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Abstract

This paper combines the Aiyagari/Huggett–type standard incomplete markets

model with the Arrow/Romer approach to growth to analyze feedback effects be-

tween growth and inequality, both endogenously determined in equilibrium. We de-

rive conditions on existence/ nonexistence of balanced growth paths. Major results in-

clude that growth, inequality, and risk are positively related in our model, but we also

identify a hump–shaped relationship between welfare and risk, indicating a tradeoff

relationship between risk–pooling and growth in the determination of welfare. We

discuss transitory dynamics and policy implications. A growth policy simultaneously

reduces wealth inequality in the economy. The benefits and burdens of the underlying

policy are unequally distributed, which raises the issue of politico–economic equilib-

ria. We provide results on majority voting, finding that that the median voter prefers

less than optimal subsidies on investment. Interestingly, the society might even vote

against a policy providing full insurance against idiosyncratic risk, because welfare

losses of lower growth more than offset welfare gains from lower risk.
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1 Introduction

The question of how growth and inequality are related has been a matter of profound

interest for many economists over the last decades. The relation is considered to be an

ambivalent one, the traditional view emphasizing the famous ‘equity vs efficiency’ tradeoff,

according to which greater income or wealth equality creates disincentives which prove

harmful to growth. Contrary, economic analysis has shown that in the presence of market

imperfections inequality actually may reduce the long–run growth rate of the economy

such that redistributive policies are rendered desirable.1

In this paper, we present a simple model of individual risk, growth, and inequality. A

special feature of our approach is that both, the growth rate as well as the distribution of

income and wealth are endogenously determined in equilibrium and mutually dependent.

We are therefore able to study possible feedback effects to gain a deeper understanding

of the implications regarding the redistributive and growth consequences of public policy.

Market imperfections enter in our story twofold, firstly, by the absence of risk–sharing

arrangements, and secondly, by the presence of individual borrowing constraints.

We combine the simple growth mechanism introduced by Romer (1986) with the neo-

classical standard incomplete markets model with idiosyncratic risks and borrowing con-

straints in the spirit of Huggett (1993) and Aiyagari (1994, 1995). The agents’ income and

wealth heterogeneity stems from serially correlated uninsurable shocks to labor efficiency.

Households are subject to borrowing constraints, restricting their means to smooth the

intertemporal consumption flow.

Our analysis focuses on three aspects. We provide necessary and sufficient conditions

for the existence of a balanced growth path and demonstrate that these not necessarily

have to be met, the results crucially depending on the degree of risk aversion. Hence, for

particular parametric specifications of the model an equilibrium growth path might not

exist.2 Similar to Aiyagari and McGrattan (1998) and Japelli and Pagano (1999) feasible

equilibria in our model economy may also be characterized by a growth rate larger than

the equilibrium interest rate. Additionally, due to the mutual dependency between growth

and inequality, the model features transitional dynamics. Our numerical simulations show

that for both variables transition towards their stationary values is non–monotonic.

Our second focus lies on role of market imperfections for the determination of growth

and inequality. We find that the presence of risk and borrowing constraints unambiguously

has a positive effect on the long–run growth rate of the economy. Aggregate savings are

larger compared to the complete markets economy because of the desire of risk averse

individuals to protect themselves against fluctuations in their intertemporal consumption

path and the limitation of not being able to borrow, a phenomenon which is well–known

from the literature and referred to as ‘buffer stock saving’ (Carroll, 1997). From this

follows naturally that a rise in idiosyncratic risk not only increases equilibrium inequality

1See the survey by Aghion et al. (1999) and references therein.
2To this end, our analysis completes the descriptive analysis of Bertola et al. (2006, ch. 9.3).
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but also the growth rate of the economy. Tightening credit constraints raises growth but

has an equalizing effect on the wealth distribution, the latter also originating from the

accumulation channel.

Our last focus is on the policy implications which follow from the underlying model.

Endogenous growth results from externalities in human capital accumulation. This en-

dogenous growth mechanism is known to generate allocations which fail Pareto–efficiency,

therefore calling for policy intervention. We pursue this line by analyzing the effects of the

prototypical policy recommendation for Romer (1986)–type endogenous growth models,

which is subsidizing capital accumulation financed from a non–distortionary consumption

tax in order to close the wedge between the private and the social return to capital.

Our numerical simulations come up with some interesting results for the interaction

between growth, risk, and inequality. First of all, we do not generally observe the ‘equity

vs efficiency’ tradeoff. A growth policy aimed at improving efficiency of the underlying

allocation simultaneously contributes to the equity goal by also lowering wealth inequal-

ity. Moreover, the policy under consideration lowers the riskiness of disposable income,

such that feedback effects on growth additionally have to be taken into account. Finally,

the consumption tax under consideration tends to be regressive as the underlying model

features wealth and savings rate heterogeneity.

Wealth heterogeneity turns out to be crucial, when it comes to the evaluation of welfare

effects. For both issues addressed, changes in risk as well as policy intervention, welfare

gains and losses are unequally distributed across the society, closely relating our analysis

to Domeij and Heathcote (2004) and Heathcote (2005) and also calling for a discussion

of political equilibria in a median voter context.

We develop a procedure enabling us to assess welfare consequences of changing envi-

ronments also including the transitional dynamics of the underlying economy towards a

new steady state. Usually one would expect welfare gains from either, larger growth and

lower risk. In our model, however, lower risk goes along with a disincentive to save out of

precautionary motives. This leads to a decline in the growth rate and generates associated

welfare losses. We illustrate this idea by performing a thought experiment on a redis-

tributive policy aimed at completely eliminating the individual risk. Because this stands

at odds with the growth target it might turn out welfare–deteriorating in the whole and

also would be voted down by a majority of the population. Depending on the magnitude

of risk, growth and risk–pooling effects are offsetting each other, such that we observe an

inverted U–shaped relationship between welfare and risk.

Regarding the welfare consequences of the growth policy under consideration, a pol-

icy maximizing aggregate welfare is characterized by smaller degree of subsidization com-

pared to the complete markets economy. This again, because policy benefits and burdens

are unequally distributed over agents. We find that the median voter also prefers lower

subsidies on investment, a point which was already raised by Bertola (1993) for the case

of an exogenously given time–invariant wealth distribution.
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Our analysis relates to the literature in several ways. In the tradition of Galor and Zeira

(1993), Banerjee and Newman (1993), or Bénabou (1996, 2000), we stress the impor-

tance of risk and market imperfections. Integrating the analysis of growth and inequality

regularly suffers from technical drawbacks. Generally, it is difficult to jointly and endoge-

nously determine both, the balanced growth rate and the equilibrium income and wealth

distribution. Either assumptions have to be restrictive to prevent models from eluding

closed–form solutions or one has to rely on numerical simulations, which is done in the

present paper.

Previous work along this line, simultaneously and endogenously determining equi-

librium inequality and the growth rate of the economy, is rare. Aiyagari (1994) only

shortly refers to the possibility of including exogenous technical progress in the anal-

ysis (see Aiyagari, 1994, fn. 26) and pursues this in Aiyagari and McGrattan (1998).

Japelli and Pagano (1994, 1999) discuss the implications of liquidity constraints on en-

dogenous growth and welfare but do not consider distributional consequences. Bertola

(1993) assumes an exogenously given, time–invariant wealth distribution in his discussion

of the politico–economic implications of public policy in an endogenous growth context.

Bertola et al. (2006) briefly raise the issue of endogenous growth in their discussion of

the standard incomplete markets model. They neither provide existence results on equi-

librium growth paths nor an numerical assessment of the feedback effects between risk,

growth, inequality and borrowing constraints.

Perhaps closest to our approach, although with a different focus, is Krebs (2003a,b),

who considers human capital formation in an heterogeneous agent model with idiosyn-

cratic risk. He analyzes trade–off relationships between the two accumulated assets, real

and human capital, and finds a risk effect on growth which is rather large in magnitude.

Our paper is organized as follows. We develop the model in section 2. For reference,

we first give a short sketch of the equilibrium allocation in the representative agent com-

plete markets economy before proceeding to the heterogeneous agent incomplete markets

setting. We determine the macroeconomic equilibrium, the stationary wealth distribution,

and state conditions on the existence of a balanced growth path. Section 3 is devoted

to the numerical analysis. We start with a description of calibration procedures, examine

the effects of a rise in idiosyncratic risk, shortly discuss the growth and welfare effects of

providing full insurance against the idiosyncratic risk, and conclude the growth and distri-

butional implications of changes in debt limits. Section 4 presents the policy analysis. The

section covers the design of an optimal growth policy and deals with political economy

issues by determining the politico–economic equilibrium. Section 5 concludes.
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2 The Model

2.1 Overview: Equilibrium Growth and Complete Markets

We consider a production function with knowledge spillovers in the spirit of Romer (1986).

The labor force (population) is normalized to unity and there is no population growth.

