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Stable K-theory
and topological Hochschild homology
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ABSTRACT. We present a program to prove the equivalence of stable K-theory
and topological Hochschild homology for Axo-rings. We explain the reductions
of the problem to one crucial calculation and outline the approach to the cal-
culation, which uses a generalization of the notion of generalized free product
of rings and accompanying decomposition theorems in K-theory.

1. Stable K-theory and topological Hochschild homology

The purpose of this note is to expand on material first presented by the third-
named author in a lecture at Northwestern University in 1988. The material that
concerns us describes a program to prove that the trace map induces a natural ho-
motopy equivalence of infinite loop spaces between stable K-theory and topological
Hochschild homology of A, ring spectra. B. Dundas and R. McCarthy [3] have
given a proof of the result for simplicial rings, which are included in our category as
the generalized Eilenberg-MacLane spectra, using a strategy totally different from
what we will describe here. Also, B. Dundas has a recent preprint [2] in which
he proves agreement of relative algebraic K-theory completed at a prime p with
relative topological cyclic homology also completed at p, which is a generalization
of the main result of Goodwillie’s paper [6]. Dundas remarks that the ideas of his
preprint can be used to provide a completely different proof of the result we are
discussing here.

In this section we recall the definitions of these objects and prove a few of the
basic properties. For us a spectrum will always be a connective strict Q-spectrum
[8, page 11]. The definition of an A..-ring spectrum is found in [9, page 248].
Expanding this definition in terms of diagrams satisfying certain properties suggests
the definitions of A .-module spectra and of A-bimodule spectra over a given A.-
ring. The algebraic K-theory of an A, ring was first defined in [9, page 272]; other
definitions of the algebraic K-theory of A-rings are found in [14]. In the rest of
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this paper we use the up-to-date terminology of [4] for ring spectra and direct the
reader there for details. Thus, in this paper a ring R is a g-cofibrant S-algebra and
a module over R is understood as a cell R-module in the sense of [4, Chapter III,
section 2]. The algebraic K-theory of S-algebras is also discussed in [4, Chapter VI].

Our definition of stable K-theory is suggested by remarks concerning the stable
K-theory of simplicial rings found in {18, page 388]. First come two pieces of
notation. First, for any R-bimodule M we write R® M for the ring which has Rv M
as underlying R-bimodule and which carries the unique multiplication compatible
with the bimodule structure making M a square zero ideal. Writing A : RAM —
M and p: M A R — M for the bimodule structure maps and 1 : RA R — R for
the multiplication on R, the multiplication ' : (R®& M)A (R® M) — R@ M has
the matrix representation

#’=(g g 2 g):(R/\R)V(R/\M)V(M/\R)V(M/\M)—>RVM.

Second, if M is a bimodule over R, then M(m) is the bimodule M shifted up by
m dimensions. More precisely,

M{m)=MAS™,
the smash product of the spectrum M with the pointed space S™ [8, page 16].
DEFINITION 1.1. We let R be a ring and let M be an R-bimodule. Define
K*(R; M) = lim Q™ fiber(K (R ® M{m)) — K(R)).
In section 3 we will need to know how well Qm“ﬁbér(K (RpM(m)) — K(R))

approximates K*(R; M). Proposition 1.3 of [20, page 38| generalizes to the A
context and leads to the following result.

PROPOSITION 1.2. Let
F(R; M)(m) = fiber(K(R ® M(m)) — K(R)).
Then the canonical inclusion
Q"1 F(R; M)(m) — K*(R; M)
18 m-connected. O

We take the following definition of topological Hochschild homology of a ring
R with coefficients in the bimodule M from [4, Section 2, Chapter IX].

DEFINITION 1.3. Let R be an S-algebra and M an R-bimodule. Then
THH(R; M) is the realization of the simplicial spectrum THH,(R; M) whose k-
simplices are

THH(R; M) = R A M,
where the A denotes smash product of S-modules.

As is by now well-known, the technical point is to organize the smash products
RMe A M, k > 0, into a simplicial object. For instance, the first problem with a
naive notion of smash product is that they are all a prior: spectra defined over
different universes. However, these problems are solved in [4], and the construction
behaves as one would expect. For instance, we have the following result.
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PROPOSITION 1.4. Take M = RAR°P, the free bimodule of rank one. We have
a natural equivalence of spectra

THH(R;RAR”) -5 R
for any ring R.

