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Abstract

Background: Increasing case notifications is one of the top programmatic priorities of National TB Control
Programmes (NTPs). To find more cases, NTPs often need to consider expanding TB case-detection activities to
populations with increasingly low prevalence of disease. Together with low-specificity diagnostic algorithms, these
strategies can lead to an increasingly high number of false positive diagnoses, which has important adverse
consequences.

Methods: We apply TIME, a widely-used country-level model, to quantify the expected impact of different case-
finding strategies under two scenarios. In the first scenario, we compare the impact of implementing two different
diagnostic algorithms (higher sensitivity only versus higher sensitivity and specificity) to reach programmatic
screening targets. In the second scenario, we examine the impact of expanding coverage to a population with a
lower prevalence of disease. Finally, we explore the implications of modelling without taking into consideration the
screening of healthy individuals. Outcomes considered were changes in notifications, the ratio of additional false
positive to true positive diagnoses, the positive predictive value (PPV), and incidence.

Results: In scenario 1, algorithm A of prolonged cough and GeneXpert yielded fewer additional notifications
compared to algorithm B of any symptom and smear microscopy (n = 4.0 K vs 13.8 K), relative to baseline between
2017 and 2025. However, algorithm A resulted in an increase in PPV, averting 2.4 K false positive notifications thus
resulting in a more efficient impact on incidence. Scenario 2 demonstrated an absolute decrease of 11% in the PPV
as intensified case finding activities expanded into low-prevalence populations without improving diagnostic
accuracy, yielding an additional 23 K false positive diagnoses for an additional 1.3 K true positive diagnoses
between 2017 and 2025. Modelling the second scenario without taking into account screening amongst healthy
individuals overestimated the impact on cases averted by a factor of 6.

Conclusion: Our findings show that total notifications can be a misleading indicator for TB programme
performance, and should be interpreted carefully. When evaluating potential case-finding strategies, NTPs should
consider the specificity of diagnostic algorithms and the risk of increasing false-positive diagnoses. Similarly,
modelling the impact of case-finding strategies without taking into account potential adverse consequences can
overestimate impact and lead to poor strategic decision-making.
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Background
The End TB Strategy calls for a 95% reduction in deaths
due to tuberculosis (TB) and a 90% reduction in incidence
rate by 2035, relative to 2015 [1]. However, the annual rate
of decline of global incidence is estimated at 1.4% per year
between 2000 and 2016 and must be accelerated to 10%
to reach the 2025 milestone and then to 17% to reach the
2035 target of the End TB Strategy [2, 3]. Individuals with
active TB disease that experience diagnostic delays or
remain undetected not only fail to access the care and
treatment they need, but also contribute to continued
transmission, which hinders progress toward the global
targets.
Since implementation of the Directly Observed Ther-

apy Short-course (DOTS) Strategy in the 1990s, a strong
focus has been placed on case notification, which con-
tinues to be one of the primary indicator of programme
performance [4]. Recognising the need to detect more
cases, NTPs in low- and middle-income countries often
need to target screening efforts toward populations at
increasingly lower prevalence of disease. There has been
a push to complement passive case finding with more
active community-based approaches, in an attempt to
reduce transmission by finding and treating cases faster
[5, 6]. However, the current body of evidence demon-
strating a population-level epidemiological impact attrib-
utable to community-based active case finding (ACF) is
extremely limited [7–9].
The pressure to detect more cases in order to reach

ambitious targets may cause oversight of the positive
predictive value (PPV) of the cases detected. A low
prevalence of TB disease in target populations results in
a high number needed to screen (NNS) in order to find
one case. This can lead to high screening costs and
concerns of increasing false positive diagnoses as preva-
lence falls, given the imperfect specificity of diagnostic
algorithms. In order to limit these negative effects, the
World Health Organization (WHO) recommends taking
a targeted approach to ACF by considering the preva-
lence of disease in the screening population, using
diagnostic algorithms with higher accuracy, and carefully
assessing the potential NNS and resulting PPV of the
detected population [10].
Given the range of possible combinations of screening

and diagnostic tools as well as target populations, National
TB Control Programmes (NTPs) face difficult decisions in
allocating limited resources toward screening strategies
that will maximise impact. Furthermore, programmes are
challenged to improve their diagnostic algorithms,
needing to carefully assess the potential trade-off between
net sensitivity and specificity. These decisions are often
based on epidemiological principles using data from diag-
nostic accuracy studies, without quantifying the potential
impact of different strategies. Mathematical modelling can

