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Abstract
Passive convective heat transfer enhancement can be achieved by improving the thermo-physical
properties of the working fluid, changing flow geometry or both. This work presents a numerical study to
investigate the combined effect of using helical coils and nanofluids on the heat transfer characteristics
and pressure losses in turbulent flow regime. The developed computational fluid dynamics models were
validated against published experimental data and empirical correlations. Results have shown that
combining the effects of alumina (Al2O3) nanoparticles and tube coiling could enhance the heat transfer
coefficient by up to 60% compared with that of pure water in straight tube at the same Reynolds number.
Also, results showed that the pressure drop in helical coils using Al2O3 nanofluid for volume fraction of
3% was six times that of water in straight tubes (80% of the pressure drop increase is due to nanoparticles
addition), while the effect of Reynolds number on the pressure drop penalty factor was found to be
insignificant.
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1 INTRODUCTION

Passive heat transfer enhancement techniques can improve com-
pactness and thermal efficiency of heat exchangers. They are pre-
ferred due to their simplicity, longer operating life and lower
cost and power requirements. Although there are various
methods for achieving passive heat transfer enhancement, they
all depend on changing flow geometry or improving the thermo-
physical properties of the base working fluid. Helical coils have
been shown to enhance single-phase heat transfer [1, 2], boiling
heat transfer [3, 4] and condensation heat transfer [5, 6].
Nanofluids formed by mixing nanoparticles of metals or metal
oxides such as copper, alumina, copper oxide with base fluid
such as water, oil, ethylene glycol are investigated as a passive
heat transfer enhancement technique. Nanoparticles improve
the energy transport properties of the base fluid by increasing
the effective thermal conductivity which enhances the heat
transfer rate of the nanofluid. The applications using these
nanofluids include engine cooling to reduce the engine weight
and fuel consumption [7], increasing the critical heat flux in

boilers [8] and developing compact heat exchangers for medical
applications [9].

Recently, many researchers investigated numerically and
experimentally the effect of nanofluids in enhancing the heat
transfer in the turbulent flow regime in straight tubes. Li and
Xuan [10] measured the heat transfer coefficient of Cu dispersed
in water with 0.3–2% volume fraction in a straight tube 10 mm
diameter and 0.8 m long. They developed a new correlation for
Nusselt number in laminar and turbulent flow regimes as a func-
tion of volume concentration, Reynolds, Prandtl and Particle
Peclet numbers. Nguyen et al. [11] investigated numerically the
utilization of two nanofluids g-Al2O3/water and g-Al2O3/ethyl-
ene glycol (volume fractions 0–7.5%) for microprocessor
cooling. The reduction in microprocessor temperature using the
nanofluid was insignificant at lower levels of heat supplied.
Rostamani et al. [12] numerically investigated turbulent flow of
water with copper oxide (CuO), alumina (Al2O3) and titanium
oxide (TiO2) nanoparticles (volume concentrations 0–6%).
Results showed that increasing the nanoparticles’ volume con-
centration gave increased heat transfer coefficient and shear
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stress. Also, the enhancement of heat transfer at lower Reynolds
number was significant. Torii [13] measured convective heat
transfer for water with nano-diamond particles (volume frac-
tions 0.1, 0.4 and 1%) in 1-m long, 4-mm diameter straight
tube. At volume fraction of 1% and for Reybolds numbers above
4000, significant enhancement was observed. Bianco et al. [14]
numerically investigated turbulent flow in a straight tube 1 m
long and 10 mm diameter. The enhancement ratio was predicted
as 4, 19 and 33% for Al2O3 volume concentrations of 1, 4 and
6%, respectively. The computational fluid dynamics (CFD) pre-
diction was close to the Pak and Cho correlation [15].

