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Abstract

This Chapter reviews econometric methods that can be used in order to deal
with the challenges of inference in high-dimensional empirical macro models
with possibly “more parameters than observations”. These methods broadly
include machine learning algorithms for Big Data, but also more traditional
estimation algorithms for data with a short span of observations relative to
the number of explanatory variables. While building mainly on a univariate
linear regression setting, I show how machine learning ideas can be generalized
to classes of models that are interesting to applied macroeconomists, such as
time-varying parameter models and vector autoregressions.
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1 Introduction and motivation

High-dimensional inference and machine learning methods currently shape research

in various fields of human knowledge, but they are not as popular yet in mainstream

economic research and decision-making. There are several reasons for this observation.

Macroeconomics, in particular, is dominated by aggregate data sets that cannot

compete in size with data sets that, for example, engineers or astronomers collect.

Despite the fact that theoretical and empirical macro models have substantially

increased in size since the global crisis of 2007-2009 (mainly to accommodate linkages

with the financial sector and global interdependencies), such models are far from

being considered models for Big Data. Finally, machine learning methods are focused

on prediction, and may not be so reliable for parameter estimation and structural

analysis (Mullainathan and Spiess, 2017). While many macroeconomic results rely

on accurate out-of-sample forecasts from agents, a large part of traditional structural

econometric inference focuses on identification of primitive underlying shocks and

reliable parameter estimation of coefficients and elasticities in-sample. Such tasks

cannot be supported by many existing machine learning algorithms which are so

flexible, to the extend that it is hard for the economist to interpret underlying

economic relationships in data, or for the econometrician to be able to prove

asymptotic consistency of parameter estimates.

So is there a need for a Chapter in high-dimensional and machine learning inference

in applied macroeconomics? Our current modeling trends in macroeconometrics are

heavily defined by lessons learned during the first attempts to specify large-scale

structural econometric models. The Cowles Commission for Research in Economics

was established in 1932 and it consisted of economists like Tjalling Koopmans and

Trygve Haavelmo who actively tried to link economic theory with statistics using

large systems of equations (Christ, 1994). But unlike modern machine learning

and Big Data methods that aim to learn from the data, their inference methods

were characterized by numerous identification restrictions based on economic theory,

or simply driven by the need to make estimation feasible. Unless such subjective

restrictions are learned by the data, it is highly improbable that the data will support

a large number of them. The “Minnesota revolution” of the 1970s consisting of

economists such as Sargent, Sims, Geweke, Neftçi, Litterman and Doan -all associated

with the University of Minnesota and Minneapolis Fed, hence the name- suggested
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statistical shrinkage and selection as an alternative to the unrealistic restrictions

imposed by the Cowles Commission models. A major contribution was the famous

Minnesota prior (Litterman, 1979), which is an empirical Bayes procedure that

drives research in vector autoregressions (VARs) forty years later (see Koop and

Korobilis, 2010, for an introduction to Bayesian VARs). Their second response to the

unrealistic restrictions of large-scale macroeconometric models lies in the introduction

of (dynamic) factor methods by Sargent and Sims (1977) in order to introduce time

series analysis “without pretending to have too much a priori economic theory”; see

also Geweke (1977). Almost 40 years later there are numerous studies relying on the

traditional Minnesota prior or general factor methods; see the Chapter by Miranda-

Agrippino and Ricco (2018) in this Encyclopedia.

The purpose of this Chapter is to review existing methods in econometrics and

statistics that facilitate inference with large information sets, and at the same time

examine new machine learning ideas that might prove to be useful to the applied

macroeconomist. The primary focus is on the case of “fat” data, that is, data

with more predictors/variables than observations. Given that macroeconomic time

series (especially those outside the US) typically have short time spans and are

measured at low frequencies (e.g. monthly or quarterly), many existing empirical

models fall into this category. At the same time, as new disaggregated data sets

become increasingly available1, estimation methods must be scalable that is, be able

to scale computationally to very large dimensions without causing a “computational

bottleneck”.

The main aim and challenge is to filter out and review only those machine learning

methods that general macroeconomists will find accessible and readily applicable to

various settings. For that reason, presentation of algorithms and methods builds

exclusively on the familiar univariate regression model. Additionally, rather than

focusing only on recent developments in the machine learning literature, I attempt

to review existing methods in econometrics for high-dimensional data and assess how

such methods have or can be extended using machine learning ideas. In one sense, this

review is restrictive as it does not cover topics that gain increasing popularity, such as

textual analysis (Hansen, McMahon and Prat, forthcoming), or algorithms for high-

frequency financial data (Aı̈t-Sahalia and Xiu, 2017). However, after analyzing the

1For example, Jiménez et al. (2014) use in their analysis the 32 million loan transactions obtained
from the the Credit Register of the Banco de España.
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simple regression model I subsequently show that many of the methods and algorithms

introduced in univariate regression can easily be generalized to several complicated

settings. The main idea is that of designing efficient estimation algorithms by

casting complex high-dimensional problems into a simpler univariate linear regression

form. I provide examples from time-varying parameter regressions with possibly

many predictors, and large vector autoregressions. Thus, instead of listing advanced

machine learning algorithms using computing science jargon that many economists

won’t find appealing, this Chapter presents a more accessible approach that tries to

build on benchmark ideas from univariate regression and least squares estimation.

The next Section describes the simple linear regression problem with many

predictors, and suggests four classes of methodologies that can be applied to deal

with this problem. Section 3 describes ways an applied macroeconomist can simplify

more complex high-dimensional models in order to bring them in a form that broadly

resembles the simple linear regression model. Section 4 concludes this chapter.

2 The linear regression problem

The starting point is a generic time series2 univariate regression problem for the scalar

dependent variable yt and for the 1 × p vector of exogenous predictors xt, observed

for periods i = 1, ..., T . This can be written in the usual form

yt = xtβ + εt, (1)

where β is a p× 1 vector of regression coefficients and εt ∼ N (0, σ2) with σ2 a scalar

regression variance. The regressors xt may include intercepts, dummies, exogenous

predictors, lags of the dependent variable etc. This is the simplest benchmark for

an economist, that is straightforward to estimate and communicate to clients and

policy-makers. In that sense, it will be helpful if we view any extensions we introduce

later in this chapter, as special cases of this basic regression problem.

Stock and Watson (1999, 2002), and others, have shown that it is empirically

superior to augment small, traditional macroeconomic models, such as the New

2I adopt a time series notation which is appropriate for many problems in macroeconomics and
finance, even though for most part of the analysis in this Section our data could be cross-sectional.
The time series notation will prove useful in subsequent Sections, when generalizing high-dimensional
inference to vector autoregressive and time varying parameter models.
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Keynesian Phillips Curve (NKPC), with information contained in many predictors.

