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Abstract

We present a superadditive bargaining solution defined on a class
of polytopes in R™. The solution generalizes the superadditive
solution exhibited by MASCHLER and PERLES.
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1 Introduction

The MASCHLER—PERLES bargaining solution (MASCHLER-PERLES [4], [5],
see also [9] for a textbook presentation) is a mapping defined on 2—dimen-
sional bargaining problems respecting anonymity, Pareto efficiency, and affine
transformations of utility. Moreover, this mapping is superadditive by which
property it is uniquely characterized.

The solution is based on the observation that a polyhedral bargaining prob-
lem in R? is an algebraic sum of “elementary” bargaining problems that are
generated by a line segment. By continuity with respect to the Hausdorff
metric the solution is then extended to bargaining problems with a smooth
Pareto boundary.

Actually it suffices to discuss the solution on the particular class of bargaining
problems, which are algebraic sums of line segments generating triangles with
equal area. Superadditivity is then a rather immediate matter and continuity
suffices fot the extension as previously (see [10]).

By various reasons this solutions has never been very popular compared
with, say, the Nash solution. Indeed, PERLES [8] proved that a superad-
ditive bargaining solution does not exist for more than 2 players (i.e., bar-
gaining problems in 3 and more dimensions), this is certainly a drawback.
CALVO-GUTIERREZ (see [2|) presented an extension to n—person games, they
generalized a procedure to compute the solution but produced no examples.
Of course, their approach cannot yield a superadditive solution.

Apart from this, the Maschler—Perles solution requires some techniques in
order to be extended to smooth bargaining problems. This procedure and
the resulting interpretation of two points travelling along the Pareto curve
with a specified velocity, may add to the resistance econimists seem to offer
to the concept.

On the other hand one would think that superadditivity is at least as attrac-
tive as the ITA axiom characterizing the Nash bargaining solution. MASCH-
LER—PERLES argue that it supports agreements ex ante when the players
face lotteries over bargaining problems. In addition, there is the natural in-
terpretation of bargaining simultaneously in two environments, meaning that
all sums of utility vectors of the two problems are available. Hence, treating
the joint bargaining procedures as a single one improves the situation of both
players exactly if superadditivity of the solution concept prevails.

Conspicuously, the other outstanding solution emerging in cooperative game
theory, the Shapley value, is characterized by additivity (which is interpreted
as risk neutrality towards lotteries over games).

Based on this, one should naively expect that generalizing the Shapley value
to NTU-games starts out with a superadditive solution. Yet, beginning with
SHAPLEY’s ([12]) approach and culminating in AUMANN’s axiomatization
[1], many authors have made an effort to justify the Nash solution as the two
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person bargaining analogue to the Shapley value from which one is to set
out for the genereal NTU approach. Can it be outright rejected that this, at
least partially, is also motivated by PERLES counter example?

The Maschler—Perles (superadditive) solution certainly does have its merits
and we feel that it is worthwile to attempt a generalization in spite of the
many obstacles prevailing. It is the result of this work that a superadditive
solution can be established on a suitable class of bargaining problems, though
certainly not on the full class.

Thus, we produce a class of polyhedral bargaining problems in R" which
admits of a superaditive bargaining solution. This class is the natural one
in the following sense: in two dimensions, the slopes of all simplices (line
segments) involved in representing a polyhedral bargaining problen can be
ordered — in higher dimensions this has to be made a requirement defining
the appropriate family of bargaining problems. In two dimensions, the “speed
of concessions” is determined by the area of the prisms generated by line
segments. If instead, one regards this as a density of a surface measure, then
the generalization to arbitrary dimensions is at hand. We can then map the
Pareto surface onto a simplex such that the surface measure is translated into
a measure absotely continuous with respect to Lebesgue measure. The pre—
image of the center of gravity with respect to this measure is the generalized
Maschler—Perles solution and it behaves superadditively.

In order to discuss this class a thorough discussion exhibiting the suitable
type of convex polyhedra to deal with is inevitable. In two dimensions it is
rather obvious that any polyhedral bargaining problem is a sum of triangles.
Beginning with three dimensions, this is statement is false. The class of
algebraic (“Minkowski”) sums of comprehensive simplices (prisms as we shall
call them) is quite involved and deserves some attention by its own. This
leads to a foundation of polyhedra called cephoids, a topic treated in [6].
Within that paper we provide the general classification of sums of prisms.

The present paper starts out with a short discussion of cephoids, recalling
some facts from [6], but also providing some arguments for the standard
class of bargaining problems we have in mind (SEcT10N 2). In SECTION 3 we
introduce the surface measure and in SECTION 4 we introduce the solution
concept and prove its superadditivity. SECTION 5 provides some examples
and counterexamples. SECTION 6 contains the discussion of a subclass of
bargaining problems on which the solution is even unique.
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2 Cephoids

A bargaining solution is given by a feasible set U C R" of utility vectors
(with some regularity conditions) and a status quo point T € U. Play-
ers may agree to allot utilities according to some point in U or else will
receive their share according to the status quo. A bargaining solution is
a mapping defined on some class of bargaining problems and resulting in a
(feasible, Pareto efficient) element of U. The mapping is required to com-
mute with affine transformation of utility (simple translation and dilatation
of the axis). Therefore, it is common to restrict the discussion to the status
quo point 0 — in which case it is not mentioned furthermore. Also, one is
interested in “individually rational” utilities only, which results in discussing
only the nonnegative elements of the feasible set. This will be our viewpoint
henceforth.

