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Abstract. Due to the inherent difficulties associated with manual ontol-
ogy building, knowledge acquisition and reuse are often seen as methods
that can make this tedious process easier. In this paper we present an
NLP-based method to aid ontology design in a specific setting, namely
that of semantic annotation of text. The method uses the World Wide
Web in its analysis of the domain-specific documents, eliminating the
need for linguistic knowledge and resources, and suggests ways to specify
domain ontologies in a “linguistics-friendly” format in order to improve
further ontology-based natural language processing tasks such as seman-
tic annotation. We evaluate the method on a corpora in a real-world
setting in the medical domain and compare the costs and the benefits
of the NLP-based ontology engineering approach against a similar reuse-
oriented experiment.

1 Introduction

Ontologies are widely recognized as a key technology to realize the vision of
the Semantic Web and Semantic Web applications. In this context, ontology
engineering is rapidly becoming a mature discipline which has produced var-
ious tools and methodologies for building and managing ontologies. However,
even with a clearly defined engineering methodology, building a large ontology
remains a challenging, time-consuming and error-prone task, since it forces ontol-
ogy builders to conceptualize their expert knowledge explicitly and to re-organize
it in typical ontological categories such as concepts, properties and axioms. For
this reason, knowledge acquisition and reuse are often seen as ways to make
this tedious process more efficient: though both methods cannot currently be
used to automatically generate a domain ontology satisfying a specific set of
requirements, they can be used to guide or accelerate the modeling process.
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Natural language processing techniques have proven to be particularly useful
for these purposes [3, 8, 6, 13, 18, 24]. However, existing systems are still knowl-
edge or resource intensive: they may not require much prior knowledge about
the domain that is to be modeled, but they require linguistic knowledge or re-
sources. In this paper we present a method to aid ontology building—within
a certain setting, namely that of semantic annotation of texts—by using NLP
techniques to analyze texts from the target domain. These techniques are com-
parably “knowledge-lean”, since as a novel feature they make use of the WWW
as a text collection against which the domain texts are compared during analy-
sis; this makes them easy to employ even if no linguistic expertise is available
and reduces the engineering costs since it avoids building an application-specific
lexicon.

The techniques not only aid the ontology engineer in deciding which concepts
to model, but they also suggest ways to specify the ontology in such a way
that it fits ideally into further NLP-based processing steps, e.g. the extraction
of information from domain-specific texts. Describing these specification issues
and giving an example use case of ontologies thus created is the second aim of
this paper.

The remainder of this paper is organized as follows: we motivate our approach
and discuss previous work in Section 2. Section 3 gives details about our approach
to using NLP to aid ontology design, which is evaluated from a technical and
application perspective in Section 4. We close with a discussion of the results
and an outline of future work in Section 5.

2 Motivation

2.1 Ontology engineering

Due to the difficulties and costs involved in building an ontology from scratch,
ontology engineering methodologies [9] often recommend to rely on available
domain-related ontologies or unstructured data like text documents in conjunc-
tion with knowledge acquisition techniques, in order to simplify the domain
analysis and the conceptualization of the domain knowledge.

In our own experience in a Semantic Web project in the medical domain (see
[22, 30] for a longer discussion of this issue, and Section 4.2 below for the project
setting), we found that just selecting and extracting relevant sub-ontologies (e.g.
from a comprehensive medical ontology like UMLS1) was a very time-consuming
process. Besides, this approach still resulted in a rather poor domain coverage
as determined by the semantic annotation task. The ontology generated in this
way could not be involved optimally in NLP-based processes and its acceptance
w.r.t. its users was extremely low because of their difficulties in comprehending
and evaluating it; this was our motivation to develop the techniques described
here.

1 http://www.nlm.nih.gov/research/umls



An alternative to reusing available ontologies or related knowledge sources
(e.g. classifications, thesauri) is to employ text documents as an input for the
conceptualization process. The most basic way to use texts is to extract terms
from them, i.e. to determine words that denote domain-specific concepts (e.g.
“lymphocyte” in a medical text) as opposed to general concepts (e.g. “telephone”
in the same text). While this is often seen as a problem that is more or less
solved ([7]; see [15] for a review of methods), the methods employed still rely
on the presence of linguistic resources (e.g. corpora of non-domain-specific texts,
lexicons; our approach differs in this respect, see below), and in any case are only
the first step in a text-based analysis: ideally, the goal is to get a collection of
terms that is further structured according to semantic relationships between the
terms. There are several systems that go in this direction [3, 8, 6, 13, 18, 24], which
however still require the availability of linguistic knowledge and resources, and
moreover do not seem to work on all kinds of texts.2 In general, there is a trade-
off between the cost of getting or producing these resources and the simplification
these methods offer. Hence our aim was a more modest, but at the present state
of the art of the Semantic Web and in the given application scenario [22, 30] a
more realistic one: to aid the ontology engineer as far as possible, requiring as
little additional resources as possible. Before we come to a description of our
approach, however, we briefly review the use of ontologies in NLP, and derive
some requirements for “NLP-friendly” ontologies. These requirements are crucial
for the development of high quality domain ontologies, which should combine a
precise and expressive domain conceptualization with a feasible fitness of use
(i.e. in our case, fitness of use in language-related tasks).