What is now established as “many predictors” for US data is a set of possibly 100-200

variables available roughly from 1960; see the FRED-MD (and FRED-QD) data sets

described in McCracken and Ng (2016). For other countries the number of available

predictors might be smaller but time series observations are also typically shorter;

see Nicoletti-Altimari (2001) for a key application in Euro-Area inflation using many

monetary aggregates as predictors.

As argued in the Introduction, inference with such data sets can hardly be

classified as “Big Data analytics”, but it can cause headaches of its own. First,

consider the case of selecting a handful of predictors out of a larger set of possible

predictor variables, e.g. following economic theory. If the true model is of the form

y = x1β1 + x2β2 + ε, (2)

where xi =
(
x′i,1, ..., x

′
i,T

)′
for i = 1, 2, but instead we estimate a regression using only

predictor x1 then the OLS estimator b1 of β1 is

b1 = (x′1x1)
−1x′1y = (x′1x1)

−1x′1 (x1β1 + x2β2 + ε) (3)

= β1 + (x′1x1)
−1x′1x2β2 + (x′1x1)

−1x′1x2ε, (4)

and its bias is

E(b1) = β1 + (x′1x1)
−1x′1x2β2, (5)

that is, it is equal to β1 in expectation only if x′1x2 = 0 (the omitted predictor is

uncorrelated with x1), or if β2 = 0 (the omitted predictor was not generating y in

the first instance). In any other case the OLS estimate b1 is biased, a well-known

result which is known as omitted variable bias. Such biases become significant, the

more important variables we fail to include in the regression, especially as many

macroeconomic time series are in general heavily correlated. More importantly

for macroeconomists, in certain applications (e.g. vector autoregressions) omitted

variable bias translates into lack of identification of structural shocks using data.

Second, consider the case of modelling using all available predictor variables. In

many such cases (e.g. data measured quarterly) it will hold that p ≈ T or even

p > T , which makes OLS inference numerically unstable or infeasible. Even when the

number of observations is large enough to guarantee sufficient degrees of freedom for
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parameter estimation, using the full set of available predictors is not desirable because

it leads to overfitting and overparametrization. If the econometrician estimates a very

flexible model with many parameters that fits the data very well in-sample, there is the

danger that this model will fail out-of-sample. Intuitively we can think of forecasting

a crisis event, such as the Global Recession of 2007-2009, from the point of view of

an economist just before its outbreak: information about such an abrupt break does

not exist in observations preceding 2007, so an overparametrized model that follows

past data closely is condemned to fail more so than a small model that does well

on average (but doesn’t fit extremely well all past data points). Finally, from an

econometric point of view smaller models are easier to maintain and communicate to

policy-makers and clients, compared to models with many variables and parameters.

So what kind of tools are at the econometrician’s disposal? I review here four

methodologies and related algorithms that can be used to deal with the high-

dimensional regression problem.

2.1 Extreme Bounds Analysis

Leamer (1983) argued that certain features of an econometric model can be sensitive

to the econometric specification used. In a regression setting with many possible

predictors, this argument highlights the fact that different combinations of predictors

might result in models with comparable explanatory ability for our dependent

variable, but with conflicting economic interpretation. So how can we test for

specification bias for a scalar predictor of interest xSt , when the number of potential

explanatory variables, xDt , is large? Leamer (1983) suggested to estimate the following

j = 1, ...,M models

yt = aj + xFt βF,j + xSt βS,j + xDj,tβD,j, (6)

where xFt is a small set of variables always included in all models (free variables),

xSt is the scalar predictor of interest, and xDj,t denotes a subset of the large set of k

variables in xDt . For example, if k = 10 and (for computational reasons) we want to

consider all possible M models we can construct with up to five predictors in xDj,t then

M = 637.

We can now define the variable xSt to be a robust predictor if i) all estimates βS,j

are of the same sign, and ii) all estimates of βS,j are statistically significant. Using

the collection of least squares estimates β̂S,j and their associated standard deviations
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σ̂S,j, we can compute the extreme bounds of coefficient βS as

β̂lowerS = min
j∈1,M

[
β̂S,j − q1−α/2σ̂S,j

]
, (7)

β̂UPPERS = max
j∈1,M

[
β̂S,j + q1−α/2σ̂S,j

]
. (8)

Therefore, β̂lowerS is the smallest lower bound among all M confidence intervals, and

β̂upperS is the largest upper bound of the collection of M confidence intervals, of size

100(1− α).

Levine and Renelt (1992) provide a key application of EBA in the problem of

finding robust predictors for growth regressions. Benson Durham (2001) applies EBA

in order to test 23 anomalies for the cross-section of stock returns. The original

extreme bounds analysis (EBA) would require both β̂lowerS and β̂upperS to be of the

same sign, a definition that can hardly be satisfied in practical situations. Granger and

Uhlig (1990) introduced a “reasonable” version of EBA with less strict requirements.

Sala-i-Martin (1997) introduced a weighted EBA algorithm that assigns some level

of confidence to variables of interest, instead of labelling them only as “robust” or

“non-robust”.

2.2 Model averaging and variable/model selection

Algorithms such as EBA were quite useful in an era when the personal computer and

specialized mathematical programming languages3 were still in their prime. Notice

how traditional applications of EBA would consider a large number of potential

control variables xDt , but each of the M models discussed previously would only

consider a small subset of these variables. However, in an era where computing power

is so strong and more elaborate algorithms have been discovered since, it is feasible to

consider all possible sources of uncertainty regarding the correct model specification.

Controlling for model uncertainty can either take the form of model/variable selection

or model averaging. Model selection selects the “best” predictors that might have

generated our data y, where “best” can either be defined using statistical (e.g.

goodness of fit) or economic (e.g. utility) criteria. Model averaging uses the

3MATLAB, GAUSS and RATS - three of the traditionally most popular matrix programming
languages used by macroeconomists - all launched in the mid-1980s (with RATS based on Chris Sim’s
Fortran routines developed in the 1970s), that is, around the time that EBA was first developed.
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information in all available variables, weighted by their probability of belonging to

the “true” model that might have generated our data of interest.

If a researcher is faced with a finite number of predictor variables, say 20 or 30,

variable selection is relatively straightforward.4 Since each predictor is either included

or excluded from the best model, then with p predictors the possible number of models

is K = 2p. Model 1 is the model with no predictors, Model K is the model with all p

predictors, and the remaining K−2 models have combinations of two, three, or up to

p−1 predictors. We can subsequently enumerate and construct all K models, estimate

them (e.g. with OLS) and select the best model using some statistical criterion. In

this case we have K models of the form

y = X(i)β(i) + ε, i = 1, ..., K, (9)

where X(i) denotes the ith combination of columns of X. For example, Pesaran and

Timmermann (1995) consider the stock return predictability problem, where they

want to forecast excess stock returns with a set of nine, primarily macroeconomic,

predictors.5 Even with the computational resources available in early to mid-90s,

Pesaran and Timmermann estimate, using simple OLS, all possible 29 = 512 models

at their disposal for forecasting excess stock returns. They calculate various statistical

(BIC, adjuster R2) and economic criteria (Sharpe ratio, wealth criterion) in order to

select the forecasting model that leads to maximum wealth for an investor who can

choose to allocate funds either to shares or bonds.