Thus, we consider just feasible sets U C R, which are supposed to be
compact, convex and comprehensive (i.e., containing the southwest orthant
generated by any of its points). Among these we single out polyhedral sets
of a certain type as follows.

Let I := {1,...,n} denote the set of players (hence the coordinates of R",
the “utility space”). Let €’ be the i unit vector of R® (i € I). For any
positive vector @ = (a,...,a,) > 0 € R™ put @' := a;e' (i € I) and
associate with a the prism I1* which is given by

(2.1) I1* := convH ({O,al,...,a”}) )

The (outward) face of this prism is the simplex A® which is given by
(2.2) A® := convH ({al, ...,a”, }) )

For any J C I we obtain the subprism of 11* given by

(2.3) g = {z€ll®|z; =006 ¢ J)},

a similar notation is used for the simplex A%, we write

(2.4) AG = {zeA% ;=0 ¢ J)}

for the subface generated by the coordinates i € J.

The Minkowsk: or algebraic sum of two sets U,V C R" is
U+V ={z+y|lzecl geV},

the general version for summing a finite family of sets is provided ananlo-
gously.

Now we have the following definition (see [6]).
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Definition 2.1. Let a®* = (a(’f))sz1 denote a family of positive vectors and
let

K
(2.5) m=m .=y n

k=1

be the algebraic sum. Then 11 is called a cephotd.

The representation of a cephoid by means of a family a® is in general not
unique. In particular, any prism is a sum of “homothetic” copies of itself,
e.g., for some a > 0

1 1 1 1
2 + 2 +

We provide some examples of cephoids.

Example 2.2. Consider two positive vectors a = (1,3,2) and b = (2,1, 3)
and the the two prisms I1¢, TI® generated. The cephoid IT = II% + II° is
depicted in Figure 2.1. There are copies of the two generating simplices on
the surface of I1, these are given by A®+b' and A?+a?. The “diamond” is the
sum A% + Ab of two lower dimensional faces. It is important that, for the
sum of two Pareto efficient points to be Pareto efficient, it is necessary and
sufficient that a joint normal exists to both points which, as a consequence,
establishes a joint normal to the sum as well.

Figure 2.1: Adding two prisms

The representation of II indicated in Figure 2.1 is unique if one requires in
addition a minimal sum of summands.
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Example 2.3. Now consider Figure 2.2. This is the type of cephoid used
in the counter example of PERLES [8|. The family a® is degenerate in a
well defind sense inasmuch as the two subfaces A% and A%, are parallel -
the normal cone is the same. As a consequence, the surface A of Il again
consists of two translates of the simplices involved plus a “diamond”- but not
uniquely so.

Figure 2.2: The sum of two prisms — parallel subfaces

Example 2.4. In Figure 2.3 the sum of three prisms constitutes a cephoid II.
The generating family of vectors is given by a = (1,3,2), b = (2,1,3),¢c =
(3,2,1). Note that the slopes of two dimensional faces in each z;z;-plane are
ordered in a cyclic way.

The sum II shows a translate of each simplex located in the appropriate
corner. In addition, there appear three “dimonds”, each of them being the
sum of two subfaces of the simplices involved. The central vertex is the sum
of three vertices of the simplices involved.

Figure 2.3: The sum of three prisms

Now we add a fourth prism having a joint normal with the central vertex. The
result is the cephoid indicated in Figure 2.4. It shows certain symmetries,
the translate of the new triangle having replaced the central vertex.
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Figure 2.4: Adding a further prism

Continuing this procedure we end up with a general picture of a cephoid in
3 dimensions that looks like Figure 2.5.

We can imagine that this cephoid is the sum of finitely many polyhedra as
depicted in Figure 2.3. The construction works under the assumption that
there is a joint tangency at each of the central vertices involved. We believe
that this is “the” generalization of the two dimensional construction used in
the context of establishing the Maschler—Perles solution.

Figure 2.5: The general cephoid in R?

For dimensions exceeding 3 the picture involves not just simplices and di-
amonds. In each dimension new types of polyhedra appear on the surface,
being the sum of certain subfaces of the prisms involved. The details are
found in [6].

A cephoid shows a certain surface structure which is the partially ordered set
(“poset”) of polyhedra (translates of simplices, diamonds etc.) This structure
can be “canonically” represented on a simplex as is explained in [6].

For instance, Figure 2.6 represents the surface structure of the cephoid in
Figure 2.1 and Figure 2.7 has a similar surface structure as Figure 2.4. In
both cases a multiple of the unit simplex is suitably decomposed in order to
reflect the decomposition of the surface of the cephoid under consideration.
If we are interested in the structure only, Figure 2.7 is appropriate as we have
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chosen all simplices to be of equal area. This is the “canonical representation”
used in [6] to classify cephoids.

