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Abstract 

 

The Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) dataset, first 

released in 2014, is a high-resolution blended rainfall product with quasi-global coverage that 

has not been previously evaluated over Iran. Here, we assess the performance of the CHIRPS 

rainfall estimates against ground-based rainfall observations across Iran over the time period 

from 2005 to 2014 inclusive. Results show that CHIRPS’ performance is better over areas and 

during the months of predominantly convective precipitation with highest correlations in the 

southern coastal lowlands characterized by heavy rains from convective origin. Correlations are 

stronger with variables such as altitude, particularly alongside coastal regions in the north and 

south, where surface water produces more moisture in the atmosphere. Results of pairwise 

comparison statistics and categorical skill scores reveal the influence of altitude and precipitation 

amount, while categorical skill metrics vary more with changes in precipitation amount than with 

latitudinal or longitudinal changes. 

 

Keywords: CHIRPS, rainfall, statistical evaluation. 

 

1. Introduction 

Water has been an inherently key resource in the social and industrial success of communities 

globally. Reliable, continuous, and spatially explicit surface observation of rainfall is needed to 

monitor and anticipate extreme events in order to mitigate their consequences. Ground-based 

rainfall observations can have discontinuous records over time and space, thus providing a poor 

overview of real rainfall. Therefore, the scientific and practitioner communities have relied on 

alternative data sources to estimate rainfall for a variety of applications. Satellite-derived rainfall 

products provide a spatially-contiguous alternative to sparse ground observations; however, such 

products rely on ground observations for calibration, retrieval, error/bias correction, and/or 

validation. Continuous improvements in the development of skillful rainfall products that make 
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optimal use of both satellite and ground observations have enabled their wide use for a range of 

applications such as drought and flood early warning, food security monitoring, and hydrological 

analyses.   

Some rainfall products, such as the Global Precipitation Climatology Center (GPCC) dataset, are 

based only on in situ observations and include data as early as 1901 to present (Rudolf et al., 

2003). Although the GPCC data provide global coverage, it has been achieved through spatial 

interpolation of ground-based observations and their horizontal resolution is fairly coarse at 0.5, 

1, and 2.5 latitude-longitude for the monthly product (Schneider et al., 2014). On the other 

hand, satellite-only and blended products are available from the Tropical Rainfall Measuring 

Mission (TRMM) with records starting in 1997/98 at 0.25 horizontal resolution and at 3-hourly, 

daily, and monthly time steps (Kummerow et al., 1998; Huffman et al., 2007). After years of 

successful operation TRMM was officially terminated in 2015 and is superseded by the Global 

Precipitation Measurement (GPM) mission. The first combined TRMM and GPM time series are 

expected in 2018.   

Blended datasets benefit from both in situ observations and satellite records and their blending 

algorithms are designed to support rainfall monitoring under different climatic regimes. CHIRPS 

was released in 2014 by the Climate Hazards Group at the University of California, Santa 

Barbara (UCSB) (Funk et al., 2014). CHIRPS provides higher horizontal resolution than other 

operational datasets at 0.05 latitude-longitude grid and quasi-global coverage (50N-50S, 

180W-180E) with daily, pentadal, and monthly precipitation datasets (Funk et al., 2014). In 

areas of substantial decrease in the number of observations over the last decade such as Africa 

and southwest Asia (Funk et al., 2014), alternative sources of information on rainfall such as 

CHIRPS, have been widely adopted (Katsanos et al., 2016). Previous studies have shown that 

CHIRPS rainfall estimates closely approximate GPCC records from 1981 to 2010 (Katsanos et 

al., 2016) and in East Africa (Funk et al., 2013). Shukla et al. (2014) used CHIRPS in East Africa 

to evaluate soil moisture forecasts in the rainy, crop growing season (March-April-May). Toté et 

al. (2014) reported that the skill of CHIRPS for flood and drought monitoring applications in 

Mozambique exceeds that of other routinely used rainfall products.  

Different evaluations of satellite rainfall estimates have been carried out over Iran (e.g. 

