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Assessing the reliability of ensemble foreasting systems underserial dependeneJohen BrökerShool of Mathematial and Physial Sienes, University of Reading, United Kingdom, July 11, 2018The problem of testing the reliability of ensemble foreasting systems is revisited.A popular tool to assess the reliability of ensemble foreasting systems (for salarveri�ations) is the rank histogram; this histogram is expeted to be more or less �at,sine for a reliable ensemble, the ranks are uniformly distributed among their possibleoutomes. Quantitative tests for �atness (e.g. Pearson's goodness�of��t test) have beensuggested; without exeption though, these tests assume the ranks to be a sequene ofindependent random variables, whih is not the ase in general as an be demonstratedwith simple toy examples. In this paper, tests are developed that take the temporalorrelations between the ranks into aount. A re�ned analysis exploiting the reliabilityproperty shows that the ranks still exhibit strong deay of orrelations. This propertyis key to the analysis, and the proposed tests are valid for general ensemble foreastingsystems with minimal extraneous assumptions.Key Words: Ensemble Foreasts; Reliability; Foreast Evaluation; Rank Histograms; Serial Dependene; Statistialmethods1. IntrodutionA large proportion of environmental foreasting systemsnowadays issue ensemble foreasts. Suh systems are used atmajor (national or international) weather entres, but may alsoform part of large sale researh projets.As with any foreasting system, there is a need to objetivelyassess the performane of ensemble foreasting systems.Inasmuh as ensemble foreasts provide probabilisti informationabout the veri�ation, suh an assessment has to be statistialin harater. Several desirable (statistial) properties of ensemble(or more generally probabilisti) foreasting systems have beenidenti�ed; see for instane Bröker (2009, 2012); Weigel (2011).In the present paper, we will be onerned with reliability. Aformal de�nition (in the ontext of ensemble foreasts) will begiven in Setion 3, but roughly speaking, an ensemble foreastingsystem is reliable if at any point n in time, the ensemble membersX1(n); : : : ; XK(n) and the veri�ation Y (n) an be onsidered ashaving been drawn independently from an underlying (or latent)foreast distribution. Reliability an be regarded as a statistialnull hypothesis, and the aim of this paper is to develop tests forthis null hypothesis. In essene, this means to hek whether thenull hypothesis is plausible given atual data, that is, an arhive ofveri�ations and orresponding ensemble foreasts.A popular tool to assess the reliability of ensemble foreastingsystems are rank histograms (see e.g. Anderson 1996; Hamill andColui 1997; Talagrand et al. 1997; Hamill 2001). It is assumedthat the veri�ations are real numbers; it is therefore possible todetermine, for any time instant n, the rank R(n) of the veri�ationY (n) among the ensemble membersX1(n); : : : ; XK(n). The rank

R(n) an assume the values 1; : : : ; K + 1, and if the ensembleforeasting system under onern is reliable, the distribution ofR(n) is uniform over these values. This suggests that a reliableensemble foreasting system should produe a �more or less�uniform rank histogram. In most geophysial appliations, theveri�ation Y (n) will of ourse not be a real number but avetor (of potentially very large dimension). There are severalapproahes to redue the ase of multi�dimensional veri�ationto the salar ase (see e.g. Wilks 2004; Hansen and Smith 2004),and these an be applied without any mod�ation to the situationonsidered in the present paper. We will therefore onsider theveri�ations to be real numbers.In reality a rank histogram will never be preisely �at, andthere are broadly speaking two possible reasons for this. Firstly,deviations from the uniform distribution might be due to theensemble foreasting system failing to be reliable. There areertain de�ienies of ensemble foreasting systems that appear tobe somewhat typial and whih produe harateristi patterns inthe rank histogram. A U-shaped distribution for instane indiatesunderdispersiveness, with a peaked distribution suggesting theopposite; sloped rank histograms show under� or overforeasting(depending on the sign of the slope).Seondly, even a perfetly reliable ensemble foreasting systemwill not produe a perfetly uniform rank histogram due torandom variations. Thus a test for reliability essentially amountsto a test for the hypothesis that the ranks have a disrete uniformdistribution. A ommon test for evaluating whether a histogramis onsistent with a spei� disrete distribution is Pearson'sgoodness�of��t (GOF) test. (Taking the ordering of the possibleranks into aount, whih the GOF test does not, more powerful
This article is protected by copyright. All rights reserved.