2.2 Ontologies in NLP

Ontologies have been used for a long time in many NLP applications, be that
machine translation [20], text understanding [14], or dialogue systems (some
recent examples are [12, 29]), and are of course central to information-extraction
or Semantic Web-related NLP applications [2].

Despite all differences in purpose, a common requirement for an ontology to
be considered “linguistics-friendly” (or “NLP-friendly”) is that the path from
lexical items (e.g. words) to ontology concepts should be as simple as possi-
ble.3 On a more technical level, this requires that access to ontology concepts
is given in a standardized form—if access is via names, then they should be in
a predictable linguistic form. To give an example of this not being the case,
the medical ontology UMLS contains concept names in the form “noun, adjec-
tive” (e.g. “Asthma, allergic”) as well as “adjective noun” (e.g. “Diaphragmatic
pleura”), and also concept names that are full phrases or even clauses (e.g. “Id-
iopathic fibrosing alveolitis chronic form”). Below we describe a method to avoid

2 These methods rely on relational information implicitly encoded in the use of verbs;
one of the domains we tested our approach is marked by a reduced, “telegram”-like
text style with an almost complete absence of verbs.

3 See [1] for a still relevant discussion of these interface issues.



these problems during the ontology engineering process, by making the engineer-
ing team aware of the requirements of NLP applications; we also describe the
concrete use of an ontology in the task of semantic annotation of text documents.

3 Using the OntoSeed suite in ontology engineering

This section describes the suite of tools we have developed to aid the design
of ontologies used in language-related tasks such as semantic annotation. 4We
begin by giving a high-level description of the NLP-aided ontology engineering
process, illustrating this with examples from the medical domain and explain
the technical realization of the tools.

3.1 Overview and examples

The OntoSeed suite consists of a number of programs that produce various sta-
tistical reports (as described below) given a collection of texts from a certain
domain, with the aim to provide guidance for the ontology engineer on which
concepts are important in this domain, and on the semantic relationships among
these concepts. More specifically, it compiles five lists for each given collection
of texts, as follows:

1. a list of nouns (or noun sequences in English texts; we will only write “noun”
in the following) occurring in the collection, ranked by their “termhood” (i.e.
their relevance for the text domain; see below);

2. nouns grouped by common prefixes and
3. suffixes, thereby automatically detecting compound nouns; and
4. adjectives together with all nouns they modify; and
5. nouns with all adjectives that modify them.

Figures 1 to 3 show excerpts of these files for a collection of German texts
from the medical domain of lung pathology (the LungPath-Corpus (see [25]),
consisting of 750 reports of around 300 words each; during ontology construction
we used a “training-subset” of 400 documents).

As illustrated in Figure 1, terms like “Tumorzelle/tumor cell” or “Lun-
gengewebe/lung tissue” get assigned a relatively high weight by our analysis
methods (the highest weight is 112.666), which suggests that these terms denote
relevant domain concepts that need to be modeled. Terms related to domain-
independent concepts (e.g. terms like “System/system” or “Zeit/time” in Fig-
ure 1) tend to be ranked with significantly lower value. Having made the decision
to model them, we then look up clusters in which these terms occur, as shown
in Figure 2. The overview of the data afforded by ordering phrases in prefix and
suffix clusters can be very useful in deciding how to model complex concepts,
since there is no general, established way to model them. For example, a noun
4 The OntoSeed tools are available at http://nbi.inf.fu-berlin.de/research/

swpatho/ontoseed.html



phrase like “Tumorzelle/tumor cell” can be modeled as a single concept sub-
class of Zelle (cell), while in other settings it can be advantageous to introduce
a property like Zelle infectedBy Tumor . The suffix clustering offers valuable
information about subclasses or types of a certain concept (in our example in
Figure 2 several types of cells). The prefix clustering can be utilized to iden-
tify concept parts or properties (e.g. in Figure 2 Lungengewebe (lung tissue) or
Lungengefaess (lung vessel) as parts of the Lunge (lung)).

