ,I , the number of walkers on |ΦI 〉. Because
RK ,I is a real number, as defined in Eq. (3), the magnitude of
the decimal part is also considered in the sampling procedure.
The trial of the transition is repeated Int

(��RK ,I ��
)

+ 1 times29

with rI = 1.0 and with rI = ��RK ,I − Int(RK ,I )�� for the last trial.
A random number (between 0.0 and 1.0) is provided. If

the random number is smaller than the transition probabil-
ity PTransition in Eq. (6), the transition is accepted, and the
walker on |ΦI 〉 is moved to |ΦJ〉. The number of walkers on
|ΦJ〉 is thus increased by 1.0 × sgn (RI × QTransition), where
sgn (RI × QTransition) represents the sign of RI × QTransition.
If |ΦJ〉 does not exist, it is added to the determinant space.
When PTransition exceeds 1.0, the transition is unconditionally
accepted, and the number of walkers on |ΦJ〉 is increased by
sgn (RI )×QTransition. These procedures are applied to all of the
walkers in all states in one iteration. As shown in Fig. 1, the
determinant space of the CI wave function is augmented by the
sampled determinants in the FOIS and spanned by the group

sum of the determinants for all of the target states. The CI wave
functions are updated by solving the eigenvalue equations with
the Davidson diagonalization.30

Each iteration ends with the pruning step. Checking the CI
vector, the less important determinants whose absolute coef-
ficients are smaller than the coefficient threshold, cmin, in all
target states are pruned. The remaining CI vectors after the
pruning step are orthonormalized and used to construct the
walker distributions in the next iteration. The generation of
new determinants, Davidson diagonalization, and removal of
less important determinants by the coefficient threshold are
repeated until stationary wave functions are obtained as in the
MCCI calculations.

We summarize the present algorithm of the MC3I calcu-
lation.

Step (i): The number of solutions, Abelian space sym-
metry, active space, and Sz value of the Slater
determinants are specified for the MC3I wave
functions. The initial reference wave functions
for the target states are obtained by the HF or
complete active space (CAS) CI calculations.

Step (ii): Construction of the walker distributions from the
CI wave functions. The number of walkers on
|ΦI 〉 is defined.

Step (iii): From the walker distributions given by the pre-
vious step, the MC simulation is performed to
sample the FOCs to the target states. The deter-
minant space is spanned by the group sum of the
determinants that are augmented using the MC
sampling.

Step (iv): The CI wave functions of the target states are
updated by solving the eigenvalue problem with
the Davidson diagonalization. The initial vectors
to be used for the Davidson diagonalization are
taken from the solutions in the preceding iteration
or the CI vectors in the first iteration.

Step (v): The pruning step in the MCCI method is
carried out. The less important determinants
whose absolute coefficients are smaller than the
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threshold cmin in all solutions are discarded,
and the resultant CI vectors are used to con-
struct the walker distribution in the next iteration.
The vectors are orthonormalized to each other
and used for the initial vectors of the Davidson
diagonalization for the next iteration.

In the present algorithm, the procedures in Steps (ii)–
(v) are repeated until the iteration number reaches a pre-
defined number. The number of iterations should be large
enough to obtain a stationary energy and stationary number
of determinants after the pruning step.

III. COMPUTATIONAL DETAILS

We are developing the MC3I and MCCI programs as a part
of SMASH open source software.31 The present development
code is interfaced with the GAMESS program package,32,33

from which the molecular integrals are imported. The present
algorithm treats all of the molecular integrals in the core.
The Hamiltonian matrix elements, which are necessary for
the calculation of the transition probabilities of the walkers
and for the Davidson diagonalization, are calculated on the
fly. The formation of the sigma vectors, which is the most
time-consuming part of the MC3I calculations, has been par-
allelized using OpenMP. The computational costs of the sigma
vector calculation are proportional to the square of the number
of determinants in our algorithm. Because we cannot pre-
dict which determinants are selected, the sigma vectors are
calculated from the matrix elements between all pairs of the
determinants. The MC3I and MCCI energies in a calculation
are those at the last iteration. The final MC3I and MCCI ener-
gies are defined as the average energies over ten calculations
with different seeds for the random number generator. The
standard deviations were also estimated from the results of
the ten calculations. For the random number generator, the
Mersenne twister method was used.34 The number of itera-
tions is 1000 and 500 for H2O and C2, respectively. The scale
parameter S in Eq. (5) is fixed as 0.01 and 0.001 for H2O and
C2, respectively.