PROOF. The proof mimics in the category of spectra the usual manipulations
in the category of rings. First we have for each £ > 0 an isomorphism

RMA(RARPY~RAR AR

which brings the R factor around in front. Filtering these isomorphisms through
the construction which yields topological Hochschild homology, we obtain a natural
homotopy equivalence

THH.(R; RA R”®) — B.(R, R, R),

where the latter object is a two-sided bar construction in which R is acting on
itself first by right multiplication and second by left multiplication. Then iterated
multiplications induce a map of the bar construction to the constant simplicial
object which is R in every dimension, and this is a simplicial homotopy equivalence.
Therefore, passing to realizations and composing, we obtain the desired equivalence

THH(R;RA R®) =5 R.
0

The trace map
K*(R; M) — HH(R; M)

from stable K-theory to Hochschild homology, where R and M are a simplicial ring
and bimodule, respectively, and where HH(R; M) is the realization of the usual
Hochschild homology, is defined in [18, page 392]. In this paper we will not discuss
details of the trace map in the world of A,.-objects; we limit our present interest to
a crucial calculation of stable K-theory, to which the proof of the following result
is reduced.

THEOREM 1.5. Let R be an S-algebra and let M be a bimodule over R. Then
the trace map

K*(R;M) — THH(R; M)
s a homotopy equivalence.

The program to prove this result involves a number of reductions so that one
is reduced to verifying the result in a special case. These reductions are described
in the following propositions. Recall that for a discrete ring R flat over the integers
one may define bi-free bimodules to be those bimodules isomorphic to R® L ® R,
where L is a free abelian group. Transferring the notion to A rings and bimodules
in the most natural way, it becomes the following definition.

DEFINITION 1.6. For a ring R the bi-free bimodule of rank 1 is the bimodule
RAR°P. A bimodule M is bi-free if it is weakly homotopy equivalent to a bimodule
of the form R A L A R°? where L is a cell S-module. That is, L is an S-module
with the property that L has a filtration by S-submodules in which the quotients
of successive layers are wedges of sphere S-modules SZ* for m > 0 [4, page 37].
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We have the following result.

PROPOSITION 1.7. If the theorem is true for M any bi-free bimodule over R,
then it is true for every bimodule over R.

Proo¥r. Every bimodule M has a functorial resolution by bi-free modules,
given by combining the bi-free module construction with the bar construction. That
THH(R; M) for an arbitrary R-bimodule M may be computed through resolution
of M by bi-free R-bimodules is a relatively simple argument based on the fact that
the two ways of geometrically realizing a bisimplicial set yield the same space.

That K*(R; M) may also be retrieved from the stable K-theory of R with
coefficients in bi-free R-modules is also true, but the argument is more difficult.

First let Uy — M be a resolution of M by bi-free R-modules. The realization
of this map is a homotopy equivalence, and our definition of K-theory is homotopy
invariant [14], so

K*(R; |Us|) — K°(R; M)
is also a homotopy equivalence.

What we have to do now is to commute the formation of the geometric realiza-
tion and the formation of stable K-theory. Given the Volodin definition of K-theory
for Ao-rings [5] we may generalize Lemma 1.2.2 of [6] to prove that the relative
K-theory of a surjection of simplicial A,.-rings whose kernel has the property that
its square is zero may be calculated degreewise. In our case, if we define simplicial
spaces F,(m) by

F,(m) = fibre(K (R ® Uy (m)) — K(R)),
then the result implies that there is a natural homotopy equivalence
|Fe(m)| ~ fibre(K (R & |U.|(m)) — K(R)).
Taking limits,
Lim Q™ F,(m) = K*(R; Uy).
Now we may assemble all these natural equivalences into one commuting diagram
in which the vertical arrows are trace maps.

p— K*(R;Up)l =~ K°(R;M)
| }
lp— THH(R;Uy)| ~ THH(R; M)

So, by a wellknown principle, to deduce that the righthand vertical arrow is a
homotopy equivalence, it suffices to show that for each p the lefthand vertical arrow
is a homotopy equivalence. O

Using the following proposition, we reduce to the case of the bi-free bimodule
of rank one.

PRrROPOSITION 1.8. Let R be an S-algebra, and M be an R-bimodule. If L is a
cell S-module, then there are canonical equivalences

K(RRM)AL — K°*(RM AL)
and
THH(R,M)ANL — THH(R; M A L).



