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Abstract. Obvious strategyproofness (OSP) is an appealing concept
as it allows to maintain incentive compatibility even in the presence of
agents that are not fully rational, e.g., those who struggle with contingent
reasoning [10]. However, it has been shown to impose some limitations,
e.g., no OSP mechanism can return a stable matching [3].
We here deepen the study of the limitations of OSP mechanisms by look-
ing at their approximation guarantees for basic optimization problems
paradigmatic of the area, i.e., machine scheduling and facility location.
We prove a number of bounds on the approximation guarantee of OSP
mechanisms, which show that OSP can come at a significant cost. How-
ever, rather surprisingly, we prove that OSP mechanisms can return opti-
mal solutions when they use monitoring — a mechanism design paradigm
that introduces a mild level of scrutiny on agents’ declarations [9].

1 Introduction

Algorithmic Mechanism Design (AMD) is by now an established research area in
computer science that aims at conceiving algorithms resistant to selfish manip-
ulations. As the number of parties (a.k.a., agents) involved in the computation
increases, there is, in fact, the need to realign their individual interests with the
designer’s. Truthfulness is the chief concept to achieve that: in a truthful mech-
anism, no selfish and rational agent has an interest to misguide the mechanism.
A question of recent interest is, however, how easy it is for the selfish agents to
understand that it is useless to strategize against the truthful mechanism.

Recent research has come up with different approaches to deal with this
question. Some authors [14, 4, 6, 1] suggest to focus on “simple” mechanisms;
an orthogonal approach is that of verifiably truthful mechanisms [5], wherein
agents can run some algorithm to effectively check that the mechanism is incen-
tive compatible. Li [10] has recently formalized the aforementioned idea of sim-
ple mechanisms, by introducing the concept of Obviously Strategy-Proof (OSP)
mechanisms. This notion stems from the observation that the very same mech-
anism can be more or less truthful in practice depending on the implementation
details. For example, in lab experiments, Vickrey’s famous second-price mech-
anism results to be “less” truthful when implemented via a sealed-bid auction,
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and “more” truthful when run via an ascending auction. The quite technical
definition of OSP formally captures how implementation details matter by look-
ing at a mechanism as an extensive-form game; roughly speaking, OSP demands
that strategy-proofness holds among subtrees of the game (see below for a for-
mal definition). An important validation for the ‘obviousness’ is further provided
by Li [10] via a characterization of these mechanisms in terms of agents with
limited cognitive abilities (i.e., agents with limited skills in contingent reason-
ing). Specifically, Li shows that a strategy is obviously dominant if and only if
these “limited” agents can recognize it as such. Nevertheless, the notion of OSP
mechanisms might be too restrictive. E.g., Ashlagi and Gonczarowski [3] prove
that no OSP mechanism can return a stable matching – thus implying that the
Gale-Shapley matching algorithm is not OSP despite its apparent simplicity.

Our contribution. We investigate the power of OSP mechanisms in more de-
tail from a theoretical computer science perspective. In particular, we want to
understand the quality of approximate solutions that can be output by OSP
mechanisms. To answer this question, we focus on two fundamental optimization
problems, machine scheduling [2] and facility location [11], arguably (among) the
paradigmatic problems in algorithmic mechanism design.

For the former problem, we want to compute a schedule of jobs on self-
ish related machines so to minimize the makespan. For this single-dimensional
problem, it is known that a truthful PTAS is possible [7]. In contrast, we show
that there is no better than 2-approximate OSP mechanism for this problem
independently from the running time of the mechanism.

For the facility location problem, we want to determine the location of a
facility on the real line given the preferred locations of n agents. The objective
is to minimize the social cost, defined as the sum of the individual agents’ dis-
tances between their preferred location and the facility’s. Moulin [11] proves that
the optimal mechanism, that places the facility on the median of the reported
locations, is truthful. OSP mechanisms turn out to be much weaker than that.
We prove in fact a tight bound of n− 1.

However, a surprising connection of OSP mechanisms with a novel mechanism
design paradigm – called monitoring – allows us to prove strong positive results.
Building upon the notion of mechanisms with verification [12, 13], Kovacs et al.
[9] introduce the idea that a mechanism can check the declarations of the agents
at running time and guarantee that those who overreported their costs end up
paying the exaggerated costs. This can be enforced whenever costs can be easily
measured and certified. For example, a mechanism can force a machine that in
her declaration has augmented her running time to work that long by keeping
her idle for the difference between real and reported running time.

