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1. Introduction

The various evidences of the existence of dark matter have led to the development of exper-
iments dedicated to detect dark matter directly. The detection relies on the measurements of the
recoil of atoms hit by a dark matter candidate. One popular class of dark matter models involve an
interaction between a WIMP and a Nucleon mediated by a Higgs exchange. Therefore, the scalar
content of the nucleon is a fundamental ingredient in the WIMP-Nucleon cross section. In this
way, the uncertainties of the scalar content translates directly into the accuracy of the constraints
on beyond the standard model physics. Since the coupling of the Higgs to quarks is proportional to
the quark masses, it is important to know how large scalar matrix elements of the nucleon are, in
particular for the strange and charm quarks.

One common way to write the parameters entering the relevantcross section are the so-called
sigma-terms of the nucleon:

σπN ≡ m〈N|ūu+ d̄d|N〉 and σ0 ≡ m〈N|ūu+ d̄d −2s̄s|N〉 , (1.1)

wherem denotes the light quark mass. Quantifying the scalar strangeness content of the nucleon a
parameteryN is introduced,

yN ≡
2〈N|s̄s|N〉

〈N|ūu+ d̄d|N〉
, (1.2)

which can be also related to the sigma terms of the nucleon in eq. (1.1).
The direct computation of the above matrix elements is knownto be challenging on the lattice

for several reasons. First, it involves the computation of "singlet" or "disconnected” diagrams
that are very noisy on the lattice. Second, discretisationsthat break chiral symmetry generally
suffer from a mixing under renormalization between the light and strange sector, which is difficult
to treat in a fully non-perturbative way. However, twisted mass fermions offer two advantages
here: they provide both an efficient variance noise reduction for disconnected diagrams and a
convenient way to avoid the chirally violating contributions that are responsible for the mixing
under renormalization.

2. Lattice Setup

In our simulations we use the mass-degenerate twisted mass action in the light sector and
the mass non-degenerate twisted mass action in the strange and charm sector. The quark masses
of the heavy quark doublet have been tuned such that the Kaon and D-mesons masses assume
approximately their physical value. The reader interestedin more details about aspects of this
setup is referred to [1, 2]. The twisted mass action in the light sector reads

S[χ ,χ ,U ] = ∑
x

χq(x)Dtm[U ]χq(x) = ∑
x

{
χq(x)(

1
2κ

+ iaµqγ5τ3)χq(x) (2.1)

−
1
2

χq(x)
3

∑
µ=0

[
Uµ(x)(r+ γµ )χq(x+aµ̂)+U†

µ(x−aµ̂)(r− γµ)χq(x−aµ̂)
]}

.
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where the hopping parameterκ = (2am0+8r)−1 is defined in terms ofam0, the bare Wilson mass,
r is the Wilson parameter andµq is the bare twisted mass parameter. The Wilson parameter is fixed
to |r| = 1 is all our simulations. Whenκ is tuned to its critical value a situation called maximal
twist is achieved which guaranteesO(a) improvement of physical observables.

For further needs we also introduce the operatorsDq,± denoting the upper and lower compo-
nents of the Wilson twisted mass operator in flavour space (also referred to as the Osterwalder-
Seiler Dirac operator):

Dq,±[U ] = tr
1± τ3

2
Dtm[U ], (2.2)

wheretr denotes the trace in flavour space.Dq,±[U ] then corresponds to 1-flavour twisted mass
operators with Wilson parameterr =±1.

When we discuss the 2-point and 3-point functions necessaryfor this work, we will use the
so-called physical basis of quark fields denoted asψq. This field basis is related to the twisted
quark field basis,χq by the following field rotation

ψq ≡ ei
ωl
2 γ5τ3

χq and ψq ≡ χqei
ωl
2 γ5τ3

, (2.3)

where the twist angleωl = π/2 at maximal twist.
In order to compute matrix elements involving strange quarks, we will work within a mixed

action setup. For reasons that will become clear later, we choose to introduce in the valence sector
an additional doublet of degenerate twisted mass quark of mass µq . The massµq can then be
tuned to reproduce the Kaon and D-mesons mass in the unitary setup. Preliminary estimates of the
matching masses givesaµs = 0.0185 in the strange sector andaµc = 0.2514 in the charm sector
and we will approximately use these values forµq further on. In this contribution, we work at
a fixed lattice spacing corresponding toa ≈ 0.078 fm with mPSL ≥ 4 and pion masses ranging
approximately from 300 to 500 MeV.