Instead of doing variable selection, one can also use the same criteria (BIC, R2,

Sharpe ratios) to do model averaging. The idea of model averaging is similar to

diversification in portfolio allocation. An investor does not want to choose the best

performing stock, as there is huge risk associated with such a stock. For the same

reason, the investor does not want to choose an asset with the lowest risk (variance),

since via diversification they can achieve much higher returns with almost the same

amount of risk. The same arguments motivate model averaging, that is, a researcher

should use information all models – good or bad – weighted by their “importance”.

4That is, from a computational point of view. From an econometric point of view variable
selection can be undermined by predictors that are correlated or persistent, parameters subject to
breaks etc., in which case it becomes anything but a straightforward problem.

5See also the complete subset regression of Elliott, Gargano and Timmermann (2013) for a
computationally efficient procedure that fits in the class of shrinkage estimators (rather than variable
selection).
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The idea is that even badly fitting models might be able to capture certain features

of our y that the single best model cannot. In a forecasting example, where we want

to predict yT+1 using the K combinations of available predictors, the model averaged

forecast is defined as

yMA
T+1|T =

K∑
i=1

y
(i)
T+1|T × w

(i), (10)

where y
(i)
T+1|T and yMA

T+1|T is the forecast of period T + 1 using information at time

T for the ith model and the model average, respectively. The quantity w(i) is the

weight of the ith model, which following the analysis of Raftery (1995) can simply be

calculated using the BIC of each model which is a first-order approximation to the

marginal likelihood. Kapetanios, Labhard and Price (2008) apply these ideas6 and

construct weights as

w(i) =
exp(BIC(i))∑K
j=1 exp(BIC

(j))
. (11)

Such weights are explicitly calculated model probabilities that are easy to interpret,

plus they can be converted into variable-specific probabilities. That way, these

weights are not only appropriate for model averaging, but can also lead to

straightforward variable selection. For example, Barbieri and Berger (2004) show that

the “(Bayesian) median probability model”, that is the model with those variables

that have probabilities larger than 0.5, is optimal for prediction. This convenience in

interpretation explains why such a variable selection/averaging procedure is possibly

preferable to conventional hypothesis testing. As Raftery (1995) argues, with

traditional testing we use significance levels 1% or 5% only because Sir Ronald Fischer

was using such values with samples of 30 or 200 observations; see for example Fischer

(1925, Chapter 4). Hence there is no scientific reason why α = 0.05 is a good

choice to test hypotheses. Raftery (1995) notes that as the sample size increases

p-values should be judged using smaller significance levels. By examining the full set

of possible models interpretation and communication of regression results is easy, as

the macroeconomist can explicitly test each predictor against economic theory using

easy-to-interpret “probabilities of inclusion of each predictor”. In contrast, a p-value

is not the probability that the null hypothesis is true, which many times has lead to

their misinterpretation in scientific and academic studies; see the American Statistical

Association’s statement on p-values in Wasserstein and Lazar (2016).

6See also Doppelhofer, Miller and Sala-i-Martin (2004).
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The above procedure using OLS and BIC is trivial, and is accessible to all applied

macroeconomists who are concerned about overfitting issues. However, notice that

for p � 30 it is computationally impossible to enumerate and estimate the total

number of models.7 In such cases, variable selection can only be implemented using

computationally efficient algorithms. There are two popular algorithmic strategies

of sequentially exploring for, and selecting, good predictors: specific-to-general and

general-to-specific. As the name suggests, the specific-to-general approach starts

with a small regression model (possibly with few predictors suggested from economic

theory) and then sequentially expands the size of the model to accommodate only

those predictors that are important/significant. The general-to-specific approach

begins with the full, overparametrized model using all available predictors and then

sequentially drops unimportant predictors. Most modern statistical and machine

learning approaches to variable selection and shrinkage (discussed in the next

subsection) use a general-to-specific approach.8 Such an approach is mostly useful

when the amount of predictors is really large (Big Data) and/or economic theory is

not available, so it doesn’t make sense to begin from a specific small model and then

expand the number of predictors. Put informally, the general-to-specific approach

implies that a researcher can just “throw” in a regression all available predictors, and

then rely on an algorithm to do the sorting of predictor variables into good or bad,

according to some metric.

From a Bayesian point of view the variable selection problem is characterized by

the use of a clear probabilistic framework (Bayes Theorem), where the researcher

assigns prior model weights and uses the information in the data to update those into

posterior model probabilities, w(i). At the same time posterior simulation algorithms,

such as Markov chain Monte Carlo, make variable selection in high dimensional spaces

feasible. There are many ways of implementing Bayesian variable selection, but

the default/benchmark choice used when modeling large data sets in e.g. Biology,

Engineering, Astronomy, is the “spike and slab” prior. For our regression problem in

7If we have just p = 50 then the number of possible models, K = 250, is so vast that even if it
takes 1/1000-th of a second to estimate each model by OLS and save its BIC value, it would take a
total of 35702 years to estimate all models!

8The general-to-specific in the econometrics literature, also called the “LSE approach”, dates at
least to the work of Sargan (1964). A key example in the econometric literature is the Autometrics
approach, see Hendry and Doornik (2014). Autometrics is an algorithm for automatic model
discovery, focusing primarily on variable selection, but which also allows to accommodate other
modeling/specification features, such as breaks.
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equation (1) this prior takes the form

βi|γi ∼ (1− γi)δ0(β) + γiN
(
0, τ 2i

)
, (12)

γi|π ∼ Bernoulli(π), i = 1, .., p (13)

π ∼ Beta(c0, d0). (14)

In the formula above δ0(β) denotes the Dirac delta function evaluated at zero. While

the parameter of interest is β, we also introduce two more parameters that have

their own prior distributions: dummy indicators γ = (γ1, ..., γp) and probabilities

π.9 Conditional on γi = 0, then the prior for βi is δ0(β) which is a point mass

at zero. In this case the posterior distribution of coefficient βi will also be a point

mass at zero and the ith predictor is removed from the regression. If γi = 1 then

the prior for βi is N (0, τ 2i ). For a sufficiently large (noninformative) value of τ 2i this

prior is dominated by the likelihood, meaning the posterior estimate of βi will be

unrestricted and different from zero. The way γ is either zero or one is determined

by the information in the data, since γ in equation (13) has its own prior and the

data likelihood can update this prior into a well-defined posterior distribution.10.

Therefore, the vector γ, taking values zero or one for each element i, i = 1, ..., p,

has the ability to index all possible K = 2p regression models constructed using

our predictor variables. Posterior computation can be implemented using simulation

algorithms, such as MCMC; see George and McCulloch (1997). In this case, the Monte

Carlo posterior algorithm has the ability to visit stochastically the most probable

models, since estimating all possible models is impossible for large p. At each iteration

of the MCMC sampler we can save a sample from the posterior distribution of γ which

is going to be a vector of zeros and ones. Doing so for several thousand iterations, the

posterior mean or median of all samples of γ will be a vector of posterior inclusion

probabilities for each predictor in our regression.