We consider a continuum j ∈ [0,1] of identical firms who produce a homogeneous output

good y j,t according to the following Cobb–Douglas technology :

y j,t = Bkα
j,t l

1−α
j,t K1−α

t (1)

where B > 0, α ∈ (0,1), both constant. Capital depreciates at the constant rate δ> 0. Out-

put is assumed to be generated from physical capital k j,t and labor l j,t . If the individual

producer expands k j,t by investment, the aggregate capital stock Kt rises accordingly and

generates a positive externality by raising the productivity of all firms. The production

function of the individual firm is homogenous of degree one with respect to the privately–

owned inputs and twice continuously differentiable. Aggregate production is linear in the

aggregate capital stock K and displays increasing returns to scale, such that the require-

ments for ongoing growth of per capita incomes are met.

The optimization problem of the individual firm is standard. All markets are com-

petitive, and factor prices are determined by the usual marginal productivity conditions.

In market equilibrium k j,t equals Kt , when additionally considering the normalization of

the labor force. The equilibrium real interest rate is determined by the private marginal

product of capital and falls short of the social return, because the productivity–enhancing

effect of investments is not taken into account in individual profit maximization. The

equilibrium private gross interest rate R= 1+ r is time–invariant and given by:

R= α B+1−δ. (2)

The equilibrium wage rate equals marginal labor productivity and grows proportionally

to the aggregate capital stock:

wt = (1−α)BKt . (3)

Consumers are homogenous in an economy with complete markets, due to the possibility

of trading state–contingent securities which allow for perfect risk–sharing. The infinitely–

lived representative agent maximizes discounted intertemporal utility from consumption,

c, subject to the intertemporal budget constraint describing the dynamics of individual

wealth holdings a and taking prices as given:

max
{ct}

∞
t=0,{at+1}

∞
t=0

Vt =
∞

∑
t=0

βtu(ct) s.t. at+1 +ct = Rat +wt ,

where 0 < β < 1 denotes the discount factor. Typically, the current period utility function

displays constant relative risk aversion (constant IES), measured by the parameter ρ > 0.
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Optimal consumption growth is determined by the usual Euler equation. The growth

equilibrium in the economy with complete markets is characterized by factor and com-

modity market clearing. Individual asset holdings sum up to the aggregate capital stock.

Output, consumption, and the capital stock grow at a common and constant equilibrium

growth rate, γC, which follows as:

1+γC = (βR)1/ρ . (4)

The basic Romer (1986)–model displays no transitional dynamics. The economy

immediately enters the balanced growth path. Due to the presence of technological

spillovers, the equilibrium growth rate is suboptimally low in the decentralized economy

if compared to the social optimum, which renders an appropriately chosen growth policy

effective. Policy recommendations aim at subsidizing capital accumulation to close the

wedge between the private and the social return to capital, with subsidies possibly being

financed from a non–distortionary tax. In an economy with complete markets and no

endogenous labor–leisure choice, taxing either consumption or labor income ultimately

amounts to a lump–sum tax.

2.2 Idiosyncratic Risks and Incomplete Markets

Consider an economy populated by a continuum [0,1] of infinitely–lived households who

are ex ante identical and heterogeneous ex post. Each household is endowed with one unit

of labor which he supplies inelastically to the labor market. In each period of time, the

household is subject to an idiosyncratic shock to his labor productivity, which exposes him

to a labor income risk. Markets are incomplete, such that the individual risk cannot be

perfectly pooled (cf. Aiyagari, 1994, 1995). Households are risk–averse and can save or

borrow in order to smooth their intertemporal consumption flows. Borrowing, however,

is constrained up to a given limit. As a result, the agents self–insure by undertaking

precautionary savings to build a buffer against future losses or drops in income. There is

no aggregate risk and no risk on capital return.

Let θi,t denote agent i’s labor productivity of period t. We assume that θi,t evolves ac-

cording to a finite state first–order Markov–process with bounded support, lowest possible

realization θmin such that θi,t > θmin > 0, Eθ[θi,t ] = 1 for all t, and the associated probability

transition matrix P(θt ,θt+1) = prob(θt+1|θt), where the expectation is formed with respect

to the stationary distribution of the underlying Markov process.

Let ai,t denote agent i’s holdings of non–human wealth in period t. For given gross

factor prices R and wt , the individual household’s intertemporal budget constraint is given

by:

ai,t+1 +ci,t = Rai,t +wtθi,t .

The borrowing constraint requires ai,t > −φt for all t, where φt either might stand for the

natural debt limit (Aiyagari, 1994, p. 666) or for some ad hoc limit.
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The household derives utility from streams of consumption {ci,t}
∞
t=0. Intertemporal

preferences are time–separable. Assuming CRRA preferences, the intertemporal problem

of agent i can be set up as follows:

max
{ci,t}

∞
t=0,{ai,t+1}

∞
t=0

Et

∞

∑
t=0

βt
c1−ρ

i,t −1

1−ρ

s.t. ai,t+1 +ci,t = Rai,t +wtθi,t (5)

ai,t+1 > −φt+1 .

Note that, by (2) and (3), the equilibrium factor prices are completely determined by the

underlying technology and do not depend on the wealth distribution. The labor income

risk does not vanish in the long run, because the equilibrium wage rate, wt , grows linearly

in the capital stock. We generally assume that the borrowing limit, φt , grows proportionally

to the aggregate capital stock. Because the labor income risk is multiplicatively related to

the wage rate, the borrowing constraint does not cease to be binding in the long–run in a

growing economy.

In a next step, we transform problem (5) such that it corresponds to the associated

problem of a stationary economy (cf. Aiyagari, 1994; Aiyagari and McGrattan, 1998). Let

γ denote the equilibrium growth rate of the incomplete markets economy. We use the

transformations ãi,t = ai,t/Kt , c̃i,t = ci,t/Kt , φ̃t = φt/Kt , w̃= wt/Kt and β̃ = β(1+γ)1−ρ, where

the aggregate capital stock, Kt > 0, equals average capital holdings. The detrended con-

straint is time–invariant, that is φ̃t = φ̃ for all t.

We are now able to write down the Bellman equation describing the agent’s intertem-

poral problem:3

V(â, θ) = max
c̃, â′>0

{

u(c̃)+ β̃E′ V(â′, θ′)
}

s.t. â′(1+γ)+ c̃ = Râ+[(1+γ)−R] φ̃+ w̃θ , â′ > 0
(6)

where â= ã+ φ̃ is defined to include the borrowing constraint and primes denote variables

of the next period.

In order to rule out Ponzi games, it is necessary to impose an ad hoc limit φ̃ah > 0 for

the case of R 6 1+ γ. For the opposite case of R > 1+ γ, the optimization problem (6)

implies that no agent will ever go into debt beyond the so–called ‘natural debt limit’, φ̃n,

which is given by the worst–case scenario discounted value of labor income allowing (a.s.)

for nonnegative consumption levels, that is

φ̃n =
w̃θmin

R− (1+γ)
. (7)

An arbitrarily fixed ad hoc debt limit φ̃ah will only be binding if φ̃ah 6 φ̃n. Therefore,

the effective debt limit appearing in the optimization problem (6) below is implicitly

3For notational convenience, we drop the explicit time notation and the index i related to individual

decisions.
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determined by the wage rate, the interest rate, and the growth rate γ, all to be determined

in equilibrium

φ̃ah > 0, φ̃=







φ̃ah, R6 1+γ

min
[

φ̃ah, φ̃n
]

, R> 1+γ.
(8)

For β̃ < 1, the optimization problem (6) is bounded and structurally equivalent to

the one discussed in Aiyagari (1994). It is, however, important to bear in mind that β̃
crucially depends on ρ and γ. The condition β̃ < 1 is not trivially satisfied by assuming a

time discount factor β in the unit interval.4 We will return to this issue when discussing

existence and feasibility of a balanced growth path.

Let â′ = h(â, θ; γ, φ̃, w̃,R) denote the associated policy function solving problem (6).

Following Aiyagari (1994), we employ the individual policy functions to derive aggregate

(average) wealth holdings. Given the properties of the stochastic process underlying the

idiosyncratic shocks to labor efficiency, the stationary distribution of wealth levels â across

agents is represented by the stationary probability measure µ(â,θ; γ, φ̃, w̃,R), such that

aggregate detrended wealth holdings are given by:

Eµ h(â,θ; γ, φ̃, w̃,R) ≡ Â(γ, φ̃, w̃,R) = Ã(γ, φ̃, w̃,R)+ φ̃.

where Eµ denotes the expectation with respect to the stationary distribution. Recall that

the equilibrium factor prices w̃ and R do not depend on the wealth distribution, due to the

properties of the production technology (1).

2.3 Balanced Growth and General Equilibrium

Balanced growth in the Romer (1986)–economy is characterized by consumption, output

and the capital stock growing at a common rate. The equilibrium growth rate is constant

along the balanced growth path due to the time–invariant capital return. The production

of aggregate output is nonstochastic, but indirectly affected by individual saving decisions

via the aggregate capital stock. The equilibrium factor prices coincide with the expressions

(2) and (3) derived for the representative agent economy.