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3tests an be obtained, for instane from the Cramér�von Misesfamily of statistis, see Elmore (2005). In the present paper, wewill fous on variants of the GOF test though.)A serious problem with applying the GOF test diretly to rankhistograms for ensemble foreasting systems though is that theranks are generally not independent. This will be demonstratedin Setion 4 with a simple toy example. Independene howeveris an important assumption in the GOF test that an not easilybe dispensed with. The general fat that veri�ation�foreastpairs an ertainly not assumed to be independent is a dif�ultythat affets statistial foreast evaluation in general, as hasbeen emphasised only relatively reently (see for instane Wilks2010; Pinson et al. 2010; Siegert et al. 2017; Bröker 2018). Aremedy suggested by Wilks (2010) is to use expliit (parametri)assumptions regarding the dependene struture and distributionof the foreasts, but the onsidered situation is very spei�.In the present paper, we will use an approah based on resultssimilar to Bröker and Kuna (2018); Bröker (2018). The basiidea is that assuming the foreasting system is reliable, theensemble X(n) = (X1(n); : : : ; XK(n)) provides the statistialproperties of Y (n), given the information available at the timethe foreast X(n) was issued, namely at time n� L, where L isthe lead time. This fat an be used to obtain (to some extent)the statistial properties of the ranks, inluding their orrelationstruture. In fat, in ertain ases (orresponding effetively tolead time L = 1) the ranks turn out to be independent after all,meaning that in this situation the lassial GOF test an be used.In general though, the more ompliated orrelation struture ofthe ranks needs to be taken into aount. We will show that this ispossible, however. By modifying GOF�like tests in an appropriatemanner, we obtain tests for the reliability of ensemble foreasts.These tests are valid under minimal extraneous assumptions(whereby we mean assumptions that would not automatiallyfollow from the assumption of reliability and would have to beassumed in addition).2. The goodness�of��t test revisitedIn this setion, we will revisit the basi steps in deriving thedistribution of the goodness-of-�t test statisti. In partiular, wewill larify where the assumption of independene of the ranksomes in. We start with �xing some general notation. We letfY (n); n = 1; : : : ; Ng be a series of real�valued veri�ations,with the index n representing the time. Further, fX(n); n =1; : : : ; Ng is a series of orresponding ensemble foreasts, wherefor eah time instant n the ensemble is given by a vetor of K �1 ensemble members, that is X(n) = (X1(n); : : : ; XK�1(n)),where eah ensemble member is again real valued.yFor a given y 2 R and x 2 RK�1 , we onsider the funtionr(y;x) that is equal to k if the rank of y among theK�dimensionalvetor (y;x) is equal to k. In other words, r(y;x) = k if preiselyk � 1 omponents of x are smaller than or equal to y. Thefuntion r an assume the values 1; : : : ; K. For n = 1; : : : ; N , wede�ne R(n) := r(Y (n);X(n)). That is R(n) is the rank of theveri�ation Y (n) with respet to the ensemble X(n). We assumethat the ensemble foreasting system is reliable with respet tothe veri�ations. As said in the introdution, this means broadlyspeaking that for eah time n, the veri�ation Yn as well as eahindividual ensemble member Xk(n); k = 1; : : : ; K � 1 an beonsidered independently drawn from some underlying foreastdistribution. This implies (again, a proof will follow in the nextsetion) that for eah n the rank Rn is uniformly distributed overits possible values f1; : : : ; Kg. As has already been mentionedthough, there is no apriori reason why the ranksR(n); n = 1; 2; : : :should be independent from one another.yUsingK � 1 rather thanK ensemble members will simplify subsequent notation.

To de�ne the GOF test statisti, onsider the ountsNk := (Number of n for whih R(n) = k) = NXn=11fR(n)=kg;where the indiator funtion 1A of some event A is one if theevent happens and zero otherwise, and k = 1; : : : ; K. Clearly, theount Nk is the height of the k'th histogram bar. Further we setk := Nk �N=KpN=K :Note that the expeted value of k is zero, sine N=K isthe expeted number of ounts for eah value of the rank, oralternatively the expeted height of the k'th histogram bar. TheGOF test statisti is given byt = KXk=1 2k = kk2; (1)where  = (1; : : : ; K), and k:k denotes the standard Eulideannorm.As we will see now, the test statisti t has, asymptotially forlarge N , a �2 distribution with K � 1 degrees of freedom, if theranks are indeed independent. The key property of the variables1; : : : ; K is that they jointly satisfy a entral limit theorem; forthis to happen, it is suf�ient that the ranks R(n); n = 1; : : : ; Nare independent. It is worth noting already at this point thoughthat independene is not neessary, as will be disussed in the nextsetion. In any event, we assume that the 1; : : : ; K have a jointnormal distribution, with mean zero as was already noted.We now have to alulate the ovariane matrix, but beforedoing this, we note the following fat: let v 2 RK be the vetorwith omponents vk = 1=pK for all k = 1; : : : ; K. Then kvk = 1and also vT  = KXk=1 kvk = 1pK KXk=1 k = 0:If we now write �i;j := E(i j ) for the ovariane matrix of ,then (�v)i = KXj=1 E(i j)vj = E(i KXj=1 jvj) = 0:This means that the nullspae (or kernel) of � is spanned by theonstant vetor v; we stress that this is true irrespetive of whetherthe ranks are independent or not. To �nd the preise shape ofthe ovariane matrix � though, we have to use independene. Asimple alulation will then reveal that� = 1� v � vT : (2)This matrix is symmetri and has a nullspae spanned by v (aswas already seen), while any other vetor w with the propertythat vTw = 0 is an eigenvetor of � with eigenvalue one. Theondition thatw is perpendiular to v just means thatPKk=1 wk =0; vetors with this property are alled ontrasts.Let now w(1); : : : ;w(K�1) be a set of orthogonal ontrasts(suh a set an ontain at mostK � 1 elements). Then the randomvariables d = (d1; : : : ; dK�1) de�ned throughdj = KXk=1 kw(j)k (3)have again a normal distribution with mean zero, but now withunit ovariane matrix, sine E(dj dk) = (w(j))T�w(k) = Æjk .It follows that d1; : : : ; dK�1 are independent standard normal.This article is protected by copyright. All rights reserved.