Lungenparenchym 96.515
Schnittfläche 90.993
Tumorzelle 90.951
Pleuraerguß 89.234
Entzündung 88.476
Bronchialsekret 87.711
Lungengewebe 84.918
Entzündungsbefund 83.631
…. ….
Wert 1.825
System 1.761
Neuß 1.448
Bitte 1.296
Zeit 1.085
Seite 1.018

Fig. 1. Excerpt of the weighted term list (step 1)

Finally, we look at ways in which the relevant terms are modified by adjec-
tives in the texts, by inspecting the lists shown in Figure 3. These lists give us
information that can be used in making a decision for one of two ways of mod-
eling the meaning of modifiers: as properties of a concept (e.g. “gross/large”
as in “grosse Tumorzelle/large tumor cell”), or as part of a single concept (e.g.
“link/left” in linke Lunge (left lung)). The decision for either of the modeling
alternatives cannot be made automatically, since it depends strongly on the con-
text of the application. However, analyzing a text corpus can support the decision
process: modifiers which occur mostly together with particular noun phrases or
categories of concepts, respectively, could be candidates for the single concept
variant, while those used with a broad range of nouns should usually be modeled
as a property. As Figure 3 shows, in our corpus the noun “Tumorzelle/tumor
cell” occurs 92 times, 4 times modified with “gross/large” (i.e. approximately
4% of all modifiers). The modifier, on the other hand, occurs 129 times, so the
co-occurrences of the two terms are 3% of all its occurrences, which indicates
that “gross/large” is a property that is ascribed to many different concepts in the
corpus. In contrast, the modifier “link/left” (the normalized form of “links/left”)



B-Zellen Lunge
Carcinom-Zellen Lungen-PE
Schleimhautlamellen Lungenabszeß
Plasmazellen Lungenarterienembolie
Epitheloidzellen Lungenbereich
Rundzellen Lungenbezug
Alveolardeckzellen Lungenbiopsat
Epithelzellen Lungenblutung
Plattenepithelzellen Lungenembolie
Karzinomzellen Lungenemphysem
Schaumzellen Lungenerkrankung
Riesenzellen Lungenfibrose
Tumorzellen Lungengefäße
Alveolarzellen Lungengewebe
Zylinderzellen Lungengewebsareal
Becherzellen Lungengewebsprobe
Herzfehlerzellen Lungengewebsstücke
Bindegewebszellen Lungeninfarkt
Entzündungszellen Lungenkarzinom
Pilzzellen Lungenlappen

Fig. 2. Excerpt of the prefix (left, step 2) and suffix lists (right, step 3)

seems to be specific in the corpus to concepts denoting body organs like Lunge

(lung) and its parts.5

To summarize, the classifications of the noun phrases and their modifiers are
used as input to the conceptualization phase of the ontology building process,
which is ultimately still performed manually (Figure 4). Nevertheless, compared
to a fully manual process, preparing the text information in the mentioned form
offers important advantages in the following ontology engineering sub-tasks:

– selecting relevant concepts: the ontology engineer uses the list of nouns that
are ranked according to their domain specificity as described above and
selects relevant concepts and relevant concept names. Domain-specific and
therefore potentially ontology-relevant terms are assigned higher rankings
in the noun list (see Section 4.1 for the evaluation of the ranking function).
First simple concept names from the noun list are identified as being relevant
for the ontology scope. Then the ontology engineer uses the prefix and suffix
clusters to decide which compound concept names should be as well included
to the target ontology.

– creating taxonomy: suffix clusters can be used to identify potential sub-
classes.

– creating properties/relationship: the ontology engineer uses the modifier clas-
sification and the generated taxonomy to decide about relevant properties

5 A possible next step in specifying possible ontology properties could be to consider
verbs in correlation with noun phrases. Our tool does not yet include this feature,
but see discussion below in Section 5.



Tumorzelle: 92 gross:
beschrieben 1 1% 10 10% Absetzungsrand 1
einzeln 1 1% 60 1% Abtragungsfläche 1
epithelialer 1 1% 1 100% Biopsate 1
gelegen 1 1% 16 6% Bronchus 2
gross 4 4% 129 3% Lungengewebsprobe 3
klein 1 1% 88 1% Lungenlappen 3
mittelgross 1 1% 6 16% Lungenteilresektat 1
pas-positive 1 1% 6 16% Lungenunterlappen 5
spindeligen 2 2% 2 100% Lymphknoten 1
vergroessert 1 1% 9 11% Nekroseherde 13
zahlreich 1 1% 47 2% Oberlappenresektat 1

Ossifikationen 1
PE 1
Pleuraerguß 4
Raumforderung 1
Rippe 15
Rundherd 1
Stelle 5
Tumor 1
Tumorknoten 10
Tumorzelle 4
Vene 4

link:
Lunge: 85 Bronchus 7

link 9 10% 53 16% Hauptbronchus 6
recht 7 8% 66 10% Lunge 9
tumorferne 2 2% 2 100% Lungenlappen 1

Lungenoberlappens 1
Lungenunterlappen 4
Mittellappen 2
Oberlappen 9
Oberlappenbronchus 3
Seite 1
Thoraxseite 3
Unterlappen 4
Unterlappenbronchus 2
Unterlappensegment 1
Unterschenkels 1