provide impact estimates for different policy options and
contribute to evidence-informed policymaking, but few
models are designed for use by domestic programme
planners without formal training in modelling. Of the
models available, most lack parameters to allow for
screening amongst individuals without TB disease and the
specificity of the diagnostic algorithm. These parameters
are key structural components for a model to account for
false positive diagnoses – a critical consideration when
evaluating case-finding strategies.
One available model is the ‘ScreenTB’ tool, developed

by WHO. ScreenTB is available as an online platform to
estimate the potential yield of different systematic
screening scenarios, based on the diagnostic algorithm
and risk of TB in the target population [11]. Screen TB
is a static model, and therefore cannot account for dy-
namical changes in yield following the first round of
screening, or changes in the screening population’s com-
position over time. The TB Impact Model and Estimates
(TIME) is a user-friendly country-level tool designed to
be used by domestic programme planners for strategic
planning of TB care and prevention activities [12]. TIME
is a dynamic transmission model with screening struc-
ture that allows programme planners to investigate how
notifications, PPV, and impact on burden estimates may
change over time with the introduction of different
case-finding approaches or diagnostic algorithms. Add-
itionally, programme planners can visualise the care cas-
cade under different scenarios to evaluate numbers
screened, tested, diagnosed, linked to care, and success-
fully treated, in order to identify possible gaps in pro-
grammatic activities.
In this study, we use TIME to assess the potential im-

pact of two different scenarios, and demonstrate the im-
portance of considering the potential for false positive
diagnoses in both TB programme planning and mathem-
atical modelling. The examples presented here are based
on real-life scenarios the authors experienced when pro-
viding technical assistance with TIME to TB pro-
grammes during the national strategic planning process.
The data and scenarios were adapted for anonymity and
clarity.

Methods
The TIME model
Technical aspects of the TIME model and its structure
are previously described elsewhere [12]. In summary,
TIME Impact is a deterministic, compartmental TB
transmission model. The core model contains a com-
partment for susceptible individuals, latent infection and
two compartments for active disease, one for smear
positive disease and one for smear negative disease.
Movement of individuals between compartments are
governed by parameters which reflect the natural history
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of TB. The model is stratified by HIV status (HIV nega-
tive vs HIV positive, on or off anti-retroviral therapy),
treatment history (new vs retreatment) and drug resist-
ance status (drug-susceptible vs multi-drug resistance).
The demographic component is informed by UN Popu-
lation Division estimates and is stratified by sex and age
by five-year age bins, with separate TB natural history
parameters for under-15 year olds to account for the
different epidemiological properties of paediatric TB.

Model calibration
We used an existing model calibrated to a West African
setting of low HIV prevalence. The model is calibrated
to notifications, prevalence, incidence and mortality.
Programmatic data used to parameterise the model were
collated in collaboration with the NTP both remotely
and during several in-country visits. Estimates of preva-
lence were taken from the recent national prevalence
survey, whereas estimates of incidence and mortality
were extracted from the WHO Global TB Database [13].
The calibrated model represents the status quo if TB

programmatic activities and investments remain un-
changed from the baseline year in 2017. The baseline diag-
nostic algorithm that is implemented nationwide in this
setting is prolonged cough (≥ 2 weeks) followed by smear
microscopy, and clinical diagnosis for smear-negative test
results. The estimated net sensitivity and specificity of the
algorithm are found in Table 1. We estimate outcomes
between 2017 and 2025 to serve as baseline for compari-
son with modelled case-finding intervention scenarios. A
visualisation of the care cascade in the baseline projection
for 2017 is shown in Fig. 1, illustrating the composition of
healthy and disease individuals at each step of the cascade.
The first three bars of the care cascade relate to case
finding. Programmatic screening efforts and target
population drive the change in composition between
the ‘Burden’ and ‘Screened’ bars. The sensitivity of
the diagnostic algorithm drives the attrition of TB
diseased individuals (grey component) between the
‘Screened’ and ‘Diagnosed’ bars, whereas the

specificity of the diagnostic algorithm filters out the
healthy individuals (yellow component).
Data informing the sensitivity and specificity of symp-