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4Therefore, P d2k, where the index k runs over a subset off1; : : : ; K � 1g, has a �2 distribution, with degrees of freedomgiven by the size of that subset. In partiular, kdk2 has a�2 distribution withK � 1 degrees of freedom. But sine kdk2 =kk2 = t, the same is true for t.As an aside, we note that a user has the option to assessthe rank histogram by using only a subset of the randomvariables d1; : : : ; dK�1, or in other words, by projeting thesaled ounts 1; : : : ; K onto a redued set of ontrasts. Thishas been suggested previously by Jolliffe and Primo (2008). Theuser has omplete freedom in hoosing the desired ontrasts,as long as they are orthogonal and normalised. To obtainsuh a set, it is suggested to start with a set of vetorsu(1); : : : ;u(�) that have roughly the desired shape (for instanelinear, U�shaped, sinusoidal, et) and then apply a Gram�Shmidtproedure (or equivalently a QR�deomposition, see e.g. Goluband Van Loan 1996) to the vetors v;u(1); : : : ;u(�) in order torender them mutually orthogonal and normalised. Figure 1 showsthree ontrasts for the ase of K = 8. These were obtained byapplying a QR�deomposition to the four vetors v, (k)k=1;:::;K ,(k2)k=1;:::;K and (k3)k=1;:::;K . The ontrasts are linear, U�shaped and sinusoidal, respetively.3. Tests valid under serial dependeneIn the previous setion, we disussed why the lassialGOF test statisti has a �2 distribution with K � 1 degrees offreedom. If we look bak at this disussion, we �nd that theindependene of the ranks was used in two plaes: in justifyinga Central Limit Theorem for the 1; : : : ; K , and when alulatingthe preise form of the ovariane matrix �. With the onditionof independene dropped, � will not have any longer the formshown in Equation (2), and this is the main reason why applyingthe standard GOF test to rank histograms is not warranted ingeneral. We will disuss later in this setion that a CentralLimit Theorem might still hold even though the ranks are notindependent. Further, even though � is no longer known, therelevant orrelations an be estimated from the data, and anestimator will be provided below. For now, we assume that therandom variables 1; : : : ; K have a normal distribution with meanzero and some ovariane matrix �.It remains true though that the nullspae of � is spanned by thevetor v as the derivation of this fat in the previous setion didnot depend on independene of the ranks. This implies that westill get a faithful representation of the saled ounts 1; : : : ; Kby projeting then onto a set of orthonormal ontrasts as inEquation (3), that is by using the random variables d1; : : : ; dK�1de�ned through Equation (3). We want to develop a test basedon a subset d = (d1; : : : ; d�) of these random variables, and wedenote the ovariane matrix of these random variables by �i;j =E(didj) = (w(i))T�w(j), where i; j � � � K � 1. We keep ��xed throughout the remainder of this setion.As the ondition of independene of the ranks has beendropped, � will not be the unit matrix any longer. (We noteagain that � will later have to be estimated from the data.) Weonsider the statisti t� = dT��1d. This statisti is indeed ageneralisation of the statisti t from the previous setion, and thetwo agree if the ranks are independent and � = K � 1. Our laimis that t� has a �2�distribution with � degrees of freedom as in theindependent ase.To see this, let U be a symmetri matrix so that U�U = 1 (i.e.U is a square root of ��1). Then e = Ud is a vetor of normalrandom variables with zero mean and ovariane matrix U�U =1, hene the omponents of e are independent and standardnormal. As a onsequene, ~t = kek2 has a �2�distribution with

� degrees of freedom. However,~t = kek2 = eT e = dTU � Ud = dT��1d = t�;proving our laim.For the remainder of this setion, we will �ll in the missingparts of our argument. We will show that although the ranks arenot independent, they nevertheless satisfy a very strong deayof orrelation property whih is a diret onsequene of thereliability assumption and forms the ore of our analysis. We thenprovide an estimator of the ovariane matrix �. The feasibilityof this estimator is due to the strong deorrelation property of theranks, and the assumption that the ranks form a stationary andergodi sequene. Stationarity of the sequene (R(1); R(2); : : :)means that for any m, the joint distribution of (R(n); : : : ; R(n+m)) does not depend on n or, roughly speaking, is invariant withrespet to temporal shifts. A stationary sequene is ergodi if anyaverage of the form1N NXn=1�(R(n); : : : ; R(n+m)) (m �xed)onverges to E [�(R(n); : : : ; R(n+m))℄ asN !1. Note that bystationarity, this quantity does not depend on n. As ergodiityusually presumes stationarity, we will take �ergodi� to mean�stationary and ergodi�. Ergodiity of the ranks is the onlyextraneous assumption we need to add. These properties are alsosuf�ient to justify the validity of the Central Limit Theorem(more details will be provided in Appendies A and B).The reliability assumption is interpreted to mean the following.For every time instant n = 1; : : : ; N there exists an underlyingor latent foreast distribution �n over the real numbers. Thisdistribution is itself random and represents the distribution of Ynonditional on the information available at foreast time. Moreformally, let Fn be the information available to the foreaster attime n, and say that foreasts are issued with a lead time L, thenreliability means that�n(A) = P(Y (n) 2 AjFn�L)for all n = 1; : : : ; N and any setA on the real line.z The joint set ofveri�ation and ensemble members (Yn; X1(n); : : : ; XK�1(n))are independently drawn from this distribution, that is, for any nand any sets A0; : : : ; AK�1 on the real line, it holds thatP(Y (n) 2 A0; X1(n) 2 A1; : : : ; XK�1(n) 2 AK�1jFn�L)= �n(A0) � : : : � �n(AK�1):The uniform distribution of the ranks, onditional on the foreastinformation, is now an elementary onsequene: for all n =1; : : : ; N and k = 1; : : : ; K we haveP(R(n) = kjFn�L) = 1K : (4)We will graft another element to the reliability assumption whihis usually not made expliit but is evidently satis�ed in mostappliations, namely that for any n, the foreast informationFn ontains all veri�ations and ensembles up to that point; inother words, at any time n the foreaster knows fY (m);m =1; : : : ; ng and also fX(m);m = 1; : : : ; ng. This, in ombinationwith Equation (4), yields the following key identity:P(R(n) = kjR(1); : : : ; R(n� L)) = 1K (5)zStritly speaking for any measurable set A on the real line.This article is protected by copyright. All rights reserved.