Given the production technology (1), profit maximization implies the following factor

demands of the individual firm, which we express as functions of the detrended variables

w̃t = wt/Kt and k̃ j,t = k j,t/Kt for notational convenience:

l j,t =

(

w̃t

(1−α)B

)−1/α
k̃ j,t and k̃ j,t =

(

Rt −1+δ
αB

)−1/(1−α)

l j,t .

4This is a standard result in intertemporal modeling and usually covered by the transversality condition in

representative agent economies, which rules out unlimited borrowing and unbounded welfare. Ponzi games

are ruled out in the present model by (8). For existence of a balanced growth, see Proposition 1 below.
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Aggregating individual factor demands yields:

Z 1

0
l j,t d j ≡ L(Rt , w̃t) =

(

w̃t

(1−α)B

)−1/α
K̃(Rt , w̃t) (9)

Z 1

0
k̃ j,t d j ≡ K̃(Rt , w̃t) =

(

Rt −1+δ
αB

)−1/(1−α)

L(Rt , w̃t) . (10)

Definition 1 A decentralized recursive competitive stationary equilibrium in detrended vari-

ables is defined by a detrended wage rate w̃, a gross interest rate R, a growth rate γ, and a

policy function h(â,θ; γ, φ̃, w̃,R) with associated value function V(â,θ) such that the following

conditions hold:

(i) The policy function h(â,θ; γ, φ̃, w̃,R) solves the consumer’s optimization problem (6),

such that the aggregate detrended asset supply is given by Ã(γ, φ̃, w̃, R).

(ii) The economy–wide capital stock Kt equals the aggregation of firm–specific capital

stocks, which in detrended variables is equivalent to

K̃(R, w̃) =
Z 1

0

k j,t

Kt
d j = 1 . (11)

(iii) Factor markets clear at given (detrended) prices w̃ = (1−α)B and R= αB+1−δ and

aggregate detrended factor employment is given by

L(R, w̃) = Eθ[θi,t ] = 1 (12)

K̃(R, w̃) = Ã(γ, φ̃, w̃, R) . (13)

Capital demand equals aggregate wealth holdings. In detrended variables, this is equiv-

alent to

Ã(γ, φ̃, w̃,R) = 1 ⇐⇒ Â(γ, φ̃, w̃,R) = 1+ φ̃.

(iv) The stationary distribution µ(â,θ;γ, φ̃, w̃,R) of agents over individual wealth holdings

and associated productivities is the fixed point of the law of motion which is consistent

with the individual decision rules and equilibrium prices.

The equilibrium growth rate, consistent with a balanced growth path, is implicitly defined

by (13).

Proposition 1 A unique balanced growth path with growth rate γ exists in the presence of

idiosyncratic shocks and incomplete markets, if β < Rρ−1.

1. The necessary condition is sufficient

(i) for all ρ > 1,

(ii) for ρ < 1, if the natural debt limit φ̃n applies.
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Figure 1: Equilibrium growth rate, borrowing limits, and asset supply

−φ̃n(γC) Ã

γ

r

γC

Ã(γ, φ̃ah, w̃,R)

Ã(γ, φ̃n, w̃,R)

φ̃ah = 0 1

P

φ̃n

Q

γφ̃ah

γφ̃n

2. The equilibrium growth rate γ is always larger than the associated growth rate of the

economy with complete markets, that is γ > γC. The equilibrium growth rate is strictly

smaller than the equilibrium interest rate, that is R−1 > γ> γC, if the natural debt limit

φ̃n applies.

Proof of 1. and 2. see Appendix A.1.

Aiyagari (1994) proves existence for the case of CRRA utility and iid income. We are not

able provide a proof for the more general model with serially correlated shocks, but verify

existence in our numerical work.

A major implication of Proposition 1 is that a balanced growth path might not exist for

an arbitrarily chosen ad hoc limit, φ̃ah, if the degree of risk aversion is sufficiently small.

Appendix A.2 gives an example for this case. Another implication is that for some given

ad hoc debt limit the equilibrium growth rate may well exceed the equilibrium interest

rate, implying dynamic inefficiency (see also Aiyagari and McGrattan, 1998).

We find that the presence of uninsurable idiosyncratic labor income risk has an unam-

biguously positive effect on the aggregate growth rate of the economy by raising capital

accumulation due to precautionary motives. This extends the results well–known from

the standard (stationary) incomplete markets model to an endogenous growth context.

Existence of a balanced growth path is tied to restrictions on the real interest rate and the

intertemporal discount rate which closely resemble the key property βR< 1 for existence

of an equilibrium in stationary Bewley (1983)/Aiyagari (1994)–type models.

To illustrate the analogy of results, consider Figure 1 which plots the growth rate

against aggregate (detrended) asset supply Ã for both, some ad hoc debt limit φ̃ah = 0

10



(red) and the natural debt limit φ̃n (blue) as defined in (7). The figure also depicts φ̃n

as endogenously determined lower natural bound to asset holdings (grey). From (8) we

know that the effective debt limit is determined by the size of the interest rate relative

to the growth rate. Figure 1 also shows that any ad hoc debt limit, φ̃ah, smaller than the

natural debt limit at the lowest possible growth rate, φ̃n(γC), sustaining non–negative con-

sumption in the incomplete markets economy definitely is binding for all γ> γC. Obviously,

any ad hoc debt limit acts more restrictive on intertemporal consumption smoothing than

the natural debt limit, resulting in relatively increased asset holdings and a comparably

larger equilibrium growth rate γφ̃ah
> γφ̃n

; the respective equilibria for the two debt limits

are represented by P and Q in Figure 1.

The existence condition βR < 1 for stationary economies modifies to βR < (1+ γ)ρ

in a growing incomplete markets economy, which is equivalent to β̃R < 1+ γ.5 Hence,

we have a result similar to Aiyagari (1994) that wealth holdings grow to infinity, if the

interest rate approaches the (growth–adjusted) discount rate from below, or, likewise, if

1+ γ approaches β̃R from above. Consequently, the growth rate of the complete markets

economy, γC, where in equilibrium 1+γC = β̃R, constitutes a lower bound for a balanced

growth path.

Feasibility of the allocation also requires lifetime utility to be bounded, i.e. β̃ < 1. This

condition is satisfied if β < Rρ−1, which is the condition given in Proposition 1. As can be

seen, the requirements for bounded welfare are trivially met for any ρ > 1. For the case

of ρ < 1, the restriction β̃ < 1 imposes an upper bound on feasible growth rates, such that

β < Rρ−1 constitutes a necessary condition.

The aggregate growth rate is non–stochastic. All households experience identical con-

sumption and income growth, although heterogeneity prevails, because the labor income

risk does not vanish in the long run. Individual wealth levels grow at the constant rate γ
and are distributed in accordance with the limiting distribution of the labor productivity

shocks, which is stationary in the detrended variables.

3 Numerical Simulations

3.1 Calibration

In what follows, we want to provide a numerical assessment of the growth and welfare

of effects a change in risk and of the tax–subsidy scheme of section 4. Regarding the

parameters related to preferences and technology, we use standard calibrations from the

literature. The production technology is Cobb–Douglas. We set the capital share to 0.33,

which is in line with estimates of Prescott (1986). Capital depreciation is fixed at 0.08.

We set the discount factor β to 0.985 and simulate our model for different values of the

coefficient of relative risk aversion ρ ranging from 1.5 to 5. The productivity parameter

B is a free parameter and set to 0.33, which is chosen to target an annual equilibrium

5See the proof of Proposition 1 in the Appendix and footnote 26 in Aiyagari (1994).
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Table 1: Numerical specification of the baseline model

parameter calibration target

α 0.33 capital share= 0.33

δ 0.08

B 0.33 rC = 0.03

ρ 1.5, 3, 5 γC = 0.0048

β 0.985

σ2
ε 0.0171 Var[ln(wθ)] = 0.09

ρθ 0.9 ρln(wθ) = 0.9

φ̃ah 0

(riskless) real interest rate of around 3%. We assume a lognormal AR(1) process for labor

efficiency with normalized mean, E[θ] = 1, which in continuous space is given by

ln θ′ = −1/(1+ρθ)
σ2

ε
2

+ρθ ln θ+ ε ,

where ε∼N (0,σ2
ε) and Var(lnθ) = Var(ln(w̃θ)) = σ2

ε/(1−ρ2
θ). The stochastic process for the

underlying labor productivity shocks is specified such as to display a serial correlation in

log labor incomes of 0.9 and a standard deviation of 0.3, which matches empirical evidence

for the U.S. provided by Storesletten et al. (2004) or Guvenen (2009). The AR(1) process

is approximated in discrete state–space by a five–state Markov chain using the method

proposed by Rouwenhorst (1995).6 The implied income distribution also matches recent

estimates for the actual distribution in the U.S., the simulations broadly generating Gini

coefficients ranging between 0.3 and 0.4.