While a Bayesian setting for variable selection takes advantage of MCMC

simulation algorithms that are anyway needed for parameter estimation, the

9As explained in the following subsection, this is the case of a hierarchical prior.
10Regarding π this is the probability of a Bernoulli random variable, hence, many researchers set

this to 0.5 which is the value of a Bernoulli experiment using a “fair coin”. However, as George and
McCulloch (1997) note, π = 0.5 implies that a-prior our expectation is that half of the elements in
β are zero, which is a very informative choice. In this case, π can have its own prior distribution
and update this also by the data likelihood.
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frequentist approach to simulation-based variable selection can similarly take

advantage of a similarly powerful simulation technique, the bootstrap. In a key

and highly cited paper for the field of machine learning, Breiman (1996) introduced

the bootstrap aggregation, a.k.a. bagging, algorithm. Bagging involves generating a

large number of sub-samples of our data and training (pre-testing) the model on each

generated sample. Then predictions can be made by averaging the predictions from

all generated models. Even though the final outcome is prediction, such algorithms

can be used for variable selection by enumerating the number of times a variable

is selected in each sample (similarly to what we did above with Bayesian variable

selection by averaging the indicators γ). Random forest regression can remarkably

improve the performance of the bagging algorithm (Amit and Geman, 1997), and

boosting (Breiman, 1998) can be more successful than bagging in reducing variance

of estimators (see also next subsection). A good example of a bootstrap method that

is designed primarily for variable selection is that of bumping (Tibshirani and Knight,

1999).

There are already several solid examples of model averaging in empirical

macroeconomics and finance starting from the early study of Geisel (1973). In

general macroeconomic forecasting settings the contributions of Min and Zellner

(1993), Koop and Potter (2004), Wright (2008) are based on univariate regression

models, while Garratt et al. (2009), George et al. (2008) and Korobilis (2008;

2013c; 2016) focus on variable selection and model averaging in vector autoregressive

models. For the problem of stock return predictability in finance Avramov (2002)

and Cremers (2002) are two early references. There is no shortage of variable

selection and averaging applications in the field of empirical economic growth. Here

we can mention, among many others, Chen et al. (2009), Durlauf et al. (2011),

Fernández et al. (2001a, 2001b), Masanjala and Papageorgiou (2008) and Moral-

Benito (2012) who propose various theoretical, algorithmic or empirical enhancements

to standard model averaging procedures. Finally, Koop and Korobilis (2012, 2018)

show how machine learning methods can be used to implement model averaging and

selection in a dynamic fashion. Koop and Korobilis (2012) use variance discounting

methods to estimate regressions with time-varying parameters (see next Section) and

use a dynamic version of equation (11) that allows them to estimate time-varying

probabilities for each of their predictor in their data set. More recently, Koop and

Korobilis (2018) use variational Bayes methods -that are popular in computing science
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and engineering- to estimate a regression that features a time-varying version of the

Spike and Slab prior in (13) and a large number of predictors.

2.3 Penalized and shrinkage estimators

When comparing the performance of different estimators under a square loss function,

it is useful to define the mean squared error (MSE) of an estimator β̂ of a (assume

for simplicity, scalar) parameter β. This is of the form

E

[(
β̂ − β

)2]
= E

[(
β̂ − E(β̂) + E(β̂)− β

)2]
(15)

= E

[(
β̂ − E(β̂)

)2]
+
(
E(β̂)− β

)2
(16)

= var
(
β̂
)

+ bias2
(
β̂
)
. (17)

This formula can be used to understand a well-known tradeoff in econometric

estimation, that among bias and variance. Standard textbook analysis postulates

that among all unbiased estimators the one with the lowest variance is preferable.

When faced with many predictors and a small number of degrees of freedom then

unbiased estimators, such as OLS, tend to have very large variance. In such cases a

biased estimator that has much lower variance can achieve a lower MSE and is, in

general, preferable.

This is a motivating example for introducing the class of shrinkage and

penalized regression estimators that can be used to achieve regularized estimation.

Regularization in machine learning and statistics is the process of introducing

additional information in order to prevent overfitting. Such ideas are not new, as

they precede our Big data era by several decades. For example, a striking result was

presented by Stein (1956) who showed that a certain biased estimator of the mean of a

multivariate Normal distribution dominates in terms of MSE the maximum likelihood

(i.e. OLS) estimator associated with this problem. Efron and Morris (1975) provided

further intuition by showing that the Stein estimator results from an empirical Bayes

procedure that places a prior distribution on the parameter of interest, with its prior

hyperparameters being functions of the data. For the remainder of the analysis,

I make the argument that it is quite helpful and intuitive to view all shrinkage

estimators as special cases of Bayesian estimators. To illustrate this point assume the
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regression model in (1) with only one predictor, a fixed regression variance σ2 = 1,

and a prior distribution on the regression coefficient of the form β ∼ N (0, τ 2). Then

the posterior mean/mode of β is of the form

βBayes =
(
1/τ 2 + x′x

)−1
(x′y). (18)

When τ 2 →∞ then the estimator becomes identical to OLS. However, the interesting

case is when τ 2 is finite, that is, informative. Even when x′x is not invertible11,

calculating (1/τ 2 + x′x)
−1

in the Bayes estimator is possible for an appropriate choice

of τ 2. Using jargon from computing science, τ 2 is then a regularizer. In the extreme

case where τ 2 = 0, then βBayes = 0, which implies full shrinkage of the coefficient

towards zero. This can be seen by the fact that in this case the prior for β becomes a

point mass at zero, and the prior will dominate any (possibly weak) information that

the data likelihood might contain about this coefficient.

Perhaps the most popular example of a shrinkage estimator is that of the lasso

(least absolute shrinkage and selection operator) introduced by Tibshirani (1996).

The lasso solves the following optimization problem, which we can write in its

Langrangian form (that should look more familiar to economists)

min
β∈<p

{
1

T
‖y − xβ‖22 + λ‖β‖1

}
, (19)

where λ is a free parameter that determines the amount of regularisation. The

notation ‖ • ‖p denotes the `p norm, where p = 2 is the case of the usual

Euclidean norm. Therefore, the first component in the above formula is the usual

SSE of the regression and the second component is an `1 penalty term, hence

the term “penalized (regression) estimator”.12 The minimization problem of the

lasso can be solved using a wide variety of techniques from convex analysis and

optimization theory. Nevertheless, as the dimension of the regression increases

(more predictors), the complexity of the optimization problem also increases and

11One such case is when many predictors are present and in particular when p >> T , in which
case this matrix is rank deficient, and the OLS estimator doesn’t have a unique solution and will
overfit the data; see Bühlmann and Van De Geer (2011, Section 2.2.1).