Work on combined passive enhancement techniques such as
helical coils with nanofluids has been recently reviewed by
Mangrulkar and Kriplani [16]. Regarding laminar flow, numer-
ical simulation of Al2O3/water nanofluid flow in helical coils
and curved tubes using the homogeneous approach [17, 18] and
mixture models [19] was conducted for Reynolds number
,2500 and volume fractions ranging from 1 to 4%. It is con-
cluded that the mixture approach produces more accurate
results but it is computationally intensive. On the other hand,
the homogeneous approach was shown to be appropriate due to
the negligible effect of particle diameter on the flow pattern
[17–19]. CuO/water nanofluid with concentration ,4% in
helical coils was numerically modelled by [20–22] using the
homogeneous approach investigating the effect of coil geom-
etries (coil diameter ranging from 1800 to 1200 mm, tube diam-
eter ranging from 32 to 52 mm) on pressure drop and heat
transfer. They concluded that the Nusselt number increased by
68% while the pressure drop increased by 37% with decreasing
the coil diameter. Also, the pressure drop and heat transfer
behaviour of low-concentration CuO/water (0.1 and 0.2%) in
helical coil were investigated experimentally and numerically by
Akbaridoust et al. [23]. They have used both the homogeneous
and dispersion models. Results have shown that the homoge-
neous model under-predicted the measured heat transfer
enhancement while the modified dispersion model proved to
better predict the experimental results.

Experimental work using various nanofluids and base fluids
were reported in helical coils [24–30] at laminar flow.
Mukeshkumar et al. [24] and Kahani et al. [25] experimentally
tested Al2O3/water nanofluid with low volume concentration
,1% and Reynolds numbers ,4500 and 8600, respectively.
Their results showed that heat transfer enhancement with
respect to pure water flow in coils increased by up to 45% at
1% nanoparticles volume concentration. Hashemi and
Akhavan-Behabadi [26] experimentally investigated the heat
transfer and pressure drop characteristics of the pure oil and
CuO/oil (concentration up to 2%) nanofluid flow inside a
straight tube and a helical tube at low Reynolds number (Re ,

100). They reported a heat transfer enhancement of up to 18.7
and 30.4% was obtained for nanofluid flow with 2% wt. concen-
tration compared with pure oil flow inside the straight tube and
the helical tube, respectively. The Akhavan-Behabadi research
group [27–29] experimentally investigated the heat transfer and
pressure drop characteristics of the multi-walled carbon

nanotubes (MWCNT)/oil nanofluids with weight concentration
of 0.1, 0.2 and 0.4% in vertical helically coiled tubes. Their
results indicated a heat transfer enhancement ratio of up to 10
times that of pure oil flow in straight tubes [27] while pressure
drop of 3.5 times compared with base fluid in straight tube [29]
were achieved.

Turbulent base fluid flow in helical coils was investigated by
many researchers. Seban and Mclaughlin tested two coils using
water with 7.37 mm internal diameter and coil to diameter ratio
of 17 and 104 using direct electrical heating with constant heat
flux. They correlated their experimental results with the thermo-
physical properties calculated at the film temperature (the
average between bulk fluid temperature and wall temperature)
[30]. Mori and Nakayama tested two coils with tube diameter to
coil ratio of 18.7 and 40. They correlated their results with the
thermo-physical properties calculated using the bulk average
temperature [31].

Numerical and experimental research of heat transfer and
pressure drop using nanofluids in helical coils in turbulent flow
regime is very limited [16]. Kannadasan et al. [32] compared the
water base fluid heat transfer in helical coil turbulent flow with
CuO/water nanofluid at 0.1 and 0.2 volume fractions. At 0.2%
volume fraction, 45 and 49% enhancement in Nusselt number
were found for horizontal and vertical positions with an increase
in pressure drop of 21 and 25%, respectively, compared with
pure water flow in coils. Wallace [33] measured the heat transfer
rate using nanofluids in a helically coiled cooler. However, the
author did not report any measurements of heat transfer coeffi-
cients or wall temperatures. This work presents a CFD modelling
study to investigate the heat transfer enhancement and pressure
drop in turbulent flow with nanofluids through helical coil
tubes. To model the heat transfer characteristics of nanofluids,
researchers used different approaches including the homoge-
neous approach [12], the two-phase mixture approach [34], the
Eulerian–Eulerian approach [35] and the Lagrangian trajectory
model [36]. In the current investigation, the homogeneous
approach is used as it requires less computational time and
provides accurate prediction [12] and [35].