The lognormal theoretical distribution underlying the labor income process implies a

lowest possible realization for θ infinitesimally close to naught. By (7), a narrow inter-

pretation of the model in our numerical simulations would also imply a zero natural debt

limit.7 Taking account of this, most of our numerical simulations are based on assuming

a zero debt limit ad hoc, that is φ̃ah = 0. In the more general setting discussed in section

3.4, we relax this assumption. In order to explore the question of how debt limits affect

long–run growth, we also allow for φ̃n > 0.

We report results for three alternative settings, (a) the complete markets economy

(indicated by subscript C), (b) the case of an exogenously fixed ad hoc debt limit, where

φ̃ah = 0, and (c), in section 3.4 for the endogenously determined natural debt limit φ̃n.

Table 1 reports the parameter values applied in our numerical simulations.

6As documented by Kopecky and Suen (2010), this method is more reliable than others for the approxi-

mation of highly persistent processes.
7The numerical simulations, of course, are capable of generating nonzero natural debt limits, as the

stochastic process is simulated by a discrete five–state Markov chain.
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3.2 Measuring Welfare

Besides the growth and distributional effects of a change in risk or of the adoption of

some public policy respectively, our aim is to qualitatively and quantitatively assess the

associated welfare consequences. To this end, we employ a utilitarian welfare mea-

sure, aggregating individual welfare gains (or losses) over all agents in the economy (cf.

Aiyagari and McGrattan, 1998). The welfare measure is consumption–related, computing

the aggregate amount of consumption necessary to leave each consumer indifferent be-

tween the original allocation vis-à-vis the allocation resulting from a change in parameters

or from the introduction of some policy (i.e. the compensating variation).

Changes in the general environment affect the equilibrium growth rate of the economy

either directly, by immediate adjustments of factor prices to their new equilibrium values,

or indirectly, via the associated response in the equilibrium wealth distribution. The latter

triggers transitional dynamics, where the growth rate asymptotically approaches its new

(and hence onward constant) equilibrium value. This constitutes a major difference to

the complete markets endogenous growth model, where the economy immediately jumps

onto the new steady–state following a change in conditions.

Our welfare measure accounts for the transitory adjustments.8 To this end, we develop

a procedure allowing us to calculate the actual time path of the capital stock relative to an

artificially constructed ‘reference path’. The reference path mimics the identical long–run

capital stock of the original economy under transitional dynamics, but posits instead that

the economy has grown at the new equilibrium growth rate from the outset, while starting

from a lower initial level; see Appendix B for a detailed description.

We calculate the change in consumption, ∆(â,θ)× c̃(â,θ), for an individual with wealth

â and productivity θ that equates the value function V(â,θ) under the two different allo-

cations (‘0’ and ‘1’) under consideration

∆(â,θ) = K1
(

V1(â/K1,θ)

V0(â,θ)

)

1
1−ρ

−1 ,

where the scaling factor K1 corrects for the differences in initial capital stocks between

the actual and the reference path. Consumption of an individual characterized by wealth

â and productivity θ along the original path is given by

c̃0(â,θ) = Râ+[1+γ−R] φ̃+ w̃θ− (1+γ)h0(â,θ) ,

where h0(â,θ) denotes the optimal policy function in the original situation. The amount

∆(â,θ) c̃0(â,θ) leaves the consumer indifferent between the two allocations under com-

parison. We then employ the stationary probability measure µ0 to compute the aggregate

8Note that the transformed value function V(â,θ) represents the solution to the optimization problem in

stationarized variables. In order to determine lifetime utility we have to correct for the level of the capital

stock.
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Figure 2: Risk, growth, and inequality

percentage increase in consumption, W, leaving all agents indifferent

W =
Eµ0

[

∆(â,θ) c̃0(â,θ)
]

Eµ0 [c̃0(â,θ)]
×100. (14)

A positive value of W identifies a welfare gain associated with moving from the original

to the new allocation.

3.3 Macroeconomic Effects of Rising Idiosyncratic Risk

We now proceed with quantifying the macroeconomic effects of a mean preserving spread

in shocks to labor efficiency. Our baseline specification assumes a standard variation

of log labor incomes of sd(lnθ) = 0.3; for reference see Table 1. The results from our

numerical simulations are summarized in Figures 2 and 4, which show the response of

the equilibrium growth rate, wealth inequality, and welfare to an increase in the standard

deviation of log labor incomes for three different degrees of risk aversion, ρ = {1.5,3,5}.9

Our numerical findings confirm the growth implications of uninsurable labor income

risk stated in Proposition 1 that balanced growth in the presence of incomplete insurance

markets and borrowing constraints exceeds growth in the complete markets economy due

to precautionary motives. The long–run equilibrium growth rate rises monotonically with

an increase in labor income risk, which reflects that households raise their savings in order

to protect themselves against a higher earnings risk. Figure 2a illustrates this result by

plotting the growth differential γ−γC against the standard deviation of log labor incomes.

The underlying relationship is positive and convex, meaning that the individual desire

to self–insure by undertaking buffer–stock savings even gains importance for higher risk.

The growth differential and therefore the growth effect of risk also is larger the more risk

averse households are. Given the ad hoc debt limit of φ̃ah = 0, the equilibrium growth

9We are primarily interested in the macroeconomic effects of a change in risk and therefore do not per-

form a full comparative static analysis with respect to the model primitives and only report results for three

alternative values of ρ. Assuming non–expected utility generates the well–known results, that the growth

rate increases with a rise in risk aversion and declines with a rise in the IES.
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Figure 3: Transitory adjustments of the growth rate and wealth inequality

rate even rises beyond the equilibrium interest rate (by (2), r = 0.03) for sufficiently large

values of the standard deviation of labor efficiency.

A larger dispersion in the idiosyncratic labor income shocks naturally raises income in-

equality. This also conveys into higher wealth inequality. The increase in wealth inequality

is less pronounced for higher degrees of risk aversion, reflecting the related increase in

inequality aversion associated with CRRA preferences and indicating the leveling effect

of precautionary motives for individual asset holdings and intertemporal consumption

smoothing.

Figure 3 displays the transitory dynamics of the growth rate and wealth inequality

following an instantaneous doubling of income risk (sd(lnθ) = 0.3→ 0.6). The values are

given relative to the new growth equilibrium. We find that the transitory adjustment paths

are non–monotonic for both quantities. Following an initial jump, the growth rate and the

Gini coefficient of wealth display an interim drop, before both attain their corresponding

higher new equilibrium levels in the long run. The drop is least pronounced for higher

degrees of risk aversion. It is altogether small in magnitude, amounting at most to a

tenth of a percentage point for the growth rate. The non–monotonic dynamics can be

traced back to revisions in households’ accumulation decisions and associated changes

in the wealth distribution. Agents are unequally affected by a rise in risk. The poorer

ones receive a larger fraction of household income from labor and therefore are more

exposed to risk than the richer ones. Their immediate increase in savings explains the

temporarily more equal distribution of wealth before the overall rise in risk dominates in

the long run and the wealth distribution converges towards its new stationary limit which

is characterized by higher inequality.

We now turn towards the welfare effects of a change in risk. As outlined above, the

welfare measure (14) expresses welfare gains (losses) as the aggregate percentage change

in consumption necessary to keep each and all agents indifferent between the original and

the new situation. Figure 4 plots the welfare measure against the standard deviation of

the labor efficiency shock. As before, we provide results for three different degrees of
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Figure 4: Welfare and labor income risk
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We find that the relationship between idiosyncratic risk and welfare is non–monotonic

and inverted–U shaped.10 Compared to the standard neoclassical incomplete markets

model, welfare gains (and losses) in our model result from a combination of two, a direct

and an indirect effect associated with a rise in risk. The direct effect is well–known and

straightforward, with welfare unambiguously decreasing for higher levels of risk due to

concavity of the underlying utility function. The indirect effect is related to the positive

change in the equilibrium growth rate of the economy. A rise in risk enforces buffer–

stock saving, which translates into higher growth and hence higher welfare. By increasing

savings, households not only self–insure against fluctuations in their intertemporal con-

sumption profile but also shift additional resources into the riskless income source. The

positive growth effect first dominates in the determination of welfare, but finally the risk

effect takes over and welfare declines for higher levels of risk.

In terms of the results presented in Figure 4 for ρ = 5, moving from sd(lnθ) = 0.3 to

sd(lnθ) = 0.9 amounts to an equivalent welfare loss resulting from a five percent decrease

in aggregate consumption. The overall welfare effect is more pronounced for lower de-

grees of risk aversion. Consider the case of ρ = 3. Although the positive growth effect is

smaller in magnitude too (see Figure 2a), this more than compensates for the negative

welfare effect from increased risk, such that altogether, the welfare effect from switching

between the baseline scenario and, say for instance, sd(lnθ) = 0.9 is larger.