12For other penalties we can get other popular estimators in statistics, for instance, the Euclidean
norm gives penalty λ‖β‖2 which results in the famous ridge regression estimator. Note that other
shrinkage estimators might use a different loss function for the residuals; see for example the Dantzig
selector of Candes and Tao (2007).
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the performance of estimation algorithms (such as the LARS algorithm of Efron et

al., 2004) might deteriorate. For that reason an active field of research in machine

learning is the development of approximate algorithms that solve the lasso problem13.

However, many of these fast, approximate machine learning algorithms developed

in the compressive sensing and related literatures, are not necessarily universally

good algorithms that could be used with persistent and correlated macroeconomic

time series data. There are, of course, many cases of fast algorithms with good

theoretical guarantees for convergence. For example, Donoho, Maleki and Montanari

(2009) develop an iterative algorithm for convex optimization called approximate

message passing (AMP), and Mousavi, Maleki and Baraniuk (2017) show asymptotic

consistency of this algorithm for lasso problems. Wang et al. (forthcoming) derive the

frequentist consistency of the class of popular (in Bayesian statistics) variational Bayes

approximate estimators. Nevertheless in some instances, fast approximate algorithms

might either be based on simplifying assumptions (e.g. zero or low correlation in

predictors) that might make their convergence troublesome and their application to

economic data infeasible.

Consistent with our interpretation of Bayesian estimators as shrinkage estimators

in equation (18), Tibshirani (1996, Section 5) noted that the solution to the lasso

problem is equivalent to a Bayesian regression using a Laplace prior on the regression

coefficients we want to penalize. Given that the Laplace distribution can be denoted

as a scaled mixture of Normals representation (also known as hierarchical Bayes),

Park and Casella (2008) show that Bayesian posterior computation is trivial using

the Gibbs sampler, a Markov chain Monte Carlo technique that is familiar to many

applied macroeconomists working with VAR and DSGE models. As a matter of

fact, all popular extensions of the lasso, such as the elastic net of Zhou and Hastie

(2006) and the fused lasso of Tibshirani et al. (2005), have an equivalent hierarchical

Bayes representation; see Kyung et al. (2010) and Korobilis (2013b). While Bayesian

hierarchical priors are very powerful, sometimes proofs of consistency of resulting

posterior distributions are not readily available or they are simply ignored. In

any case, an expanding recent literature is being devoted to the derivation of the

asymptotic properties of Bayesian hierarchical shrinkage estimators; see for example

Bhadra et al. (2016), Ghosh et al. (forthcoming) and Johnson and Rossell (2012).

13In the signal processing and compressive sensing jargon, the lasso optimzation problem is called
“basis pursuit denoising (BPDN)”.
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2.4 Factor models and projection methods

The main idea behind factor models is that of finding a lower-dimensional

representation of our large vector of data. That is, in typical applications a handful of

unobserved factors can summarize the information in large data sets with minimal loss

of information. The factors are unobserved exactly because they have to be estimated

from the data. This is why this class of models have been a benchmark methodology

in psychology, engineering, biology, marketing, economics and other fields. While

there are many ways one can introduce factors in a macroeconometric model14, the

standard way to use them in a univariate regression setting is through the following

formulation

xt = ftλ+ ut, (20)

yt = ftγ + εt, (21)

where xt is the 1× p vector of predictors with p “large”, and ft is the 1× k vector of

factors with k � p. What these two equations describe is a situation where instead of

inserting the large data xt as predictors in the regression for our variable of interest y,

we instead use a lower dimensional vector of k factors. As a consequence the matrix λ

is k× p and the parameter vector γ is k× 1. We can of course generalize and assume

lags of factors in both equations, which is the case of the dynamic factor model; see

for example Stock and Watson (2002). Depending on the exact specification and

estimation method used, errors ut typically have a p × p covariance matrix that is

either diagonal (no correlation between the p variables in xt) or it is characterized by

weak correlation. In any case, the quantity χt = ftλ, also known as the “common

component”, is meant to model most of the covariation among the p series.

There are many benefits from specifying and using factor models. The obvious

implication is that in our regression for y we have k parameters to estimate instead

of p. In typical macro applications it will be the case that, say, p = 120 and k =

3, which will enhance greatly estimation accuracy. As already mentioned, another

implication of factors is that they capture comovements among macro data. For

simplicity take the example of three series that are highly correlated, namely GDP,

employment and industrial production. These three series, that measure the output in

14There are numerous reviews of factor models in economics, but the recent work of Stock and
Watson (2016) serves as a very thorough primer on factor models in macroeconometrics.
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an economy, are subject to measurement error and frequent revisions from statistical

offices. Additionally, they are only incomplete proxies of the more general notion of

“economic activity” that macroeconomists have in mind when constructing theoretical

models. In that respect, using the joint information (i.e. comovement) in these

three variables via a single common factor is not only more parsimonious but it

could also provide protection against data irregularities (Bernanke, Boivin and Eliasz,

2005). Another benefit is that the class of factor models has a representation which

is similar to the state-space form of dynamic stochastic general equilibrium (DSGE)

models with many observable variables and a smaller set of state variables (Forni and

Gambetti, 2014). Finally, factor models have been used in other flexible settings that

allow for our large data xt to be unbalanced (Stock and Watson, 2002) or measured

in various frequencies (Mariano and Murasawa, 2003); settings where factors enter a

regression model as “soft” prior restrictions using Bayesian methods (Hahn, Carvalho

and Mukherjee, 2013); settings where the factor model is used as a means of data-

based forecast combinations (Chan, Stock and Watson, 1999), and in structural VAR

analysis (Stock and Watson, 2005; Korobilis, 2013a).

There are several ways to estimate factor models. Parametric likelihood-

based methods, such as maximum likelihood and Bayesian methods, are typically

computationally cumbersome. This is due to the high latency of factor models, since

equation (20) is a regression where both ft and λ are latent. In such cases iterative

estimation algorithms for latent data, such as the EM algorithm (Doz, Giannone and

Reichlin, 2012) and the Gibbs sampler (Lopes and West, 2004), might be needed.

An alternative approximate two-step approach that is asymptotically consistent is

based on replacing factors with principal component estimates; see Stock and Watson

(2016). Principal component analysis (PCA) provides nonparametric estimates that

are based on eigenvalue decomposition of the covariance matrix (static approach)

or the spectral density matrix (dynamic approach) of our data xt, and not on the

parametric likelihood of the factor model. Once factors are replaced by PCA estimates

we can, in a second step, estimate equations (20) and (21) using simple OLS. The

PCA approach is computationally simple, and due to the two-step approach it doesn’t

suffer from the same identification issue that occurs when estimating ft and λ jointly

in one step.15 In that respect, it is not unreasonable that the PCA approach is the

15This issue is important, as demonstrated in Bernanke, Boivin and Eliasz (2005), which is
possibly one of the very few studies in economics that compares results using both a simple two-step
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most popular in economics despite several variants of factor models that have been

proposed over the years.

