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H U M A N  G E N E T I C S

Establishment of environmentally sensitive DNA 
methylation states in the very early human embryo
Noah J. Kessler1, Robert A. Waterland2, Andrew M. Prentice1, Matt J. Silver1*

The molecular mechanisms responsible for the developmental origins of later disease are currently unknown. We 
previously demonstrated that women’s periconceptional nutrition predicts their offspring’s DNA methylation at 
metastable epialleles (MEs). We present a genome-wide screen yielding 687 MEs and track their trajectories across 
nine developmental stages in human in vitro fertilization embryos. MEs exhibit highly unusual methylation dy-
namics across the implantation-gastrulation transition, producing a large excess of intermediate methylation 
states, suggesting the potential for differential programming in response to external signals. Using a natural ex-
periment in rural Gambia, we show that genomic regions sensitive to season of conception are highly enriched for 
MEs and show similar atypical methylation patterns. MEs are enriched for proximal enhancers and transcription 
start sites and are influenced by genotype. Together, these observations position MEs as distinctive epigenomic 
features programmed in the early embryo, sensitive to genetic and periconceptional environment, and with the 
potential to influence phenotype.

INTRODUCTION
DNA methylation is a widely studied epigenetic mark that 
plays a key role in the transcriptional regulation of a number of 
cellular processes in mammals including cell differentiation, 
genomic imprinting, and X-inactivation (1). Early embryonic 
development represents a critical window for the establishment 
of the methylome, when the human preimplantation embryo 
undergoes substantial remodeling, with widespread erasure of 
gametic methylation marks as the embryo transitions to a plu-
ripotent state (1–3). Animal and human studies indicate that 
the methylation state can be influenced by the environment of 
the early embryo, suggesting a potential role for methylation 
and related epigenetic marks in mediating the effects of early- 
life nutritional and other environmental stressors on later health 
and disease (4–6).

Metastable epialleles (MEs) are genomic regions that show 
systemic (cross-tissue) interindividual variation in methylation, 
indicating establishment of the variable methylation state in the 
preimplantation embryo, before gastrulation (7). Murine and 
human MEs have been associated with the presence of neigh-
boring transposable elements and are influenced by nutritional 
and other environmental stressors at periconception (8–13). 
Variable methylation at MEs was originally defined as occur-
ring in the absence of genetic variation (7), and MEs have been 
widely studied in isogenic mice (14–16), demonstrating that sys-
temic, stochastic variation in methylation state can occur inde-
pendent of genotype. As we expand the search for ME regions into 
genetically heterogeneous human populations, we suggest that 
this definition should be extended to include genomic regions 
whose epigenetic state is under partial but nondeterministic ge-
netic influence.

RESULTS
Screen for human MEs
We previously reported the first-in-human genome-wide screen 
for MEs using whole-genome bisulfite-seq (WGBS) data from 
two tissues in two North American Caucasian individuals (8). This 
screen was limited by its inclusion of only two germ layer lineages 
(mesoderm and ectoderm) and its small sample size. For the cur-
rent analysis, we produced an updated list of putative human ME 
regions by extending the previous ME screen to include samples 
from three new individuals and from an endodermal tissue (17). 
These 687 ME regions exhibit systemic interindividual variation in 
DNA methylation that is distinct from the patterns in 5902 genomic 
clustered “control” regions generated from the whole-genome back-
ground using the same clustering parameters used to find the ME 
regions (Fig. 1, table S1, fig. S1A, and Materials and Methods).

Chromatin state at MEs was assessed using the histone-based 
15-state chromHMM model (18) in three adult tissues (one derived 
from each germ layer), generated as part of the Roadmap Epigenomics 
Project (19). We observed that ME regions are more likely to be as-
sociated with predicted enhancers, transcription start sites, and zinc 
finger genes, and less likely to be associated with transcribed re-
gions or regions with low levels of histone marks, compared to con-
trol regions and to genomic background in all three tissues surveyed 
(Fig. 2A). Furthermore, MEs are more likely to be near certain classes 
of transposable elements than would be expected given the genomic 
distribution of CG dinucleotides (CpGs), with significant enrich-
ment for proximity to endogenous retroviral sequence 1 (ERV1) 
and endogenous retro virus group K (ERVK) elements [P = 4.7 × 10−8, 
P = 1.4 × 10−14, Fisher’s exact test (FET); see Materials and Methods 
and table S2]. This is in line with our previous observations (8) and 
with observations in mice (15).