Given that insurance and credit markets are incomplete, we identify a tradeoff rela-

tionship between risk and growth in the determination of welfare. A cautious interpreta-

10This is also true for the lower degree of risk aversion, ρ = 1.5, where the turning points are associated

with levels of risk outside the range depicted in figure 4.
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tion of our results suggests that a policy targeted at the reduction of risk not necessarily

generates welfare improvements.

To illustrate this issue, consider a thought experiment, where the government offers

agents a perpetual and complete elimination of individual income risks from time t on-

ward, e.g., by taxing away labor incomes and redistributing them in a lump–sum fashion

with a transfer equal to mean wage income w̃. The immediate effect of providing full

insurance against idiosyncratic risk would be that the stationary wealth distribution is

frozen and perpetually fixed in its time–t state. The economy immediately jumps onto

a new balanced growth path, where the equilibrium growth rate is given by the value it

attains under the complete markets regime, γC = (βR)1/ρ.

By Proposition 1, equilibrium growth from time t onward will now be lower than before

under the incomplete markets regime, because the importance of holding buffer–stocks

has ceased. Hence, insurance comes at the cost of lower growth. Individuals have to weigh

the utility gain from eliminating idiosyncratic risk against the welfare losses stemming

from the reduction in the aggregate growth rate. The redistributive policy reduces the

risk associated with after–tax labor incomes. The resulting negative growth effect from a

decline in savings can probably dominate the positive effect from lower risk. It turns out

that aggregate support for such a redistributive policy crucially depends on who benefits

most from this policy. Whereas relatively rich agents are comparably unconcerned about

the reduction in labor income risk, the relatively poor ones benefit most.11

Welfare from time t onward of a household with wealth â under the redistributive

regime can be determined explicitly as:12

VR(â) =
1

1− β̃
((R− (1+γC)) â+ w̃)1−ρ

1−ρ
.

Table 2 lists our numerical results and provides information on the decline in the

growth rate measured in percentage points, on the population fraction of supporters, who

would actually like to have this policy implemented, and on the aggregate welfare gain

(or loss respectively). The equilibrium growth rate is reduced by roughly half a percentage

point, which amounts to a welfare loss equal to an almost 6–9% reduction in aggregate

consumption. The negative growth effect is larger for higher degrees of risk aversion, as

the precautionary motive is more pronounced here.

Because the positive insurance effect of redistribution only outweighs the negative

growth effect for the lowest income classes, at most one fifth to one forth of the population

would support implementation of perfect risk–pooling. This indicates that the opportunity

costs of insurance in terms of forgone growth are substantial for large fractions of the

11In a similar spirit, Krueger and Perri (2011) discuss crowding out effects of public insurance in the stan-

dard incomplete markets model but abstract from potential distortions on capital accumulation and redis-

tributive consequences. In our model, public insurance directly crowds out growth.
12The expression for optimal consumption follows from the intertemporal budget constraint, by utilizing

the condition that â′ = â in steady–state and rearranging.
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Table 2: Perfect risk–pooling and welfare

ρ = 3 ρ = 5

p.p. change in γ % in favor W p.p. change in γ % in favor W

−0.43 17.77 −8.01 −0.56 25.54 −5.78

Table 3: Debt limits, growth and inequality (ρ = 3)

φ̃ γ G(â) G(ỹ)

0.00 0.0091 0.485 0.231

0.50 0.0078 0.643 0.280

1.00 0.0072 0.742 0.328

2.00 0.0067 0.841 0.412

3.00 0.0064 0.883 0.474

4.00 0.0063 0.902 0.512

4.935 0.0062 0.911 0.536

population. The long–run negative consequences for growth tend to dominate the positive

ones of providing ex post insurance in the determination of welfare.

3.4 Debt Limits and Growth

So far, we have assumed an ad hoc debt limit of zero in our numerical simulations. We

now relax this assumption. By allowing for nonzero debt limits, we examine the growth

and distributional effects of raising ad hoc debt limits up to the natural debt limit (7),

which reflects the endogenously determined upper bound beyond which no household

would be willing to increase debt. Given the Markov–chain approximation of the AR(1)

process for the baseline parameterization of Table 1, we determine the lowest possible

realization for labor efficiency as θmin = 0.52475. The associated natural debt limit can

then be determined as φ̃n = 4.935, which amounts to almost five times detrended average

wealth (see also Definition 1). Pushing the ad hoc debt limit further beyond this limit

implies that the natural debt limit is binding by (8), and the associated growth rate is

bounded from above by the real interest rate as stated in Proposition 1.

Knowing that a narrow interpretation of our model theoretically implies labor incomes

to be lognormally distributed and hence a θmin infinitesimally close to naught, for the sake

of the argument, we momentarily would like to interpret our approximation as describing

the ‘true’ process driving labor productivity. From this we expect some more general

insights into the question of how borrowing constraints affect growth and inequality.

The results are reported in Table 3 for the case of ρ = 3. The simulation results extend

our conclusions for the two cases φ̃n and φ̃ah = 0 drawn earlier in section 2.3 and illustrated

in Figure 1. Tightening borrowing constraints (φ̃→ 0) has a positive impact on growth.

The risk averse agents increase wealth holdings, which solely reflects an effect in buffer–
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stock saving, because the equilibrium interest rate is not affected by the magnitude of debt

limits. Intuitively, higher debt limits allow households to ‘stretch’ their budget constraint

by allowing for a higher level of consumption to be financed from debt. The demand for

intertemporal self–insurance is comparably smaller.

Table 3 shows that the overall growth effect of tightening borrowing constraints is

rather modest from a quantitative viewpoint. For instance, doubling the borrowing limit

from φ̃=1 to φ̃=2 only lowers the equilibrium growth rate by 1/20 of a percentage point.

Looking at the entire range of admissible borrowing limits, the difference in equilibrium

growth rates is less than one third of a percentage point.

Regarding the distributional consequences we find that relaxing borrowing constraints

has a marked effect on income and wealth inequality. The results are reported in Table 3.

One implication of generally permitting nonzero debt limits is that we observe negative

wealth holdings under the stationary distribution. The reported Gini coefficients are nor-

malized as described in Chen et al. (1982) to take account of these negative wealth and

income levels. The Gini of wealth rises from 0.48 to 0.91 over the range of admissible debt

limits. Of course, individual income is more equally distributed than individual wealth,

but still the Gini rises from 0.23 to 0.53.

4 Growth Policy

4.1 Policy Implications

The policy implications of the Romer (1986)–model are well–known. Due to the produc-

tion externality, the private return to capital falls short of the social return, and households

save less than the socially optimal amount. The optimal policy provides an incentive to

save more by subsidizing accumulation and closing the wedge between the private and

the social return. Let s denote a subsidy on the factor price of capital. An optimal policy

s̄ completely internalizes the knowledge spillover, establishes the Pareto–efficient alloca-

tion, and consequently is welfare–maximizing in an economy with complete markets. The

optimal subsidy relates to the relative magnitude of the externality and is determined by

the partial elasticities of production, s̄= (1−α)/α.

Another standard implication following from the theory of optimal taxation is that tax

revenues necessary to balance the public budget in this context should be raised in a non–

distortionary fashion, i.e. by a lump–sum tax if available, or—in the case of inelastic labor

supply—a consumption tax or a labor income tax.

The outlined policy recommendations and results are valid for an economy populated

by homogenous agents. If household are heterogeneous regarding their relative factor

endowments, this is also true for the individual–related income shares accruing from the

two income sources. Beyond that, factor incomes in our model also differ with respect to

the risk involved. Due to the presence of borrowing constraints, agents choose different

saving rates. Consequently, benefits and burdens of the underlying policy are not likely
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to be equally distributed. This issue was raised by Bertola (1993), who considered the

Arrow/Romer–type economy with exogenously given and time–invariant wealth hetero-

geneity and pointed out that the optimal policy financed from a labor income tax is not a

likely outcome of a majority vote, if the median voter has relative endowment holdings be-

low the mean. Originally brought forward by Meltzer and Richard (1981), we expect this

result to remain valid in a growing economy with an endogenously determined wealth

distribution. A policy which is optimal in the complete markets economy not necessar-

ily is welfare–maximizing in a heterogeneous–agent economy and also not likely to have

support from a majority of agents.

The general policy implication of providing households with an additional incentive to

accumulate is preserved in our model, but it is also necessary to shed more light on the

growth, redistributive, and welfare effects of financing the subsidy payments. In this con-

text, we have to account for several dimensions. Firstly, a subsidy affects the riskiness of

after–tax income, thereby possibly providing an insurance against the individual income

risk. Secondly, as far as wealth levels and the endogenously determined wealth distribu-

tion are concerned, the underlying policy may possibly interact with the extent to which

borrowing constraints are actually binding. A chosen policy gives rise to primary and

secondary effects on the aggregate growth rate of the economy and on wealth inequality.