Javanmard et al., 2010: Katiraie-Boroujerdy et al., 2013; Moazami et al., 2016; Alijanian et al., 

2017). The evaluation of different satellite rainfall estimates reveals that the results vary in 
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different areas (Katiraie-Boroujerdy et al., 2013). However, Moazami et al. (2016) focused on a 

comprehensive evaluation of four satellite rainfall estimates over Iran, including PERSIANN, 

TMPA-3B42-V7, TMPA-3B42RT and CMORPH. Their results show that in the most cases the 

underestimation in rainfall is quite large at high rainfall ranges. Although different evaluations of 

satellite rainfall estimates have been carried out over Iran, there have been no attempts to assess 

the performance of CHIRPS. Since the application of monthly rainfall data in the management of 

water supply is very interesting in local applications, the aim of this study is to address the 

following questions: 1) To what extent does CHIRPS correspond to ground-observed rainfall in 

Iran, 2) Is the performance of CHIRPS different over time, 3) Is the reliability of CHIRPS 

homogeneous across different regions, and 4) Does rainfall amount affect the correlation 

between CHIRPS and ground observations? If so, what are the characteristics and trend of this 

relationship. 

 

2. Study Area  

Iran’s territory (approx. 1.6 million km
2
) extends between 25-40N, and is characterized by a 

large variety of climates (see Figure 1 in Pourvahidi and Ozdeniz, 2013), therefore precipitation 

has a high spatial and temporal variability. There are many studies on the spatio-temporal 

variability in seasonal precipitation over the country (e.g. Tabari and Talaee,2011; Some'e et al., 

2012; Moazami et al. 2016) .Temporally, most of the precipitations fall during winter and 

autumn, however, there are regions in the northwestern part of the country that are characterized 

by high precipitation also during spring (Raziei et al., 2009). Northern Iran is under the influence 

of westerlies and Mediterranean rainfall systems. Occasionally, Siberian air masses and maritime 

effects produce rains alongside the Caspian Sea. Due to the proximity of the sea and the Alborz 

mountain chain, rainfall events may easily occur. In central and eastern Iran, precipitation is 

mostly limited to Mediterranean air-masses. The western part of Iran, with the prominent role of 

the Zagros mountain range, is influenced by westerlies. The southern lowland area receives 

moist air from both the Persian Gulf and southern track of westerlies. Thus, two main mountain 

ranges of Iran – Zagros in the west and Alborz in the north – introduce more climatic 

complexity. Most of Iran falls under arid/semi-arid climate, posing a chronic risk of water crises, 

especially in the dry season (June-August) (Bitaraf, 2000; Motiee et al., 2001). This highlights 
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the importance of a skillful monitoring product for rainfall across the country, particularly in 

regions such as central and eastern Iran where gauge network coverage is most sparse. 

 

3. Data and Methodology  

3.1. Rain Gauge Observations  

Rain gauge observations covering the time period from 2005 to 2014 inclusive were obtained 

from the Iranian Meteorological Organization. The stations used in the CHIRPS satellite-gauge 

merging process were removed from the analysis (squares in Figure 1). After quality screening 

of the data from the remaining stations, a total of 68 stations were included in this evaluation 

(circles in Figure 1). The 6-hourly gauge records were cumulated to monthly totals for over the 

2005-2014-time period taking into consideration only those months with 90% of available 

measurements. 

Figure 1. Locations of the stations used in the CHIRPS satellite-gauge merging process (black 

squares) and the 68 stations in Iran included in the study (gray circles). 

3. 2. CHIRPS Estimates 

CHIRPS monthly rainfall estimates were obtained from 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/. CHIRPS is produced at different 

stages, starting with satellite thermal infrared (TIR) images and applying successive adjustments 

as described in Funk et al. (2014) and summarized below. First, the Cold Cloud Duration (CCD) 

technique is applied to TIR images with a uniform threshold of 235K globally to calculate cold 

clouds persistence (i.e. clouds that are likely to be raining) in order to identify rainy areas. Next, 

a linear regression best fit analysis is carried out for CCD values and the 0.25 Tropical Rainfall 

Measuring Mission Multi-satellite Precipitation Analysis (TMPA) 3B42 pentadal precipitation 

archive from 2000 to 2013 to identify the regression model’s coefficients. Values from the 

regression model are then divided by the mean precipitation estimates from 1981-2013 and 

multiplied by the same grid value of CHPclim to produce the CHIRP estimate (Funk et al., 

2015b).  CHPclim is a geospatial modeling approach based on moving window regressions and 

inverse distance weighting interpolation, that combines satellite fields, gridded physiographic 

indicators, and in situ climate normals (Funk et al., 2015a). In the next stage, station observations 

are blended. The blending procedure is a modified inverse distance weighting algorithm with 

several unique characteristics (Funk et al. 2015b). Stations are ranked according to their quality 

with national stations normally having higher ranks and automated stations usually at the bottom 
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of the list. For each pixel, the five closest stations to the pixel are chosen for the blending 

procedure (Funk et al., 2014). Figure 2 shows the contribution of Iranian stations to the CHIRPS 

procedure since 1981. CHIRPS products are operationally generated as preliminary and final 

products. Final monthly products with optimal adjustments are used in the current study. 