2 FLOW GOVERNING EQUATIONS
AND THERMOPHYSICAL PROPERTIES

Al2O3 nanofluid was treated as incompressible, steady state,
homogeneous and Newtonian fluid with negligible effect of
viscous heating. The Navier–Stokes flow governing equations in
the Cartesian co-ordinates are as follows:

Continuity:

@

@xi
ðruiÞ ¼ 0: ð1Þ
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Momentum:

@

@xj
ðruiujÞ ¼ �

@P

@xi
þ rgi þ

@

@xj
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@ui
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þ @uj
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� �� �
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Energy:

@

@xi
ðruiTÞ ¼

@

@xj
ðGþ GtÞ

@T

@xj

� �
G ¼ m

Pr
and

Gt ¼
mt

Prt
:

ð3Þ

G and Gt are the molecular thermal diffusivity and turbulent
thermal diffusivity, respectively. The Boussinesq hypothesis is
used to relate the Reynolds stresses (last term in momentum
equation) to the mean velocity as:

ð�ru0iu0 jÞ ¼ mt

@ui

@xj
þ @uj

@ui

� �
: ð4Þ

The turbulent viscosity term is computed using the k-1 turbu-
lent model with two additional equations namely turbulent
kinetic energy(TKE, k) and turbulent dissipation rate (1) so
that:

mt ¼ rCm

k2

1
: ð5Þ

The modelled equation of the TKE, k, is:

@

@xi
ðrkuiÞ ¼

@

@xj
mþ mt

sk

� �
@k

@xj

� �
þ Gk þ r1; ð6Þ

where r1 is the turbulence destruction rate (TDR) of TKE and
GK is the rate of generation of the TKE given by:

Gk ¼ �ru0iu0j
@uj

@xi
: ð7Þ

The dissipation rate of the TDR, 1, is given by the following
equation:

@

@xi
ðr1uiÞ ¼

@

@xj
mþ mt

s1

� �
@1

@xj

� �
þ C11

1

k
Gk þ C21r

12

k
: ð8Þ

The boundary values for the turbulent quantities near the wall
were determined using the two layers enhanced wall treatment.
The values of the empirical constants in the turbulence transport
equations are as follow:

Cm ¼ 0:09; C11 ¼ 1:44; C21 ¼ 1:92; sk ¼ 1; s1 ¼ 1:3

and Prt ¼ 0:85:

Prt is the turbulent Prandtl number at the wall. These default
values have been determined from experiments with air and
water for fundamental turbulent shear flows. They have been
found to work fairly well for a wide range of wall-bounded and
free shear flows [37]. The effective thermo-physical properties of
the nanofluid are [38]:

Density:

rnf ¼ ð1� wÞrbf þ rpw: ð9Þ
Specific heat:

Cnf ¼ ððrCÞpwþ ðrCÞbfð1� wÞÞ/rnf : ð10Þ
Thermal conductivity:

lnf ¼ ð1þ 4:5503wÞlbf : ð11Þ
Dynamic viscosity:

mnf ¼ expð4:91w/(0:2092� w)Þmbf ; ð12Þ
where nf, bf and P denote the nanofluid, base fluid and particle,
respectively. The base fluid thermo-physical properties have
been fitted as polynomial functions in temperature (Kelvin)
using Engineering Equation Solver EES data as shown in equa-
tions (13–15).

rbf ¼ 2813:77Eð�01Þ þ 6351:93Eð�03ÞT
� 1761:03Eð�05ÞT2 þ 1460:96Eð�08ÞT3; ð13Þ

kbf ¼ �1056:42Eð�03Þ þ 1011:33Eð�05ÞT
� 1772:74Eð�08ÞT2 þ 7994:88Eð�12ÞT3; ð14Þ

mbf ¼ 9684:22Eð�05Þ � 821:53Eð�06ÞT
þ 2345:21Eð�09ÞT2 � 2244:12Eð�12ÞT3: ð15Þ

These properties were formulated as user-defined functions
(UDF) subroutines and incorporated into Fluent 6.3 solver.
Fluent is a computational fluid dynamic software based on finite
volume method for solving the continuity, momentum and
energy partial differential equations of fluid flow.