Thirdly, a consumption tax tends to be regressive if saving rates increase in the level of

income. The distribution of the associated welfare gains and losses across the population

is not necessarily straightforward and will be one of the issues raised in our subsequent

analysis.

We start our policy analysis with a simple growth policy, where the subsidy on cap-

ital returns is financed from revenues from a consumption tax, the latter known to be

nondistortionary in an intertemporal context. Our numerical analysis offers results on

growth, inequality and welfare for a change in the subsidy rate. Because the underlying

policy sustains heterogeneity among households, we also discuss the implications for a

politico–economic equilibrium in section 4.3.

4.2 Growth Policy

We assume that capital accumulation is subsidized at the rate s paid on the factor price of

capital. The post–subsidy real interest factor is then given by Rs = R+s(R−1+δ). Subsidy

payments are financed out of revenues from a consumption tax τ. We can write down the

agents intertemporal budget constraint in detrended form as

â′(1+γ)+ c̃(1+ τ) = Rsâ+[(1+γ)−Rs] φ̃+ w̃θ , (15)

with Rs simply replacing the no–policy interest factor R. The associated value function of

the problem is equivalent to the one given in (6).
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Table 4: Growth, consumption, and consumption risk under policy s,τ

ρ = 3.0 ρ = 5.0

repr. agent incompl. markets repr. agent incompl. markets

s rs γC τ γ τ γC τ γ τ
0.0 0.03 0.0048 0.0 0.0091 0.0 0.0029 0.0 0.0085 0.0

0.4 0.07 0.0189 0.19 0.0239 0.19 0.0113 0.19 0.0181 0.19

0.8 0.12 0.0327 0.40 0.0380 0.41 0.0195 0.40 0.0267 0.39

1.2 0.16 0.0460 0.64 0.0514 0.65 0.0274 0.64 0.0346 0.60

1.6 0.21 0.0591 0.91 0.0644 0.93 0.0350 0.91 0.0420 0.83

2.0 0.25 0.0718 1.21 0.0769 1.25 0.0425 1.21 0.0492 1.08

2.4 0.29 0.0842 1.56 0.0892 1.61 0.0497 1.56 0.0561 1.48

The government budget is balanced in each period of time, if13

τ =
s(R−1+δ)

R− (1+γ)+(1−α)B
. (16)

The results of our numerical simulations are given in Tables 4 and 5. They are based on

the calibration as outlined in the preceding section (see also Table 1). Again, we compare

the allocation resulting under the ad hoc debt limit of φ̃ah = 0 and the complete markets

economy. For given subsidy rates, the table provides information on the consumption tax

rate necessary to keep the public budget balanced, the equilibrium interest factor, and the

resulting equilibrium growth rate of the economy for the two cases ρ = 3 and ρ = 5.

Starting from an equilibrium without policy intervention, we increase the subsidy rate

in steps of 0.4. The optimal level of the subsidy in our numerical example which com-

pletely internalizes the knowledge spillover can be determined as s̄ = (1−α)/α = 2.03.

The associated growth rate of the complete markets economy is given by γC,s̄ = 0.0718for

ρ = 3 and γC,s̄ = 0.0425for ρ = 5 respectively.

Naturally, the aggregate growth rate increases with a rise in the capital subsidy in all

settings under consideration. The rise in the net interest rate provides an incentive to

increase individual savings. Adjustments in the equilibrium net interest rate follow the

rise in the subsidy, the initial interest rate rising by more than factor eight for subsidy

rates close to s̄.14 The positive growth effect is most pronounced in the complete markets

economy, the rise in the growth rate amounting to 3/4 of the associated increase in s

(highest vs lowest nonzero value of s). The growth effect is smaller for the incomplete

markets economies under consideration, amounting to 3/5 of the associated increase in s

for the case of ρ = 3 and 1/2 for ρ = 5.

13Total public revenues and spendings are derived by aggregating individual budget constraints in equilib-

rium, such that Â(1+γ) = RsÂ+[(1+γ)−Rs] φ̃+w̃−(1+τ)C̃. Aggregate subsidy payments equal s(R−1+δ) Ã,

and tax revenues are given by τC̃ = τ
1+τ

(

[Rs− (1+γ)]Ã)+ w̃
)

. With Â− φ̃= Ã = 1 in equilibrium, a balanced

budget requires s(R−1+δ) Ã = τC̃ which implies (16).
14Given the parameterization of production technology, this outcome is standard for this class of endoge-

nous growth models.
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Table 5: Growth and inequality under policy s,τ

ρ = 3.0 ρ = 5.0

s γ G(â) G(ỹ) γ G(â) G(ỹ)

0.0 0.0091 0.485 0.231 0.0029 0.445 0.222

0.4 0.0239 0.479 0.251 0.0113 0.439 0.237

0.8 0.0380 0.459 0.261 0.0195 0.409 0.240

1.2 0.0514 0.435 0.264 0.0274 0.379 0.238

1.6 0.0644 0.411 0.263 0.0350 0.354 0.234

2.0 0.0769 0.391 0.261 0.0425 0.331 0.229

2.4 0.0892 0.372 0.258 0.0497 0.312 0.223

The general result stated in Proposition 1 that growth under idiosyncratic uninsur-

able risk exceeds growth in the complete markets economy is reflected in our numerical

simulations for all values of s. The policy scheme under consideration indirectly lowers

the riskiness of individual total income by raising the relative income share accruing to

(riskless) individual capital income, which becomes obvious if we consider the budget

constraint (15). The lower income risk generates a disincentive to save out of precaution-

ary motives and explains the comparably smaller growth effect in the incomplete markets

economy.

The Gini coefficient of income displays a non–monotonic pattern for a rise in s, first

rising and declining again for higher subsidies; see Table 5. Contrary, wealth inequality is

declining monotonically for rising s. The subsidy induced increase in accumulation exerts

a leveling effect on the wealth distribution. Indirectly, individual budget constraints are

relaxed. This becomes obvious from the intertemporal budget constraint (15). Given our

baseline specification φ̃ah = 0, the household receives higher returns for a given wealth

level.

Regarding the welfare effects of capital subsidization, it is important to note that the

relatively rich benefit from it more than the relatively poor, firstly, because interest pay-

ments make up a larger share in their individual incomes and secondly, because the regres-

sive consumption tax. Figure 5 illustrates the welfare effect of a growth policy targeted

at internalizing the knowledge spillover in accumulation. As before, we calculate the

welfare gain in terms of a utilitarian welfare measure, tracing back welfare gains to equiv-

alent percentage increases in consumption, leaving each agent—and in the aggregate all

agents—indifferent between the no–policy situation and the policy of having a subsidy

of size s. For reference, we also display the complete markets economy (dashed lines).

The figure shows that welfare effects are smaller in magnitude in the incomplete markets

economy.

Of course, the maximum welfare gain in the complete markets economy results for

a subsidy of size s̄ = (1−α)/α which completely closes the wedge between the private

and the social return to capital. The welfare–maximizing policy under incomplete mar-
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Figure 5: Welfare and optimal growth policy

kets is characterized by a smaller degree of subsidization because of the regressive effect

of taxing consumption, which hurts poor agents comparably stronger. Summing up, a

benevolent social planner seeking to maximize aggregate welfare would choose a policy

which does not completely internalize the external effect in capital accumulation, thus

balancing welfare gains and losses over the entire population. Another major implication

of the policy analysis is the negative correlation between growth and wealth inequality.

The underlying policy also has a leveling effect on the distribution of wealth.

4.3 Politico–economic Equilibrium

The welfare statements of the preceding section regarding the issue of optimality rely on

a utilitarian welfare measure, where we first determine the compensating variation for

each household, then aggregate and last solve for the welfare–maximizing growth policy.

This does, however, not necessarily imply that the optimal policy indeed will be voted

into effect in a majority vote. The reason is that agents do not symmetrically benefit from

capital subsidization. Inequality of income and wealth determines the political equilib-

rium. Those, who draw a larger income share from the accumulating factor will bene-

fit more from an investment subsidy than the relatively capital–poor. This was already

acknowledged by Bertola (1993) who found for an exogenously given invariant wealth

distribution that policies which focus on income redistribution across reproducible and

non–reproducible factors tend to slow down growth the more the stronger the political

power of those who own only relatively small amounts of the accumulating factor.

The politico–economic implications of our approach are quite similar to Bertola’s find-

ings. But moreover, as growth and inequality both are endogenous in the underlying

model, this adds another channel through which policy affects the equilibrium allocation.
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Figure 6: Politico–economic equilibrium

In our model, the equilibrium growth rate resulting from the voted policy also affects the

equilibrium distribution of wealth. Table 5 shows that for rising rates of capital subsidiza-

tion the higher growth rates are accompanied by less wealth inequality, and we do not

observe the commonly posited tradeoff between those two.