Fig. 3. Excerpt of modifier list (steps 4 and 5)

(denoted by adjectives) and about the taxonomy level the corresponding
property could be defined. For example in Figure 3 most of the concepts mod-
ified by “link/left” are subsumed by RespiratorySystem —therefore if the on-
tology engineer decides to define a property corresponding to this adjective,
this property will be assigned the domain RespiratorySystem . However since
“link/left” occurs in the corpus mostly in correlation with “Lunge/lung” an
alternative conceptualization is to introduce the concept LinkeLunge (left
lung) as a subclass of Lunge (lung). Further relationships are induced by
the decision to conceptualize relevant compound nouns as two or more re-
lated concepts in the ontology. For example if “Tumorzelle/tumor cell” is
to be conceptualized in the ontology as Zelle locationOf Tumor the rela-
tionship locationOf should also be included to the ontology. Relationships
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Fig. 4. The OntoSeed process

between concepts (e.g. locationOf ) are not suggested explicitly; however on
the basis of taxonomy which was specified in the previous step OntoSeed
is able to identify clusters of compound terms implying a similar relational
semantics. For example given the fact that Lunge (lung) and Herz (heart)
are both subsumed by BodyPart , the system suggests that the relationship
correlating Lunge (lung) and Infarkt (attack) in the compound noun “Lun-
geninfarkt/lung attack” is the same as the one in the case of the compound
“Herzinfarkt/heart attack”, thus simplifying this conceptualization step even
when no linguistic knowledge w.r.t. verbs is available.

3.2 OntoSeed and NLP-friendly ontologies

It is well accepted that NLP-driven knowledge acquisition on the basis of domain-
specific text corpora is a useful approach in aiding ontology building [3, 8, 6, 13,
18, 24]. On the other hand, if the resulting ontology is targeted to language-
related tasks such as semantic annotation, these tasks can be performed more
efficiently by means of an ontology which is built in a “linguistics-friendly” man-
ner. On the basis of our previous experiences in applying ontologies to medical
information systems [30, 22] we identified the following set of operations which



can be useful in this context and therefore should be taken into account while
conceptualizing the ontology:

– logging modeling decisions: the relationship between extracted terms (result-
ing from the knowledge acquisition process) and the final modeled concepts
should be recorded. For example the term Klatskin tumor will be probably
modeled as a single concept, while lung tumor might be formalized as tumor

hasLocation lung . These decisions should be encoded in a predefined form
for subsequent NLP tasks, so that the lexicon that has to be built for these
tasks knows about potential compound noun suffixes.

– naming conventions for ontology primitives: since semantic annotation re-
quires matching text to concept names, it is necessary that the concept
names are specified in a uniform, predictable manner. 6 Typically concept
names are concatenated expressions—where the first letter of every new word
is capitalized— or lists of words separated by delimiters (e.g. KlatskinTumor
or Klatskin Tumor ). Furthermore it is often recommended to denominate
relationships in terms of verbs (e.g. diagnosedBy , part of ) and attributes /
properties in terms of adjectives (e.g left ). If the names become more
complex, they should be stored in a format that is easily reproducible,
and allows for variations. E.g., should there be a need to have a concept
name that contains modifiers (“untypical, outsized lung tumor with heavy
side sequences”), the name should be stored in a format where the or-
der of modifiers is predictable (e.g. sorted alphabetically), and the modifi-
cation is disambiguated (((lung tumor (with ((side sequences), heavy))),

(untypical, outsized)) ). NLP-tools (chunk parsers) can help the ontology
designer to create these normalized names in addition to the human-readable
ones.

We now turn to a description of the technical details of OntoSeed.

3.3 Technical details

In the first processing step, the only kind of linguistic analysis proper that we em-
ploy is performed: determining the part of speech (e.g., “noun”, “adjective”, etc.)
of each word token in the collection. Reliable systems for performing this task
are readily available; we use the TreeTagger [26] developed at IMS in Stuttgart,
Germany,7 but other systems could be used as well.

This enables us to extract a list of all occurring nouns (or, for English, noun
sequences, i.e., compound nouns; German compound nouns are, as is well known,
written as one orthographic word). The “termhood” of each noun is determined
by the usual inverted document frequency measure (tf.idf), as shown in the for-
mula below—with the added twist, however, of using a WWW-search engine to

6 This requirement, for example, is not fulfilled in UMLS and other medical ontologies.
7 Freely available for academic research purposes from http://www.ims.

uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html.



determine the document frequency in the comparison corpus.8,9 In the formula,
tf (w) stands for the frequency of word w in our collection of texts; wf (w) is
the number of documents in the corpus used for comparison, i.e., the number
of hits for query w reported by the search engine used— in our experiments,
both www.google.com (through the API made available by Google inc.) and
www.yahoo.com. N is the size of the collection, determined in an indirect way
(as the search engines used do not report the number of pages indexed) by mak-
ing a query for a high-frequency word such as “the” for English or “der” for
German.10

weight(w) = (1 + log tf (w)) ∗ (log
N

wf (w)
)

Sorting by this weight results in lists like those shown partially in Figure 1
above; a quantitative description of the effect of this weighing procedure is given
in Section 4.1.