3. Matrix elements

In the following,ψq with index l,s,d will denote the quark fields of the light (l), strange (s) or
charm (c) quarks in the physical basis. In order to be self-contained, we describe in this section the
relevant correlation functions used in this work. The nucleon two-point function reads :

C±
N,2pts(t − tsrc,~xsrc) = ∑

~x

tr Γ±〈JN(x)JN(xsrc)〉, (3.1)

wherexsrc≡ (tsrc,~xsrc) is the source point and the subscriptN refers to the proton or to the neutron
states for which the interpolating fields are given by:

Jp = εabc
(

ua,T C γ5db
)

uc and Jn = εabc
(

da,T C γ5ub
)

dc.

The projectors used areΓ± = 1±γ0
2 , andC is the charge conjugation matrix.

The nucleon three-point functions is

C
±,Oq

N,3pts(ts,∆top,~xsrc) = ∑
~x,~xop

tr Γ±〈JN(x)Oq(xop)JN(xsrc)〉, (3.2)
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whereOq is an operator having scalar quantum numbers, e.g.Oq = q̄q, ∆top = top− tsrc is the time
of insertion of the operator, andts = t − tsrc gives the so-called source-sink separation. Note that in
the twisted basis the scalar operators read

Õq = iχqγ5τ3χq, where q = l,s,c , (3.3)

and are hence given by the pseudo scalar density. The flavour structure of the operators in the
twisted basis will be crucial in the following.

Since we consider an operator with a non-vanishing vacuum expectation value, we also define

C
±,Oq,vev
N,3pts (ts,∆top,~xsrc) =C

±,Oq

N,3pts(ts,∆top,~xsrc)−C±
N,2pts(t,~xsrc)∑

~xop

〈Oq(xop)〉 . (3.4)

The desired scalar matrix elements can then be computed using the asymptotic behaviour of the
ratio of a three and two-point functions:

ROq(ts,∆top) =
C
+,Oq,vev
N,3pts (ts, top)

C+
N,2pts(t,xsrc)

= 〈N|q̄q|N〉+O(e−∆top)+O(e−∆(ts−top)) . (3.5)

The general form of the 3-point functions in Eq. (3.2) lead toboth, connected (̃C, illustrated in
fig. 1a) and disconnected (D , illustrated in 1b) contributions,

C
±,Oq

N,3pts(ts,∆top) = C̃
±,Oq

N,3pts(ts,∆top)+D
±,Oq
N (ts, top,xsrc) (3.6)

In the following we will denote byRconn. (resp.Rdisc.) the contribution of̃C±,Oq (resp.DOq ) to the
ratio defined in Eq. (3.5). The sum of the connected and disconnected contribution to the ratio will
be denotedRfull .

In order to improve the signal over noise ratio, we have averaged the disconnected part over
forward and backward propagating proton and neutron states. In addition, we have used up to 4
randomly chosen source points per configuration for the 2-point function computation to enhance
our statistics.

As will be detailed in a forthcoming publication [3], the operatorsÕq do not mix under renor-
malization and hence have a straightforward renormalization pattern very similar to chirally invari-
ant overlap fermions. We consider this fact as a major advantage of our twisted mass approach for
computing the scalar quark contents of the nucleon.

tsrctsrc

top

t

(a)

tsrc

top

t

(b)
Figure 1: We illustrate the connected (left) and the disconnected (right) graphs that arise from the contrac-
tions leading to the 3-point function discussed in the text.
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4. Variance reduction

The main challenge to compute the 3-point functions of Eq. (3.2) is to evaluateD±,Oq . Our
strategy is based on a variance reduction technique for twisted mass fermions introduced in [4]
and used to study theη ′ meson in [6]. It relies on the fact that in the twisted basis the disconnected
contribution that has to be evaluated is related to the difference of 1/Dq,−−1/Dq,+.

Here, we will employ the one-end-trick [4] to compute the disconnected distribution stochas-
tically evaluating

2iaµq ∑
~x

[
φ∗
[r](x)γ5Γφ[r](x)

]
R
= ∑

~x

tr Γ
(

1
Dq,−

−
1

Dq,+

)
(x,x)+O

(
R−1/2

)
, (4.1)

where

φ[r] = (1/Dq,+)ξ[r] and φ∗
[r] = ξ ∗

[r](1/Dq,+)
† , (4.2)

where we have introduceNR independent random volume sources denotedξ[r]. For the generation
of the random sources we have used aZ2 noise setting all field components randomly from the set
{1,−1}.