We prove that, for machine scheduling, there is an optimal OSP mechanism
with monitoring. The construction of this mechanism can use any algorithm for
the problem as a black box, thus implying that there is PTAS that is OSP. Our
construction is based upon the first-price (truthful) mechanism (with monitor-
ing) recently designed in [15]. Our results effectively show how it is possible to
modify this mechanism to allow OSP implementations.



2 Preliminaries

Mechanisms and strategy-proofness. In this work we consider a classical mecha-
nism design setting, in which we have a set of outcomes O and n selfish agents.
Each agent i has a type ti ∈ Di, where Di is defined as the domain of i. The
type ti is private knowledge of agent i. Moreover, each selfish agent i has a cost
function ci : Di ×O → R. For ti ∈ Di and X ∈ O, ci(ti, X) is the cost paid by
agent i to implement X when her type is ti.

A mechanism consists of a protocol whose goal is to determine an outcome
X ∈ O. To this aim, the mechanism is allowed to interact with agents. During
this interaction, agent i is observed to take actions; these actions may depend
on her presumed type bi ∈ Di that can be different from the real type ti. We
say that agent i takes actions according to bi to stress this. For a mechanismM,
we let M(b) denote the outcome returned by the mechanism when agents take
actions according to their presumed types b. Usually, this outcome is given by
a pair (f,p), where f = f(b) (termed social choice function) maps the actions
taken by the agents according to b to a feasible solution for the problem at the
hand, and p = (p1(b), . . . , pn(b)) ∈ Rn maps the actions taken by the agents
according to b to payments from the mechanism to each agent i.

A mechanismM is strategy-proof if for every i, every b−i and every bi ∈ Di,
it holds that ci(ti,M(ti,b−i)) ≤ ci(ti,M(bi,b−i)), where ti is the true type of
i. That is, in a strategy-proof mechanism the actions taken according to the true
type are dominant for each agent. Moreover, a mechanismM satisfies voluntary
participation if for every i and every b−i, it holds that ci(ti,M(ti,b−i)) ≤ 0.

Obvious strategyproofness. An extensive-form mechanism M is defined by a di-
rected tree T = (V,E) such that: (i) every leaf ` of the tree is labeled by a
possible outcome X(`) ∈ O of the mechanism; (ii) every internal vertex u ∈ V
is labeled by a subset S(u) ⊆ [n] of agents; (iii) every edge e = (u, v) ∈ E is
labeled by a subset T (e) ⊆ D of type profiles such that:

– the subsets of profiles that label the edges outgoing from the same vertex u
are disjoint, i.e., for every triple of vertices u, v, v′ such that (u, v) ∈ E and
(u, v′) ∈ E, we have that T (u, v) ∩ T (u, v′) = ∅;

– the union of the subsets of profiles that label the edges outgoing from a non-
root vertex u is equal to the subset of profiles that label the edge going in
u, i.e.,

⋃
v : (u,v)∈E T (u, v) = T (φ(u), u), where φ(u) is the parent of u in T ;

– the union of the subsets of profiles that label the edges outgoing from the
root vertex r is equal to the set of all profiles, i.e.,

⋃
v : (r,v)∈E T (r, v) = D;

– for every u, v such that (u, v) ∈ E and every two profiles b,b′ ∈ T (φ(u), u)
such that (bi)i∈S(u) = (b′i)i∈S(u), if b belongs to T (u, v), then also b′ must
belong to T (u, v).

Observe that, according to the definition above, for every profile b there is
only one leaf ` = `(b) such that b belongs to T (φ(`), `). For this reason we say
that M(b) = X(`). Moreover, for every type profile b and every node u ∈ V ,
we say that b is compatible with u if b ∈ T (φ(u), u). Finally, two profiles b, b′



are said to diverge at vertex u if there are two vertices v, v′ such that (u, v) ∈ E,
(u, v′) ∈ E and b ∈ T (u, v), whereas b′ ∈ T (u, v′).