In Sec. IV C, the number of determinants in the MCCI
calculations is controlled by the branching factor f, which is
the number of determinants generated from one determinant
in one iteration. We first performed the MC3I calculations and
recorded the number of newly generated determinants in all
iterations. In the succeeding MCCI calculations, the number
of generated new determinants was very similar to that for the
MC3I calculation in each iteration by varying f = (Number of
newly generated determinants in the present iteration of MC3I
calculation)/(Number of determinants at the start of the present
iteration in MCCI). The number of determinants in the MCCI
calculation was not exactly the same as that obtained using
the corresponding MC3I calculation because the determinants
were generated stochastically using random numbers.

To evaluate the sampling efficiencies of the MCCI and
MC3I algorithms, we performed the so-called full pruning at
each iteration. Full pruning means that all determinants are
subjected to pruning in that iteration. We note that in standard
MCCI calculations, only newly generated determinants in the
iteration are pruned if their absolute coefficients are smaller

than a threshold cmin to prevent the duplicate sampling of the
same determinants. In a certain iteration (usually every ten
iterations), full pruning is performed. The combination of the
pruning of only the newly generated determinants and full
pruning will improve the sampling efficiency in the MCCI
and MC3I calculations. However, to illustrate the difference
in the sampling efficiencies between MCCI and MC3I, we
performed full pruning in all iterations.

IV. RESULTS AND DISCUSSION
A. Sampling the FOCs to the wave functions of the
target states

One of the important points relevant to the efficiency of the
MC3I method is the quality of the FOC after the MC sampling.
The convergence of the MC3I wave functions will be acceler-
ated if the important determinants are selected efficiently. To
evaluate the accuracy, the sampled FOCs are compared with
the exact ones given by C(1)

K ,I in Eq. (4). If Nw reaches infinity,
the relative magnitude of the sampled FOCs approach the exact
result. A benchmark calculation was carried out for H2O at the
equilibrium geometry that was employed in Ref. 35, an O–H
distance of 1.843 45 Bohrs and a HOH angle of 110.6°. For the
basis sets, the cc-pVDZ sets36 were used. In Fig. 3, the sam-
pled FOCs to the HF wave function using Nw = 2000, 5000,
and 10 000 are compared with the exact FOC. The vertical axis
shows the number of walkers on |ΦI 〉 for the sampled FOC and
the C(1)

HF,I coefficient for the exact FOC. The horizontal axis
is the labels of the determinants, and its maximum value is
3415, which corresponds to the number of singly and doubly
excited determinants from the closed-shell HF determinant in

FIG. 3. Comparison between exact and sampled first-order corrections to
the HF determinant of H2O. ((a), (b), and (c)) Sampled first-order correc-
tions using Nw = 2000, 5000, and 10 000, respectively. (d) Exact first-order
correction.
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A1 symmetry. As shown in Fig. 3, the shape of the resultant
walker distribution became closer to the exact shape as Nw

increased. The average number of sampled determinants over
ten MC simulations was 150, 344, and 582 with Nw = 2000,
5000, and 10 000, respectively. The quality of the sampled
determinants was promising; in the case of Nw = 2000, 46%
of the sampled determinants had the largest 10% of the coef-
ficients in the exact FOC. In contrast, with random sampling,
only 10% of the sampled determinants should have the largest
10% of the coefficients.