In the next step, nouns are clustered, to find common pre- and suffixes. We
use a linguistically näıve (since it only looks at strings and ignores morphol-
ogy), but efficient method for grouping together compound nouns by common
parts. This step is performed in two stages: first, preliminary clusters are formed
based on a pre- or suffix similarity of three or more letters (i.e., “lung” and
“lung pathology” would be grouped into one cluster, but also “prerogative” and
“prevention”). These preliminary clusters are then clustered again using a hier-
archical clustering algorithm [19], which determines clusters based on maximized
pre- or suffix length (see Figure 2 above). The accuracy of the suffix clustering
procedure is anew improved by using the Web to eliminate suffixes that do not
denominate concepts in the real world, but are simply common endings of the
clustered nouns (such as the ending “ight” in “light” or “night” in English or
the German ending “tion” in “Reaktion/reaction”, “Infektion/infection”).

The compilation of the adjective lists (Figure 3) from the tokenized and
POS-tagged text collection is straightforward and need not be explained here.

4 Evaluation

This section is dedicated to the evaluation of our approach from a technical and
an application-oriented perspective. We first compare the results of our analysis
procedure on two different corpora against a näıve baseline assumption (Section

8 See [19] for a textbook description of the family of tf.idf measures.
9 Using the Web as a corpus in linguistic analysis has become a hot topic recently in

computational linguistics (see e.g. a current special issue of Computational Linguis-
tics [16]); to our knowledge, the system presented here is the first to use the web in
this kind of application.

10 This of course is just an approximation, and also the hits reported for normal queries
get progressively less exact the more frequent a term is; for our purposes, this is
precise enough, since for “web-frequent” terms (where wf ranges from 103 to 106)
rough approximations already have the desired effect of pushing the weight down.



4.1). The whole suite of tools is then evaluated within a real-world application
setting in the medical domain. For this purpose we will compare two engineering
experiments aiming at developing the same ontology—a OntoSeed-aided engi-
neering approach and reuse-oriented one—in terms of costs and suitability of
the outcomes in the target application context (Section 4.2).

4.1 Technical evaluation

For the technical evaluation of our methods we examined the weighing function
described above and the results of the prefix and suffix clustering against human
expertise.

A simple concept of the importance of a term would just treat its position
in a frequency list compiled from the corpus as an indication of its “termhood”.
This ranking, however, is of little discriminatory value, since it does not separate
frequent domain-specific terms from other frequent terms, and moreover, it does
not bring any structure to the data: Figure 5 (left) shows a doubly logarithmic
plot of frequency-rank vs. frequency for the LungPath data set; the distribution
follows closely the predictions of Zipf’s law [31], which roughly says that in a
balanced collection of texts there will be a low number of very frequent terms
and a high number of very rare terms.

Fig. 5. Rank (x-axis) vs. frequency (left), and rank vs. weight (right); doubly logarith-
mically

In comparison, after weighing the terms as described above, the distribution
looks like Figure 5 (right), again doubly logarithmically rank (this time: rank
in weight-distribution) vs. weight. There is a much higher number of roughly
similarly weighted terms, a relatively clear cut-off point, and a lower number of
low-weight terms. A closer inspection of the weighed list showed that it distrib-
uted the terms from the corpus roughly as desired: the percentage of general
terms within each 10% chunk of the list (sorted by weight) changed progres-
sively from 5% in the first chunk (i.e., 95% of the terms in the highest ranked
10% denoted domain-specific terms) to 95% in the last chunk (with the lowest
weights). We repeated this process (weighing, and manually classifying terms as



domain-specific or general) with another corpus, a collection of 244 texts (ap-
proximately 80500 word tokens altogether) describing environmental aspects of
world countries, and found a similar correlation between weight and “termhood”
(the results for both corpora are shown in Figure 6).

Fig. 6. The ratio of general terms per 10% chunk of weighted term list (highest weight
to the left); LungPath corpus (dashed lines) and travel corpus (solid lines)

In both corpora, however, there was one interesting exception to this trend:
a higher than expected number of terms in one 10% chunk in the middle of
the weight distribution which were classified as irrelevant by the experts. These
turned out to mostly be misspellings of names for general concepts—a kind of
“noise” in the data to which the termhood measure is vulnerable (since in the
misspelled form they will be both rare in the analyzed collection as well as the
comparison corpus, the web, pushing them into the middle ground in terms of
their weights). While this is not a dramatic problem, we are working on ways of
dealing with it in a principled manner.