3 MODELLING DESCRIPTIONS
AND VALIDATION

3.1 Straight tube
The CFD analysis for the base fluid flow in straight tube was
investigated to provide a reference case using the experimental
setup of Williams et al. [38]. Half of the 9.4-mm internal diam-
eter and 2819-mm long tube has been modelled using the sym-
metry along the tube axis to reduce the computational time.
Two adiabatic sections with 1 and 0.5 m long, respectively, were
positioned before and after the heated section to ensure fully
developed flow. The boundary conditions at the inlet and outlet
of the tube was specified as velocity inlet and pressure outlet,
respectively. The heated section was meshed with 40 and 1600
nodes in the radial and axial directions, respectively. The 1 and
0.5 m adiabatic sections were meshed with 40 � 800 and 40 �
400 nodes in the radial and axial directions. The second-order
upwind scheme was utilized for discretizing the energy and mo-
mentum equations, turbulence kinetic energy and turbulence
dissipation rate. Uniform heat flux was applied to the heated
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section. The coupled algorithm was used with Courant number
set to one for solving the pressure–velocity coupling [39].
Courant number is the ratio of the time step to the cell residence
time which expresses the ratio of the distance travelled by a dis-
turbance in one time step to the length of a computational dis-
tance step. In the CFD calculations, the Courant number must
be less than or equal to unity so as to ensure the convergence of
the discretized equations.

The average heat transfer coefficient was calculated using the
average heated wall temperature and average fluid temperature at
the inlet and outlet of the heated section. Figure 1a shows the
CFD predicted heat transfer coefficient and those reported by
Williams et al. [38] at various Reynolds numbers with +9%
agreement with experimental data and those predicted by
Petukhov (Equation (16)) and Gnielinski correlations (Equation
(17)) who correlated the Nusselt number as a function of
Reynolds and Prandtl numbers in the following form [40].

Petukhov correlation:

Nu ¼ ð f /8ÞRe Pr

1:07þ 12:7ð f /8Þ0:5ðPrð2=3Þ � 1Þ
: ð16Þ

Gnielinski correlation:

Nu ¼ ð f /8ÞðRe� 1000ÞPr

1þ 12:7ð f /8Þ0:5ðPrð2=3Þ � 1Þ
; ð17Þ

where f ¼ (1.82 log10(Re)21.64)22

Figure 1b presents the predicted heat transfer coefficient of
Al2O3 nanofluid in a straight tube compared with the experi-
mental results of Williams et al. [38] at volume concentration
ratios of 0.9, 1.8 and 3.6% at Reynolds numbers ranging from
8000 to 60 000 with +12% agreement. The Pak and Cho correl-
ation (Equation 18, [15]) was in a good agreement with the CFD
prediction. On the other hand, the Vajjha et al. (Equation 19,
[41]) correlation tends to under predict the experimental meas-
urement and the Maiga correlation (Equation 20, [42]) was
found to over predict the experimental results.

Pak and Cho correlation [15]:

Nunf ¼ 0:021Re0:8
nf Pr0:5

nf : ð18Þ

Vajjha correlation [41]:

Nunf ¼ 0:065ðRe0:65
nf � 60:22Þð1þ 0:0169w0:15ÞPr0:542

nf : ð19Þ

Maiga correlation [42]:

Nunf ¼ 0:085Re0:71
nf Pr0:35

nf : ð20Þ

3.2 Helically coiled tube
For simulating the flow of a base fluid inside helically coiled
tube, coil with tube length and diameter similar to those used in
the straight tube analysis was used. The coil pitch was selected as
15 mm and number of turns of 5 leading to a coil diameter of
179.5 mm. The discritization schemes utilized were second
order for energy, first order for momentum and SIMPLEC algo-
rithm with skewness factor of one for coupling the velocity and
pressure parameters. The mesh contains 1 026 000 cells with the
number of nodes in the axial direction are 500, 1500 and 250 for
the inlet straight, helically coiled, outlet straight tubes, respect-
ively. Tri-quad elements has been utilized to mesh the inlet face
and hex/wedge cooper elements used to mesh the coil volume
with six layers close to the wall and 50 nodes in the radial direc-
tion as shown in Figure 2. The mesh quality has been checked by
controlling the turbulent wall function yþ value to be ,5 as
depicted in Figure 3. The required simulation time for each run
was 8 h using 2.4 GHz core Quad processor with 2 GB RAM
memory computer.

Figure 4 compares the CFD predicted heat transfer coeffi-
cients with the empirical correlations (Equations 21–22) of
Seban and Mclaughlin [30] and Mori and Nakayam [31] at a
heat flux of 30 kW/m2. The percentage mean absolute deriv-
ation between the CFD prediction and those of the Seban

Figure 1. Validation of straight tube for (a) base fluid and (b) nanofluid in

straight tubes.
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and Mclaughlin [30] correlation was found to be less than
+3.2%.

aSeban-Mclaughlin ¼ 0:023Re0:85Pr0:4 di

dcoil

� �0:1
l

di
: ð21Þ

6000 � Re � 65 600 2:9 , Pr , 5:7:

aMori-Nakayama ¼
1

41
Re5=6Pr0:4 di

dcoil

� �ð1=12Þ

ð1þ 0:061/(Reðdi/dcoliÞ2:5Þð1=6ÞÞ l
di
:

ð22Þ

10 000 � Re � 200 000 Pr . 1:

4 HEAT TRANSFER AND PRESSURE DROP
OF NANOFLUIDS IN HELICAL COILS

This section investigates the effect of using nanofluids on the
heat transfer and pressure drop for helical coils. Similar method-
ology for modelling the nanofluid flow in straight tubes (Section
3.1) was used. Figure 5 compares the velocity contours of the
nanofluid (concentration 2%, Figure 5a) with that of the base
fluid (Figure 5b) at Reynolds number of 20 000 and different
positions (inlet, 1 turn, 2.5 turns and 5 turns) in the coil. This
figure shows that, for the same Reynolds number, higher veloci-
ties were produced due to the larger kinematic viscosity of the
nanofluid. The flow enters the coil as hydrodynamically fully
developed turbulent flow as shown by the coil inlets in Figure 5a
and b. Inside the helical coil, the fluid elements with high veloci-
ties are pushed to the outer side of the coil due to the centripetal
force thus generating secondary flow in the coil that results in
better mixing of bulk fluid and decreases the wall temperature.

Figure 6 shows the variation of the heat transfer enhancement
ratio (nanofluid in the helical coil divided by that of base fluid
in the straight tube) with the volume concentrations of the

Figure 2. 3D mesh of helical coil using tri-quad mesh.

Figure 3. Turbulence Wall function yþ.

Figure 4. CFD prediction and empirical correlation for water flow in coils.
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nanofluids at various Reynolds numbers. This figure shows that
the heat transfer enhancement ratio increases with the nanofluid
volume fractions due to enhanced nanofluid thermal transport
properties and helical coil enhanced flow mixing. Also, increas-
ing the Reynolds number further increases the heat transfer en-
hancement ratio. An enhancement ratio of up to 1.6 (60%
enhancement) was achieved with 3% nanofluid volume concen-
tration at Reynolds number of 50 000. At the same Reynolds
number, the base fluid in the helical coil (f ¼ 0), produced an
enhancement ratio of 1.12. Thus, the addition of nanoparticles

contributed with 80% of the 60% enhancement while the helical
coiling contributed 20%.

Figure 7 shows the CFD results for the pressure drop ratio
(nanofluid in helical coil to base fluid in straight tube) at
various Reynolds numbers and volume concentrations. Results
show that increasing the volume fraction increases the pressure
drop ratio where a volume fraction of 3% produced six times the
pressure drop of the base fluid in straight tube. This could be
explained by the significant increase in the viscosity of the nano-
fluid for the same Reynolds number.