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5for all n = 1; : : : ; N and k = 1; : : : ; K. Another way of sayingthis is that for any n, the rank Rn is uniformly distributed andindependent from the ranks R(1); : : : ; R(n� L), that is, from theranks known at foreast time. In partiular, we obtain that in thease of unit lead time (i.e. L = 1), the ranks fR(n); n = 1; 2; : : :gare indeed fully independent; this implies that in this speial(but important) situtation, the lassial GOF test for the rankhistogramm is valid.Let now fw(1); : : : ;w(�)g be a set of orthonormal ontrasts,and de�ne Zk(n) = pK KXj=1w(k)j 1fR(n)=jg (6)for n = 1; : : : ; N and k = 1; : : : ; �; note that dk =1pN PNn=1 Zk(n). We regard Z(n) = (Z1(n); : : : ; Z�(n)) withn = 1; : : : ; N as a sequene of random vetors. The property (5)implies that this sequene has �nite orrelation length of at mostL� 1. To see this, note that for any n, the random vetor Z(n)depends on R(n) only. Hene, Z(n+ l) is independent of Z(n) ifl � L. Further, E(Z(n)) = 0 and thereforeE(Z(n + l) � Z(n)T ) = E(Z(n + l)) � E(Z(n)T ) = 0: (7)It turns out that in order to establish a joint Central LimitTheorem for d = (d1; : : : ; d�), an additional assumption isneeded, namely that the ranks fR(n); n = 1; 2; : : :g form astationary and ergodi sequene. With this assumption andproperty (7) in plae, it follows from established results that dwillbe asymptotially normal with mean zero and some ovarianematrix �; we will not provide a proof here, but some more detailsand referenes an be found in Appendix B.An estimator for �, the asymptoti ovariane matrix of d, isneeded as well. We will use the estimator�N = 1+ 1N NXn=1L�1Xl=1 nZ(n)Z(n+ l)T + Z(n+ l)Z(n)To :(8)This estimator an be shown to onverge to �, and ademonstration an be found in Appendix A. We stress thatthe validity of this estimator rests not only on the ergodiityassumption but also on the �nite orrelation property (7). For thease L = 1, this estimator redues to �N = 1 as it should.4. Numerial examplesWe start this setion with a short list summarising the stepsneeded to perform the test for �atness of a rank histogram. Welet f(Y (n);X(n)); n = 1; : : : ; Ng be a sequene of real�valuedveri�ations and orresponding ensembles with K � 1 members.Let further fw(1); : : : ;w(�)g be a set of orthonormal ontrasts,desribing possible deviations of a rank histogram from �atness(with � � K � 1).1. Compute the ranks fR(n); n = 1; : : : ; Ng.2. Using the ranks and the ontrasts, ompute Zk(n) fromEquation (6) for n = 1; : : : ; N and k = 1; : : : ; �.3. Compute the estimator �N for the ovariane � fromEquation (8).4. Compute dk = 1pN PNn=1 Zk(n) for k = 1; : : : ; � and letd = (d1; : : : ; d�).5. Now dT��1N d should have a �2 distribution with � degreesof freedom, and this an be used to ompute the p�value.For the remainder of this setion, we will disuss two numerialexamples. The �rst example onsiders a simple autoregressiveproess; this has been hosen merely to illustrate the methodology.The seond example uses data from an assimilation experimentusing the two dimensional Navier�Stokes equation.