Further on, the comparison of the clusters generated as described in Section
3.3 with the results of the human classification revealed an average percentage
of approximately 14% of irrelevant suffix/prefix clusters — a satisfactory result
given the linguistically näıve algorithms employed.

We now turn to a qualitative evaluation of the usefulness of OntoSeed within
a real-world Semantic Web application we are developing for the medical domain.

4.2 Application-based evaluation

In order to evaluate the costs and the benefits of the OntoSeed approach, we ex-
amined two subsequent semi-automatic ontology engineering experiments which
aimed at building an ontology for a Semantic Web application in the domain
of lung pathology [30, 22]. The application operates upon an archive of medical
reports (the LungPath-Corpus mentioned above) consisting of both textual and
image-based data, which are semantically annotated in order to transform them
into a valuable resource for diagnosis and teaching, which can be searched in



a fast, content-based manner [22, 30]. The semantic annotation of the data is
realized by linguistically extracting semantic information from medical reports
and lists of keywords associated with each of the digital images (both reports
and keyword lists are available in textual form). The search is content-based
in that it can make use of semantic relationships between search concepts and
those occurring in the text. In the same time the medical information system can
provide quality assurance mechanisms on the basis of the semantic annotations
of the patient records. The annotated patient records are analyzed on-the-fly by
the quality assurance component, and potential inconsistencies w.r.t. the back-
ground domain ontology are spotted.

Extracting semantic information from the medical text data is realized auto-
matically using lupus—Lung Pathology System [25]. lupus consists of a NLP
component (a robust parser) and a Semantic Web component (a domain ontol-
ogy represented in OWL, and a Description Logic reasoner), which work closely
together, with the domain ontology guiding the information extraction process.
The result of the linguistic analysis is a (partial) semantic representation of the
content of the textual data in form of an OWL semantic network of instances
of concepts and properties from the domain ontology. This ontology is used in
three processing stages in lupus, all of which can profit from a good cover-
age (as ensured by building the ontology bottom-up, supported by OntoSeed)
and a “linguistics-friendly” specification (as described above). The most obvi-
ous step where NLP and ontology interface is concept lookup: the ontology de-
fines the vocabulary of the semantic representation. Since lupus cannot “know”
whether a phrase encountered (e.g. “anthrakotischer Lymphknoten/anthracotic
lymph node”) is modelled as a simple or complex concept (i.e., as a concept
AnthrakotischerLymphknoten or as a concept Lymphknoten having the property
anthrakotisch ) it has to first try the “longest match”. For this to work, the sys-
tem has to be able to construct a form that would be the one contained in the
ontology. To stay with this example, an inflected occurrence of these terms, e.g.
in “die Form des anthrakotischen Lymphknotens” (“the form of the anthracotic
lymph node”), would have to be mapped to a canonical form, which then can be
looked up. As mentioned above, in ontologies like UMLS there is no guarantee
that a concept name would be in a particular form, if present at all. In a sec-
ond step, the ontology is used to resolve the meaning of compound nouns and
prepositions [25].

During this project we examined two alternatives for the semi-automatic
generation of an ontology for lung pathology which suits the application func-
tionality mentioned above. The two experiments were similar in terms of engi-
neering team (and of course application context). In the first one the ontology
was compiled on the basis of UMLS, as the largest medical ontology available.
The engineering process was focused on the customization of pre-selected UMLS
libraries w.r.t. the application requirements and resulted in an ontology of ap-
proximately 1200 concepts modeling the anatomy of the lung and lung diseases
[22, 21]. Pathology-specific knowledge was found to not be covered by available
ontologies to a satisfactory extent and hence was formalized manually. In the



second experiment the ontology was generated with the help of the OntoSeed
tools as described in Section 3.1.11

We compared the efforts invested in the corresponding engineering processes
and analyzed the fitness of use of the resulting ontologies, in our case the results
these ontologies achieved in semantic annotation tasks. The main advantages
of the OntoSeed-aided experiment compared to the UMLS-based one are the
significant cost savings in conjunction with the improved fitness of use of the
generated ontology.

From a resource point of view, building the first ontology involved four times
as many resources than the second approach (5 person-months for the UMLS-
based ontology with 1200 concepts vs. 1.25 person-months for the “text-close”
ontology of a similar size). We note that the customization of UMLS 12required
over 45% of the overall effort necessary to build the target ontology in the first
experiment. Further 15% of the resources were spent on translating the input
representation formalisms to OWL. The reuse-oriented approach gave rise to
considerable efforts to evaluate and extend the outcomes: approximately 40% of
the total engineering effort were necessary for the refinement of the preliminary
ontology. The effort distribution for the second experiment was as follows: 7%
of the overall effort was invested in the selection of the relevant concepts. Their
taxonomical classification required 25% of the resources, while a significant pro-
portion of 52% was spent on the definition of additional semantic relationships.
Due to the high degree of familiarity w.r.t. the resulting ontology, the evalu-
ation and refinement phase in the second experiment was performed straight
forward with 5% of the total efforts. The OWL implementation necessitated the
remaining 11%.