toms screening were obtained from a previously-published
meta-analysis and are consistent with those used by WHO
as recommendations for systematic screening of active TB
and for the ScreenTB tool [10, 14]. Estimates of sensitivity
and specificity of diagnostic components of the algorithms
were obtained from various sources and are consistent with
WHO recommendations [10, 15, 16].
In both intervention scenarios, we assumed linear

scale-up of activities between 2017 and the target year of
2020, and assumed constant values from 2020 onward.
We recorded absolute number of additional notifica-
tions, positive predictive value, and population-level im-
pact on TB incidence between 2017 and 2025 (the
second milestone of the End TB Strategy targets). We
used these data to create two metrics of efficiency for
comparison between scenarios: 1) the ratio of additional
true positive to additional false positive notifications,
which describes how many false positive diagnoses are
notified (or averted) for every additional true positive
diagnosis, relative to baseline; 2) the ratio of total notifi-
cations to cases averted, which describes how many
cases are averted, relative to baseline, per case notified.

Scenario 1: Comparison of two diagnostic algorithms
Scenario 1 represents a comparison of implementing
two different diagnostic algorithms in a population with
similar prevalence of TB disease and access to care, with
a pre-test probability of 28%. In this scenario, the coun-
try plans to increase coverage of case-finding activities
in order to increase the total population tested by 20%,
using either Algorithm A of prolonged cough (≥ 2 weeks)
followed by GeneXpert, or Algorithm B of any symptom
followed by smear microscopy and clinical judgement in
the case of smear negative results. This scenario investi-
gates the impact of increasing the net sensitivity alone
(Algorithm B) versus increasing both the net sensitivity
and specificity (Algorithm A).

Table 1 Net sensitivity and specificity of diagnostic algorithms reflected in each scenario, by smear type. Green cells represent large
increase in value compared to baseline algorithm

Scenario Definition Net sensitivity Net specificity

Smear positive Smear negative

Baseline Prolonged cough & microscopy/clinical diagnosis 50.0% 20.9% 94.9%

Scenario 1 Algorithm A Prolonged cough & GeneXpert 49.1% 27.8%* 99.9%*

Algorithm B Any symptom & microscopy/clinical diagnosis 77.0%* 20.9% 94.3%

Scenario 2 Microscopy (baseline) Prolonged cough & microscopy/clinical diagnosis 50.0% 20.9% 94.9%

GeneXpert Prolonged cough & GeneXpert 49.1% 27.8%* 99.9%*

*Asterisk signifies large increase in value compared to baseline algorithm; Scenario 1 comparing the impact of two different diagnostic algorithms in a defined
population; Scenario 2 examining the impact of expanding case detection towards population of lower disease
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Scenario 1 parameterisation
The two diagnostic algorithms under investigation and
their calculated net sensitivities and specificities for
smear positive and smear negative TB are found in
Table 1. The rate at which individuals with active TB
disease are screened for TB is increased in the target
year until the number individuals tested for TB was
120% that of the baseline value in 2017. The pre-test
probability is assumed to be constant. Inputs for the
average net sensitivity and specificity are calculated
based on the population coverage of the algorithms.
See Additional file 1 for model parameters.

Scenario 2: Expand intensified case-finding activities
nationwide
Scenario 2 represents a projection of impact from
expanding intensified case-finding (ICF) activities in the
outpatient department (OPD) nationwide, based on data
from a pilot study in a high-prevalence urban setting. In
this scenario, the country aims to investigate the poten-
tial impact of reaching their notification targets using a
defined and tested case-finding strategy. The country
makes use of data from a pilot study, demonstrating that
an additional 50% of individuals were considered
presumptive TB and were tested for disease, which
increased notifications by 20% in the pilot site. The
programme would like to use modelling to investigate
the potential total notifications and epidemiological
impact if this strategy is implemented nationwide. Other
data sources include surveillance data stratified by

administrative division, and results from a recent national
prevalence survey with urban-rural stratification.