STABLE K-THEORY 165

Proor. For topological Hochschild homology this result is an immediate con-
sequence of the definition. For stable K-theory, note that both sides are homology
theories in the variable L after passage to homotopy groups. For K*(R; M A L)
this is exactly the universal property enjoyed by the stablization, and it is true by
definition for K*(R; M)A L. Now both sides agree for S%, and so an easy induction
using the filtration of L ends the proof. I

Combining these reduction steps, one sees that it is enough to prove that the
trace map induces an equivalence

K°(R; RAR®) — THH(R;RAR®)~R.

However, even to manage this, we have to change our ring R somewhat. In the
following proposition, the notation k¥ x R stands for the k-algebra with underlying
spectrum k x R, with the multiplication y = px X pg.

PROPOSITION 1.9. The projection
kxR— R
induces isomorphisms
K°(kx R,0x M) — K°(R; M)
and
THH(k x R,0x M) — THH(R; M).

Thus, we may assume that the S-algebra R over a given commultative S-algebra k
has k as a retract.

PROOF. For the first part of the argument we use a plus construction definition
of the algebraic K-theory of an A..-ring as described in [9, page 272] and in [14,
section 8]. However, our notation follows that of the definition given for the K-
theory of simplicial rings found in [20].

We will always have rings with units

n:k— R

so that the natural way to view k X R is as a k-algebra with unit given by the
diagonal. Then each of the projections from k£ x R to the factors is a k-algebra
map, so that k is a retract of kK X R as a k-algebra. Note also that using the
projection to R to make M into a k& x R-bimodule delivers the advertised structure.
Using the projections, then, the diagram

BGL(kx Ro M{n))* — BGL(R® M{n))*

! !
BGL(k x R)* — BGL(R)*

is seen to be equivalent to the diagram

BGL(k)* x BGL(R® M(n))* — BGL(R® M(n))*
! 1
BGL(k)* x BGL(R)* — BGL(R)*

which is obviously homotopy cartesian. This proves the part of the proposition
dealing with stable K-theory.
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The result we need follows from Proposition 4.20 of [1]. Alternatively, one may
argue directly that the projections to the factors of a product ring R; x R induce
a homotopy equivalence

THH(R] X R2;M]_ X Mz) — THH(R],MI) X THH(RQ,MQ)

Or, if one assumes that R;, M;, R2, and M> have integral homology which is
finitely generated in each dimension (which covers many interesting cases), then it
suffices to show that this arrow induces an isomorphism after passage to (spectral)
homology with any field coeflicients.

To see this one needs to use the spectral sequence arising from the skeletal
filtration of the realization of a simplicial spectrum. The spectral sequence starts
with

E;,q = hp(Xq) = hu|X|,
where h is any homology theory. Since singular homology theory HF with coef-
ficients in the field F satisfies the strict Kiinneth theorem, one has, in fact, that
for THH,(R; M) the E-term of the spectral sequence is the Hochschild complex

for the graded ring HF, R with coefficients in the bimodule HF, M. In the case at
hand, then, the spectral sequence may be pushed easily to the next term, giving us

E!,=HH.(HF.R,HF.M) = HF,THH(R; M).
Now we have
HF,(R; x Ry) = HF.R, x HF, R,
and
HF, (M, x My) = HF, M, x HF, M,,

so that the E2-term of the spectral sequence associated with the domain is the
Hochschild homology of a product ring with coefficients in a product module. Now
the spectral sequence associated to the diagonal of the target has

E?, = HH,(HF.Ry; HF,My) x HH.(HF.Ry; HF,M,).

But the graded version of Theorem 6.2 of [7, page 295] says that projection to the
factors of any F-algebra A; x As induces an isomorphism

HH*(Al X A2;N1 X N2) = HH*(Al;Nl) X HH*(A2;N2)

for any A;-bimodule N; and any As-bimodule N;, so that the induced map of
spectral sequences is an isomorphism at E2?. The desired homology equivalence
follows. O

We will make one more technical maneuver before we prove the theorem. Let
kV R denote the k-algebra obtained by forgetting that R has a unit n: k¥ — R and
then adding a new unit. The underlying k-module is k¥ V R and the multiplication
1" has the representation

p,” — (Nk 0 0 0 ) .
0 wpro(nAl) pro(1AnN) ur
(kAK)V(EAR)V(RAK)V(RAR)— kVR.
When R and k are real rings with elements, there is an isomorphism
¢c:kVR— kxR
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given by
(z,7) — (z,x + 7).