Example 1: Autoregressive proess In the �rst example,the veri�ation fYn; n = 1; 2; : : :g forms an autoregressive(AR) proess of the formY (n+ 1) = �Y (n) + �(n+ 1); (9)where f�(n); n 2 Zg is a sequene of independent standardnormal random variables and � = 0:95. The information Fnavailable to the foreaster at time n is fY (k); k � ng, that isthe entire history of observations up to and inluding Y (n).Reliable ensemble foreasts an be generated by replaing �(n)in Equation (9) with independent realisations of the noise proess.More spei�ally, let f���(n); n = 1; 2; : : :g be a sequene ofindependent random vetors ���(n) = (�1(n); : : : ; �K�1(n)), wherethe omponents �k(n) are again independent and standard normal.Then an ensemble foreast for lead time L and verifying at timen+ L is given byXk(n+ L) = �LY (n) + �L�k(n); k = 1; : : : ; K � 1;here, �2L = 1��2L1��2 .In this model, it is easy to see diretly that two ranks areindependent if they are L or more steps apart, but that they aredependent otherwise. To hek this, we write Y (n+ L) asY (n+ L) = �LY (n) + L�1Xl=0 �l�(n+ L� l): (10)Therefore,R(n+ L) = r(Y (n+ L);X(n+ L))= r(L�1Xl=0 �l�(n+ L� l); �L���(n)): (11)(We reall that r(y;x) is the rank of y among the omponentsof x.) Equation (11) demonstrates that the temporal dependeneof the ranks is due to the temporal dependene of �L(n) :=PL�1l=0 �l�(n+ L� l). In view of Equation (10), the randomvariable �L(n) desribes the subsequent evolution of theobservations after the foreast Z(n) has been issued. We mightall �L(n) the innovation; it is preisely the part of Y (n+ L)not aptured by the foreast. If two observations Y (n) and Y (m)are less than L time steps apart (i.e. jm� nj < L), then theirorresponding innovations will be dependent, due to overlap oftheir evolutions after the respetive foreasts have been issued.This is also evident from the expression of the innovation. Ifjm� nj � L though, their innovations will be independent. Dueto Equation (11), the ranks will exhibit the same phenomenon.Figure 2 shows typial histograms for ensemble foreasts in theontext of the AR proess. The ensemble foreasting system uses7 members, and the data set omprised 100 time instanes. Thelead time was 1 time unit for the top panel and 10 time units forthe bottom panel of Figure 2. It is evident that the histogram forthe larger lead time shows onsiderably stronger variations in theounts. This is due to the strong temporal orrelations betweenthe ranks at larger lead times. The p�values for the top and bottompanels are 0.7612 and 0.7199, respetively, using the test proposedin Setion 3 for the seond histogram. Using a lassial GOF testwould give a p�value of 0.0019 for the seond histogram, thusonluding wrongly that this foreast is not reliable.In order to hek whether the test presented in Setion 3takes the orrelations orretly into aount, we have reated1,000 Monte Carlo resamples of the experiment desribed above,albeit with 400 time instanes. For every Monte Carlo sample,we omputed the statisti t� for � = 2, using a linear and a U�shaped ontrast, as desribed in Setion 3, inluding the estimatorThis article is protected by copyright. All rights reserved.
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6of the ovariane matrix. If the presented theory is orret, thent� should follow a �2 distribution with 2 degrees of freedom,or equivalently the p�value should have a uniform distribution.This turns out to be the ase; a histogram of the p�values obtainedfrom our 1,000 Monte Carlo resamples is shown in the top panelof Figure 3. Furthermore, a Kolmogorov�Smirnov test yieldsa p�value of 0.6876, on�rming that these follow a uniformdistribution.For eah Monte Carlo resample we have also alulated thelassial GOF statisti, that is, ignoring the orrelations in theranks and assuming that � is the identity matrix. That theresamples of that statisti do not follow a �2 distribution with 2degrees of freedom is evident from the bottom panel of Figure 3,whih shows a histogram of the p�values. These are evidentlyonentrated at too low values, whih implies that ignoring theorrelations in the ranks and applying the lassial GOF testwould result in too frequent rejetion, that is, we would onludetoo often that the rank histogram is not onsistent with reliability.It should be said that the bottom panel of Figure 3, althoughnot inonsistent with reliability, is a somewhat extreme ase.Using a single (U�shaped) ontrast, we obtain a test that is morepowerful against U�shaped deviations from reliability. Applyingthis test, the p�value of the example in Figure 3, bottom panel,beomes 0.0532 and is thus on the verge of being rejeted withthis test.Regarding the power of the full test (using all ontrasts), wemight wonder how large N , the number of time instanes, wouldhave to be in order that a p�value of 0.05 or less is obtained, whilethe observed relative frequenies as well as the ovariane matrix�N being left the same. It is easy to see that in this situation,the test statisti ~t is proportional to N ; using the urrent valueof ~t = 4:5072 and the inverse umulative distribution funtion ofthe �2 distribution with K � 1 degrees of freedom, we �nd thatN has to inrease about threefold (i.e. to about 300) to rejet thehistogram in Figure 3, bottom panel, as not �at.We have also investigated the role of � and its in�uene onthe rank orrelations. Stritly speaking, we should investigatethe orrelation struture of the Z(n); n = 1; 2; : : :, as this willdetermine the magnitude of �, and the larger this quantity theless powerful the test will be. To simplify the disussion though,we fous on the orrelation of the ranks diretly; in the ase of asingle linear ontrast, these are in fat suf�ient to determine �.Figure 4 shows the Pearson orrelation oef�ient�m = Cov(Rn; Rn+m)Var(Rn) :between the ranks Rn and Rn+m for ensemble foreasts for theAR proess, for values of m = 0; : : : ; 10 on the absissa andseveral