With the selected sets of determinants, the CI energy was
evaluated. This energy corresponds to that at the first iteration
of the MC3I and MCCI calculations. The average CI energies
with Nw = 2000, 5000, and 10 000 are �76.080(6), �76.125(4),
and �76.163(3) Eh, respectively. These energies were lower
than those obtained with a very similar number of determi-
nants selected by random sampling, �76.036(3), �76.050(3),
and �76.066(5) Eh, respectively. The variational principle tells
that the FOIS selected by the sampling of the FOCs is much
more appropriate for a CI wave function than one selected by
random sampling. As shown in Sec. IV C, the convergence
behavior of the MC3I and MCCI calculations clearly reflects
this difference.

B. Dependence of energy convergence on Nw and cmin

Next, we discuss how the energy convergence depends on
the walker parameter, Nw, and the coefficient parameter, cmin.
The examination was carried out for the ground state of H2O
at the equilibrium structure. Figure 4 shows the results of the
MC3I calculations with three different walker parameters, Nw

= 2 × 103, 5 × 103, and 1 × 104, and three different coefficient
thresholds, cmin = 1 × 10�3, 5 × 10�4, and 2 × 10�4. The HF
wave function was used for the initial wave function. For each
cmin, the energy convergence became faster as Nw increased
because the number of sampled determinants in each iteration
increases with Nw. Consequently, important determinants are
selected at earlier iterations.

As shown in Fig. 4 and Table I, the converged energy is
sensitive to the coefficient threshold cmin but is less depen-
dent on Nw. For example, the energies using cmin = 5 × 10�4

were �76.232 327(9), �76.232 42(1), and �76.232 59(2) Eh

for Nw = 2000, 5000, and 10 000, respectively. Although the
number of determinants before the pruning step increased with

FIG. 4. MC3I energy convergence using various cmin and Nw of H2O for the
ground state at the equilibrium bond length.

TABLE I. The MC3I result for H2O for the ground state at the equilibrium
bond length (Eh) with walker parameters (Nw) and coefficient thresholds
(cmin). The standard deviations over ten calculations are shown in parentheses.
FCI energy = �76.241 860 (Eh).35

Nw

cmin 2 000 5 000 10 000

1 × 10�3 −76.228 66(2) −76.228 91(4) −76.229 26(5)
5 × 10�4 −76.232 327(9) −76.232 42(1) −76.232 59(2)
2 × 10�4 −76.236 508(4) −76.236 539(3) −76.236 587(5)
1 × 10�4 −76.238 831(2) −76.238 880(2) −76.238 897(2)

Nw (see Table II), the number of selected determinants at the
convergence was very similar when a common cmin value was
used. The number of determinants after the pruning step at
the last iteration was approximately 1660, 2870, 9200, and 26
000 for cmin = 1 × 10�3, 5 × 10�4, 2 × 10�4, and 1 × 10�4,
respectively.

The result indicates that the total energy and the num-
ber of iterations necessary for the convergence are controlled
using cmin and Nw, respectively. We note that a smaller cmin

increases the computational time. With the smaller cmin, more
determinants should be sampled, and more determinants must
be included in the CI diagonalization. To determine the proper
cmin, we first perform a MC3I calculation with cmin = 5× 10�4,
which is a typical value in MCCI calculations, and decrease
cmin gradually till the desired accuracy is achieved. Subse-
quently, Nw is chosen so that the number of newly generated
determinants in each iteration is on the same order as the
number of determinants at the start of the iteration.

C. Comparison of energy convergence between MC3I
and MCCI calculations

Here, the result of the MC3I calculations is compared with
that of the MCCI calculations. Figure 5 shows the convergence
curves of ten MCCI and ten MC3I calculations of H2O at
the equilibrium bond length (Re) and 3.0 Re (the two O–H
bonds are simultaneously stretched three times longer than the
equilibrium distance) with cmin = 5.0 × 10�4 and Nw = 10 000
using different seeds for the random number generator. For
each iteration, the number of newly generated determinants
in the MCCI calculations was kept very close to that of the
corresponding MC3I calculation.

The most important finding is that all of the MC3I cal-
culations converged much more quickly than did the MCCI
calculations. For O–H bond lengths = Re, it took only 16.2

TABLE II. Number of determinants at the last iteration in the MC3I calcu-
lation of H2O for the ground state at the equilibrium bond length before the
pruning step. Number of determinants in FCI = 451 681 246.