In the present paper we will employ a “measure preserving representation”.
E.g., Figure 2.6 contains additional information as the simplices have differ-
ing area and the diamond is adapted suitably. This can be thought of as
the representation of a modified version of Figure 2.1 such that the prisms
involved have differing volumes.

Recall that the two dimensional Maschler—Perles solution involves a bijection
of the Pareto curve onto a suitable interval, the length of the representation
of each line segment depending on the area of the triangle generated by this
line segment. Suitably, the representation in higher dimensions will involve
a “surface measure” on each simplex which involves the volume of the prism
generated. In both cases, the solution is obtained by taking the center of
gravity of the representing simplex and constructing its pre—image.

Figure 2.6: Representing the sum of two prisms

A

Figure 2.7: Structure of a sum of four prisms

The planar case is in some way “degenerate”, yet it serves to represent the
surface structure of a cephoid. Uniqueness of the representation requires
some type of nondegeneracy or “general position” of the members of a family
a®. In two dimensions this means that the tangents or normals of the line
segments involved never coincide, thus it could be expressed by a requirement
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aq aq
(2.6) —® # 0]
%) %)

for any pair [,k € K. In other words, any two subsimplices of dimension 1
are not parallel, therefore the cone of normals is not identical.

In more than two dimensions we have to make sure that the dimension of
the cone of joint normals two any family of subsimplices has the minimal
dimension. The precise formulation has been given in [6] and is repeated
below:

Definition 2.5. A family a®* = ()X, of positive vectors (as well as the
cephoid generated) is said to be nondegenerate if the following conditions
hold true:

1. For any system of nonempty indezx sets JY ... JE) C I with
Ua» =1
keK

the system of linear homogeneous equations in the variables

T1yeeey T A, ..., A given by
(2.7) aPz;— N =0 (i€ J®, ke K)
has a space of solutions U of dimension
(2.8) dimU=n+K - ) j
keK

with j, = |J®).

2. For any I C I the restricted system

— (a®
10

obtained by restricting the wvectors to I satisfies the condition of
item 1 in the subspace RI,

(2.9) a’

I°>keK

The structure of cephoids generated by nondegenerate families of prisms is
exhibited in [6]. The structure of a cephoidal surface is at best represented
on (a multiple of) the unit simplex: there is a “canonical” mapping between
the two surfaces preserving the partially ordered set of faces. (E.g. Figure
2.7 is the “canonical representation” of Figure 2.4).

Within this paper we replace the “canonical representation” by the “measure
preserving representation” in order to imitate the two—dimensional construc-
tion of the Maschler—Perles solution. This way the size of the various triangles
and diamonds (maximal faces in higher dimensions) depends on the volume
of the prisms involved.
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3 The Surface Measure

We shall use the wolume in order to define a measure on the surface of a
cephoid. We start out with a prism. Let @ = (ay,...,a,) > 0 be a positive
vector and let TI* be the prism associated, the surface is the simplex A?.

The volume of T1¢ is

We shall associate a surface measure of

(3.1) V) (V)T = /o (V (1))

to any translate of the surface A®. In particular, the simplex A€ (the surface
of the unit prism I1¢) receives surface measure 1.

Next, let J = (JW, ..., JE)) be a system of index sets that may determine
a face

(3.2) F=A) +..+a0)
of a cephoid. Then the numbers j, := |JY| satisfy

33) (Gh—)+..+0Ux—1D=n—-1, ji+...+jg=n+K—-1.

This is a consequence of the nondegeneracy assumption (see [6]). Consider
the Minkowski sum

(3.4) ASay + .o+ A -

The (Lebesgue) surface measure of this convex compact polyhedron is a mul-
tiple of the surface of the unit simplex, this multiple is denoted by c¢y. Of
course the number depends on ji,...,Jjx only and not on the ordering of
these indices. Thus we write

)\(Ag(l) +...+ Ai(m)

(35) €1 = Gi,jr = A(Ae) )

where A denotes the Lebesgue measure. E.g., for n = 3 two triangles will
fit into a diamond, hence ¢13 = 1,99 = 2. For n = 4 three tetrahedra just
fill a cylinder and two cylinders fill a cube, hence ¢i14 = c141 = a1 = 1,
C193 = ... = 3, and cg99 = 6, etc.

In passing we remark that the coefficient ¢;, ;. is the volume of the convex
body

ConvH{0,€',...,e"" '} x ConvH{0,€",..., el "1}
(3.6) x ConvH{0, e/t ™72 el titis=11 5

... x ConvH{0, e/ F92Fix-1, gittix},
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This follows from the fact that the subsimplices involved are located in or-
thogonal subspaces.

Having obtained the above defined “normalizing coefficients” we can now
proceed by defining a surface measure on any face of a cephoid.