Figure 2. Number of stations used in the CHIRPS estimation algorithm over time (Source: 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/diagnostics/stations-perMonth-

byCountry/pngs/Iran.073.station.count.CHIRPS-v2.0.png). 

3.3. Statistical Evaluation Methods  

CHIRPS primary daily and pentadal data are adjusted using CHIRPS monthly data to produce 

the final records (Funk et al., 2014). Hence CHIRPS monthly data have been evaluated against 

monthly cumulative observation records over the 2005-2014-time period. Two groups of 

statistics were used in the evaluation: pairwise comparison statistics to compare the ‘skill’ of the 

satellite product in estimating the amount of precipitation, and  categorical validation statistics to 

evaluate the detection efficiency of CHIRPS (Toté et al., 2015). Table 1 describes the pairwise 

comparison and categorical validation statistics used here, where bias expresses the bias ratio as 

indicated by (Toté et al., 2015). Calculating categorical skills requires a threshold for rainfall and 

here, this was set to 0.1 mm. Since most of Iran’s territory is in the arid/semi-arid climatic 

region, there is a clearly defined wet season with little precipitation in the central and eastern 

provinces and increasing precipitation in the north and west parts of the country. This is partly 

due to the orographic effect of mountain ranges such as Alborz in the north and Zagros in the 

west, as well as related to the proximity of the Caspian Sea in the north and the Mediterranean 

air masses intruding into this part of the country. Thus, we apply the statistical metrics of skill 

for all seasons and across the country.  

 

4. Results and Discussion 

4.1. Overall Results 

Figure 3 shows the distribution of 651 satellite and rain gauge data pairs. For lower rainfall 

amounts CHIRPS tends to overestimate the gauge observations, while for heavy rainfall amounts 

it underestimates the gauge observations. This is a known feature of satellite-based products 

more generally (Qin et al., 2014) and in the case of CHIRPS, likely due to the use of TMPA 

3B42 to calibrate the regression model as part of the rainfall estimation algorithm. Heavy rainfall 

events typically occur during winter in Iran with the heaviest rainfalls recorded for Lahijan 

station in the north where different orographic lifting mechanisms contribute to monthly rainfall 
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totals. As each lifting mechanism could result in a different cloud top temperature, the low 

satellite-gauge correlation for higher rainfall amounts could be explained by this complexity. 

False alarm ration (FAR), evaluated over the whole period, is higher for low rainfall totals with a 

value of 0.28, likely due to cloudy but dry days mistaken by satellite imagery as rainy, especially 

in arid and semi-arid regions. This could also due to sub-cloud evaporation of the rain drops. 

Moazami et al., (2013) reported this specific problem in the semi-arid region of Iran, where 

raindrop tend to evaporate before they reach the surface with a consequent high FAR. Moreover, 

the presence of cirrus clouds results in false alarms and cold surfaces detected as rainy areas in 

TRMM’s passive microwave imagery, particularly in the highlands. Relative mean absolute error 

(RMAE) and bias values were also examined for different rainfall categories. In high rainfall 

amounts there is underestimation and for low rainfall amounts there is overestimation. On both 

sides of the ideal value for bias (1), underestimation and overestimation might seem of the same 

magnitude, but RMAE shows more deviation from observations on the side of underestimation. 

Figure 3. Linear regression analysis of CHIRPS estimates and rain-gauge observations (in 

mm/year) across Iran over the 2005-2014 time period. The dashed line represents the 1:1 

relationship between CHIRPS and rain gauge data pairs (y = 0.698x + 16.1 R² = 0.368). 

4.2. Seasonal Evaluation  

Figure 4 shows the seasonal comparisons over Iran. Characteristics of each dataset including 

median, skewness, dispersion and extreme rainfall are depicted for each season. Statistical 

evaluation shows that the highest correlations are for the Spring when convection is the common 

lifting mechanism, especially in areas of moist air and decreasing frontal rains.   

Figure 4. CHIRPS seasonal evaluation over Iran (2005-2014). The box plot advocated here is a 

graphical summary of a given dataset, which includes the median, the interquartile range 

(shown by the boxes) and the rainfall extremes.  

