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1. Introduction

From deep inelastic scattering (DIS) experiments it is kmosee e.g.[[1], that the nucleon is
not a fundamental particle but consists of so-called paramits constituents. The contribution of
these partons to the nucleon momentum is described by angdistivibution function (PDFf,(x),
which is the probability to find a partgmwith a momentum fractior. The first moment of the PDF
(X)p = [ xfp(x)dxis the fraction of the total nucleon momentum carried by tagn. This implies
then the energy-momentum sum rgig(x)p = 1. The partons were eventually identified as the
guarks and the gluons as the fundamental building block dfdres. Thus, the energy-momentum
sum rule of partons translates directly to a sum rule invghall quarks and the gluons,

> Kg+ (Xg=1. (1.1)
q

Further experimental input suggests that the contributioming only from up- and down
quarks does not add up to offg [2]. Since it is expected thadtetheier quarks will not significantly
contribute to the average nucleon moment{im [3], this insghet the gluons carry a large amount
of the nucleon momentum, such that the sum rule of[eq. (15tisfied.

Therefore, the computation of the gluon moment is necedsdnjly understand the structure
of the nucleon. However, at the moment, despite the factttiese are many results for the quark
structure of the nucleon, see e.g. re|f|5[|[4, 5], there atejiesv results fogx)q which are, moreover,
only obtained from quenched computatiofis[[6, 7]. The wodspnted here aims at giving a first
result from a computation on gauge configurations genenattdlight, strange and charm sea
quarks.

We can access the gluon moment of a hadron via the matrix ateroéthe gluon operator:

The matrix elements of this operator can be computed withi@oéa three-point and a two-point
function, where the sink timeand the operator time are chosen properly.

(h(p,t)0(1)h(p,0)) O<r<t
(h(p,t)h(p,0))

whereh(p,t) denotes a hadron with momentupnat sink timet. The general matrix element of
eq. [L.B) can be decomposed into several terms proportiorappropriate form factors, see e.g.
the discussion in ref[J4]. The relevant form factor for ourgose isAzo, which can be related to

the gluon moment. In order to proceed, we need to consid&iceepresentations of the operator
in eq. (L.P). Here we choose two of them

(O)n(pn(p) (1.3)

1
o = Oia, %’26’44—5@'1- (1.4)
The matrix elements of these operatoprs can be writteninsterf the gluon moment as
. 2
(D INpING) = —1Pi(X) g (BInpNep) = (M + Ey P%) (X)g - (1.5)

Both operators have certain drawbacks. The operafaran only be taken when a non-zero mo-
mentum is injected. It is known that the computation of momendependent operator matrix
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elements result in a larger noise-to-signal ratio than a emiom-zero computation, which is pos-
sible for operator#.

In case of the operata® there is a subtraction of two terms which are similar in magle.
This can be understood from the lattice version of the operakpressed in terms of plaquettes:

B(t) = gg (Ztrc[Um(x,t)] — > tre[Ujj (x,t)]) : (1.6)
X ] i<)
Here, one sees that the spatial and the temporal part ofdljegtte, which are very similar in size,

need to be subtracted, leading potentially again to a badktg-noise behavior of the correspond-
ing matrix element. The choice we made for the following dg&sion is nonetheless the operator
2 since it is directly accessible to us.

2. Feynman-Hellman theorem

One approach to extract the matrix elements of the gluoratpethat was applied ifi][6] uses
the Euclidean form of the Feynman-Hellman theorem. If orieoduces some operatdrd’ into
the action of the system, the operator’s matrix elementsbeaderived from the derivative of the
energy of the state with respectio

OEN(A aS(A
aN)E b= E(A):)Nm)N(p),A- 2.1)

Here :... : means that the vacuum expectation value of the operatotohas subtracted. For the
purpose of calculating the three-point function for theogiwperator we modify the Wilson gauge
action as

1 1
SA) = §[3(1+)\) > tre[1—Uig] + §[3(1—)\) > tre[1—Uj] . (2.2)
] i<)
Note thatA = 0 corresponds to the standard Wilson plaquette gauge atioen applying eq[(1.5),
([L.$) and [2]1) one can relate the derivative of the nucleangy to(X)g.

%hzoz—; <mN+3iEnr52> (X)g - (2.3)

There is no subtraction of the vacuum expectation value, imeause utilizing lattice rotational
symmetry it can be shown that the expectation value of theabpein eq. [1J6) is zero. When
computing the nucleon mass at zero momentum, the relatiobeaimplified as:

2 0mN

(X)g = md—)\h:o . (2.4)

In order to compute the nucleon mass for different, non-2exalues, new gauge ensembles had
to be generated. In addition, due to the change of the gauigs gitie hopping parametarhad to
be re-tuned to its critical value for each ensemble, in oroleegain the/’(a) improvement.

We have performed preliminary tests on small lattices webhJvy quark masses to keep the
computational effort affordable. The simulations weraiedrout with 24 x 48 lattices andNy =



Looking at the gluon moment of the nucleon with dynamicaitesi mass fermions Christian Wiese

24141 flavors of maximally twisted mass fermions. We emplofed 1.95 which corresponds
to a lattice spacing o& =~ 0.078 fm and a twisted mass parametee= 0.085 which leads to a
pion mass ofnps= 490 MeV. As gauge action we used the Iwasaki action, howé&eeFeynman-
Hellman theorem was only applied to the Wilson part, i.e phee plaquette part, of the action.

Our results for three differemt values on~ 200 gauge configurations and the nucleon mass
atA =0 can be seen in Fif] 1.
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Figure 1: Dependence of the nucleon mass on the change of the gauge @litierentA values). The slope
of the fit can be related to the gluon moment.