Definition 3.1. Let a® be a positive family of vectors and let F' be a maxi-
male face represented via a family of index sets J by

(3.7) F = AY

(K)
J + ... +AJ(K)'

Then the surface measure associated with F s given by

(3.8) ta(F) =cy {/(vn) [V(IIW) = [V ()P,

Some motivation for this definition can be found in formula (3.6). Moreover,
within the following lemma we list some obvious properties of the surface
measure. This shows that the surface measure exhibits the “appropriate
behaviour”.

Lemma 3.2.

1. Fort= (t,...,tg) > 0 and ta'® = (t,a®),cx let tF denote the face
corresponding to a face F. Then

(3.9) iA(BF) = 7T A (F).

2. In particular, for t = (e,...,¢), we obtain from (3.3)
(3.10) tia(eF) = " ha(F).

FEquations (3.9) and (3.10) show that ta(e) behaves like the Lebesgue
measure of the surface.

3. If, for some family a®, we have aV = ... = a™), then it follows that
a face F represented by (3.2) satisfies

(3.11) ea(F) = cqea(A®")
4. More generally, if for some family a® the volumes satisfy
vy = =vme"),
then it follows that a face F represented by (3.2) satisfies

(3.12) ta(F) = cqea(A*).
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Proof: The first three items are obtained by obvious computions with vol-
umes and surface areas involving the definition (3.8). The last item is a
consequence of the convention established by (3.5). Accordingly, any face
has a surface measure which is the appropriate multiple of the surface mea-
sure of a simplex generated by the same family of vectors.

q.e.d.

Corollary 3.3. Let a® be a family of vectors and let 11, A be the cephoid
generated and its surface. Let F be a mazximal face of A represented by J
as in (3.2). Then there is a measure tan defined on F which satisfies (3.8),
has the properties stated in Lemma 5.2, and is continuous as a function on
families a®.

Proof: For small g, 0 < e, <1 (k€ K) and 2 € Aff()k), (k € K) let
FE = Z(l — 6k)$(k) + SkA.(]k()k) .
ke K

Then F*€ is a shrinked copy of F' the surface measure ta of which is defined
by (3.9). Every face can be decomposed into a union of simplices the number
of which is ¢ (see (3.5)). Decomposing any simplex into copies of sufficiently
small F'¢ we obtain a o—additive setfunction ¢t with the desired properties
(the o-algebra is generated by the relative topology).

On each face, the measure ¢ is actually a multiple of the Lebesgue measure
A and in view of item 3 of Lemma 3.2, to behaves compatibly when evaluated
on different faces.

q.e.d.

Example 3.4. Consider the sum of two prisms. Let a,b > 0 and consider
the polyhedron I1%® := TII® + II°. Figure 3.1 shows the situation. The two
vectors are in general position. The surface consists of the translates b' + 1%

Figure 3.1: The sum of two prisms
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and a’ + I1° and the “diamond”
(3.13) A% = A%+ AD
which is the sum of the two subsimplices indicated.

Now we decompose the surface of I12? into certain triangles as indicated in
Figure 3.2. The surface A% is decomposed into 4 equal diamonds. The ¢x—
measure of these is clearly i of the t5-mesure of A%, Each diamond in turn
has the area which is twice the area of a simplex.

Figure 3.2: Scheme of the decomposition of the surface of I14?

Figure 3.2 provides sketch of the decomposition of the surface of 11%°. This
sketch refers to a sum of homothetic multiples of the unit simplex, but the
situation is structurally the same as the one for a decomposition of the surface
in Figure 3.1.

Definition 3.5. We call the measure Lo the surface measure.

Remark 3.6. 1. Let e := (1,...,1) The measure tp on A€ is the Lebesgue
measure X normalized to ta(A€) = 1.

2. A sum of homothetic prism is a multiple of one of those prisms. While the
surface structure is not unique, the surface measure is seen to be a multiple
of Lebesgue measure — independently on a homothetic decomposition and
the surface structure. The measure ta behaves consistently with any surface
structure.

The similarity between the structure of the surface of I1%? and the homothetic
sum represented in Figure 3.1 will now be formalized. We create a mapping
which carries the surface of a cephoid onto the one of a suitable multiple of
the unit simplex such that the surface measure is transformed into Lebesgue
measure.

Consider a family a®. For every k =1,..., K let o := LA(A(k)). Define

(3.14) a®) = Vage (ke K)
and put
(3.15) W = @) .= rvae A®) = A@Y) .= A" Vare
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such that

-~

(3.16) ta(AB) = apea(A®) = ay

holds true for £ € K. Also, let

K
(3.17) a = Z Vay A = APe , M = I,

k=1

We shall arrange the surface structure of Iina way such that the surface
structure of II is preserved. This is achieved by mapping the extremals of
the faces of A bijectively onto certain corresponding vectors of A such that
the surface measure is transported into the Lebesgue measure.

To this end, consider a family a® in general position. By nondegeneracy
every vertex is a unique sum of vertices of the A" involved. More precisely,
for every vertex u of A, there is a unique mapping i, such that u can be
written via

i, : K —1
(3.18) w—al* — Z a®ix
keK
Now we have
Definition 3.7. 1. Let u be a vertex on A and let i, be the corresponding

mapping as described by (3.18). Then

(3.19) @ = k(u) = Y a®h

ke K

is the measure preserving representation of u on A .