 

Table 2 summarizes the results for all seasons with the highest correlation and RMAE and FAR 

values with the least deviation from the perfect score values in the spring. Bias is closest to the 

perfect score in autumn. In Iran summer is the dry season, except for rains in the Caspian littoral 

and the highlands in the northwest. However, there is a fairly good correlation, significant at 0.01 

level during summer. Even though bias values are similar and closest to the perfect score of 1 for 

summer and autumn, the correlation, RMAE, and FAR are closest to their respective perfect 

scores in spring, indicating that the gauge-satellite agreement is most robust for the spring. The 
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highest FAR in summer can be at least in part explained by the high chance of non-raining 

clouds, which may produce brief localized showers.  

Most of the annual rainfall over Iran is received in the winter. However, in the Caspian littoral 

most rainfall was received in autumn over the years considered in this study. In autumn, the 

orographic lifting mechanism causes upper-level disturbances, surface disturbances, and a 

combination of both known as westerly disturbances (Alijani and Harman, 1985). These 

mechanisms likely explain the lower correlation during autumn. The high FAR for autumn is due 

to spatial averaging over Iran’s diverse climates, which includes arid and semi-arid regions that 

at the beginning of autumn are still under summer-like climatic regime. It is worth noting that all 

validation statistics, except for FAR, were poorest for winter (see Table 2). The highest bias 

values in winter are likely due to the high number of cloudy days without rainfall, i.e. warmer 

stratiform clouds. RMAE is also highest in the Winter. FAR is lowest in winter due to winter 

being the wettest season and the evaluation being carried out at the monthly time step. A daily 

step evaluation is likely to result in higher FAR values, as the bias is highest in this season. Other 

statistics like the probability of detection (POD) could have been adopted, but don't produce 

significant results. POD indicates the fraction of the observed events that correctly forecast and 

in the current study, seasonal POD values are uniformly around the perfect score of 1.   

4.3. Monthly Evaluation 

The results from the monthly evaluation of CHIRPS against gauge observations for the 10-year 

period over Iran are shown in Figure 5. During the wet seasons, correlations are typically low. 

The lowest correlation is observed in January; however, RMAE is highest in January likely due 

to the high number of cloudy but dry days. Spring months are characterized by better agreement 

between CHIRPS estimates and gauge observations in terms of correlation, bias, and RMAE, as 

rainfall in springtime is mostly from convective lifting mechanism, which are amenable to the 

CCD algorithm of CHIRPS. Correlation is highest in May. Bias is optimal in November, but also 

May-July, while RMAE values are closest to the perfect score of 0 in November, as well as April 

and May. As discussed above, FAR values are close to the perfect score of 0 in the time period 

between Nov and April, and this is expected due to using the monthly time step of evaluation.  

Figure 5. Monthly evaluation of CHIRPS against gauge observations over Iran for the 2005-

2014 time period. 
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4.4. Spatial Evaluation  

Figure 6 shows the distribution of correlations across Iran. In the southeast part of the country, 

stations are sparse and often have intermittent records. Although stations with large gaps in the 

records were excluded from the analysis at the preprocessing stage, at least two of the remaining 

stations have poor correlations. Along the Caspian Sea coast, where diverse lifting mechanisms 

operate, correlations are lowest for three stations. However, in the mountainous area correlations 

are moderate to high, despite low-cloud rainfall being usually missed by satellites, the variability 

of cloud-top temperatures is smaller, making it amenable to detection with the CHIRPS CCD 

algorithm, which uses a uniform temperature threshold.  

Figure 6. Distribution of CHIRPS-gauge correlations across Iran for the 2005-2014 time period. 

Circles indicate high correlations, squares -- moderate, and triangles -- low correlations (all 

correlations are significant at the level of 0.01). 

Figure 7a and 7b show the trends in CHIRPS-gauge correlations across Iran with latitude and 

altitude, respectively. Correlations vary as altitude changes and are slightly higher for higher 

altitudes (Figure 7a). The relationship with latitude is non-linear (Figure 7b), and not meaningful  

most likely due to the topography and complex orographic lifting mechanisms in the north where 

correlations decrease. The best fit (linear or nonlinear) has been chosen. 

Figure 7. Correlations relative to (a) altitude and (b) latitude. Solid line is the best fit regression 

line between correlation values and altitudes. 