Methylation dynamics of MEs during embryonic development
Patterns of systemic interindividual variation at MEs (Fig. 1) sug-
gest that the methylation state is established in the early embryo, 
prior to separation into germ layers at gastrulation (7), but this has 
not yet been demonstrated in human embryonic samples. We ana-
lyzed human methylomes from early developmental stages in Chinese 
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embryos using public data (20). This data set consists of reduced rep-
resentation bisulfite-seq (RRBS) data from two to four biological 
replicates at each of nine developmental stages, from gametes, 
through cleavage-stage embryos, to blastocyst and differentiated 
embryonic tissue (table S3). More than 3.5 million CpG sites were 
covered in at least one of the replicates (fig. S1B), and despite RRBS 
covering only approximately 10% of genome-wide CpGs, a substan-
tial proportion (44%) of our ME regions were covered in the Guo et al. 
data set (table S4).

As a first step, we replicated the analysis from Guo et al. (20) 
showing genome-wide changes in mean methylation at each devel-
opmental stage (Fig. 3A). Expected patterns of genome-wide de-
methylation and remethylation at periconception and across the 
gastrulation transition are visible in this data set. In contrast to ge-
nomic background, methylation at MEs is consistently lower at all 
developmental stages, particularly in sperm (Fig. 3A). Mean meth-
ylation in clustered control regions is higher than in genomic back-
ground, making the contrast with ME methylation even greater (fig. 
S2). Similar patterns are evident in a mostly single cell–derived data 
set from the same group (fig. S3 and Materials and Methods) (21). 

Since change in global mean methylation is a relatively crude mea-
sure of methylation dynamics in the early embryo, we next considered 
the distribution of methylation at each stage (Fig. 3B). As suggested 
by Fig. 3A, we observed an increased proportion of low methylation 
states in ME regions relative to background (that is, all CpGs covered 
in the data set).

Most striking, however, was a marked increase in intermediate 
methylation states (sites with 10 to 90% methylation) within ME 
regions in the post-implantation embryo (“embryonic liver”) (Fig. 
3B). Here, 52.3% of CpGs in ME regions show intermediate meth-
ylation versus 20.1% in genomic background and 26.6% in control 
regions (P < 2.2−16, chi-squared test for difference in proportions 
for both comparisons; fig. S5B). Genome-wide, there was a tendency 
toward a bimodal distribution of very high or low methylation af-
ter gastrulation (Fig. 4, A and B, and fig. S4). In contrast, in ME 
regions, a substantial proportion of CpGs are intermediately meth-
ylated in post-gastrulation tissue, irrespective of starting methyla-
tion state in (pre-gastrulation) inner cell mass (ICM) tissue. These 
distinctive patterns are evident in other fetal tissues (intestine, 
kidney, and lung) obtained from the Roadmap Epigenomics Project 

Fig. 1. Methylation of ME and control regions in samples used for the ME screen. Methylation distributions in 687 ME and 5902 control regions. X axes represent 
methylation in the sample given by the label at the top of the column. Y axes, the same, but given by label at the end of the row. Each point represents mean methylation 
across all CpGs in a single region. Samples are listed by individual and tissue. HF, hair follicle; PBL, peripheral blood lymphocytes; FT, fat; SB, small bowel. Methylation in 
MEs is on the bottom (left) of the diagonal; methylation of controls (C) is on the top (right).
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(19) and are also evident when comparing MEs with clustered con-
trol regions (fig. S5, A and B).

Intermediate methylation states in pooled samples may result 
from interindividual variation with low intraindividual variation, 
heterogeneity of cell methylation states within individuals, or a 
combination of both. In the Guo et al. data set, most replicates at 
each developmental stage consist of cells derived from several em-
bryos (table S3). However, each embryonic liver replicate represents 
only one conceptus, allowing us to assess the methylation profile of 
three individuals separately. In each of these replicates, we still ob-
serve a large proportion of intermediate methylation states in 
ME regions (Fig. 4C), indicating that intermediate methylation is 
driven by intratissue heterogeneity of methylation states within an 

individual, rather than by interindividual differences. A read-level 
analysis suggests that intermediate methylation at the CpG level arises 
from a combination of partially (10 to 90%) and fully methylated/ 
unmethylated (molecule-specific) reads, within both ME and clus-
tered control regions (Fig. 5A).