2. Let F be a face of A and let u', ..., u" be its extremal points. Then
the convex hull of the images, 1i.e.,

(3.20) K(F) == F = ConvH{x(u'),..., x(u")},

is the measure preserving representation of F on A.
3. Let 'V be the poset of faces of A and let

(3.21) V= k(V) = {k(F)|FeV}

be the collection of images of faces under the mapping k. Then V is the
measure preserving representation of V on A.

Theorem 3.8. V is a poset which is isomorphic to V. Hence (A,V) and
(A, V) are combinatorically equivalent.
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This is a standard procedure in convex geometry (see [3]). The mapping
Kk is bijective between the vertices of A and the appropriate subset of grid
vectors as described in equations (3.18) and (3.19). The minimum of two
faces (whenever it exists) is obtained by taking the intersection of the corre-
sponding two sets of extremal points. Similarly, if the maximum of two faces
exists, then it is obtained via the union of the sets of extremal points.

The canonical representation is the suitable projection of the outer surface
A of a cephoid II on an n — 1-dimensional subset. E.g., the poset of faces
of Figures 2.7 and 2.3 are combinatorically equivalent. Also, we can visual-
ize the surface of 4-dimensional cephoids on a suitable multiple of the unit
simplex of R? (a tetrahedron), which will serve to discuss several important
examples in SECTION 5.

Remark 3.9. In a well defined sense, the mapping k constitutes a piecewise linear
isomorphism between A and A.

Remark 3.10. Let K = |J,_, K, be a decomposition of K and consider the
vector

(3.22) g=(> a®,... > abn).
keK keK,
Then £ := k '(Z) is an extremal point of A. The mapping i, defines uniquely a

decomposition of K via
K, = {kEK|ik:i}

whenever we assume nondegeneracy of the family a®. Yet, in A the representation
of & by means of vertices as in (3.22) will in general not be unique.

It is obviously possible to establish a measure preserving representation for an
arbitrary cephoid not “in general position”. Figure 2.2 shows, that we cannot expect
uniqueness. We will discuss the resulting problem (discontinuity) in Example 5.2.

Remark 3.11. However, a measure preserving representation is fruitfully ex-
tended to families a® with the following property:

There is a decomposition of K, say K = |J;_, L, such that the members of each
family (a(k))keLp are homothetic a and a family (a(p))pzl___r of representatives of
each L, is nondegenerate in the sense of Definition 2.5. In other words, the familiy
is nondegenerate up to some homothetic copies.

Indeed, in this case points on the surfaces A and A can be identified consistently
despite the fact that there are non—unique representations of some extremals given
by vectors of the type exhibited in (3.22). A family a® satisfying this slightly
relaxed condition will be called weakly nondegenerate.
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4 A Bargaining Solution

Within this section we attempt to describe a generalization of the MASCHLER—
PERLES solution ([4]). A counterexample provided by PERLES([8]) shows
that we cannot expect a superadditive solution on the full class of bargaining
solutions. Yet, it will be possible to construct subclasses on which superad-
ditive solutions exist and are even uniquely defined.

We begin with the definition generalizing the two-dimensional version.

Definition 4.1. Let Il be a cephoid and let A = Ade carry its measure
preserving representation. Let

~

~ 8]
Inee) = —
p(117€) e

denote the barycenter of A®. Then we define
(4.1) p(Il) = & '(ae)

to be the solution of 11.

For the following development it is convenient to introduce two assump-
tions concerning the family of vectors (a®)_, characterizing a cephoid
_ K qa®

First of all we assume that all prisms involved have equal volume. This
assumption is not as severe as it may seem on first sight. For, a prism
generated by a rational vector can be replaced by a homothetic sum of small
multiples of itself. This way, any family a® with volumes being multiples of
the same small number qualifies. Of course, we loose nondegeneracy by this
procedure — but weak nondegeneracy is preserved.

As the final definition of the Maschler—Perles solution in the two dimensional
case involves continuity with respect to the Hausdorff metric, the above as-
sumption does not seem to be too strong. Within the framework of the 2—
dimensional solution theory it can be assumed without loss of generality.

Our second requirement will be that the total number K of prisms involved
is a multiple of the dimension n. This can be achieved in a similar way by
replacing each prism by a sum of n homothetic %fcopies of itself.

Thus, we come up with the following definition.

Definition 4.2. A family a® of positive vectors as well as the cephoid 11
generated are called standard if the following conditions are satisfied.

1. a® is weakly nondegenerate (see Remark 3.11).
2. The K prisms involved have equal volume.

3. n is a diwisor of K.
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Lemma 4.3. Let X
me
k=1

be a standard cephoid. Then u(I1) has in each coordinate % summands, i.e.,

there is a decomposition K = K, U...U K, with |K,|=... = |K,| =&
such that
(12) = (3 )
keKy keK
holds true.