values of � (marked with different graphi symbols, see�gure). A simple alulation, not shown here, redues alulationof orrelation oef�ient to the numerial evaluation of anintegral. (It turns out that the orrelation oef�ient does notdepend on the number of ensemble members.) As disussed, therank orrelation is zero for m � L irrespetive of �. Nonetheless,the orrelation for m < L depends on � and dereases faster forsmaller values of �. It is also easy to see diretly that the ranks areone again independent in the limiting ase � = 0.The (probably not surprising) onlusion is that the dependenestruture of the ranks depends both on the lead time L as well asthe dependene struture of the veri�ation�foreast pairs whihis ultimately determined by the nature of the unerlying problem.In partiular, while the lead time L provides an upper bound onthe maximal orrelation length of the ranks, fast deorrelation ofthe veri�ation�foreast pairs an render the orrelation for largerlags very small or even negligible. Furthermore, fast deorrelationof the veri�ation�foreast pairs will, in general, lead to the

test being more powerful. Prior knowledge about the orrelationstruture of the veri�ation�foreast pairs might be used to furtherinrease the ef�ieny of the estimator for �, but it is notlear how to do that in an operational situation and whether theadditional efford required would pay off in terms of inreased testpower.Example 2: Data assimilation in 2D Navier�Stokes Theseond example uses data from an assimilation experiment withthe two dimensional Navier�Stokes equation. The equation wasimplemented in the vortiity�streamfuntion formulation�t! + J(!;  ) +A! = f; (12)on the two�dimensional unit torus T =℄0; 1[2 with periodiboundary onditions. Here, ! is the vortiity and  the streamfuntion; further, A = ��� (the Laplaian with visosity �),and the stream funtion is obtained from the vortiity throughsolving the Poisson equation � = !. The funtion f representsa foring. Equation (12) (along with the Poisson equation) wassolved with a pseudospetral ode on a square spatial lattiewith resolution N = 21 in both dimensions. In other words, theequation was trunated at wavenumber 10, where we de�ne thewavenumber of a wave vetor (k; l) as j(k; l)j := maxfjkj; jljg.The visosity was set to � = 2 � 10�3. The foring was timeindependent and omposed of randomly seleted amplitudesand trunated at wavenumber 3, with a magnitude of kfk =1:34. In this setup, the system produes omplex nonperiodisolutions. (Here and in the following, we use the norm kfk =�RTjf j2(x)dx�1=2 for a�possibly omplex�funtion on thetorus.)Observational data was assimilated into an idential opy ofthe two dimensional Navier�Stokes equation. As observations, theFourier modes with wavenumbers j(k; l)j � 1 were used (whihorresponds to observing nine modes, or equivalently, to takingsmoothed spatial observations on a grid with 3� 3 gridpoints).The observations were taken at temporal intervals of �t = 0:5time units and orrupted with normally distributed noise of about5%. The observations were then assimilated simply by replaingthe relevant Fourier modes of the assimilated solutions with theobserved Fourier modes (see Hayden et al. 2011; Sanz Alonsoand Stuart 2014; Bröker et al. 2017, for theoretial analyses ofthis assimilation method).Ensembles were generated by randomly perturbing the analyses�elds. The distribution of the perturbations was taken to benormal with mean zero and standard deviation kÆ!k = 0:943.Ensembles were generated by integrating the model forward withthese perturbed analysis �elds serving as initial onditions. Thestandard deviation for the perturbations was found by optimisingthe mean square foreast performane for lead time of 5 units inan of�ine experiment.As veri�ations in these experiments, we use one of thenine omponents of the observations employed for the dataassimilation (reall that observations on a 3� 3 grid wereused for data assimilation). We analysed these veri�ations andorresponding ensembles for lead times of L = 5, 10 and 20 timeunits, eah data set omprising 300 veri�ation�foreast pairs.No attempt was made to statistially realibrate these ensembles.Although there is no model error in this experiment, this does notimply that the ensemble foreasting system is reliable, sine thedata assimilation system is fairly primitive and we have no reasonto believe that ensembles omprise a reasonable representationof the foreast distribution. The histograms for these three datasets are shown in Figure 5. It is seen that the reliability ofthis relatively simple ensemble foreasting system is not badby visual inspetion. We applied the desribed test for �atnessThis article is protected by copyright. All rights reserved.
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7of the rank histogram, �rst for two ontrasts (i.e. � = 2). Thep�values for lead times L = 5, 10 and 20 are 0.7872, 0.7495,and 0.5209, respetively. Testing the full set of ontrasts givesp�values of 0.5507, 0.5572, and 0.5854; all these �gures do notprovide a strong ase for deviation from reliability. With regards tothe rank histogram orresponding to lead timeL = 20 in partiularthough, the histogram appears to have a slight slant to the right(indiating underforeasting), but this effet might be masked bythe expeted variation of the histogram. However, we �nd thattrae(�N ) = 8:63, while this value would be 7 for independentranks, and we an onlude that the variane of the histogram isnot in fat muh larger than for the independent ase.We repeated the test for lead time L = 20 with a single, linearontrast and �nd a p�value of 0.3254, whih might indiate aslight deviation from reliability. Note that we have heated alittle bit, as the hoie of the ontrast was made based on thedata; hoosing the ontrasts depending on the data means thatthe ontrasts would be funtions of the data while the testingmethodology assumes they are