To test this possibility, we devised a read homogeneity index (RHI) 
to evaluate the extent to which intermediately methylated clusters 
are driven by mixtures of reads each with high methylation homo-
geneity. This normalized index accounts for differences due to 
cluster size and average methylation (see Materials and Methods). 
Clusters containing more reads with long runs of methylated or un-
methylated CpGs will have a higher RHI (see Fig. 5C for a represen-
tative illustration). We found that intermediately methylated ME 
clusters have a significantly higher RHI than equivalent control 
clusters (Mann-Whitney, P < 3 × 10−5; Fig. 5B), indicating increased 
levels of molecule-specific methylation at MEs.

Association of genetic variation and proximal protein 
binding sites with ME methylation
The above observations in single replicates indicate that cellular dif-
ferences in methylation state occur independent of genetic varia-
tion. It remains the case, however, that methylation at MEs might 
be influenced by genotype (22). Our ME screen filtered out differ-
ences in methylation for CpGs within 60 base pairs (bp) of a genetic 
variant (see Materials and Methods), but observed interindividual 
differences may be driven by more distant genetic variation. The 
identification of mQTL—genetic variants influencing CpG methyl-
ation—requires large sample sizes, and so far, sufficiently powered 
studies have only been conducted using methylation arrays that as-
say a small fraction of the methylome. We therefore assessed poten-
tial genetic influence on DNA methylation at MEs identified in our 
WGBS screen by analyzing mQTL identified in a large UK study 
(see Materials and Methods) (23). This analysis identified genetic 
influences from 8.3 million common single-nucleotide polymor-
phisms (SNPs) on approximately 400,000 CpGs assayed in 3948 
blood samples taken at five time points. We observed highly signif-
icant enrichment for mQTL at CpGs in ME regions [odds ratio 
(OR), 6.2; P < 10−10, FET] but not in control regions (OR, 1.3; P = 
0.09). Estimates of the proportion of methylation variance ex-
plained by cis and trans mQTL at MEs indicate that mQTL explain 
only a small to moderate proportion of methylation variance at 
mQTL-associated ME-CpGs {median proportion of variance ex-
plained, 0.23 [interquartile range (IQR), 0.057 to 0.46] in birth sam-
ples and 0.24 (IQR, 0.055 to 0.49) in adult samples; Fig.  3D and 
Materials and Methods}, suggesting that stochastic and/or envi-
ronmental factors play a major role in driving the distinctive early 
embryo dynamics observed at MEs.

Control of methylation dynamics in the preimplantation em-
bryo is critical in genomic imprinting (24). The Krüppel associated 
box (KRAB) zinc finger protein ZFP57 and its binding partner 
tripartite motif-containing 28 (TRIM28), along with the multi-
zinc finger protein CCCTC-binding factor (CTCF), have been 
implicated in the maintenance of parental methylation marks in the 
early embryo (25–27). We therefore speculated that these might 
influence methylation dynamics at MEs. Using public human chro-
matin immunoprecipitation sequencing (ChIP-seq) data, we found 
significant enrichment for proximal ZFP57, CTCF, and TRIM28 
binding sites in ME regions compared to genomic background (re-
spectively P < 2.2 × 10−16, P < 2.2 × 10−16, P = 4.1×10−7, FET; table S2 

Fig. 2. Characteristics of ME and control regions. (A) Proportion of MEs, control 
regions, and the whole genome, overlapping predicted chromatin states from 
three Roadmap samples (one each from endoderm, mesoderm, and ectoderm). 
Fifteen chromHMM states have been reduced to eight after combining states, 
which represent similar genomic features. Quiescent loci are those with low signal 
in all of the histone marks used as input to the chromHMM algorithm; ZNF regions 
are those overlapping zinc finger protein–encoding genes. (B) Proximity of MEs 
and controls to ZFP57 binding sites. Black bars show the proportion of regions with 
a binding site within the distance marked on the x axis. Gray bars show the cumu-
lative proportion of regions within a given distance of a binding site. Red bars 
show the proportion of regions that overlap a binding site. PBMC, peripheral 
blood mononuclear cell; TSS, transcription start site.
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and Materials and Methods). For example, 16.3% of ME regions are 
within 10 kb of a ZFP57 binding site, compared with 3.7% of 
clustered control regions (7.8% versus 0.7% using a 1-kb distance 
threshold; 2.8% versus 0.3% using exact overlaps; Fig. 2B and 
table S1).