In comparison with a fully manual process the major benefit of OntoSeed
according to our experiences would be the pre-compilation of potential domain-
specific terms and semantic relationships. The efforts invested in the taxonomical
classification of the concepts are comparable to building from scratch, because
in both cases the domain experts still needed to align the domain-relevant con-
cepts to a pre-defined upper-level ontology (in our case the Semantic Network
core medical ontology from UMLS). The selection of domain-relevant terms was
accelerated by the usage of the termhood measure as described above since
this avoids the manual processing of the entire domain corpus or the complete
evaluation of the corpus vocabulary. The efforts necessary to conceptualize the
semantical relationships among domain concepts were reduced by the clustering
methods employed to suggest potential subClass and domain-specific relation-
ships. However the OntoSeed approach assumes the availability of domain-narrow
text sources and the quality of its results depends on the quality/domain rele-
vance of the corpus.

11 The knowledge-intensive nature and the complexity of the application domain con-
vinced us to not pursue the third possible alternative, building the ontology from
scratch.

12 Customization includes getting familiar with, evaluating and extracting relevant
parts of the source ontologies.



In order to evaluate the quality of the outcomes (i.e. the ontologies resulted
from the experiments mentioned above) we compared their usability within the
LUPUS system by setting aside a subset (370 texts) of the LungPath corpus
and comparing the number of nouns matched to a concept. Using the ontology
created by using OntoSeed (on a different subset of the corpus) as compared to
the ontology derived from UMLS resulted in a 10 fold increase in the number
of nouns that were matched to an ontology concept—very encouraging results
indeed, which indicate that our weighting method indeed captures concepts that
are important for the whole domain, i.e. that the results generalize to unseen
data. However, this evaluation method does of course not tell us how good the
recall is w.r.t. all potentially relevant information, i.e., whether we not still miss
relevant concepts—this we could only find out using a manually annotated test
corpus, a task which is currently performed. In a preliminary evaluation, domain
experts selected the most significant (w.r.t their information content) concepts
from an arbitrary set of 50 patient reports. These concepts are most likely to
be used as search terms in the envisioned system because of their high domain
relevance (as assigned by human experts). The ontology derived from UMLS
contained 40% of these concepts. However, only 8% of them were directly found
in the ontology,13 while the usage of the remaining 32% in the automatic annota-
tion task was practically impossible because of the arbitrary concept terminology
used in UMLS. As underlined before UMLS contains concept names in various
forms (“noun, adjective”, “adjective noun”, full phrases—to name only a few).
In comparison, the OntoSeed-generated ontology was able to deliver 80% of the
selected concepts with an overall rate of 61% directly extracted concepts. In
contrast to the UMLS-oriented case, the 19% of the remaining, indirectly recog-
nized concepts could be de facto used in automatic annotation tasks, due to
the NLP-friendly nature of the ontology. In the second ontology the concepts
were denominated in an homogeneous way and critical modeling decisions were
available in a machine-processable format.

The results of the evaluation can of course not be entirely generalized to ar-
bitrary settings. Still, due to the knowledge-intensive character of its processes,
medicine is considered a representative use case for Semantic Web technologies
[17]. Medicine ontologies have already been developed and used in different appli-
cation settings: GeneOntology [5], NCI-Ontology [11], LinKBase [4] and finally
UMLS. Though their modeling principles or ontological commitments have often
been subject of research [28, 23, 27, 10], there is no generally accepted method-
ology for how these knowledge sources could be efficiently embedded in real
Semantic Web applications. At the same time, the OntoSeed results could be
easily understood by domain experts, enabled a rapid conceptualization of the
application domain whose quality could be efficiently evaluated by the ontol-
ogy users. Though OntoSeed was evaluated in a particular application setting,

13 Directly extracted concepts are the result of simple string matching on concept
names or their synonyms. The indirect extraction procedure assumes that a specific
concept available in the text corpus is formalized “indirect” in the ontology i.e. as a
set of concepts and semantical relationships; see Section 3.



that of semantically annotating domain-narrow texts using NLP techniques, we
strongly believe that the tools and the underlying approach are applicable to
various domains and domain specific corpora with similar results. This assump-
tion was in fact confirmed by the technical evaluation of the tools on a second
English corpus from the domain of tourism.

5 Conclusions and Future Work

In this paper we presented methods to aid the ontology building process. Starting
from a typical setting—the semantic annotation of text documents—we intro-
duced a method that can aid ontology engineers and domain experts in the
ontology conceptualization process. We evaluated the analysis method itself on
two corpora, with good results, and the whole method within a specific appli-
cation setting, where it resulted in a significant reduction of effort as compared
to adaptation of existing resources. Additionally, the method suggests guidelines
for building “linguistics-friendly” ontologies, which perform better in ontology-
based NLP tasks like semantic annotation.