Figure 8 shows the variation of CHIRPS-gauge bias values across Iran. According to both Fig. 6 

and Fig. 8 CHIRPS works better for stations located in the western side of the country. Bias 

values and altitude are strongly related in the Caspian littoral, i.e. underestimation turns into 

overestimation for higher altitudes (Figure 9a-b). In this region, precipitation events from low-

level clouds are difficult to detect even at higher-altitude stations, while they are easier to detect 

by satellite imagery. Low-level clouds tend to have higher cloud top temperatures and thus, 

satellite-based detection would underestimate the rainfall. In the southern lowlands, there is an 

inverse trend, even though, there are only a few stations in this part of the country (Figure 9c). 

Although rain is scarce in the southern lowlands, atmospheric water transforms from gas to 

liquid droplets with increasing altitude. Since it is more likely to have non-raining clouds over 

lowlands than in the highland regions and passive microwave instruments detect precipitation 

based on the ice content of the atmosphere, higher FAR values and rainfall overestimation are 

expected in lowland regions. 
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Figure 8. Distribution of CHIRPS-gauge bias values over Iran. Circles indicate overestimation, 

squares indicate underestimation; for both markers, the darker the color, the closer the bias 

value is to the perfect score of 1. 

Figure 9. The changes in bias values with monthly time resolution, alongside (a) the Caspian 

Sea: R² = 0.5141, (b) the whole countr: R² = 0.0662 and (c) the southern area: R² = 0.5667. 

Dashed line is the best fit regression between bias values and altitude. 

Figures 10a-c show the trends of FAR values relative to latitude, longitude and rainfall 

respectively. FAR values are closer to the perfect score of 0 with increasing rainfall. Therefore, 

CHIRPS rainfall estimates are more reliable for higher latitudes. However, in longitudinal 

direction the eastern part of the country exhibits poorer FAR values, mainly due to the presence 

of the Zagros mountain barrier, which limits the entry of westerlies to the inner part of Iranian 

Plateau. Atmospheric moisture is generally higher in the south than in the north; however, the 

atmosphere is dynamically stable there and the frequency of rainy days is smaller than in the 

north. Northern areas are more dynamically unstable due to the proximity of the polar frontal jet 

stream, whereas the south is governed by the weaker and higher extratropical jet stream. 

Moreover, the southern coastal region is affected by the subtropical high pressure belt.  

Figure 10. Trends in FAR values relative to (a) latitude (y = -0.0413x + 1.6178 , R² = 0.7731), 

(b) longitude (y = 0.0235x – 1.022 , R² = 0.374), and (c) rainfall amount (y = -0.137ln(x) + 

0.959,  

R² = 0.519). 

 

5. Conclusions 

We evaluated monthly CHIRPS rainfall estimates against ground-based rain gauge observations 

over Iran for the decade from 2005 to 2014. In an overall comparison across Iran disregarding 

time or location, CHIRPS resulted in overestimation, despite the fact that correlation was reliable 

at the significance level of 0.01. However, results differ regionally and over time, particularly 

related to the characteristic presence of different orographic lifting mechanisms. The temporal 

evaluation shows that the closest CHIRPS-gauge agreement, indicated by all validation statistics, 

occurs in spring when convective rainfall is prevalent. Pairwise comparison statistics indicate 

stronger correlations with variables such as altitude, particularly alongside coastal regions in the 

north and south, where surface water produces more moisture in the atmosphere. In comparison 

to pairwise statistics, categorical measures, which are sensitive to the selected threshold for rainy 

days, vary more with changes in precipitation amount than with latitudinal or longitudinal 

changes.  
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Tables 

 

Table 1. Pairwise and categorical statistics (adapted from Toté et al., 2015). G and S denote 

gauge and satellite data, respectively; A is the number of hits (precipitation detected by both 

satellite product and at the gauge) and B is the number of false alarms (precipitation detected by 

the satellite product but not observed at the gauge).  

 Name Formula Perfect Score 

Pearson Correlation 

Coefficient 

  

   
2 2

G G S S
r

G G S S

 


 





 1 

Relative Mean Absolute Error 

(RMAE) 

   
1

/RMAE S G G
N

 
  
 


 0 

Bias S
Bias

G




 1 

False Alarm Ratio (FAR)  /FAR B A B   0 

 

Table 2. Validation statistics for all seasons averaged across Iran and over the 2005-2014-time 

period. Values closest to the perfect score (see Table 1) are underlined.  

Season  Spring Summer Autumn Winter 

Correlation  0.621 0.559 0.585 0.453 

RMAE 0.66 0.85 0.68 0.88 

Bias  1.28 0.90 0.91 1.46 

FAR 0.09 0.45 0.28 0.065 

Mean Precipitation 

[mm]  

89.53 25.31 89.27 112.50 
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