To investigate the potential influence of ZFP57 binding on ME 
methylation, we analyzed data from a study of individuals homozy-
gous for ZFP57 mutations associated with transient neonatal diabe-
tes, a rare imprinting disorder (28). By comparing individuals with 
ZFP57 mutations with matched controls, this study found 61 DMRs 
(ZFP57m-DMRs), which were common to at least two patients with 
a homozygous mutation. Despite the small number of ZFP57m- 
DMRs, five overlapped an ME region and a further two were within 

10 kb (table S5). All were hypomethylated in the individuals with 
the mutation. In contrast, no control clusters overlap or are within 
10 kb of a ZFP57m-DMR.

Influence of periconceptional environment on ME methylation
We previously reported associations between season of conception 
(SoC) and DNA methylation at a small number of MEs in a Gambi-
an population (8, 29, 30). In this rural community in sub-Saharan 
Africa, seasonality is linked to significant differences in maternal 
diet and circulating maternal methyl donor biomarkers (31), sug-
gesting that, as observed at murine MEs, human MEs may be sensi-
tive to the periconceptional nutritional environment (8, 11, 30). We 
therefore hypothesized that Gambian SoC-associated genomic regions 

Fig. 3. Methylation at MEs, all-RRBS background, and SoC-associated loci, and potential genetic influences. Within each developmental stage in all plots, CpGs are 
counted once for each replicate for which there was sufficient read depth. (A) Mean methylation at each developmental stage assayed by Guo et al. Solid line: mean 
methylation in all-RRBS background (n = 3,679,155 CpGs); dashed line: mean methylation at ME regions covered by RRBS (n = 302 regions; 2098 CpGs). (B) Distribution of 
methylation across developmental stages in all-RRBS background CpGs (left) and at CpGs within ME regions (right). See legend in (C). (C) Distribution of methylation at 
each stage in previously identified season of conception–associated differentially methylated regions (SoC-DMRs; see Materials and Methods). (D) Proportion of methyl-
ation variance explained by genetic variants in cis and in trans at ME-CpGs. These data are obtained from a previous comprehensive screen for methylation quantitative 
loci (mQTL)–CpGs in a large European study (23).
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may show patterns of early embryo methylation dynamics similar to 
those observed at MEs from our WGBS screen in North American 
Caucasians.

To investigate this possibility, we curated a list of 21 SoC-DMRs 
previously identified in epigenome-wide association studies from 
two independent Gambian studies (see Materials and Methods). 
Gambian SoC-DMRs show extremely low levels of methylation in 
the Chinese gametes and pre-gastrulation embryonic tissues assayed 
by Guo et al., with strong enrichment of intermediate methylation 
states relative to background in the post-gastrulation embryo (n = 17 
SoC-DMR regions with ≥1 CpG in the Guo et al. data set; Fig. 3C), 
reminiscent of patterns observed at MEs (Fig. 3B). SoC-DMRs were 
highly enriched for overlapping MEs (5 of 21 DMRs; P < 2.2 × 10−16, 
FET) and for mQTL (P = 7.1 × 10−16, FET).

DISCUSSION
We have presented the first-in-human characterization of methyla-
tion dynamics at MEs in early embryos. Our data suggest that the 
gastrulation transition is key to the establishment of intermediate 
methylation states at MEs and that these states are driven by intra-

tissue variegation effects, as originally proposed (7). In addition, 
our analysis suggests that interindividual variation at MEs is influ-
enced by at least three factors: stochastic or probabilistic processes, 
periconceptional environmental exposures, and genomic context. 
The last of these is notable since previous studies of murine MEs 
have generally considered isogenic populations, so epigenetic meta-
stability in humans was assumed to be definitively free of genetic 
effects. We note, however, that SNP heritability estimates from 
array-based mQTL studies necessarily cover relatively few ME-
CpGs in our WGBS screen, so further work is required to better 
understand the influence of genotype on ME methylation.