Nw

cmin 2 000 5 000 10 000

1 × 10�3 2 219 3 043 4 369
5 × 10�4 3 456 4 323 5 743
2 × 10�4 9 825 10 767 12 301
1 × 10�4 26 226 27 505 29 110
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FIG. 5. Energy convergences in ten MC3I and ten MCCI calculations of H2O
for the ground state at (a) the equilibrium bond length (Re) and (b) O–H bond
length = 3.0Re with different seeds for the random number generator.

iterations on average until the energy difference from the
converged energy became less than 1 mEh in the MC3I
calculations, whereas 116.9 iterations were required in the
MCCI calculations. In addition, the convergence behavior
is much less dependent on random numbers. As shown in
Fig. 5(a), the ten MC3I convergence curves overlap with each
other very well. The energy at convergence should be men-
tioned; although a common cmin was used, the converged
MC3I energy, �76.232 59(2) Eh, was slightly lower than the
MCCI energy, �76.232 362(9) Eh, because more of the impor-
tant determinants were sampled in one iteration in the MC3I
calculations.

The reason for the fast convergence behavior of the MC3I
calculation is that the important determinants are selected at
earlier iterations. Figure 6 shows the number of determinants

FIG. 6. Number of determinants before and after the pruning step in MC3I
and MCCI calculations of H2O for the ground state at the equilibrium bond
length. The fluctuation behavior in the number of determinants before the
pruning step originates from the stochastic nature of the MC sampling using
random numbers.

before and after the pruning step in each iteration. The MC3I
case is compared with the MCCI case for H2O, as shown in
Fig. 5(a). The number of newly generated determinants in each
iteration was controlled to be similar to each other in the MC3I
and MCCI calculations. However, the number of determinants
before and after the pruning step in the MC3I calculations was
larger than those in MCCI at the early stage of the calcula-
tions. Because more important determinants were generated
and approved in the MC3I algorithm, the number of determi-
nants after pruning is larger than that in the MCCI algorithm.
At the converging limit, the determinants after the pruning step
in the MCCI and MC3I calculations became almost the same
because all of the important determinants had been selected
using the common coefficient threshold cmin.

The new sampling method also improves the convergence
of the multi-reference wave function at elongated bond lengths.
Figure 5(b) shows the results of ten MC3I and ten MCCI cal-
culations for O–H bond lengths = 3.0Re. The calculations also
started from the HF determinant. In the MCCI calculations,
375.5 iterations were required until the energy difference from
the converged energy became less than 1 mEh, while only 18.1
iterations were required to achieve the same accuracy in the
MC3I calculations.

As for the computational costs, the sampling in the MC3I
algorithm takes more time than the random sampling in MCCI
because the FOC [Eq. (4)] is evaluated. However, the comput-
ing time for the sampling of the FOC is negligibly smaller
than that for the Davidson diagonalization of the Hamiltonian
matrix. In the MC3I calculations of H2O with cmin = 5.0× 10�4

and Nw = 10 000, only 0.3% of the total wall-clock time was
used for sampling the FOC. Therefore, the computational costs
of MCCI and MC3I calculations are proportional to

∑
I

N2
I ,

where N I is the number of the determinants before the pruning
step at iteration I, because the formation of sigma vectors in
the diagonalization step dominates most of the computational
time. For the calculations of Fig. 6, the computational cost of
MC3I/MCCI ratio was 0.105.