This map makes sense even for rings up to homotopy, and it is a map of k-algebras
which is a homotopy equivalence. Since our definitions are homotopy invariant,

K*(kV R;c*(M)) = K*(k x R; M)

and similarly for topological Hochschild homology.

Now we can give a quick overview of the rest of the proof of the theorem,
breaking it into three major steps. We intend to show that for a ring B of the form
B = SV R there is a natural equivalence

K*(B; BAB?) ~ B.

To obtain this stable K-theory calculation, we first use methods of abstract K-
theory to analyze the K-theory of certain generalized free products which approxi-
mate the rings appearing in the definition of stable K-theory. The approximations
and a partial analysis are explained in the next section. In the remaining part of
the calculation, which we describe briefly in section 3, we go to work on the results
of the general analysis, using the fact that the result is already true for B = §.
Finally, we must show that the trace delivers compatibility with the equivalence

THH(B; B A B°?) ~ B.

of proposition 1.4. We then have the result for all B-bimodules by propositions 1.7
and 1.8. In particular, we have the result for the B-bimodule ¢*(M) pulled back
from the R-bimodule M, which, in view of proposition 1.9, is just the result for R
and M.

2. Generalized free products

In this section we give a definition of a generalized free product of rings-up-
to-homotopy and present the example which is important for stable K-theory. We
also state a decomposition theorem for the algebraic K-theory of generalized free
products.

DEFINITION 2.1. Let 3: A — B and v : A — C be a pair of maps of rings
which are also cofibrations of S-modules. Let D be a ring and let B — D and
C — D be homomorphisms and cofibrations such that

A — B
! i)
¢ — D

commutes. The ring D is a generalized free product of B and C over A if the
- diagram

DAaD — DApD

l |
Dhne D — DAp D,

is homotopy cartesian in the category of spectra, where the objects in the corners
are the smash products defined in [4, Chapter III].
Shorthand notation for such a ring D will be D = C x4 B.
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The form of the definition is motivated by the problem of analysing the K-
theory of such a ring D = C x4 B in terms of its constituent rings. Later in the
section we sketch the program for solving this problem. The presence of the cofi-
bration conditions eases the homotopical analysis of the diagram of smash products
and is easily verified in the examples we have in mind. Now we show that the free
product can in some cases be written down following the recipe given for certain
discrete rings in [16].

Let A denote a commutative ring. That is, let A be an E-ring spectrum, or
commutative S-algebra, and let B’ be an A-algebra. Put B = AV B'. General-
izing the construction of the preceding section, B is then the A-algebra obtained
by forgetting that B’ has a unit and then adjoining a unit. Let G(m) denote the
realization of the Moore loop group of a simplicial (m+1)-sphere. G(m) is a topo-
logical group homotopy equivalent to the loop space of an ordinary (m-1)-sphere.
Let C(m) = AA G(m)+ be the A-algebra obtained by smashing together the spec-
trum A and the space G(m),. We think of C(m) as the group algebra of G(m)
over A. Notice that if we put C'(m) = A A G(m), then there is an A-bimodule
splitting

C(m) =2 Av C'(m).
Now we try out the formula
Dim)=AVB VC'(m)VB ApsC'(m)VC' (m)Aa B VB AsC'(m)AaB' V...
for D(m) = C(m)x4 B. All we are doing is altering the definition of free product of

rings given in [16] by the substitution of smash products of A-bimodules for normal
tensor products.

PROPOSITION 2.2. The ring D(m) defined above is a generalized free product
of B and C(m) over A.

PROOF. For the purposes of verifying that D(m) has the correct homotopy
type, we need to rewrite D(m) somewhat. To simplify things, write C for C(m),
D for D(m), and so on. Collecting together all terms which have B’ on the left we
obtain an A-submodule B”, and doing likewise for C’, obtaining C”, we may write
D = Av B” v (C”. Collecting differently and using certain algebraic properties of
smash products, we also obtain homotopy equivalences

D>~BVBAsC"and D~CVvCAsB”
of B- and C-modules, respectively. Now we examine the square

DAga D — DAD

! !
DanecD — DApD,

and verify that it is homotopy cartesian. Plugging into this square the alternate
expressions for D, we obtain

DAA(AVB'VC"Y — DAg(BVBAsC")

l )
DAc(CVCALB") —s DAp D.