Our work confirms previous findings in humans and in mice of 
a link between metastability and proximal transposable elements 
and further indicates a potential role for zinc finger proteins includ-
ing CTCF and ZFP57. Recent work characterizing haplotype- 
dependent allele-specific methylation (hap-ASM) in humans has 
identified polymorphic CTCF binding sites as important drivers 
of hap-ASM including at ZFP57, indicating that CpG methylation 
at this locus is at least partially dependent on haplotype (32). Van 
Baak et al. (33) recently observed interindividual variation of meth-
ylation between individuals sharing the same haplotype at ZFP57, 

Fig. 4. Methylation dynamics around the gastrulation transition. (A) Distribution of CpG methylation in embryonic liver, stratified by methylation level in ICM. Horizon-
tal lines show the median methylation in embryonic liver. Error bars represent 95% bootstrapped confidence intervals. (B) Change in methylation at individual CpGs across 
the transition. Each line represents the change in methylation at a CpG for a single combination of replicates from each stage. *Because of the large number of data points, 
“all-RRBS” plot shows a random 0.1% sample of all possible ICM–embryonic liver transitions. (C) Distribution of methylation states in each embryonic liver replicate.
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indicating a potential role for stochastic processes and environmental 
influence in the context of genetic effects, as we observe at MEs in 
embryonic liver tissue from single embryos. As MEs are frequently 
located near ZFP57 binding sites, altered expression of ZFP57 due 
to variable methylation near its transcription start site could con-
tribute to the variance in methylation at MEs. This notion is sup-
ported by our finding that several ZFP57 binding site–proximal 
MEs are among DMRs associated with human ZFP57 mutations.

Chromatin state analysis suggests that, compared to background, 
MEs tend to be located within enhancers and proximal to transcrip-
tion start sites, indicating potential effects on transcriptional regu-
lation. While further work is required to link methylation status to 
gene expression, this analysis positions MEs as possible mediators 
of phenotypic plasticity in response to periconceptional exposures, 
as has been proposed in previous models of developmental pro-
gramming (34). The presence of variably methylated sites that are 
linked to gene function, and are susceptible to environmental and 
genetic influence, has been proposed as a potential adaptive mecha-
nism (35), positioning MEs as prime candidates for investigating 
adaptive res ponses to changing environments.

MATERIALS AND METHODS
ME screen using WGBS data
Two WGBS data sets were used to search for human MEs: that used 
in our previous screen (two Caucasian adult males, two tissues: pe-
ripheral blood and hair follicle) (8) and an additional data set with 
three individuals in the Roadmap Epigenomics Project (S1: male, 
3 years old, Caucasian/African-American; S2: female, 30 years old, 
Caucasian; S3: male, 34 years old, Caucasian; two tissues: small 
bowel and fat) (19). Bismark v0.14 (36) was used to map the raw 
reads and extract methylation at CpGs. In each sample, CpGs with 
less than 10 times the read depth were filtered out. ME regions were gen-
erated using a three-step process: (i) identify individual CpGs show-
ing the hallmarks of metastability (“ME-CpGs”) in each data set, (ii) 
run a clustering algorithm on these loci, and (iii) filter out clusters 
that contain many non–ME-CpGs. For the first step, CpGs were 
required to have at least a 15% absolute difference in methylation 
between individuals and an absolute intertissue methylation dif-
ference no greater than one-third of the absolute interindividual 
difference. This 15% methylation difference was assessed separately 
for the two WGBS data sets. Within each of these two data sets, 