D. PECs of the excited states of C2

The MC3I method was also applied to the PECs of the
excited states. The results for the lowest three singlet (X1Σ+

g ,
B1∆g, and B′1Σ+

g ) states of the C2 molecule were compared
with the FCI values.37 The 6-31G* basis set38,39 was used,
and 1s orbitals were excluded from the active space. All of
the three states have Ag symmetry in the D2h point group and
were calculated simultaneously in one MC3I calculation. The
MC3I and MCCI calculations started from the CASCI(6e, 6o)
wave functions. The lowest four states were calculated in all
geometries because a quintet state is nearly degenerated with
the B′1Σ+

g state at the C–C bond length of 3.0 Å. We used four
different cmin values to check the convergence in energy. With
cmin = 1.0 × 10�3, 5.0 × 10�4, 2.0 × 10�4, and 2.0 × 10�5,
the number of the selected determinants before the pruning
step ranged from 8127 to 14 643, from 15 340 to 27 383, from
41 604 to 65 902, and from 408 037 to 576 802, respectively.
These selected determinants amount to only 0.028%, 0.052%,
0.126%, and 1.101% of the total number of determinants,
52 407 353, in the FCI wave function.
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FIG. 7. Comparison between (a) MC3I with cmin = 1 × 10�3 and Nw
= 10 000 and (b) FCI PECs of C2 for the lowest three singlet states.

Figure 7 shows the comparison between the MC3I (cmin

= 1.0 × 10�3) and FCI PECs for the lowest three states.
Regardless of the crude threshold for cmin, the features of the
curves were reproduced qualitatively. For instance, the B1∆g

state crosses with the X1Σ+
g state between 1.6 and 1.7 Å and

becomes the ground state at longer bond distances. In the FCI
result, the energy of the B1∆g state is lower than that of the
X1Σ+

g state by 0.062 mEh at 3.0 Å, whereas the X1Σ+
g state is

slightly below the B1∆g state by 2.00, 0.524, and 0.075 mEh

with cmin = 1.0× 10�3, 5.0× 10�4, and 2.0× 10�4, respectively,
in the MC3I results.

The applicability of MC3I to the PECs should be evaluated
using the non-parallelity error (NPE). Approximate methods
are useful if the error from the exact energy is similar all
through the potential energy surface. The NPE is defined as
the difference between the maximum and minimum errors. In
Fig. 8, the deviations of the MC3I energies from the FCI
energies are plotted along the C–C bond length. The results
with four different coefficient thresholds cmin are compared.
In Table III, the maximum error, minimum error, and NPE are
summarized. As clearly shown in Fig. 8, the deviations were
significantly reduced as cmin became small. The maximum
error of 18.9 mEh with cmin = 1.0 × 10�3 became 0.7 mEh

when cmin = 2.0 × 10�5 was used. However, as Table III
shows, the NPEs with cmin = 1.0 × 10�3, 5.0 × 10�4, 2.0
× 10�4, and 2.0× 10�5 are, at most, 4.7, 2.3, 1.0, and 0.16 mEh,
respectively, which indicates that the NPEs are less dependent
within the given range of the threshold. The result indicates
that the MC3I method with the proper parameter settings pro-
vides reliable PECs for the ground and excited states with
quasi-degeneracy in the electronic structure.

FIG. 8. Deviations of MC3I energies using cmin = 1 × 10�3, 5 × 10�4, 2
× 10�4, and 2 × 10�5 for the lowest three singlet states from FCI values.

The energy convergences of the lowest three singlet states
at C–C bond distances 1.25 and 3.0 Å are shown in Figs. 9(a)
and 9(b), respectively. One of the ten MC3I and ten MCCI
calculations is shown for clarity because the other nine MC3I

TABLE III. The MC3I calculations of the PECs of the ground and excited
states of C2. Maximum, minimum, and non-parallelity errors in mEh for the
X1Σ+

g , B1∆g, and B′1Σ+
g states. The results of cmin = 1 × 10�3, 5 × 10�4, 2 ×

10�4, and 2×10�5 are compared. The standard deviations over ten calculations
are shown in parentheses.