Scenario 2 parameterisation
We assume that the pre-test probability amongst indi-
viduals screened through ICF activities in the pilot study
is 2%, based on operational research in South Africa and
the country’s prevalence of disease in the general popu-
lation [17]. To reflect the change of population away
from the high-prevalence urban setting, we assume that
the prevalence of disease and pre-test probability are half
those of the test site, informed by prevalence survey
findings. Routine surveillance data from the country sug-
gests that 70% of diagnostic tests for TB are reported in
urban areas, which is used to stratify the parameterisa-
tion by urban and rural setting. We assume that the
pilot data reflects the average of urban diagnostic centres
and a similar 50% increase in the number of individuals
tested for TB across implementing sites. Table 1
shows the sensitivity and specificity of the diagnostic
algorithms, which are kept constant over time. See
Additional file 1 for parameter details.
We investigated the potential impact of this interven-

tion if smear microscopy was replaced by GeneXpert. In
this scenario, we assume the same screening rate as in
the microscopy scenario, but increase the sensitivity and
specificity of the algorithm to reflect an ICF scenario
where GeneXpert is being scaled up as primary diagnos-
tic test, replacing smear microscopy by 2020.

Fig. 1 Care cascade for baseline projection in 2017
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Finally, we repeated the scenario of expanding ICF
activities with smear microscopy to reflect the impact of
modelling case-finding interventions using a model that
does not have structure to allow for false positive diag-
noses, i.e. specific model parameters related to screening
amongst individuals who do not have TB disease as well
has the specificity of diagnostic algorithms. Here we
modelled a scenario where the increase in notifications
from the pilot study are all true positive, and disregard
screening amongst individuals without disease. We
investigated the epidemiological impact by increasing
the screening rate to match a 20% increase in notifica-
tions in a model that does not account for the specificity
of the algorithm, therefore assuming that all additional
notifications are from the diseased population only.

Results
Scenario 1
In this scenario, we investigated the epidemiological
impact of two different diagnostic algorithms, where
Algorithm A represents prolonged cough (≥2 weeks),
followed by GeneXpert and Algorithm B represents
screening for any symptom, followed by sputum smear
microscopy or clinical diagnosis for smear negative
patients.
Both algorithms result in an increase in total notifica-

tions relative to baseline; however, between 2017 and
2025, the increase from Algorithm B is 3.5 that of
Algorithm A (Fig. 2, yellow vs. blue bars). Similarly,
Algorithm B has a greater impact on incidence, averting
64% more cases than Algorithm A between 2017 and
2025. Projections of total notification rate, incidence
rate, number of false positive notifications and PPV can
be found in Additional file 1.

The larger reduction on incidence by Algorithm B can
be explained by the higher net sensitivity of the algorithm,
which yields a greater increase in true positive notifica-
tions than Algorithm A, relative to baseline (Fig. 2).
However, the increased net specificity of Algorithm A
compared to the baseline algorithm (Table 1) results in a
prevention of false notifications, with a ratio of − 0.4 false
positive notification for every additional true positive
notification, i.e. for every additional true positive notifica-
tion, 0.4 false positive notifications were averted. On the
other hand, Algorithm B results in further false positive
notifications per additional true positive notification with
a ratio of 0.81 to 1, i.e. for every additional true positive
notification, there are 0.81 additional false positive notifi-
cations, relative to baseline.
The algorithms’ difference in specificity leads to diver-

ging impacts on PPV. During 2017–2020, Algorithm A
increases the PPV from 74 to 77%, while Algorithm B
results in PPV decline from 74 to 73%. Beyond 2020, the
PPV of both algorithms decline, although Algorithm A
maintains a higher PPV in 2025 than both baseline and
Algorithm B. Algorithm A has a more efficient impact
on incidence with 0.27 additional notifications needed to
avert one case, as compared with 0.57 additional notifi-
cations under Algorithm B (Table 1).

Scenario 2
In this scenario, we investigated the impact of expanding
intensified case-finding activities nation-wide from a
high-prevalence urban area (ICF with microscopy) as
well as the impact of replacing sputum smear micros-
copy by GeneXpert (ICF with GeneXpert).
Projections for total notification rate, incidence rate,

number of false positive notifications and PPV can be
found in Additional file 1. Expanding ICF activities

Fig. 2 Additional notifications between 2017 and 2025 based on diagnostic algorithm
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nationwide yields an additional 24.3 K notifications be-
tween 2017 and 2025, relative to the baseline scenario, if
microscopy is used as the final diagnostic test (green bar,
Fig. 3). However, the expansion with microscopy averts
only 3.6 K cases over the period, and leads to a high
FP:TP ratio of 17.7 additional false positive notifications
per additional true positive notification.
With GeneXpert as the final diagnostic test, the ex-