Despite the popularity of principal components, in practical situations there might

be several challenges that undermine their performance. First, principal components

do not have any immediate economic interpretation16 even if they summarize

information in economic time series. When using large macroeconomic panels the first

principal component can sometimes be thought of as a real activity factor (Stock and

Watson, 2003, Section 3.3.2), but further factors cannot be labelled easily unless they

are extracted in blocks of data releases as in Belviso and Milani (2006). Second, unlike

likelihood-based factor models which can be used for nonstationary/persistent macro

data (Peña and Poncela, 2004) principal components can only describe data that

are fully or approximately stationary.17 Additionally, unlike common belief among

applied economists, principal component analysis of factor models is not a black-box

procedure where we can simply add any number of explanatory variables and then be

sure that factors will provide an optimal summary of these variables. Boivin and Ng

(2006) formalize this argument by showing that just adding more data is not always

better for factor analysis using principal components. Finally, if we want to go way

beyond the standard large macro panels with 100-200 series and model with truly Big

Data, then PCA is not computationally trivial any more. For example, implementing

the eigenvalue decomposition of a 100, 000 × 100, 000 covariance matrix is anything

but trivial.

In truly high-dimensional cases, there are alternative algorithms that can help

us estimate factor models. In multi-dimensional analysis and machine learning in

particular, there are several alternative methods with names such as probabilistic

PCA, independent component analysis (ICA), linear discriminant analysis (LDA),

estimator (via PCA + OLS), and a Bayesian one-step estimator (via MCMC methods). Due to
the unreasonable zero restrictions that ought to be imposed during estimation, structural impulse
responses from the one-step estimation method degenerate to a zero median for many variables in
their data set. In contrast, factors estimated with PCA help identify the same variables much better;
see and compare Figures 2-5 in Bernanke, Boivin and Eliasz (2005).

16In addition to the naming/labelling issue, PCA is a nonparametric procedure that only
approximates the true parametric factor model in equations (20) and (21). Therefore, PCA estimates
of ft are not optimized to convey maximum influence on y. That is, they provide a convenient,
approximate two-step estimate of ft based on a decomposition only of the data xt without reference
to our data y. In machine learning and artificial intelligence such methods are referred to as
“unsupervised learning” procedures.

17The first principal component extracted from nonstationary data degenerates to be the simple
mean of the p series, with the loadings vector λ being a vector of ones.
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mixtures of factor analyzers, Principal Coordinates Analysis (PCoA) and other

acronyms (Barber, 2012; Bishop, 2006). Of interest in high-dimensional inference

is the method of random projections introduced in the field of compressive sensing

(Donoho, 2006). As the name suggests linear projection methods can be used to

project a high-dimensional matrix into a lower-dimensional vector or matrix (with the

columns of the latter being a linear combination of the columns of the former). PCA is

such a method that projects the data into lower-dimensional orthogonal vectors but,

as already claimed, the optimization problem it solves (maximizing remaining variance

of data explained by each component) can become computationally cumbersome

in high dimensions. Random projection (RP), in contrast, is a “data-oblivious”

method that simply requires to generate matrices that project our data xt into a

lower dimensional ft using random numbers from our PC. Under certain conditions,

the so-called Johnson-Lindenstrauss Lemma guarantees that a lower bound exists

for the error from approximating our data with the randomly generated, lower-

dimensional ft. Guhaniyogi and Dunson (2015) present an interesting Bayesian

application of this method where they combine RP with Bayesian model averaging

in a regression problem and prove consistency of posterior predictive distributions.

Maillard and Munos (2012) provide approximation error bounds in a least-squares

regression problem involving RP compression of predictors. On a final note, there

are other efficient algorithms related to PCA and general factor models that have

also been used successfully in forecasting applications in economics, such as Partial

Least Squares (PLS) and the three-Pass Regression Filter (3PRF) of Kelly and Pruitt

(2015).

3 Extensions of the basic regression model

Up to this point, a large part of this review was devoted to summarizing methods

that can be used in the univariate linear regression setting. Nevertheless, applied

macroeconomists currently tell us18 that for the problem of, say, modeling inflation,

time-varying parameter regression models with stochastic volatility are empirically

far superior than a linear regression. Similarly, modern macroeconomic problems

need to be cast in a multivariate time series form, rather than a univariate one, in

order to decompose and explain all static and dynamic linkages between variables.

18See for example Pettenuzzo and Timmerman (2017) and Stock and Watson (2007).
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The purpose of this Section is to build further intuition by demonstrating

various ways to approximate a high-dimensional inference problem in multivariate

and time-varying parameter regression models. While there is always the option

to solve such problems by relying on extensive derivations and state-of-the-art

statistical algorithms, there are many cases where we can cast a possibly nonlinear

or multivariate problem into (something that looks like) a linear regression. Or we

can cast the linear multiple regression model with p predictors into a collection of

regressions with one predictor. Once we do that, then we might be able to apply

existing, simple estimation algorithms and adapt them to a much harder problem.

The main idea for motivating such an approach is at the core of machine learning

inference, and applied macroeconomists can learn a lot from this: instead of dealing

with a difficult and hard to approximate problem, try to break it into smaller pieces

that are easy to approximate quickly.19 I explain what is meant by this procedure,

using three distinct examples.

3.1 Variable elimination in regression

Variable elimination or marginalization is a machine learning procedure used in

graphical models that, loosely speaking, allows (via certain rules) to break a high-

dimensional inference problem into a series of smaller problems. We can use

similar ideas in our standard regression setting in order to facilitate high-dimensional

inference. Assume that we work again with a regression model setting with p

predictors, but this time interest lies in the j-th predictor and its coefficient. We

can rewrite the regression as

y = xjβj + x(−j)β(−j) + ε, (22)

where y, xj and ε are all T ×1 vectors and x(−j) is a T × (p−1) predictor matrix with

predictor j removed. It might be the case that we are interested only in parameter βj

because this is a policy parameter. A first useful result is the one of partitioned

regression, or partial-time regression using the terminology of Frisch and Waugh

(1933). Defining the T × T annihilator matrix Mj = IT − xj
(
x′jxj

)−1
x′j, it is easy to

19This logic is particularly important for high-dimensional machine learning inference because
it allows to break a problem into multiple small steps that can be distributed into multiple
processing cores, thus taking advantage of increased availability of multi-core CPUs, GPUs and
High-Performance Clusters.
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show using the algebra of partitioned matrices that β̂j, the OLS estimates of βj can

be obtained as the solution of

β̂j =
(
x′jxj

)−1
x′j

(
y − x(−j)β̂(−j)

)
(23)

where the sub-vector β̂(−j) is the solution of the following regression

β̂(−j) =
(
x†′(−j)x

†
(−j)

)−1
x†′(−j)y

† (24)

with x†(−j) = Mjx(−j) and y† = Mjy denoting the projections of x(−j) and y on a space

that is orthogonal to xj.