We performed a linear fit id to the data of the nucleon mass. The fact that the data shows a
A dependence suggests that we can obtain a non-zero sigribefgluon moment. However, the
error of the slope is rather large (about 30%). The systenaator is probably even larger, because
it is not known in whichA region a linear fit is really justified. To study this systeimatffect one
would need to compute the nucleon mass with a smaller erranéoeA points than used here.

3. Direct method

An alternative, more straightforward method of computimg matrix element of eqf (3.3) is a
direct approach, where, through performing the relevarmkWontractions, the three-point function
can be expressed by a suitable combination of propagatdrgauge links. For the gluon three-
point function this is actually a trivial task, because ¢are no quark fields in the gluon operator.
Subsequently, there are no possible contractions betvireeglion operator and the interpolating
fields of the nucleon. The three-point function can, in féet, written as a product of nucleon
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two-point functions and the gluon operator. For the zero erimm computation we get

(INON(O))p-0B (1)) o<ret
(NON(0)p-o)

The advantage of this method is that we can reuse existingpbirg functions and only have to
compute the gluon operator on the very same configuratiorishwhquires little computational
effort.

The following results were computed on a®3264 lattice withN; = 2+ 1+ 1 flavors of
maximally twisted mass fermions. We set= 1.95, which corresponds to a lattice spacing of
a~ 0.078 fm and the twisted mass paramatet 0.055, which is a pion mass ofps~ 393 MeV.
For the two-point function we used 16 different source pms# on each gauge configuration which
corresponds to 32 measurements, because we considered @notneutron fields. The first results
for a local gluon operator can be seen in the left panel offffig.

My (X)g - (3.1)
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Figure 2: left: Nucleon matrix element for a local gluon operator for a setsink separation of 11 and
different operator insertion times right: Relative error of the nucleon matrix element for differenti4
smearing steps of the gluon operator.

Obviously, it is not possible to extract a signal, due to gdamoise-to-signal ratio. A possible
solution for this problem can be found i [8], where it is seggd to use HYP smearirlg [9] for the
links in the gluon operator. We applied several steps of HWiaing with parameters frory [9]
and present the relative error (noise-to-signal ratio}tierobservable in the right panel of F[§. 2.

We found a significant reduction of the noise-to-signaloratith increasing number of HYP
smearing steps. Thus, we subsequently applied five step¥Bfdrhearing.

On the left panel of Fig]3 one can see the signal we got fromglessource-sink separation,
where % = f'BX,@ and x is a normalization factor caused by using HYP smearing. \Warbl
got a non-zero value with a reasonable error of about 10%.ddery this signal could still be
contaminated by excited state effects. This can be checkexbinputing the matrix element for
different source-sink separations. On the right panel @mesee that there are no strong excited
states effects, because the plateau value seems to befetatiféerent sink time positions.
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Figure 3: left: Nucleon matrix element for a HYP-smeared gluon operatoafsource-sink separation of
11 and different operator insertion timesright: The same matrix element for three different source-sink
separations? = gBx %

4. Conclusion and outlook

We presented two methods which potentially can be used taaXk)q on the lattice: The
first method makes use of the Feynman-Hellman theorem anthéaslvantage of yielding a sta-
tistically significant signal for rather moderate statistiHowever, the calculation needs dedicated
simulations with different values of to establish unambiguously the linear dependence of the
results om . Furthermore, each simulation has to be tuned to a critilalevofk, in order to en-
sure automati@(a) improvement. Therefore, overall, the computational cesbaiated with this
method is large.

The second method directly computes the three-point fondtiom which (x)q can be ex-
tracted. In order to obtain a non-zero signal, one has toyaggpearing on the gauge links entering
the operator. Although one needs large statistics, one samucleon two-point functions com-
puted for other observables and therefore the overall sashall.

Our study therefore suggests that the direct method mayebeéthod of choice to calculate
this particular observable. Still, the Feynman-Hellmagotiem could be used as a cross-check on
ensembles where it is feasible to apply.

Another issue regarding the computation of the physicaleval (x)q is that the lattice matrix
element needs to be renormalized. Since the gluon operatosinglet operator it will mix with
the quark momentum fractiofx)q. The relation between the renormalized and the bare values o
both quantities is given by a:22 mixing matrix.

<X>WS <X>bare
( gM_S> = ZZ><2< ’ bare) : (4.1)
Zq <X>q ZQ<X>q
For (x)4 the relevant matrix elements are callgg andZ,q and the relation is
<X>gls - Zt,;/elife gg<x>8are+ [1 - Ztl;/la?e ch Z <X>gare- (4-2)
q
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As a first step we will compute these factors perturbativetys will provide us with a first estimate
of the factors and we will get insight in the renormalizatimmocess of this quantity. If we know
the renormalization conditions, a non-perturbative reraization can follow. Since the smearing
of the operator should be included into the renormalizaimtess, we will also try to use other
smearing techniques for the lattice computation, i.e. HEXtout smearing, which can be easier
employed in a perturbative computation. Once the renomatidin is complete we will be able to
give the first physical result fafx)q with fully active sea quarks.

The next step should be the computation(xfy at physical pion mass using the recently
generated ensembles with = 2 twisted-mass-clover fermions J10]. For heavier quarksaashe
continuum limit for this quantity can be studied.

Furthermore, the result can be used for the determinatioimeoigluon contribution to the
nucleon spin, which at the moment is not known from the lattMoreover, it could also be possible
to compute the gluon moment of other hadrons, e.g. the pioffi{}.
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