Proof: Consider the measure preserving representation on A = Age (see
Definition 3.7). As the volumes of all prisms involved are equal, there is a
positive number «y satisfying oy = ag (k € K).

Thus
(4.3) a = ape (ke K)
holds true.
Therefore the barycenter of A is given by
~ . e
pIl)= -a = - > Va
(4‘4) keK
= —KCkU = (K(]Oéo,...,K()Ckg),

S| 316

where Ky := % is an integer.

Now consider the pre-image p(I1) = =" (u(Il)). In view of Definition 3.7
(see also formula (3.18)), there is mapping 2. : K — I such that

(45) II‘(H) = Za’(k)ik ’ p‘(ﬁ) = Za’(k)lk = (KO:"'aKU)a07
keEK keK

holds true. In view of 4.3 the sets K; := {k |4, = i} necessarily satisfy

(4.6) K| = ... = |K,| = K, .
q.e.d.
Definition 4.4. Let a® denote a standard family of positive vectors.
K
me Y
k=1

We call a® as well as I1 well ordered if there is a decomposition of K, say
(4.7) K=K,

iel
such that
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1 |Ki| =] K;| (i,j €1,
2. agk) > agl) (ke K;,l ¢ K))
holds true.

Example 4.5. For n = 3, Concider a cyclic case in which the coordinates
of the vectors are ordered as follows:

al) > > af
K K
(4.8) a7 > > d9> ) > > )
2K 2K
al® Y > > a0 > o) > > o)

Note that Figure 2.3 represents a cyclic polyhedron (assuming that the vol-
ume of the prisms is equal). However, the orientation in the setup suggested
by this figure is clockwise, i.e., mathematically negative. The orientation
above is mathematically positive. Yet, both versions are well ordered.

A similar observation can be made regarding the polyhedron in Figure 2.4.
This can be seen as cyclic (negatively oriented): the central simplex can be
obtained as a sum of three homothetic prisma by writing it as a sum of three
of its thirds. The other prisms must be assumed to have equal volume or to
be decomposable in a suitable way.

Lemma 4.6. If a® is well ordered, then

(4.9) p(Il) = Zalf, e Zaﬁ ,

k€K, keK,

that is, pu(I1) collects the % largest vectors with respect to each coordinate.

Proof: By Lemma 4.3 we know that the solution satisfies

(4.10) w(Il) = (Z agk) o Z a;k))

ke K keKs

holds true with |[K;| =...=|K,| = £. Now suppose that some k; € K; is
not contained in K, i.e., the summand agkl) does not appear in the first sum
in (4.10). Then it is contained in some other set K;, assume for simplicity
that this is K. Necessarily, there is ko € K, that is not contained in K.
Again assume for simplicity, that k; € K3 holds true and find k3 such that
ks € Ks, ks ¢ Kj. Proceeding this way, we must close the circle after
finitely many steps, again let us assume that this is after n steps. Thus we
have found k, € K,, k, ¢ K, such that k, € K, is the case. Now we

exchange the indices cyclically, i.e., consider the vector

ST Y IR < BT B S

ke(Ki\{kn})U{ki} ke(K2\{ki})U{ka} ke(Kn\{kn—1})U{kn}
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Because of Definition 4.4 , we have increased the coordinates in each position.
But the vector T is a sum of vertices of the simplices involved, hence it cannot
Pareto dominate the vector p(I1) which is located on A.

q.e.d.

We are now in the position to prove a version of superadditivity.

Theorem 4.7. The mapping p behaves superadditively along decompositions
of a well ordered polyhedron. That is, if 11 is a well ordered polyhedron and
I[I=7"+4Y, then (Y, ¥ are cephoids and)

(4.11) p(T) = p(T) + p(¥).

Proof:
15tSTEP :

First of all, consider the case that both T and ¥ are sums of those prisms
that generate II. That is, assume

T=> 1" w=>3n

kel ked

with suitable disjoint index sets I, J satisfying T U J = K. In each family
the prisms have equal volume. Possibly n is not a divisor of |I| or |J|. If
so, we replace each prism by a sum of n homothetic %fcopies of itself. This
does not change the order property of II and preserves weak nondegeneracy.
Hence we can at once assume w.l.o.g that T and W are standard.

According to Lemma 4.3 we know that

u(Y) = (Zai’”, Za;’”),

(4.12) kel kel,
() = (zaw, Za;’“>>,
ked: ked,

with

I =...=|I,|,

|J1] = ... = |Jal
Obviously, we have
and as the sum of all n terms is K, each of them has to be % Now consider
the first cordinate of the solutions. We obtain
(413) (Mm@ = D o <Y a0l = p ).

kel1UJ keK

as the 1°* coordinate of the a'®) is maximal in K.
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2"ISTEP : Next, assume that there are n-adic numbers t, = o (k € K)
such that

(4.14) YT = Z mee® g = Z (1—t)a®

keK keEK

holds true. It is no loss of generality to assume that all these numbers
have a common basis 27". Therefore, as in our introductory remark, we
can decompose every prism in each of the families into small homothetic
multiples of each other untill all prisms involved have equal volume and each
prism 1+2™ is a sum of such prisms with equal volume. We may then apply
the result of the first step in order to prove superadditivity in the above
sense.