State Maximum errors Minimum errors NPE

(1) cmin = 1 × 10�3

X1Σ+
g 18.12 (3) 15.42 (2) 2.70

B1∆g 18.23 (3) 13.95 (2) 4.28
B′1Σ+

g 18.88 (2) 14.22 (4) 4.67
(2) cmin = 5 × 10�4

X1Σ+
g 11.060 (9) 9.315 (9) 1.745

B1∆g 11.41 (2) 9.085 (7) 2.33
B′1Σ+

g 11.23 (1) 9.27 (1) 1.96
(3) cmin = 2 × 10�4

X1Σ+
g 5.544 (7) 4.656 (4) 0.888

B1∆g 5.681 (9) 4.673 (4) 1.008
B′1Σ+

g 5.322 (2) 4.592 (2) 0.729
(4) cmin = 2 × 10�5

X1Σ+
g 0.715 (6) 0.5895 (9) 0.126

B1∆g 0.732 (6) 0.577 (2) 0.156
B′1Σ+

g 0.690 (2) 0.563 (3) 0.127
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FIG. 9. MC3I and MCCI energy convergences of C2 for the lowest three
singlet states at C–C bond length = (a) 1.25 Å and (b) 3.0 Å.

and MCCI calculations show similar trends. The MC3I cal-
culations were performed with cmin = 5.0 × 10�4 and Nw

= 10 000, and a very similar number of determinants were
generated in each step of the MCCI calculations. The result
resembles that obtained for H2O, as shown in Fig. 5. For the
ground state at a C–C bond distance of 1.25 Å, the MC3I
calculations took 84.7 iterations on average until the energy
difference from the converged energy became less than 1 mEh,
but 312.9 iterations were required in the MCCI calculations to
achieve the same accuracy.

The convergence of excited states was also improved. As
shown in Fig. 9(a), the convergence of the MCCI calculation
for the excited states was worse than that for the ground state.
For the B1∆g and B′1Σ+

g states, 329.4 and 330.0 iterations
were required until the energy difference from the converged
energy became less than 1 mEh. In the MC3I calculation, in
which the FOCs to the excited states were sampled, the num-
ber of iterations was 72.1 and 74.7 for B1∆g and B′1Σ+

g states,
respectively.

It should be noted that at longer C–C separations, the
convergence becomes slow, as shown in Fig. 9(b). At the
C–C bond length of 3.0 Å, the number of iterations until the
energy difference converges to within 1 mEh was 91.5, 105.4,
and 97.4 for the X1Σ+

g , B1∆g, and B′1Σ+
g states in the MC3I

calculation, respectively, whereas MCCI took 453.1, 507.2,
and 491.7 iterations, respectively. The results clearly illustrate
that a key feature for the acceleration of the MC convergence
is the sampling of FOCs to construct the excited-state wave
function.

V. CONCLUSION

In this paper, a newly selected CI method, MC3I, has
been proposed. This method is one of the variants of the QMC

methods in the determinant space and is viewed as a stochas-
tic version of the CIPSI method.9 To extend the applicability
of the MCCI-type methods to larger molecules with quasi-
degenerated electronic structures, an efficient algorithm has
to be considered for the generation of the determinants in the
MC sampling. We introduced sampling of the FOCs to all tar-
get states including ground and excited states. Similar to the
branching factor f in MCCI, the convergence is controlled by
setting the Nw parameter to a proper value. The accuracy on
the energy is controlled by the coefficient threshold cmin.

The efficiency and accuracy of the MC3I method were
assessed by benchmark applications to H2O in the ground state
at the equilibrium and elongated bond distances and to the
PECs of C2 in the ground and excited states. Compared to the
MCCI calculations, the MC3I calculations significantly reduce
the number of iterations until the convergence. This successful
trend was commonly observed for both the ground and excited
states at any bond distance.

As for the PECs of the C2, the accuracy was well-balanced
at different bond distances. The relative energies between
states were in good agreement with the FCI values. The
calculated NPEs were within 0.2 mEh for the accurate cmin

(2 × 10�5) and still within 5 mEh (3.1 kcal/mol) for a loose
cmin (1 × 10�3). The MC3I energies were slightly lower than
the MCCI values in all test calculations because the important
determinants can be sampled more in the same calculation
condition. We note, however, that the MC3I energy is not
size-extensive.

By accelerating the convergence of the ground and excited
states, the application target of the MCCI framework has been
expanded. The MCCI energies can be improved by considering
dynamical correlations as the second-order perturbation.26,27

We are also developing a program to calculate the perturbation
to the reference MC3I wave functions.
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