pansion averts 5.0 K cases relative to baseline over the
period, with a lower FP:TP ratio of − 4.8 additional false
positive notifications per additional true positive notifi-
cation relative to baseline, suggesting that ICF with
GeneXpert leads to a prevention of false positive notifi-
cations relative to the status quo. The result is a large
increase in the PPV to 99% by 2020 with GeneXpert,
compared to a decrease in PPV to 63% in 2020 with
smear microscopy (baseline PPV = 74% in 2020). In
other words, 37% of the total notifications could be false
positive if microscopy is used in this scenario. Therefore,
the model shows that including GeneXpert in the ICF
scenario leads to a more efficient impact on incidence,
by increasing true positive notifications and decreasing
false positive notifications for a net decrease in total no-
tifications (Fig. 3, blue bars); while still having a larger
impact on incidence compared to if microscopy was
used (Table 2).
Modelling the ICF with microscopy scenario without

taking into consideration the possibility of false positive
diagnoses overestimates the population-level impact on
cases averted by a factor of 6 between 2017 and 2025. In
Fig. 4, the pink shaded region depicts the overestimated
impact resulting from the use of a model that does not
take specificity into account. Such a model would neces-
sarily assume that the entire 20% increase in notifica-
tions is drawn from the TB-diseased population, without

taking into account the 50% increase in people tested for
TB or the split in pre-test probability. As a result, the
model would remove too many infectious individuals
from the prevalent pool and dramatically overestimate
the reduction in transmission.

Discussion
This modelling study demonstrates how the net accuracy
of diagnostic algorithms and the prevalence of the target
population can influence notifications and epidemio-
logical impact, via changes in PPV. This is consistent
with findings from other modelling studies [18, 19].
These examples demonstrate the adverse conse-

quences of neglecting the PPV. False positive diagnoses
become unnecessarily treated non-TB diseased individ-
uals, wasting health system resources and harming those
individuals by exposing them to toxic drugs, possible
stigma, and possible catastrophic costs related to acces-
sing and adhering to TB care [20–23]. Depending on the
sensitivity of the definition across different settings and
prevalence of associated risk factors, hepatotoxicity due
to anti-tuberculosis chemotherapy has been reported in
between 2 and 28% of TB cases [24]. In resource con-
strained settings, which carry the highest burden of TB,
monitoring of liver enzyme levels throughout TB treat-
ment is not routinely done. This means that individuals
in these settings are at risk of not receiving the appropri-
ate and timely management of hepatotoxicity, which, if
left unmanaged, can lead to a reduced effectiveness of
anti-tuberculosis treatment and an increase in morbidity
and mortality [24, 25].
False positive diagnoses may also create the illusion of

progress toward programmatic goals related to case detec-
tion that are set in national monitoring and evaluation

Fig. 3 Additional notifications between 2017 and 2025 of ICF activities based on diagnostic test
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frameworks and reported to the global level. Furthermore,
national and global figures for treatment outcomes may
be biased towards favourable outcomes if individuals with-
out TB disease are more likely to be reported as having a
successful treatment for a disease they never had. While
we have not carried out a formal cost-effectiveness ana-
lysis, it is reasonable to assume that false-positive diagno-
ses reduce the cost-effectiveness of interventions.
Total number of notifications is widely used as an indi-

cator of programme performance for TB programmes glo-
bally. However, considering total number of notifications
alone, without taking into account the PPV, could mislead
programme planners and result in suboptimal planning
for TB case-finding. Rather than focussing exclusively on
increasing total notifications, TB programmes should aim
to maximize their impact on TB burden. Specifically,
more consideration can be given to other monitoring indi-
cators, such as the proportion of bacteriological confirm-
ation, when assessing programme performance. For
example, a higher coverage of bacteriological confirmation
would imply a larger impact on burden, due to the lower
risk of false positivity and thus a higher PPV. As demon-
strated by the modelled scenarios, greater yield in total
notifications does not necessarily translate into greater
epidemiological impact on disease burden. Algorithm A in
Scenario 1 yielded fewer additional notifications than did
Algorithm B, but improved the PPV by avoiding false
positive diagnoses. As a result, the impact on burden of
Algorithm A was achieved with much greater efficiency.
When mathematical models are used to inform stra-

tegic planning related to case-detection, it is critical that
they include the structure to distinguish false positive