3"4STEP :

Now suppose that the decomposition is arbitrary. By a well known crite-
rion (see PALLASCHKE-URBANSKI ([7]), Theorem 8.3.3 or SCHNEIDER([11]),
Theorem 3.2.8) the two polyhedra Y and ¥ have to satisfy equation 4.14
possibly with non n-adic real numbers ¢, 0 <t <1 (k€ K). But the
n — —adic numbers are dense and it is not hard to see that, whenever T and
U are approximated using decompositions of II that are n—adic in the sense
of the 2STEP, then the solution behaves continuously. Superadditivity
follows, therefore, from the result of the 2"¢STEP.

q.e.d.
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5 Examples

We present some examples that demonstrate the merits and demerits of the
solution concept.

Example 5.1. Recall Figure 2.3 (Example 2.4) which is generated by the
family of positive vectors @ = (1,3,2), b = (2,1,3), ¢ = (3,2,1). We
consider some variants of this example given by

P = Hlaa + Hlbb + chc
with positive constants l,, Iy, [..

To begin with, let a® be given via

a?V =...=a¥ = a = (1,3,2);
(5.1) a® =a® = g: a®=a® b = (2,1,3);
a”=...=a"? = c = (3,2,1).

Now put
(5.2) K, = {9,...,12}, K, = {1,...,4}, K3 := {5,...,8}.
Then a® is well ordered in the sense of Definition 4.4 as

ct > aib

a2 by, co

bs

v v

az > C3
holds true. Therefore we can apply Theorem 4.7 which shows that g behaves
superadditively along any decomposition of

K

11 = ZHa(k) — H6a + H2b + H4c )

k=1
Indeed, the proof of Theorem 4.7 can immediately specified; we observe that
p collects the largest quantities in each coordinate. As it turns out, we obtain

p= 4c' +4a® + 2b* + 2a°
(5.3) = (4%x3,4%x3,2x3+2x2)
= (12,12,10) .

Obviously, the procedure works for any triple (I,, [y, [.) satisfying
(5.4) by <l <lo, lot1ly=2l,

Moreover, we may exchange the roles of a, b, c in a cyclic order. Then we
obtain similar statements whenever

la§1b§107 lo +1c =2l
(5.5) or
lcflaélb, le +1y =21, .
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Figure 5.1: The solution for a variant of Figure 5.1

The smallest term is permitted to be 0, e.g., [. = 0, [, = 2l, is feasible. This
yields the sum of two prisms similar to Figure 2.1, but the translate of I1%°
has twice the area of the one of I1%.

In order to clarify the situation, Figure 5.1 depicts the case (lo,l,1.) =
(3, 1,2) which is structurally the same as the one treated above with (s, ,,l.) =
(6,2,4). We observe that

La(A?) = 1A (AY) = 1a(A°) = V62 = o

and it is convenient to compute quantities in terms of a. Hence, the simplex
for the measure preserving representation is 6aA€ which is the union of 36
simplices of area « (see Figure 5.2).

Figure 5.2: The representation of Figure 5.1

The translate of A? is represented by a simplex with area of one unit o, A°
is reflected by a simplex with 4 units, and A® receives 9 units. It is seen that

~

the barycenter pu(I1) = a(2,2,2) corresponds to
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p(l) = 2¢' +2a” + b + a®

(5.6) = (6,6,5) .

The Nash solution for this example is v (II) = (6, 2", §). This point (maximiz-
ing the coordinate product) is located on the edge connecting p(IT) = (6,6, 5)

and the vertex kK = (6,9, 3), more precisely,

3p

ag
v=—
4 4

Thus, the superadditive solution gives slightly more to player 3 and slightly
less to player 2 compared to the Nash solution and, in addition, treats players
1 and 2 equally.

Example 5.2. Now let us assume that (I, I, l.) does not obey the conditions
(5.4) or (5.5), then p may not behave superadditively. E.g., if we choose

H:AQU’—!—Ab:Aa—FAa—FAb,

then
p(l)=a®+a®+b' = (2,3,2)

— there is no way to “collect the largest values in each coordinate”. Thus, it
turns out that

3'33
dominates p(IT) with respect to the third coordinate. Hence, p is not su-
peradditive “on II”. Apparently, some version of “cyclic orientation” admits
of a superadditive solution for a certain type of cephoid — this is indeed the
meaning of Definition 4.4. Now, there are obviously cases which do not admit
any version of “orientation” at all. The foremost candidate is provided by

Figure 2.2. Studying this version (and the above examples) sheds light on
the problem of nonexistence exhibited by PERLES’ counterexample.

p(a%) o) = (55,7

Indeed, let # := 5 and consider the cephoid generated by the family of
vectors @ = (ﬂ,ﬁ,%),b = (8,8,8). Then TI = TI% + II° is indicated in
Figure 5.3.