not. As a �nal note, under theassumption of unorrelated ranks the p�value for this ase wouldhave been 0.2676, so not in fat very different. For the variane,we have the estimate 1:2708 whih is fairly lose to 1, againindiating that dropping the assumption of independene does notmake muh of a differene in this ase.From our disussion of the AR�proess, we speulate that thisis due to a relatively fast deay of temporal dependenies in theveri�ation�foreast pairs, whih would imply that although theorrelations in the ranks annot extend beyond lag 20 in this ase,they are effetively muh shorter in the present situation. Figure 6shows the estimated orrelation oef�ient between the ranks Rnand Rn+m for this ensemble foreasting system at a lead timeof 20 time units; values of the lag m between zero and 20 areshown on the absissa. This is just an estimate of the orrelationand although we have ommitted any unertainty information suhas error bars, there is no question that the orrelation dereasesindeed very quikly with inreasing lag, and orrelation withlarger lag do not ontribute muh to �, due to fast deay oforrelation in this system. This implies that the properties of thetest in this example are very similar to the standard GOF test. Thisis true in general if the estimator �N for the ovariane matrix isobserved to be lose to the unit matrix (as is the ase in the presentexample), whih is easy to hek in appliations.5. Conlusions and outlookA popular and pratial tool to assess the reliability of ensembleforeasting systems (for salar veri�ations) is the rank histogram.For a reliable ensemble foreasting system, this histogramis expeted to be more or less �at, sine the ranks areuniformly distributed among their possible outomes. For a morequantitative analysis though, it would be desirable to have a testfor the �atness of rank histograms, as ertain random �utuationswill always be present even if the foreasting system is reliable.We have argued that lassial approahes suh as for examplePearson's goodness�of��t test are not appropriate sine thesetests rest on the assumption that the ranks form a sequeneof independent random variables. By revising the derivation ofPearson's goodness�of��t test, we identi�ed two plaes where theassumption of independene is relevant: �rstly it ensures that theresaled histogram ounts satisfy a joint Central Limit Theorem,and seondly it entails a very spei� orrelation struture forthese ounts.Although the ranks of a reliable ensemble foreasting systemare not independent in general, we have demonstrated bothanalytially and numerially that an appropriate modi�ation ofthe goodness�of��t test will still work. Central to our analysis is

the fat that for a reliable ensemble foreasting system, the ranksstill satisfy a strong deay of orrelation property�the orrelationtime of the ranks is even �nite and given by the lead time less one.(This result an be generalised to different types of foreastingsystems and might be of independent interest, see Bröker andKuna (2018); Bröker (2018).) Furthermore, it was shown how toperform a �redued� goodness�of��t test using a restrited set ofontrasts, as suggested in Jolliffe and Primo (2008), but modi�edso as to aount for rank orrelations. Apart from the tehnialondition that the ranks form an ergodi sequene, the approahdoes not require any extraneous or distributional assumptions.The formalism was also applied to numerial examples.First, data from a simple autoregressive proess was onsidered,with ensemble foreasts that were by onstrution reliable. Theexperiments on�rm that the formalism gives the orret results,while not taking the rank orrelations into aount (by using alassial goodness�of��t test) yields too high rejetion rates asthe distribution of the lassial goodness�of��t test statisti is nolonger a �2�distribution.A seond example used data from a simple �uid dynamial dataassimilation experiment. The results show that despite a relativelyrude data assimilation system, the ensembles are fairly reliable.We also addressed the question whether the test looses power forlonger lead times as potentially systemati deviations from a �atrank histogram are masked by strong variability of the histogramounts, whih seems not the ase in that situation.Outlook and future work An important fat emerging fromour analysis is that for a reliable ensemble foreasting system,the ranks exhibit a �nite orrelation time whih annot exeedthe lead time. This result an be generalised to different typesof foreasting systems as has been done in Bröker and Kuna(2018); Bröker (2018). Strong deay of orrelations thoughtypially implies powerful asymptoti limit results suh as Lawsof Large Numbers and Central Limit Theorems. It seems plausiblethat these an be exploited to analyse other foreast evaluationtehniques rigorously under serial dependene; examples arereliability diagrams (Bröker and Smith 2007) or Reeiver (orRelative) Operating Charateristi (Egan 1975; Bröker 2012).An extension of the results in the present paper to strati�edrank histograms would also be desirable (Siegert et al. 2012).Strati�ed rank histograms provide a more detailed piture ofreliability, onditional on different foreasting situations. Thisextension seems to be fairly immediate and will be dealt with in aforthoming paper.A. Covariane estimatorIn this appendix, we disuss an estimator for �, the ovarianematrix of d = (d1; : : : ; dK�1) = 1pN PNn=1 Z(n) in the limitN !1, that is� = limN!1 1N E 24 NXn=1Z(n)! NXn=1Z(n)!T35 :(Notation and de�nitions are as in Se. 3.) We start with studyingthe (matrix valued) ovariane funtion(l) := E(Z(n)Z(n + l)T );noting that there is no dependene on n sine fZ(n); n = 1; 2; : : :gis assumed ergodi and thus in partiular stationary; note alsothat (l) is de�ned for negative l, too, and in fat (�l) = (l)T .Furthermore, we have (l) = 0 if l � L due to Equation (7). AnThis article is protected by copyright. All rights reserved.