Appealing again to natural algebraic properties of the smash products, one may
verify that the canonical map between the vertical fibres is a homotopy equivalence.
It follows that the original diagram is homotopy cartesian, as needed. O



STABLE K-THEORY 169

For the next part of the discussion we adopt the framework of [17] for algebraic
K-theory of categories with cofibrations and weak equivalences. For an S-algebra
R we take M;(R) to be the full subcategory of the category of R-modules whose
objects are the finite cell R-modules. In M;(R) a cofibration

M — M,

denoted by a feathered arrow, is a map which is isomorphic to the inclusion of a
subcomplex. The weak equivalences in M (R) are the homotopy equivalences. We
refer the reader to [4, pages 125-128] for more discussion of these conventions. Ap-
plying to this module category the S, construction of [17], one obtains a simplicial
category hS,Ms(R), and we define the K-theory of R to be

K(R) = QhS. M (R)|,

the loop space of the realization of the bisimplicial set obtained by taking the nerve
of the simplicial category hSeM(R).

To analyze the K-theory of a free product D as defined above in terms of its
constituent rings, we introduce the category MV of Mayer-Vietoris presentations.
A Mayer-Vietoris presentation is a quaduple of modules, one from each of the
categories Ms(A), M¢(B), Ms(C), and My(D), satisfying certain conditions, as
follows.

DEFINITION 2.3. A Mayer-Vietoris presentation consists of four modules M4,
Mg, M¢c, Mp, A-module maps M4 — Mp and M4 — Mg, a B module map
Mp — Mp, and a C-module map Mz — Mp such that the diagram

MA-——FMB
Mqe— Mp

commutes. Moreover, we require that the cofibration condition in the appropriate
category be satisfied for the extended structure arrows

My Aa B — Mg
MaAaC — Mc
Mp Ap D —— Mp
Mc Ae D —— Mp.
Finally we require that the diagram of D-modules

Mg Ap D —— Mp Ap D

l |

Mc A\c D—— Mp

be homotopy cartesian.
A map of Mayer-Vietoris presentations is a quadruple f_ = (fa, fB, fc, fp) of
module maps such that the resulting cubical diagram commutes.
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The first example which comes to mind is of course

A — B
! l
¢ — D.

One verifies that the category MV is also a category with cofibrations in the sense
of [17], which involves a certain amount of routine work. To continue, we need to
know that MV supports two notions of weak equivalence, called v-equivalences and
w-equivalences, and supports a cylinder functor compatible with the equivalences.
We say a map of Mayer-Vietoris presentations

f— = (anfBafCafD)

is a w-equivalence, or a coarse equivalence, if fp is a weak homotopy equivalence of
D-modules. We say that f_ is a v-equivalence, or a fine equivalence, if the compo-
nents f4, B, and fo are all weak homotopy equivalences in the respective module
categories. By the homotopy cartesian property of a Mayer-Vietoris presentation,
it follows that any v-equivalence is also a w-equivalence. Thus, the Fibration The-
orem (Theorem 1.6.4) of [17, page 350] applies, yielding the following homotopy
cartesian square

VS MVY —— wS MVY

l l

VSeMV —— wS, MV

in which the upper righthand term is contractible. In [12] we prove two identifica-
tion theorems. The first one identifies the lower lefthand term of the diagram with
the product of the K-theories of A, B, and C, essentially.

THEOREM 2.4. The forgelful functors from MV to the module categories
M¢(A), Ms(B), and M;(C) induce a homotopy equivalence

Uy 1 Sy MV — RS M (A) x hSy M (B) x hSM;(C).

O

The second one identifies the lower righthand term with the K-theory of D.

At present the proof requires an extra hypothesis on the maps f: A — B and
~v: A — C. This hypothesis is clearly satisfied in our applications.

THEOREM 2.5. Suppose that 3 and v admit left inverses which are also ring
maps. Then the forgetful functor

up : MV — My (D)
induces a homotopy equivalence
wSeMV — hS, M(D).

O

The paper [12] develops the preceding results for A., rings extending ideas

of Pierre Vogel, [15]. The paper by Schwénzl and Staffeldt [11] may be viewed

as a preview of the methods of abstract K-theory used in [12]. However, the

preparations for the use of the methods of abstract K-theory in the case of A-
rings are very strenuous. Both of these results will be used in the next section.
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3. Approximations to stable K-theory

In this section we outline the steps in the key calculation that for a ring B =
SV B’ we have

K*(B; B A B) ~ B.
To identify K°(B; B A B°?) in a stable range, it suffices to calculate
F(B; B A B°?)(m) = fiber(K (B & B A B°?{(m)) — K(B)
since the canonical map
Q™' F(B; B A B°P)(m) — K*(B; B A B%)

is m-connected by proposition 1.2.