Fig. 5. Read-level methylation analysis. (A) Distribution of read-level methylation for reads overlapping CpGs with intermediate methylation (10 to 90%) in clustered 
control regions (left, 31.8K reads) and ME regions (right, 22.5K reads). (B) RHI scores for MEs (n = 133) and control regions (n = 200) covered in the Guo et al. data show a 
significantly higher average RHI in MEs (Mann-Whitney, P < 5 × 10−5; nine MEs and two control outliers with RHI > 6 not shown). (C) Lollipop plots showing methylation 
calls overlapping an ME (left, reads ordered by read-level methylation) and a random resampling of the methylation calls, preserving the location of the reads (right). At 
this ME, the observed methylation calls result in a transition count of 11, while the resampled example has a transition count of 34, which is the median of 1000 resam-
plings performed on this region. The RHI of this region is thus 34/11 or 3.1.
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SNPs were called in each individual from the bisulfite-converted 
reads using bis-SNP (37). As a precaution against overselecting for 
methylation variation driven by proximal variants (for example, 
CpGs with ASM), any CpG within 60 bp of a SNP (22) was excluded 
from consideration in the data set containing the SNP. ME clusters 
were generated by filtering out ME-CpGs that were not within 300 bp 
of another ME-CpG, and then requiring that each resulting cluster 
had four or more ME-CpGs. The final list of 687 ME regions was then 
filtered from those clusters by selecting only those which had at least 
twice as many ME-CpGs as non–ME-CpGs.

Control cluster generation
We first considered deriving a set of control regions as those show-
ing interindividual variation without intertissue concordance; how-
ever, few such regions exist in our data sets. We therefore chose 
regions by applying clustering parameters identical to those used 
for ME clusters to all genomic CpGs covered in our WGBS data sets, 
irrespective of methylation. A sample of the resulting regions, 
matching the joint distributions of region size and number of CpGs 
per region found in the MEs, was then used to generate 5902 con-
trol regions (fig. S1A).

Enrichment for proximal genomic features
Transposable element regions [LINE (long interspersed nuclear 
elements), SINE (short interspersed nuclear elements), and LTR 
(long terminal repeats)] of the human genome (hg19), determined 
by RepeatMasker, were downloaded from the UCSC (University 
of California, Santa Cruz) ( hg19 annotations repository. Human 
cell line ChIP-seq binding sites were downloaded from the GEO 
(Gene Expression Omnibus) or ENCODE (Encyclopedia of DNA 
Elements) [ZFP57: human embryonic kidney 293T (HEK293T) 
cells, GSM2466450; TRIM28: HEK293T cells, ENCFF002CRN; CTCF: 
H1–hESC (human embryonic stem cells), ENCFF002CDS]. For 
enrichment testing, the genome was divided into 1000-bp “bins” or 
“tiles” (8, 20), and the number of tiles overlapping a feature of interest 
was compared with the number of tiles overlapping features within 
10 kb of an ME. FET was then used to determine the OR and P value 
for enrichment of ME-proximal features. The list of ZFP57- mutant 
DMRs was from Bak et al. (28) (table S5).

Guo et al. and Zhu et al. data analysis
RRBS methylation data from all replicates of each of the stages ana-
lyzed were downloaded from GEO (accession number GSE49828). 
Sites were considered covered if total read depth from both strands 
was at least 10. CpG coverage within each sample and overall is 
summarized in fig. S1B and table S3. For the read-level analyses in 
the embryonic liver samples, raw reads were downloaded from the 
Sequence Read Archive (SRA). Reads were trimmed and filtered for 
quality and size by Trim Galore! and mapped by Bismark v0.18 (36), 
without deduplication, as recommended by the Bismark authors for 
RRBS data. Reads were further filtered to exclude those containing 
fewer than four CpGs. Read-level methylation was then determined 
by taking the average of all CpGs included in the read (that is, the 
number of methylated CpGs divided by the total number of CpGs 
present on the read). Only CpGs with 10 times the coverage were con-
sidered when computing CpG-level methylation. CpGs falling out-
side the ME or control regions were not analyzed, and CpGs with 
>200 times the coverage were ignored to prevent highly overrepre-
sented regions from dominating the analysis. Bootstrapped confi-

dence intervals for medians in Fig. 3A were generated by re sampling 
the original data 1000 times.

Data from Zhu et al. (21) were downloaded from GEO (acces-
sion number GSE81233), including all single-cell and bulk cell data 
sets from MII oocyte, sperm, zygote, two-cell, four-cell, eight-cell, 
morula, ICM, and each of the three embryonic heart samples. All 
data were gathered by developmental time point, and all CpGs with 
read depth ≥10 were included in the plots of developmental time 
point–level means. Because of the small number of samples at many 
developmental time points (compounded by the fact that single-cell 
reads only provide two molecules’ worth of information), no fur-
ther analysis on these samples was performed.