In our tests for the signal to noise ratio (SNR) we first investigated how the SNR depends on the
number of stochastic sourcesNR used. We found that forNR & 7 there is no significant improvement
of the SNR. Nevertheless, we have used 12 stochastic sourcesper configurations in all our results.
In Fig. 4 we compare the SNR of the twisted mass specific variance reduction technique to a more
standard method based on the the hopping parameter expansion[5]. We show the ratioROq of
eq. (3.5), for a fixed value of∆top = ts/2= 6 as a function of the number of configurationsN. We
conclude that the SNR is increased by a factor∼ 3 with our improved noise reduction technique
which allows to obtain a result at the 5σ significance level with only a moderate statistics.
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Figure 2: Signal to noise ration (SNR) of the ratio
ROq for a fixed time∆top = ts/2= 6 as a function of
the number of gauge field configurationsN. ROq is
evaluated here in the strange quark regime. We com-
pare our noise reduction technique, with the hopping
parameter expansion technique. The dashed lines in-
dicate the 1σ and 5σ significance levels and the short
dotted lines are only shown to guide the eyes.
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Figure 3: Plot of the two contributionsRdisc. and
Rconn. to the ratioROq relevant for the extraction of
σπN . Rfull is the sum of both contributions.
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5. Light σ−term

In Fig. 3 we show the results obtained for the bare ratioRfull introduced in Eq. (3.5) from
which σπN can be computed. The connected part,Rconn., for a source-sink separation ofts =
12a, is shown by the black filled circles. It has been computed using the standard method of
“sequential inversions through the sink”. As can be seen,Rconn. shows a time dependence indicating
excited state contributions, a systematic effect that has not been taken into account yet in this work.
The disconnected part,Rdisc., is represented by blue triangles in Fig. 3. The disconnected part is
significantly smaller than the connected partRconn. and contributes at the∼ 10% level to the full
ratio Rfull represented by the red diamonds.

We have computedσπN so far for three values of the pion mass, see table 1. Our present data
do not allow for a reliable extrapolation to the physical point for which additional data at more pion
masses would be necessary.

mPS (MeV) σπN (MeV)

318 99(6)
392 152(9)
455 228(15)

Table 1: Fit results forσπN as a function of the pion mass. Only statistical error are estimated.

6. Strangeness of the nucleon

In Fig. 4, we showRdisc. for a quark mass ofaµq = 0.018 corresponding approximately to
the strange quark mass. The in principle freely selectable source-sink separation has been fixed
to 12 lattice units. The ratioROq of eq. (3.5) shows a time dependence indicating that also in the
case of the strange quark excited states may be important. Wenevertheless extract a plateau value
as indicated in Fig. 4 which is clearly different from zero. Combining this value with the result
for the scalar matrix element obtained in the light quark sector discussed above, allows us finally
to computeyN . We have performed such a computation at four values of the pion mass at fixed
value of the lattice spacing and the results are summarized in Fig. 5. Performing a simple linear
extrapolation we obtain, as shown by a red star,yN = 0.069(27) in the chiral limit, where only
the statistical errors have been taken into account. Although an investigation of systematic effects
are still missing, we checked that by varying the bare strange quark mass toaµs = 0.016 does not
change significantly the value ofyN .

As a final remark we mention that we have also computed the charm quark content of the
nucleon. Unfortunately, here the SNR is of order one and hence no clear signal can be extracted.
From our present data we can only provide a qualitative estimate that〈N|Oc|N〉. 〈N|Os|N〉.

7. Conclusion
In this proceedings contribution we have shown that with twisted mass fermions it is possible

address the disconnected contribution to the scalar matrixelements of the nucleon. This becomes
especially important when the strange and the charm contentare computed since there only discon-
nected graphs appear. In addition, with twisted mass fermions the renormalization pattern of such
matrix elements is the same as for chirally invariant discretizations. As a result we were able to
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Figure 4: Time dependence ofRdisc. in the strange
quark mass regime (aµq = 0.018). The source-
sink separation has been fixed to 12a (842 config-
urations)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

mPS
2

y N

yN

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
05

0.
10

0.
15

mPS
2

y N

Figure 5: Our data foryN as a function of the pion
mass. The data are extrapolated to the chiral limit
using a simple linear extrapolation.

obtain accurate results in the light and strange sector at fixed lattice spacing and for several quark
masses. Our main result is a valueyN = 0.069(27). This value is compatible with recent lattice
results obtained by several groups[8, 9, 10]. The still missing systematic uncertainties on this result
will be addressed in future simulations.
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