We determine the politico–economic equilibrium by first solving the model numerically

for different levels of the subsidy s consistent with a balanced public budget. This pro-

vides us with the necessary information on the consumers’ individual preferences towards

alternative levels of subsidization. Let V(â,θ;s) denote the value function under policy

s. V(â,θ;s) is single–peaked in s, such that there exists a unique individually preferred

subsidy for each given combination of individual wealth â and productivity θ.

In a next step we compute the cumulative density Ψ(s∗;s) of individually preferred

subsidies s∗ over households having productivity θ and owning wealth â by using the

stationary distribution µ at a given policy s. Let s∗m(s) denote the subsidy preferred by

the median voter, i.e. Ψ(s∗m;s) = 0.5. To determine the politico–economic equilibrium, we

finally iterate over s to find a level s∗m such that Ψ(s∗m;s∗m) = 0.5.

Figure 6 plots the function s∗m(s) for the two alternative degrees of risk aversion under

consideration. The associated politico–economic equilibria are represented by the inter-

section of the function s∗m(s) with the 45◦–line. Because the underlying stochastic process

for labor efficiency generates a wealth distribution which is skewed to the left, the median

voter prefers a subsidy which falls short of the optimal one maximizing aggregate welfare,

s∗m < s̄. The knowledge spillover is only incompletely internalized, and there remains a

wedge between the private and the social return to capital. The associated equilibrium

growth rate is lower in the politico–economic equilibrium, and the wealth distribution

remains more unequal; see also Table 5. The equilibrium subsidy is the lower the more
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risk averse (or likewise inequality averse) consumers are, yielding values of s∗m = 1.68 for

ρ = 3 and s∗m = 1.55 for ρ = 5.

5 Conclusion

In this paper we combined the neoclassical standard incomplete markets model with idio-

syncratic risks and borrowing constraints in the spirit of Aiyagari (1994, 1995) with a

simple growth mechanism, namely the learning–by–doing approach by Romer (1986). A

special feature of our approach is that both, the equilibrium income and wealth distri-

bution as well as the long–run equilibrium growth rate, are endogenously determined in

our model. We therefore are able to study possible feedback effects between risk, growth,

and inequality and to discuss the redistributive and growth implications of public policy.

To this end our approach aims at a qualitative and quantitative assessment of the con-

sequences of market imperfections on long–run growth and inequality in order to gain

a better understanding of the subject, rather than being viewed as modeling an actual

economy, calibrated and simulated to match certain empirical regularities.

We derive necessary and sufficient conditions for the existence of a balanced growth

path and demonstrate that these not necessarily have to be met, such that an equilibrium

growth path possibly might not exist under a given numerical specification of the model.

As well known from the literature, the presence of uninsurable risk and borrowing con-

straints unambiguously has a positive effect on the long–run growth rate of the economy.

Endogenous growth in our model stems from human capital externalities. This endoge-

nous growth mechanism is known to generate allocations which fail Pareto–efficiency.

Our numerical simulations come up with some interesting results for the interaction be-

tween growth, risk, and inequality. We find that a policy aimed at pushing growth by

subsidizing interest payments (financed from a non–distortionary consumption tax) also

tends to reduce the observed wealth inequality. Contrary, a redistributive policy aimed at

completely eliminating the individual income risk stands at odds with the growth target

and may turn out welfare–deteriorating in the whole. Moreover, the policy under con-

sideration also lowers the riskiness of disposable income, such that feedback effects on

intertemporal accumulation decisions and growth have to be taken into account.

This is also important, when it comes to the evaluation of welfare effects. Generally,

welfare gains are directly related to either lower risk or higher growth. Lower risk, how-

ever, is accompanied by a decrease in aggregate savings and consequently a decline in the

equilibrium growth rate. Depending on the magnitude of risk, one of the effects is offset-

ting the other, such that we observe an inverted U–shaped relationship between welfare

and risk.

The aggregate welfare implications of the underlying policy in the representative agent

growth model are no longer valid in the growing standard incomplete markets economy.

Depending on their individual wealth level, welfare gains from the subsidy are unequally

distributed across the society, while the consumption tax exerts a regressive effect. Alto-
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gether, this amounts to a smaller welfare–maximizing level of subsidization compared to

the complete markets economy and is also reflected in the outcome of a majority vote over

alternative public policies. We find that the median voter prefers less than optimal sub-

sidies on investment. Interestingly, a majority might even vote against a policy providing

full insurance, because welfare losses due to lower growth more than offset welfare gains

from having lower risk.
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A Appendix

A.1 Proof of 1. and 2. of Proposition 1

We reformulate problem (6) by defining and substituting c̄= c̃/(1+γ), R̄= R/(1+γ), w̄= w̃/(1+γ):

V(â, θ) = max
c̄, â′>0

{

(1+γ)1−ρu(c̄)+ β̃E′
θ V(â′, θ′)

}

(A.1)

s.t. â′ + c̄ = R̄â+[1− R̄] φ̃+ w̄θ
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Reformulating the optimization problem this way does not affect optimal decisions, which —

when aggregated — are represented by the function Ã(γ, φ̃, R, w̃), describing aggregate (detrended)

wealth holdings for given γ, φ̃, R and w̃. Given the reformulated problem (A.1), the solution

properties and proofs provided by Aiyagari (1994) for the case of iid shocks straightforwardly carry

over to the present model. As already outlined in the text, we are not able to provide a formal

proof of existence for serially correlated shocks, but verify existence in our numerical analysis.

We furthermore have to specify an ad hoc debt limit φ̃ah > 0, whenever R̄ 6 1 for a proper

formulation of the optimization problem (A.1). For R̄> 1, a natural debt limit φ̃n might be binding

before any ad hoc limit takes effect. The natural debt limit is given by:

φ̃n =
w̄θmin

R̄−1
, (A.2)

where θmin denotes the lowest possible realization of θ. We rewrite condition (8) as:

φ̃=







φ̃ah, R̄6 1

min[φ̃ah, φ̃n] , R̄> 1
(A.3)

Upper and lower bounds on feasible growth rates:

Problem (A.1) is bounded only if β̃ < 1. This implies the following restrictions on feasible growth

rates for ρ > 0,ρ ≷ 1:

1+γ< β
1

ρ−1 , ρ < 1
(A.4)

1+γ> β
1

ρ−1 , ρ > 1.

Depending on the size of ρ, these restrictions impose upper and lower bounds on feasible growth

rates. For ρ = 1, β̃ = β, and feasibility is met by assumption.

An important feature of the function Ã(γ, φ̃, w̃, R) is that aggregate (detrended) wealth holdings

rise to infinity as R̄ approaches β̃ from below (see Aiyagari, 1994). Given the definitions of R̄ and

β̃, β̃R̄< 1 is equivalent to:

1+γ> (βR)1/ρ = 1+γC , (A.5)

which proves that the equilibrium growth rate under incomplete markets and idiosyncratic risk

exceeds the equilibrium growth rate γC under complete markets.

Properties of Ã(γ, φ̃, w̃, R):

Regarding detrended wealth holdings, we can state the following: For any ad hoc debt limit φ̃ah > 0,

the function Ã(γ, φ̃, w̃, R)→−φ̃ if R̄→ 0 from above, which with Rfixed by technology follows from

1+γ→ ∞. For φ̃n, R̄> 1 (i.e. r > γ) by (A.3). As φ̃n → ∞ for R̄→ 1 from above, by (A.2), we obtain

Ã(γ, φ̃, w̃, R) →−∞.

Combining (A.4) and (A.5) implies the following:

(i) ρ > 1: Whenever the lower bound given by (A.4) is lower than 1 + γC, the function

Ã(γ, φ̃, w̃, R) is well defined for all γ> γC. The respective condition is equivalent to β < Rρ−1,

and given the above described properties of the function Ã(γ, φ̃, R, w̃), this conditions turns

out to be sufficient for existence of a balanced growth path, i.e. an equilibrium growth rate

γ> γC such that Ã(γ, φ̃, w̃, R) = 1. γ is bounded from above by r in case of a natural debt limit,

which follows from the properties of the function Ã(γ, φ̃, w̃, R).
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(ii) ρ = 1 : This case is identical to (i) except that there are no additional restriction on feasible

growth rates. As the function Ã(γ, φ̃, R, w̃) is well defined for all γ> γC, existence of a balanced

path follows immediately. Condition β < Rρ−1 becomes β < 1 if ρ = 1 and is satisfied by

assumption.

(iii) ρ < 1: Whenever the growth rate is smaller than the upper bound implied by (A.4), the

function Ã(γ, φ̃, R, w̃) is well defined for γ> γC. Thus, a necessary condition for existence of a

balanced growth path is that 1+γ> β
1

ρ−1 > 1+γC, which is equivalent to β < Rρ−1. Given the

properties of Ã(γ, φ̃, w̃, R), the balanced growth path exists in case of a natural debt limit if

the upper bound is greater than or equal to r. The condition 1+γ> β
1

ρ−1 > 1+ r is equivalent

to β 6 Rρ−1. Thus, a balanced growth path with r > γ> γC such that Ã(γ, φ̃, w̃, R) = 1 exists in

case of a natural debt limit, if β < Rρ−1. In case of an ad hoc debt limit, Ã(γ, φ̃, w̃, R) decreases

from +∞ as γ rises above γC. However, it might be that the upper bound implied by (A.4) is

hit before an equilibrium is attained. Therefore, the condition β < Rρ−1 is only necessary for

existence of a balanced growth path in case of ρ < 1.