Now, working with B = SV B’ enables us to reformulate the calculation of the
relative K-theory in terms of the K-theory of a generalized free product. To do
this, we specialize the example of the free product

Dim)=C(m)xs B=(AANG(m)y)*s B
given in the preceding section by taking A = S, the sphere spectrum.

LEMMA 3.1. In a stable range (up through = 2m) we have a natural chain of
equivalences

F(B; B A B?)(m) ~ fiber(K({S A G(m)4) xs B) — K(B)).
PROOF. There is a canonical (2m+1)-connected map
S™ — G(m)
analogous to the familiar map $™ — QS™*!. In the definition
B®BAB?PmYy=2B&® BAS™ABP,

where multiplication is zero on B A S™ A B, one may substitute G(m) for §™
obtaining a similar ring

D'(m) = B® BAG(m)AB”?
and a (2m-+1)-connected ring map

B & B A B°?(m) — D'(m).

Writing D(m) = (S A G(m)4+) *s B and using the recipe given in proposition 2.2,
we see there is an obvious (2m+1)-connected retraction

D(m) — D'(m),

since D'(m) is exactly the part of D(m) displayed in the formula preceding proposi-
tion 2.2, and the parts of D(m) that are not displayed all involve at least two smash
factors C’'(m) = S A G(m). Furthermore, using the plus-construction definition of
K-theory, as in the proof of proposition 1.9, one sees that passage to K-theory
preserves connectivity of ring maps. (Cf. proposition 1.1, [20, page 36].) But we
are interested in K-theory of these rings relative to the fixed ground ring B, so
we observe that passage to homotopy fibers preserves connectivity on the level of
K-theory, and this finishes the proof of the lemma. O
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Continue with the specializations A = S, C(m) = S A G(m)4+, and D(m) =
C(m) xs B introduced above, and write
K(D(m), B) = fiber(K (D(m)) — K(B)),
just renaming our approximation to F(B; B A B°P).

Next observe that the retraction C(m) — S induces a map of generalized free
product diagrams

S — B S — B
! 1 — ] !
C(m) — D(m) S — B.

Write MV for the category of Mayer-Vietoris presentations associated to the left-
hand diagram and MV for the Mayer-Vietoris presentations associated to the
righthand diagram. We obtain a map of homotopy cartesian squares, displayed as
follows.

vS MV + VS MVy
WS MV r WS MV
+ +
vSe MV —+ vSe MV
4 \
wS M + wS MV

Having defined

K(D(m), B) = fiber(K(D(m)) — K(B)),
we also define

K(C(m),8) = fiber(K(C(m)) — K(S)).

Now we take homotopy fibers of the map of cartesian squares above and apply
theorem 2.4 and theorem 2.5 to interpret the spaces at the bottom of the squares.
We obtain the following result.

PROPOSITION 3.2. There is a fibration-up-to-homotopy
K(Nil(S; B',C’(m))) — K(C(m),S) — K(D(m), B),
where K(Nil(S; B',C’(m))) = fiber(QvS, MV | — QuS,MVY))).

From this fibration sequence one derives the sequence
Q™ K(C(m), S) — Q™ K(D(m), B) — QT K(Nil(S; B', C'(m)))

in which the middle term is our approximation to K*(B; B A B°?). The following
result identifies the other two terms in the fibration sequence.

THEOREM 3.3. In a stable range of dimensions ¢(m) tending to infinity with
m we have two ¢(m)-equivalences

Q™K (C(m),S) =~ § and Q"K(Nil(S; B',C'(m))) ~ B'.
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REMARKS ON THE PROOF. The stable range equivalence Q™1 K(C(m), S) ~
S is derived by combining the fact that stable homotopy theory splits off the
stable algebraic K-theory of the one point space, the main result of [18], with
the fact that the other term in the splitting is in fact trivial, the main result of
[19]. The other identification follows after careful analysis of the reduced Nil-term

K(Nil(S; B, C'(m))) [18]. This part of the argument uses alternative descriptions

of the Nil-term and manipulations patterned on those in [18], as well as two more

applications of [19]. O
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