This result provides very useful intuition about the relationships between our

variables and coefficients in the OLS regression. Most importantly they can be

generalized to efficient procedures for high-dimensional inference. Consider for

example combining partitioned regression results with a penalized estimator instead of

OLS. To demonstrate this point, I consider an alternative partition of the regression

due to van den Boom, Reeves and Dunson (2015). Define the T × 1 vector qj =

xj/‖xj‖, and generate randomly a matrix Qj that is normalized as QjQ
′
j = I − qjq′j.

This means that the matrix Q = [qj, Qj] is orthogonal, such that multiplying both

sides of (22) by Q′ gives

Q′y = Q′xjβj +Q′x(−j)β(−j) +Q′ε⇒ (25)[
q′jy

Q′jy

]
=

[
q′jxj

Q′jxj

]
βj +

[
q′jx(−j)

Q′jx(−j)

]
β(−j) +Q′ε⇒ (26)[

y∗

y+

]
=

[
‖xj‖

0

]
βj +

[
x∗(−j)
x+(−j)

]
β(−j) + ε̃, (27)

where y∗ = q′jy, y+ = Q′jy, x∗(−j) = q′jx(−j), x
+
(−j) = Q′jx(−j) and ε̃ = Q′ε. In

the derivation above we have used the fact that Q′jxj = Q′jqj‖xj‖ = 0 because

Qj and qj are orthogonal. Additionally, var(ε̃) = σ2Q′Q = σ2 = var(ε) because by

construction Q′Q = I. The likelihood of the transformed regression model in equation

(27) is multivariate Normal, which means we can use standard results for conditional

Normal distributions to show that we can first estimate β(−j), σ
2 by regressing y+ to

x+(−j), and then at a second stage obtain βj by regressing y∗ on ‖xj‖ conditional on
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β(−j), σ
2 being known. This is a very useful result since now, conditional on obtaining

in a first step some estimates of β(−j), σ
2, we can estimate βj in a regression with

known variance.20 In a Bayesian context van den Boom, Reeves and Dunson (2015)

use this result to derive analytically approximate marginal posteriors for βj under

a class of spike and slab priors; see equation (13). Korobilis and Pettenuzzo (2018)

generalize this idea to high-dimensional VARs under a wider class of hierarchical

shrinkage priors. Considering that the exact way of calculating marginal posteriors

would involve solving numerically a p− 1-dimensional integral for each j, doing this

transformation and deriving the marginal posteriors analytically means large gains in

computation.

3.2 Time-varying parameter models

Time-varying parameter models are a natural extension of the linear regression model

analyzed in the previous Section. The standard form of the time-varying parameter

(TVP) regression model used in economics is

yt = xtβt + εt, (28)

βt = βt−1 + ut, (29)

β0 ∼ N
(
β, V

)
(30)

where ut ∼ N (0, Q) with Q a p × p covariance matrix, and for simplicity assume

that εt ∼ N (0, σ2) despite the fact that in practical situations one would also want

the regression variance σ2 to be time-varying. If we ignore the second equation for a

moment, the first equation says that at each point in time a new regression coefficient

holds, hence, the subscript t the coefficient vector. Granger (2008) quotes a very

generic theorem suggested by Halbert White, stating that a general time-varying

parameter specification can approximate any form of nonlinearity previously used in

econometrics. The second and third equations of the system above make the time-

varying regression model look like a state-space model that can be estimated using

the Kalman filter algorithm and its variants (Kim and Nelson, 1999). The second

equation can be viewed as a rule for the time series evolution of βt, and the third

equation is a necessary initial condition that has to be chosen as the data cannot

20Most importantly, we can do so in parallel for all predictors j = 1, ..., p.
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provide any explicit information about period t = 0.

With a little bit of algebra we can immediately obtain further intuition about the

TVP regression. We take only equation (28) and write it in a static regression form

as

y = Zβ + ε, (31)

where y = (y′1, ..., y
′
T )′ and ε = (ε′1, ..., ε

′
T )′ are T × 1 vectors, β = (β1, ..., βT ) is a

Tp× 1 vector of regression coefficients, and we define

Z =


x1 0 · · · 0

0 x2
. . .

...
...

. . . . . . 0

0 · · · 0 xT

 ,

the T ×Tp right-hand side matrix of predictors. Even though equations (28) and (31)

are observationally equivalent, the second form allows us to see the TVP regression

as a regression problem with many predictors. We originally have p predictors but by

the time we have to estimate one time-varying parameter for each of these predictors,

the static regression form of the TVP model has Tp “predictors”.21 This equation

on its own cannot be estimated estimated with OLS because Z is of rank T when

we have to estimate Tp coefficients. In this case some form of shrinkage along the

lines of what we analyzed in the previous Section could allow estimation of the

TVP regression. But this is exactly what equation (29) does in the original TVP

model: instead of viewing this equation as a time-series autoregression for βt, this

equation can be viewed from a Bayesian perspective as a conditional prior of the

form p (βt|βt−1) ∼ N (βt−1, Q). As we argued in Section 2.3 such priors, if properly

tuned and selected, lead to Bayesian shrinkage estimators that will allow estimation

of the high-dimensional regression model in (31). However, even though use of the

prior p (βt|βt−1) has been popular at least since the works of Cooley (1971) and

Cooley and Sargent (1976), we can simply ignore this specific shrinkage prior and

the resulting state-space methods. We can choose, instead, to estimate equation (31)

using the lasso or some other penalized regression estimator of our choice and achieve

similar results. Korobilis (2018) applies such ideas in a forecasting problem involving

TVP regressions with many predictors. Shrinkage is implemented using hierarchical

21This form is basically the multiviarate form of a regression with time dummies for each predictor.
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priors used widely in statistics, but computation relies on the sum-product algorithm

developed in computing science (see Wand, 2017, for a review that is accessible to

statisticians).