As future work, we are investigating to what extent analyzing verbs in domain
specific texts can be used to aid ontology building, and ways to extract more
taxonomic information from this source (e.g. information about hypnoym (is-a)
relations, via the use of the copula (x is a y)), while still being as linguistically
knowledge-lean as possible. Second, we are currently implementing a graphical
user interface to simplify the usage of the presented tools in ontology engineering
processes and in the same time to extend the automatic support provided by the
OntoSeed approach. Lastly we will complete the evaluation of the LUPUS system
and the benefits of using “NLP-friendly” ontologies for the semantic annotation
task in more detail.
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9. M. Fernández-López and A. Gómez-Pérez. Overview and Analysis of Methodolo-
gies for Building Ontologies. Knowledge Engineering Review, 17(2):129–156, 2002.

10. A. Gangemi, D. M. Pisanelli, and G. Steve. An Overview of the ONIONS Project:
Applying Ontologies to the Integration of Medical Terminologies. Data Knowledge
Engineering, 31(2):183–220, 1999.

11. J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler. The
National Cancer Institute’s Thesaurus and Ontology. Journal of Web Semantics,
1(1), 2003.

12. I. Gurevych, R. Porzel, E. Slinko, N. Pfleger, J. Alexandersson, and S. Merten.
Less is More: Using a Single Knowledge Representation in Dialogue Systems. In
Proceedings of the HLT-NAACL Workshop on Text Meaning, 2003.

13. U. Hahn and K. Schnattinger. Towards Text Knowledge Engineering. In Proceed-
ings of the AAAI/IAAI, pages 524–531, 1998.

14. J. R. Hobbs, W. Croft, T. Davies, D. Edwards, and K. Laws. Commonsense
metaphysics and lexical semantics. Compuational Linguistics, 13(3–4), 1987.

15. K. Kageura and B. Umino. Methods of Automatic Term Recognition. Terminology,
3(2):259–289, 1996.

16. A. Kilgarriff and G. Grefenstette. Introduction to the Special Issue on the Web as
Corpus. Computational Linguistics, 29(3):333–348, September 2003.

17. KnowledgeWeb European Project. Prototypical Business Use Cases (Deliverable
D1.1.2 KnoweldgeWeb FP6-507482), 2004.

18. A. Maedche and S. Staab. Semi-automatic Engineering of Ontologies from Text.
In Proceedings of the 12th International Conference on Software Engineering and
Knowledge Engineering SEKE2000, 2000.

19. C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, Massachusetts, USA, 1999.

20. S. Nirenburg and V. Raskin. The Subworld Concept Lexicon and the Lexicon
Management System. Computational Linguistics, 13(3–4), 1987.

21. E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies in Ontology Reuse.
In Proceedings of the 5th International Conference on Knowledge Management
IKNOW05, 2005.

22. E. Paslaru Bontas, S. Tietz, R. Tolksdorf, and T. Schrader. Generation and
Management of a Medical Ontology in a Semantic Web Retrieval System. In
CoopIS/DOA/ODBASE (1), pages 637–653, 2004.



23. D.M. Pisanelli, A. Gangemi, and G. Steve. Ontological Analysis of the UMLS
Metathesaurus. JAMIA, 5:810 – 814, 1998.

24. M. L. Reinberger and P. Spyns. Discovering Knowledge in Texts for the Learning of
DOGMA-inspired Ontologies. In Proceedings of the Workshop Ontology Learning
and Population, ECAI04, pages 19–24, Valencia, Spain, August 2004.

25. D. Schlangen, M. Stede, and E. Paslaru Bontas. Feeding OWL: Extracting and
Representing the Content of Pathology Reports. In Proceedings of the NLPXML
Workshop 2004, 2004.

26. H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceedings
of the International Conference on New Methods in Language Processing, 1994.

27. S. Schulze-Kremer, B. Smith, and A. Kumar. Revising the UMLS Semantic Net-
work. In Proceedings of the Medinfo 2004, 2004.

28. B. Smith, J. Williams, and S. Schulze-Kremer. The Ontology of GeneOntology. In
Proceedings of the AMIA, 2003.

29. M. Stede and D. Schlangen. Information-Seeking Chat: Dialogues Driven by Topic-
Structure. In Proceedings of Catalog (the 8th Workshop on the Semantics and
Pragmatics of Dialogue SemDial04), pages 117–124, 2004.

30. R. Tolksdorf and E. Paslaru Bontas. Organizing Knowledge in a Semantic Web
for Pathology. In Proceedings of the NetObjectDays Conference, 2004.

31. G. K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,
Cambridge, MA, USA, 1949.