Proof completed.

A.2 Illustration of nonexistence of a balanced growth equilibrium in the case ρ < 1

Figure 7: Nonexistence of a balanced growth path with ρ = 0.52 and φ̃ah = 0
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1
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σ2
ε = 0.0171

σ2
ε = 0.0076

P

Given that all other parameters of the model are specified as in Table 1, the necessary condition

for existence of an equilibrium (β < Rρ−1) implies that a balanced growth path will not exist,

whenever ρ < 1+ lnβ/ lnR≈ 0.488508. As β < Rρ−1 is only necessary but not sufficient in the

presence of an ad hoc debt limit, a balanced growth path might not exist here, even if ρ exceeds

this value.

Figure 7 shows the possibility of such an outcome, by using results from numerical simulations

of the model assuming a value of ρ = 0.52 and an ad hoc debt limit φ̃ah = 0. The resulting growth

rate of the complete markets economy is given by γC = 0.02815and, according to (A.4), the up-

per bound on growth can be determined as γ = 0.031988. Aggregate (detrended) asset holdings
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Figure 8: Transitory dynamics of the capital stock
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Ã(γ, φ̃,R, w̃) are represented by the solid line, which decreases monotonically as γ moves from the

lower bound γC towards the upper bound, but remain strictly above the value Ã(γ, φ̃, w̃,R) = 1,

indicating the capital market equilibrium. Consequently, the balanced growth equilibrium does

not exist within the lower and upper bound of feasible growth rates (at the upper bound for γ our

simulations return a wealth level of Ã = 1.494).

Just for illustration, compare this result to a situation associated with lower idiosyncratic risk

(σ2
ε = 0.0076, dashed curve in Figure 7). Lower values of σ2

ε shift the asset holding curve to the

left, now implying existence of a growth equilibrium in Point P.

B Transitional Dynamics

B.1 Technical issues

We develop a procedure allowing us to calculate the actual time path of the capital stock relative

to an artificially constructed ‘reference path’. Following a once and for all change in the economic

environment, the reference path mimics the identical long–run evolution of the capital stock of

the original economy under transitional dynamics, but posits instead that the economy has grown

at the new equilibrium (constant) growth rate from the outset, while starting from a lower initial

level.

Figure 8 provides a graphical illustration of the actual time path of capital and the associated

reference path. As of time t̄, the economy of the complete markets model would immediately jump

onto a new equilibrium growth path, represented by the line segment AC and reflecting an increase

in the growth rate. Compared to this, the transitory dynamics of the incomplete markets economy

can be described by the curve AD. The actual time path of capital asymptotically approaches a

path with a constant growth rate as described by the line BD. In what follows, this will be referred

to as ‘reference path’. The associated initial value K1 for the capital stock on this reference path

differs from the original capital stock K0 present in period t̄ when the change in the environmental

conditions occurs.

We assume that the new equilibrium growth rate γ, the initial value for capital on the reference

path K1 as well as the complete transitional path
{

Kt̄+ j
}∞

j=0 of the original capital stock from period
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t̄ onwards are known. The capital stock along the reference path evolves according to K1 (1+γ) j .

The ratio of the two capital stocks along their respective paths for any given period j = 0,1, . . . can

then be expressed as:

λ j =
Kt̄+ j

K1 (1+γ) j ,

where λ0 = K0/K1 by assumption.

In the course of detrending (see section 2.2), all macroeconomic variables are divided by the

level of the aggregate capital stock on the reference path. This transformation of variables implies

that the individual budget constraint for any period t̄ + j during the phase of transition is given by:

â′(1+γ)+ c̃ = Râ+[(1+γ)−R] φ̃+λ j w̃θ, j = 0,1, . . .

Note that the wage rate in t̄ + j is given wt̄+ j = w̃Kt̄+ j and the underlying transformations demand

the division of wt̄+ j by K1(1+γ) j .

It is now possible to write down the sequence of optimization problems the agents solve

throughout transition:

Vj(â, θ) =max
â′

{

u(c̃)+ β̃ Eθ′
[

Vj+1(â
′, θ′)

]

}

j = 0,1, . . . (A.6)

s.t. â′(1+γ)+ c̃ = Râ+[(1+γ)−R] φ̃+λ j w̃θ

λ0 =
K0

K1 .

B.2 Computation of transitional dynamics

Let µ0(â,θ) denote the stationary distribution of agents across wealth and productivity levels along

the old balanced growth path and V1
∗ (â,θ) the value function that solves the dynamic optimization

problem along the new balanced growth path. The algorithm to compute the transition towards

the new steady–state (and thereby the initial level of the new reference path) proceeds as follows:

1) Fix the number of periods T for the transition phase and normalize the level of the capital

stock in the period t̄ where the transition starts to one (i.e. K0 = 1).

2) Fix for j = 0, . . . ,T −1 an initial sequence of weights λ j that describe the deviation of the

capital stock from the new reference path during the transition. Set λ0 = 1 and λT−1 = 1.

Note, that λ0 = 1 implies that the initial value for the new reference path is assumed to be

K1 = K0 = 1 (a natural choice is λ j = 1 for j = 1, . . . ,T −2).

3) Starting with the value function V1
∗ (â,θ) for period t̄ + T solve the dynamic optimization

problem (A.6) iteratively backwards in time for j = T −1, . . . ,0. This results in policy func-

tions ht̄+ j(â, θ) for each j = 0, . . . ,T −1.

4) Transform the stationary distribution µ0(â,θ) such that it represents the stationary distribu-

tion given the new reference path. Let µ1
t̄ (â,θ) denote this transformed distribution, then:

µ1
t̄ (â, θ) = µ0(âK1, θ)

5) Given this transformed stationary distribution and the policy functions ht̄+ j(â, θ) for j =

0, . . . ,T−1, compute the distributions of agents across wealth and productivity levels during

the transition µ1
t̄+ j+1(â, θ). From this compute the value Ãt̄+ j of the transformed aggregate

stock of capital for j = 0, . . . ,T −1:

Ãt̄+ j =
Z

θ

Z

â
µ1

t̄+ j(â, θ) dâ dθ
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6) Use the deviation of Ãt̄+ j from the presupposed value λ t̄+ j for each j = 0, . . . ,T−1 to update

the initial guess in the following way (here εK and ελ are some small numbers that govern

the speed of the updating process)

K′1 = K1 + εK ×
(

Ãt̄+T−1−1
)

µ1
t̄ (â, θ) = µ0(â/K1′, θ)

λ′
1 =

Z

θ

Z

â
µ1

t̄ (â, θ) dâ dθ

λ′
j = λ j + ελ ×

(

Ãt̄+ j −λ j
)

, j = 1, . . . ,T −2

and reenter into the iterative process at step 3) above until the deviations computed at step

6) are sufficiently small.

B.3 Welfare effects including transitory dynamics

Let J(a,θ) denote lifetime utility of an agent who today has wealth a and labor productivity θ. With

ct denoting consumption of this agent for t = 0,1, . . ., we then get:

J(a,θ) = E0

∞

∑
t=0

βt u(ct)

Assume that the respective reference path for capital is given by Kt = K (1+γ)t for t = 0, . . .. Then,

using the transformation ĉt = ct/Kt as well as ât = at/Kt and because of homotheticity of the

underlying utility function, we get along a balanced growth path:

J(a,θ) = K1−ρ E0

∞

∑
t=0

β̃t u(c̃) = K1−ρV∗(a/K, θ) ,

where V∗ is the value function solving the individual agent’s optimization problem in the respective

balanced growth equilibrium.

Now, let V1(â, θ) denote the value function resulting from the iterative procedure outlined

above for period t̄ (i.e. j = 0) and let K1 denote the associated initial level of capital on the reference

path. The value function represents the maximum lifetime utility attained after a parameter change

in period t̄. Furthermore, let V0
∗ (â, θ) denote the respective value function associated with the

original balanced growth path. Lifetime utility of an agent with wealth a = âK j , j = 0,1 before

and after the change can then be expressed as (using the normalization K0 = 1):

J0(a,θ) = V0
∗ (a, θ)

J1(a,θ) =
(

K1)1−ρ
V1(a/K1, θ)

Thus, the proportional increase in consumption ∆(a, θ) necessary to make this individual in-

different between these two settings results as:

∆(a, θ) = K1
(

V1(a/K1, θ)

V0
∗ (a, θ)

)

1
1−ρ

−1
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