An extensive-form mechanism M is obviously strategy-proof (OSP) if for
every agent i, for every vertex u such that i ∈ S(u), for every b−i,b

′
−i, and for

every bi ∈ Di such that (ti,b−i) and (bi,b
′
−i) are compatible with u, but diverge

at u, it holds that ci(ti,M(ti,b−i)) ≤ ci(ti,M(bi,b
′
−i)).

Monitoring. Let M(b) denote the outcome returned by mechanism M = (f,p)
when agents take actions according to b. Commonly, the cost paid by agent i
to implementM(b) is defined as a quasi-linear combination of agent’s true cost
ti(f(b)) and payment pi(b), i.e., ci(ti,M(b)) = ti(f(b))− pi(b). This approach
disregards the agent’s declaration for evaluating her cost.

In mechanisms with monitoring the usual quasi-linear definition is maintained
but costs paid by the agents are more strictly tied to their declarations [9]. Specif-
ically, in a mechanism with monitoringM, the bid bi is a lower bound on agent i’s
cost for f(bi,b−i), so an agent is allowed to have a real cost higher than bi(f(b))
but not lower. Formally, we have ci(ti,M(b)) = max{ti(f(b)), bi(f(b))}−pi(b).

3 Machine scheduling

We are given a set of m different jobs to execute and the n agents control related
machines. That is, agent i has a job-independent processing time ti per unit of
job (equivalently, an execution speed 1/ti that is independent from the actual
jobs). Therefore, the social choice function f must choose a possible schedule
f(b) = (f1(b), . . . , fn(b)) of jobs to the machines, where fi(b) denotes the job
load assigned to machine i when agents take actions according to b. The cost
that agent i faces for the schedule f(b) is ti(f(b)) = ti · fi(b). Note that our
mechanisms for machine scheduling will always pay the agents.

For this setting, monitoring means that those agents who have exaggerated
their unitary processing time, i.e., they take actions according to bi > ti, can be
made to process up to time bi instead of the true processing time ti. E.g., we
could not allow any operation in the time interval [ti, bi] or charge bi − ti.

We focus on social choice functions f∗ optimizing the makespan, i.e., f∗(b) ∈
arg minx mc(x,b), where mc(x,b) = maxn

i=1 bi(x). We have the following results.

Theorem 1. For every ε > 0, there is no (2 − ε)-approximate mechanism for
the machine scheduling problem that is OSP without monitoring and satisfies
voluntary participation.

Theorem 2. For every α-approximate algorithm f for the machine scheduling
problem on related machines there is an α-approximate mechanism for the same
problem that is OSP with monitoring and satisfies voluntary participation.

4 Facility location

In the facility location problem, the type ti of each agent consists of her position
on the real line. The social choice function f must choose a position f(b) ∈ R for



the facility. The cost that agent i pays for a chosen position f(b) is ti(f(b)) =
d(ti, f(b)) = |ti − f(b)|. So, ti(f(b)) denotes the distance between ti and the
location of the facility computed by f when agents take actions according to b.

We can implement monitoring also in this setting whenever evidences of the
distance can be provided (and cannot be counterfeited). In fact, in this context,
monitoring means that ti(f(b)) = max{d(ti, f(b)), d(bi, f(b))}. Therefore, once
the evidence is provided, the mechanism can check whether ti(f(b)) < bi(f(b))
and charge the agent the difference for cheating.

We focus on optimizing the social cost, i.e., f∗(b) ∈ arg minx∈R cost(x,b),

where cost(x,b) =
∑n

i=1 bi(x). We have the following results.

Theorem 3. For every ε > 0, there is no (n− 1− ε)-approximate mechanism
for the facility location problem that is OSP without monitoring.

Theorem 4. There is a (n−1)-approximate mechanism for the facility location
problem that is OSP, even without monitoring.
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2. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS
’01. pp. 482–491 (2001)

3. Ashlagi, I., Gonczarowski, Y.A.: No stable matching mechanism is obviously
strategy-proof. arXiv preprint arXiv:1511.00452 (2015)

4. Babaioff, M., Immorlica, N., Lucier, B., Weinberg, S.M.: A simple and approxi-
mately optimal mechanism for an additive buyer. In: FOCS ’14. pp. 21–30 (2014)

5. Brânzei, S., Procaccia, A.D.: Verifiably truthful mechanisms. In: ITCS ’15. pp.
297–306 (2015)

6. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: STOC ’10. pp. 311–320 (2010)
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