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8elementary alulation then gives1N E 24 NXn=1Z(n)! NXn=1Z(n)!T35 = N�1Xl=�N+1(1� jljN )(l)and hene� = limN!1 N�1Xl=�N+1(1� jljN )(l) =Xl2Z(l): (13)Thanks to Equation (7), the sum in Equation (13) ontains only�nitely many nonzero terms, namely for jlj < L. These terms anbe estimated by empirial averages (i.e. averages over time), thatis N (l) = 1N NXn=1Z(n)Z(n+ l)T ;whih onverges to (l) due to the ondition that the ranks areergodi (we only need estimators for 0 < l < L sine (�l) =(l)T is symmetri and (0) is the unit matrix). The estimator�N for � is given by replaing (l) in Equation (13) with theestimators N (l). This gives�N = 1+ L�1Xl=1 N(l) + N (l)T= 1+ 1N NXn=1L�1Xl=1 Z(n)Z(n+ l)T + Z(n+ l)Z(n)T : (14)B. The Central Limit TheoremIn this appendix, we justify the a joint Central Limit Theoremfor d = (d1; : : : ; dK�1), where dk = 1pN PNn=1 Zk(n). By alassial argument known as the Cramér�Wold devie inprobability theory (see for instane van der Vaart 2000, pg.16)it is suf�ient to establish a entral limit theorem for Æ :=1pN PNn=1 �(n) where �(n) := ���TZ(n) for any vetor ��� 2RK�1 , thereby reduing the problem from a vetor valued toa single valued Central Limit Theorem. Our assumptions andthe disussion in the previous appendix entail that fZ(n); n =1; 2; : : :g are ergodi and have summable orrelations. The sameis therefore true for f�(n); n = 1; 2; : : :g, and we an applyTheorem 4.18 in van der Vaart (2010) to onlude that thedistribution of Æ is asymptotially normal. In summary, we obtainthe required joint Central Limit Theorem for (d1; : : : ; dK�1).ReferenesJeffrey L. Anderson. A method for produing and evaluating probabilistiforeasts from ensemble model integrations. Journal of Climate, 9:1518�1530, 1996.Johen Bröker. Reliability, suf�ieny, and the deomposition of propersores. Quarterly Journal of the Royal Meteorologial Soiety, 135(643):1512 � 1519, 2009.Johen Bröker. Probability foreasts. In Jolliffe and Stephenson (2012),hapter 8, pages 119�139.Johen Bröker. Towards a framework for the statistial evaluation offoreasting systems under serial dependene. Tehnial report, Departmentof Mathematis and Statistis, University of Reading, 2018.Johen Bröker and Tobias Kuna. On the statistial evaluation of foreastingsystems. Tehnial report, Department of Mathematis and Statistis,University of Reading, 2018.Johen Bröker and Leonard A. Smith. Inreasing the reliability of reliabilitydiagrams. Weather and Foreasting, 22(3):651�661, June 2007.Johen Bröker, Tobias Kuna, and Lea Olja�a. Almost sure error bounds fordata assimilation in dissipative systems with unbounded observation noise.2017. (submitted).
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Figure 1. The �gure shows three ontrasts for the ase of K = 8. These wereobtained by applying a QR�deomposition to the four vetors v, (k)k=1;:::;K ,(k2)k=1;:::;K and (k3)k=1;:::;K . The ontrasts are linear, U�shaped andsinusoidal, respetively. (Lines onneting the points are merely for guidane.)

Figure 2. Typial histograms for ensemble foreasts for the AR proess. Theensemble had 7 members, and the data set omprised 100 time instanes. The leadtime was 1 time unit for the top panel and 10 time units for the bottom panel.Althoug both foreast systems are by onstrution reliable, the histogram for thelarger lead time is onsiderably �rougher�, that is there are stronger variations inthe ounts. This is due to the positive temporal orrelations between the ranks forthe foreasting system at larger lead times.

Figure 3. Histograms of the p�values of testing �atness of the rank histogramsfor the AR proess at lead time 10. The ensemble had 7 members, and the data setomprised 400 time instanes. The test statisti employed two ontrasts (linear andU�shaped). The p�values were obtained from 1000 Monte Carlo repetitions of thesame experiment. The top panel shows the p�values from the new test proposedin Setion 3 taking the rank orrelations into aount. The bottom panel shows thep�values from a lassial GOF test. It an be seen that the new test produes orretp�values, while ignoring the rank orrelation results in too low p�values and thustoo frequent rejetion of the null hypothesis.
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Figure 4. Pearson orrelation oef�ient between the ranks Rn and Rn+m forensemble foreasts for the AR proess. The lead time in this ase was ten timeunits; values of the lag m between zero and ten are shown on the absissa.Different values of � are marked with different graphi symbols: 0:1 (�), 0:3 (5),0:5 (4), 0:7 (�), 0:9 (). The orrelation oef�ient does not depend onthe number of ensemble members. As disussed, the rank orrelation is zero form � L irrespetive of �. Nonetheless, the orrelation for m < L depends on �and dereases faster for smaller values of �.
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Figure 5. Rank histograms for lead times of L = 5, 10 and 20 in the Navier�Stokes experiment (top, middle, and bottom panel, respetively). Eah data setomprised 300 veri�ation�foreast pairs. There is no obvious deviation fromreliability, although the histogram for lead time L = 20 might be slightly slantedto the right by visual inspetion. The test detets no signi�ant deviation fromreliability though.
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Figure 6. Estimated Pearson orrelation oef�ient between the ranks Rn andRn+m for ensemble foreasts for the 2D Navier�Stokes. The lead time in this asewas 20 time units; values of the lag m between zero and 20 are shown on theabsissa. Although no unertainty information has been inluded suh as error bars,it is evident that the orrelation dereases indeed very quikly with inreasing lag,and orrelation with larger lag do not ontribute muh to �, due to fast deay oforrelation in this system. This implies that the test in this example has propertiesvery similar to the standard GOF test.
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