notifications. The TB Modelling and Analysis Consor-
tium (TB-MAC) recently developed a set of guiding
principles for TB country-level modelling and its use to
support the policy process [26]. One of the principles is
appropriateness of model structure – which states that
models should be appropriately designed to represent
key features for capturing TB dynamics and modelling
the impact of the interventions at question. This guiding
principle is not respected if a model is unable to distin-
guish false positive notifications, and therefore should
not be used for the intent of guiding policy decisions for
case detection.
In their efforts to find more cases, TB programmes are

often forced to expand case-finding strategies to target
populations at low prevalence of disease. In Scenario 2,
the TB programme initiated ICF in the outpatient de-
partment in an urban setting, and used these data to
model the expansion of the activities to rural settings
with a lower prevalence of disease. In a situation like
this, diagnostic specificity becomes critical. The use of
microscopy and clinical diagnosis resulted in 37% false
positivity during 2017–2020, as compared with 1% false
positivity using GeneXpert. The large reduction in false
positive diagnoses through GeneXpert, translated to a
reduction in total notifications compared to baseline.
This finding is consistent with other studies, which
showed that implementation of GeneXpert may not
necessarily lead to an increase in total notifications [27,
28]. The use of GeneXpert in our example had only a
marginally larger impact on incidence compared to mi-
croscopy. This can be explained by the low sensitivity of
the initial screening test of prolonged cough, which

Fig. 4 Modelled number of cases averted, with and without considering screening amongst healthy individuals

Lalli et al. BMC Infectious Diseases  (2018) 18:340 Page 8 of 10



severely limits the sensitivity and therefore the entire al-
gorithm’s potential to find cases. If a more sensitive ini-
tial screen was used, such as any symptom consistent
with TB, then the epidemiological impact would have
been greater, as more individuals with TB disease would
have been found.
We assumed that the impact achieved through the

pilot study is reflective of all urban settings. However, it’s
important to consider the potential loss of impact when
expanding outside of pilot study conditions and into
programmatic implementation; therefore, our example
may be overestimating the outcomes.
The current model does not take into account uncer-

tainty in natural history parameters. While uncertainty
may impact specific output values, the direction of the
modelled impact would hold and the overall messages in
this paper would remain the same.
Modelling the impact of case-finding strategies is lim-

ited by the data available, such as the quality of sensitivity
and specificity data, estimates of disease prevalence in
various target populations and how individuals contact
each other within and between different populations.
The process and accuracy of diagnosing TB based on

clinical evaluation are not well understood. However,
clinical diagnosis continues to play an important role in
TB case detection, given existing barriers (e.g. distance)
to accessing laboratory-based diagnostic services, as well
as difficulties in collecting specimen in certain popula-
tions (e.g. paediatric). Clinical diagnostic practices can
differ between countries as well as between individuals.
This variability makes it difficult to draw generalisable
conclusions on its accuracy. Furthermore, the accuracy
of clinical diagnosis, and the decision to treat empiric-
ally, is influenced by the use and interpretation of chest
radiography, which can increase the sensitivity of clinical
diagnosis at the expense of specificity, potentially leading
to more false positive diagnoses [16]. However, quantify-
ing the relationship remains a challenge. Modelled outputs
are very sensitive to changes in the diagnostic accuracy
parameters, particularly to changes in specificity, as this
relates to individuals without disease who constitute the
majority of individuals screened. Programme planners can
use TIME to explore the impact of different accuracy
parameter values within the bounds of available estimates
to reflect different clinical practices regarding empirical
treatment. Further research is needed to gain a better
understanding of accuracy of the tools recommended by
WHO, and especially of clinical diagnosis, which is widely
used and a potentially important source of false positivity.
The accuracy estimates referred to in WHO guidance
documents and ScreenTB tool can serve as a resource for
TB strategic planning; however, programme planners
should make use of setting-specific estimates based on
local data, if appropriate.

Conclusion
This modelling study demonstrates the importance of
taking into account possible false positive diagnoses
when choosing a case-finding strategy and when inter-
preting changes in total notifications as indicator for
programme performance. NTPs must carefully consider
the specificity of diagnostic algorithms before expanding
case-finding activities to populations with lower preva-
lence of disease. Furthermore, failing to consider the
specificity of algorithms in mathematical models can
overestimate the impact of case-finding strategies and
mislead NTPs toward harmful decisions. In order to
improve model estimates and strengthen programmatic
decisions, more empirical research is needed on the
accuracy of WHO-recommended screening and diagnos-
tic tools, especially clinical diagnosis and the influence
of chest radiography.
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