Even though we just showed how the autoregressive (random walk to be exact)

evolution of βt is not the only way to estimate the TVP regression problem, assume

again the TVP regression in its original, popular form in equations (28) - (30). As

shown in Früwirth-Schnatter and Wagner (2010), such state-space models can be

written in an equivalent “non-centered” form:

yt = xtθ + xtθt + εt, (32)

θt = θt−1 + ut, (33)

θ0 ∼ N (0, 0) ≡ 0. (34)

When comparing to the original form it holds that βt = θ + θt. Given the restriction

that θt is initialized at a fixed point (θ0 = 0), means that in this formulation θ is

the equivalent of the random initial condition we had for βt. The major difference

is that what was the initial condition can now be interpreted as the constant part of

the regression model, and θt is the add-on time-varying part of the regression. Notice

now how this new specification facilitates high-dimensional inference as we can now

do shrinkage or variable selection (along the lines of the previous chapter) on the

coefficient θ whilst in the original specification it wasn’t obvious how to do the same

with the initial condition β0. Indeed, Früwirth-Schnatter and Wagner (2010) proceed

in their analysis by using a spike and slab prior on θ.22

3.3 Vector autoregressions

Some of the most important quantitative exercises that policy-makers are interested

in, involve the vector autoregressive (VAR) model and its variants. Economic theories

can be tested reliably only in a multivariate econometric setting, and the same holds

to a large degree for measuring the impact of shocks to the wider economy. While

a large part of empirical analysis is done using VARs of say three or five variables,

there is an expanding literature that acknowledges the benefits of large VARs (Ellahie

and Ricco, 2017). In particular, small structural VARs might not be invertible (Forni

22The authors go one step further than that by also scaling equation and applying a shrinkage
prior to θt; see Früwirth-Schnatter and Wagner (2010) for more details.
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and Gambetti, 2014) meaning that their residuals will not span the same space as

the structural shocks that macroeconomists want to identify (Bernanke, Boivin and

Eliasz, 2005). From a non-structural point of view Baǹbura, Giannone and Reichlin

(2010) were the first to show that VARs with 130 endogenous variables and almost

quarter of a million parameters can be used to forecast variables of interest. Since

then, there is an expanding and lively literature on methods for estimating large

VARs, see for example Koop, Korobilis and Pettenuzzo (forthcoming) and references

therein.

A vector autoregression for an 1×n vector of variables of interest yt can be written

in the following form

yt = B0 +

p∑
i=1

yt−iBi + εt, (35)

but we can write it in familiar multivariate regression form as

yt = XtB + εt, (36)

where Xt = (1, yt−1, ..., yt−p), A = [B0, B1, ..., Bp] and εt ∼ N (0,Σ) with Σ and n× n
covariance matrix. Accumulation of parameters in VARs is quite different compared

to univariate models. A VAR with n = 3 variables, intercept terms and p = 1 lag has

18 parameters. The same VAR with n = 50 variables has 3825 parameters. The last

VAR with p = 12 has 31325 parameters. This gives an idea of the polynomial rate at

which the number of parameters increases as n and/or p increase.

Many applied macroeconomists choose to shrink smaller or larger VARs using

Bayesian methods, along the lines of variable selection or shrinkage priors discussed in

the previous Section; see Miranda-Agrippino and Ricco (2018) in this Encyclopedia.

Fortunately, as Baǹbura, Giannone and Reichlin (2010) and Giannone, Lenza and

Primiceri (2015) show, there is a way to use elegant Bayesian shrinkage priors in a

VAR without having to rely on computationally expensive simulation methods to

derive the posterior. The method relies on the so-called natural conjugate prior, that

allows analytical derivations of (regularized) parameter posterior moments in the

same way we derived equation (18). Nevertheless, such natural conjugate priors have

the limitation that they treat VAR equations symmetrically. The implication of this

is that we cannot impose or test restrictions from economic theory that suggest that

only some independent variables might affect our endogenous variables. For example
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in VAR system with money, output and inflation, imposing money neutrality means

that lags of money should not enter the equation for output. However, doing so means

that lags of money should also affect inflation, even if we have reasons to believe that

this is not correct. Allowing money to affect inflation means that we have to allow it

to also affect GDP. Such a rigid situation is not ideal, especially in high dimensions

when we might have hundreds of endogenous variables, and thousands of interactions

among them.

Nevertheless, there are still simple ways to readily apply ideas from the univariate

regression model. Carriero, Clark and Marcellino (2017) and Koop, Korobilis and

Pettenuzzo (forthcoming), in the context of developing efficient estimation algorithms

for large VARs, proposed to break the VAR into a collection of n univariate equations.

Using ideas from estimation of simultaneous equation models (Hausman, 1983) we can

transform the VAR in triangular form. Consider the Cholesky-like decomposition of

the covariance matrix, Σ = A−1D (A−1)
′
where D is a diangonal matrix for variances,

and A−1 is a unitriangular matrix of the form

A−1 =



1 0 ... 0 0

α2,1 1
. . .

...
...

...
. . . . . . 0 0

αn−1,1 ... αn−1,n−2 1 0

αn,1 ... αn,n−2 αn,n−1 1


. (37)

Under this decomposition we can rewrite the VAR in equation (36) as

yt = XtB + ut

(
A−1D

1
2

)′
⇒ (38)

ytA = XtBA+ ut, D
1
2 ⇒ (39)

yt + ytÃ = XtΓ + ut, D
1
2 ⇒ (40)

yt = XtΓ− ytÃ+ ut, D
1
2 , (41)

where ut ∼ N(0, I), Γ = B × A and Ã = A − I is a lower diagonal matrix created

from A after we remove its unit diagonal elements. This is a so-called triangular VAR

system due to the fact that Ã has a lower triangular structure. It cannot be estimated

as a multivariate regression using standard linear estimators because yt shows up both

on the left-hand side and the right-hand side of the equation. However, due to the
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lower triangular structure of Ã and the fact that D is diagonal the system can be

estimated equation-by-equation using simple OLS (Hausman, 1983). This means

that in high dimensions we can essentially write the VAR in this form and apply

any univariate regression estimator and algorithm we like.23 More importantly, note

that the last equation shows that all contemporaneous covariances among the n VAR

equations can be written as RHS predictors −yt. This is an important implication

because it shows that Ã can be treated as a regression parameter and (given that

we can estimate these equations recursively) we can readily apply methods of the

previous section to impose shrinkage also on the VAR covariance matrix.

Finally, Carriero, Clark and Marcellino (2016) derive a similar triangular VAR

that has slightly different representation and implications for estimation. Begin with

equation (36) but now rewrite it in the form

yt = XtB + ut

(
A−1D

1
2

)′
⇒ (42)

yt = XtB + ut

((
Ã−1 + I

)
D

1
2

)′
⇒ (43)

yt = XtB + utÃ
−1D

1
2 + utD

1
2 ⇒ (44)

yt = XtB + vtÃ
−1 + vt, (45)

where vt ∼ N(0, D) and Ã−1 = A−1 − I is a triangular matrix created by removing

the identity diagonal of A−1. As Carriero, Clark and Marcellino (2016) show, the

above system can also be estimated equation by equation, where in equation i we

use residuals from the previous i− 1 equations. This form has different implications

for designing estimation algorithms compared to the one in (41), even though they

are observationally equivalent. Equation (45) allows direct estimation of the VAR

matrices B and A−1, while equation (41) estimates functions of those, i.e. Γ and A.

Such examples show that high-dimensional inference can be approximated by efficient

transformations of the VAR model that allow to readily apply univariate estimators

which are simpler and possibly algorithmically faster.

23Of course, note that this flexibility comes at the cost of shrinkage or variable selection being
dependent on the ordering of the variables in the VAR; see Koop, Korobilis and Pettenuzzo
(forthcoming) for a discussion.
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