Due to the fact that A%, and A%, have the same normal cone the repre-
sentation of the trapezoid = := AP + A% is not unique. E.g. = =
(@' + Ab) U (AL + Ab) as well as = = (a® + A%) U (A%, + Ab) holds
true. Hence there is no “canonical” or “measure preserving” representation of
the surface of II. There are, however, representations.

Indeed, take the simplex 36A¢ (Figure 5.4). As ta(A%) =1 and ta(Ab) =25
we can assign a measure of 1 unit to the image of (the translate of)A® and
25 units to the image (a translate) of A which leaves 10 units for the image
of a diamond. Two possibilities are presented in Figure 5.4. Taking the
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Figure 5.3: The solution for a variant of Figure 2.3

0

Figure 5.4: Representing the cephoid of Figure 5.3
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barycenter in both situations and transporting it backwards yields two points
p! and p?. Thus, there is no “canonical” procedure for the definition of a
solution.

Moerover, it would seem that the appropriate way of mapping the surface of
IT onto 36A¢ is indicated by the third sketch in Figure 5.4 as this way we
would preserve the poset of surface polyhedra.

As far as a point valued solution is concerned, there seems no way to extend
it to this kind of bargaining problem. In fact, the counterexample of PERLES
[8] exhibits just this difficulty. Perles proved, that on the family of polyhedra
he considered, any superadditive solution has to be continuous. It is rather
obvious that his proof can be extended to all cephoids. The present example
shows that continuity of our solution cannot prevail if degenerate cephoids
are admitted. While this is not another non—existence proof, it sheds light
on Perles’ procedure.
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6 Remarks on Uniqueness

In two dimensions the uniqueness of the superadditive solution is based on
two fundamental facts. First of all, the sum of two prisms (triangles in this
case) with equal volume can be transformed into a a symmetric parallelogram
by means of an “linear transformation of utility” (a dilatation of the axes).

Secondly, let there be given a cephoid which is a sum of triangles with equal
surface measure (i.e., induced by a well ordered family). Then we can split
off successively the outermost triangles on the “right” and on the “left” side
and take the sum which is a parallelogram with the above property. The
central corner of admits of a joint normal with all the “inner” triangles and
corners. Thus, we can decompose the cephoid into a sum of parallelograms
with joint normal at the central corners. Any superadditive solution behaves
additively on this decomposition, hence it is uniquly defined.

The details can be seen in the presentation of MASCHLER-PERLES [4], in
[9], or more recently in [10].

In three and more dimensions the procedure can be repeated. However, we
cannot expect that all well ordered cephoids can be decomposed into a sum of
symmetric parallelepipeds with central corners admitting of a joint normal.

For example, consider Figure 2.3. The family of positive vectors generating
IT is given by a = (1,3,2), b = (2,1,3), and ¢ = (3,2,1), obviously II
is invariant under all permutations of the axes and hence every bargaining
solution chooses the unique corner point (3, 3, 3). Whenever we apply a linear
transformation of utility on I, this property does not change.

Other than on two dimensions, however, this is not the general situation of
a well ordered family of three prisms up to linear transformation of utility.

E.g., suppose we have three positive vectors a, b, ¢ in R? such that

a; < as < as
(61) bg < b1 < bg

c3; < Co < C1
is the case and the volume of the correponding prisms is equal, i.e.,
(62) 10903 = bleb:; = (C1C9C3 = 6V(Aa) = 6V(Ab) = GV(AC)

holds true. Then there is a linear transformation of utility transporting the
sum into a symmetric cephoid if and only if

(63) a1021)3 = 1)10263 = Clbza3 = GV(AG’)
is true. This means, that
(ala Co, b3) ) (b17 ag, C3) ) (CI: b27 a3)

constitute a well ordered family as well (inspection shows that the orientation
changes).
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In order to generalize this concept, we call a family of vectors a'V, ..., a(™
(and the cephoid resulting) symmetric up to l.t.u if there is a linear trans-
formation (“of utility”)

L :R"—>R", L(x) = (ury,...,a,2,) (x €R")

(with positive ay,...,a,)) such that
n
T = Z &™)
=1

is symmetric.

Note that a cephoid which is symmetric up to 1.t.u admits of a central vertex,
say a such that L(a) is located on the diagonal of R". It follows at once
from symmetry and Pareto efficiency that p(II) = a holds true.

Definition 6.1. A well ordered family a® = (a(k))keK 15 called suffi-
ciently symmetric if

1. There exists a further decomposition (apart from the one mentioned in
Definition 4.4)

(6.4) K =1IL+. . +L

3=

such that |L,| = n and every family (a(k)) 15 symmetric up to l.t.u.

keL,

2. The central vertices a(® of the symmetric cephoids

= 3" a®

keL,

admit of a joint normal.

For example, the cephoids of Figures 2.3, 2.4, and 2.5 are sufficiently sym-
metric.

Naturally, we have the following Theorem.

Theorem 6.2. 1. For n= 2, the sufficiently symmetric cephoids are (Haus-
dorff-)dense within the compact, convez, comprehensive sets.

2. For every sufficiently symmetric cephoid there is a unique superadditive
solution, this solution is .

The proof is obvious.
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