Read homogeneity index
For each ME and control cluster, all reads from the Guo et al. em-
bryonic liver replicates overlapping the cluster were combined, and 
any CpGs outside of the cluster were ignored. We initially consid-
ered using a published method for this, such as methylation haplo-
type load (38), but developed the RHI instead as other methods 
assume a large number of reads overlapping a fixed set of adjacent 
CpGs, whereas the bisulfite-seq reads from Guo et al. sometimes 
contain uncalled cytosines (for example, due to SNPs or a low-quality 
base call) or only overlap the first or last one to two CpGs of an 
ME/control region (for example, the short reads in Fig. 5C). To 
account for the effects of differences in read and cluster size, and 
overall methylation within a cluster, a normalized RHI was calcu-
lated as follows. First, the observed number of methylation “tran-
sitions” was counted, a transition being any instance where two 
adjacent CpGs have different methylation calls. Next, the same 
measure was computed, this time with an equal number of methyl-
ated CpGs randomly distributed across reads within the cluster. 
This randomization was repeated 1000 times. Finally, the RHI was 
calculated as the median transition count across all 1000 random-
izations, divided by the observed (empirical) transition count. The 
RHI thus provides a measure of the degree to which reads are con-
sistently methylated or unmethylated, compared to reads where 
methylated CpGs are randomly distributed. Note that the RHI will 
generally be greater than 1 due to the tendency for methylation 
states at neighboring CpGs to be correlated.

mQTL analysis
CpGs associated with mQTL on the Illumina Infinium Human-
Methylation450 BeadChip were downloaded from www.mqtldb.org. 
These were identified using samples from children (cord blood, n = 
771; childhood, n = 834; adolescence, n = 837) and their mothers 
(pregnancy, n = 764; middle age, n = 742). See Gaunt et al. for further 
details (23). For the current analysis, MEs were tested for enrichment 
of mQTL-associated CpGs at any time point, relative to “reliable” non– 
mQTL-associated CpGs on the 450K array [see Gaunt et al. (23)], 
using FET. Data on proportion of methylation variance explained by 
cis (±1 Mb of CpG probe) and trans (non-cis) mQTL (“SNP herita-
bility” in Gaunt et al.) were obtained from one of the authors (see 
Acknowledgments). Figure 3D shows the distribution of variance ex-
plained for CpGs overlapping MEs in “middle age” samples, this being 
the closest time point to the samples that were used for the ME screen.

Gambian SoC-DMRs
SoC-DMRs were identified by taking the top 10 ranking DMRs [by 
family-wise error rate (FWER) using the “bumphunting” method (39)] 

http://www.mqtldb.org
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from two SoC-association analyses in independent samples con-
ducted using the Illumina 450K array in (i) PBL from Gambian in-
fants (8) and (ii) PBL from Gambian 2-year-olds (40). A further 
seven SoC-DMRs ranked in the top 50 (by FWER) in both data sets 
were also included. This resulted in a total of 21 distinct (nonover-
lapping) SoC-DMRs. Information on ethical approvals for each of 
the data sets analyzed in this study can be found in the source pub-
lications cited above.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/7/eaat2624/DC1
Fig. S1. ME and control region sizes, and Guo et al. methylome coverage.
Fig. S2. Mean methylation at MEs and clustered control regions assayed by Guo et al.
Fig. S3. Mean methylation at all CpGs and at MEs and clustered control regions assayed by Zhu et al. (21).
Fig. S4. Methylation dynamics at the ICM–to–embryonic liver transition.
Fig. S5. ME background comparisons in other fetal tissues, and methylation in control clusters.
Table S1. MEs identified in genome-wide screen.
Table S2. Enrichment of proximal genomic features in MEs.
Table S3. Number of CpGs covered in each replicate of RRBS data from Guo et al.
Table S4. Size of ME and control regions, and their coverage in Guo et al. RRBS data.
Table S5. Overlap of Bak et al. (28) ZFP57-mutant DMRs with MEs.
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