Figure 5. Velocity contours cross section parallel to coil inlet (y ¼ 0) at Re ¼ 20 000: (a) nanofluid concentration 2%; (b) pure water.

Figure 6. Heat transfer enhancement ratio in helical coils.
Figure 7. Pressure drop penalty factor in helical coils.
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Using Darcy equation, the pressure ratio of nanofluids in
helical coils compared with base fluid in straight tube can be
expressed as:

D pnf;Hc

D pbf;St

¼ fnf;HcLHc þ fnf;StðLtube � LHcÞ
fbf;StLtube

� �
mnf

mbf

� �2 dnf

dbf

� ��3
rnf

rbf

� ��1

; ð23Þ

where Ltube, LHc are the total straight tube lengths including the
adiabatic parts and the coil length with 4319 and 2819 mm, re-
spectively. The friction factor of nanofluid in helical coil fnf,Hc was
calculated using the White correlation [43] for turbulent flow. The
friction factor of the nanofluid in the straight tube fnf,St was taken
as equal to that of the base fluid in a straight tube at the same
Reynolds number, as recommended by Li and Xuan [10]. Thus:

fnf;Hc

fbf;St

¼ fnf;Hc

fnf;St

¼ 4ð0:08Re�0:25
nf þ 0:012ðdi/dcoilÞ0:5Þ

0:316Re�0:25
nf

ð15 000 , Re , 100 000Þ;
ð24Þ

where fnf,Hc and fnf,St are the friction factors of the nanofluids in
helical coils and straight tubes based on White [43] and Blasius
correlations [44] ð fBlasius ¼ 0:316Re�0:25

nf Þ using the nanofluid
thermo-physical properties. Figure 8 compares the pressure drop
ratio calculated using equations (23) and (24) with those pre-
dicted by the CFD with +5% relative deviation.

Figure 9 presents the heat transfer enhancement ratio (heat
transfer coefficient of nanofluid in the helical coil divided by
that of base fluid in the straight tube) versus Reynolds number
for the present study compared with those of Kumar et al. [2],
Fakoor-Pakdaman et al. [29], Kannadasan et al. [32] and Elsayed
et al. [45] for both nanofluids and base fluids. It can be seen that
nanofluid are more effective in enhancing the heat transfer in
the laminar flow regime compared with the turbulent flow. In
the laminar flow regime with thick boundary layers, the addition
of nanoparticles increases the thermal conductivity and reduces
the specific heat of the fluid resulting in a better dispersion of
heat inside the fluid leading to steeper temperature gradient
close to wall. As the flow becomes turbulent, the thermal

boundary layer is already thin due to the nature of the flow.
Therefore, the effect of adding nanoparticles on the thermal
boundary layer is less significant.

5 CONCLUSIONS

The combined effect of using helical coils and nanofluids heat
transfer enhancement and pressure losses in turbulent flow was
numerically investigated. The developed CFD models were vali-
dated against published experimental data and empirical correla-
tions. CFD results showed that using 3% volume fraction of
Al2O3/water nanofluids in helical coils increased the heat transfer
coefficient by up to 60% of that for pure water in straight tubes at
the same Reynolds number. The contribution of tube coiling to
this enhancement was shown to be only 10% on average.

Pressure drop values from CFD prediction and developed
correlation were in close agreement, with less than +5% devi-
ation. The pressure drop in helical coils using Al2O3 with
volume fraction of 3% was six times that of water in straight
tubes. With such modest improvement in heat transfer and high
pressure losses, the adoption of such heat transfer enhancement
techniques can only be justified in applications where improve-
ments in heat transfer is very critical.

The long-term stability of nanofluids was reviewed by
Ghadimi et al. [46]. They concluded that the stability of nano-
particles in the fluid depends mainly on the techniques used to
prepare the nanofluid. Methods like ultrasonic, ph-control and
using dispersants (Arabic Gum) have produced stable solutions.
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