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This report from the Rational Number Project concerns the development of 2 quantitative
concept of rational number in fourth and fifth graders. In a timed task, children were
required to select digits to form two rational numbers whose sum was as close to 1 as
possible. Two versions of the task yielded three measures of the skill. The cognitive
mechanisms used by high performers in individual interviews were characterized by a
flexible and spontaneous application of concepts of rational number order and fraction
equivalence and by the use of a reference point. Low performers tended either not to use
such cognitive mechanisms or to apply concepts in a constrained or inaccurate manner.

An understanding of fraction size is important for children in performing
computations and solving problems that involve rational number ideas.
Assessing children’s understanding of fraction size is difficult. Skill with order
and equivalence provides one indicator. Other indicators are the skills of
estimating the location of a fraction on a number line or estimating the
outcome of an operation with fractions (Wachsmuth, Behr, & Post, 1983).
This paper considers children’s ability to construct two rational numbers
whose sum is close to 1. We view the task as another measure of the
quantitative concept of rational number.

The research literature concerning children’s ability to estimate the results
of arithmetic computations is sparse, especially when the computations in-
volve rational numbers. The Second National Assessment of Educational
Progress {Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980) found that
only 24% of the 13-year-olds and 37% of the 17-year-olds in the sample were
able to correctly estimate the sum of 12/13 and 7/8 given the choices of 1, 2,
19, and 21. The two most frequent responses were 19 and 21.

The research literature (Bright, 1976; Buchanan, 1978; Payne & Seber,
1959) suggests that children’s ability to make good estimates of computations
with whole numbers is related to their concept of number size. In a similar
manner it seems reasonable that children’s quantitative perception of rational
number could be indicated by various estimation tasks. These include es-
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timating an indicated sum, finding a rational number closer to a given
rational number than another given one, finding a rational number between
two other rational numbers, and bracketing a given rational number by two
rational numbers.

This paper considers the task of constructing a two-addend rational
number sum close to 1. The students were restricted to a given set of numerals
and constrained with a set time limit. Success on the task appears to require
not only an accurate perception of the magnitude of each rational number
addend constructed but also an ability to combine the magnitudes.

The purposes of the investigation were to gain (a) information about the
degree of children’s accuracy in performing the task and (b) insights into the
cognitive mechanisms used by successful children.

METHOD

The present study was conducted by the Rational Number Project during
1982—83 in the context of assessing the development of the rational number
concept in children (Behr, Post, Silver, & Mierkiewicz, 1980). It is part of a
larger set of investigations whose purpose is the assessment of children’s
quantitative notion of rational numbers (Wachsmuth et al., 1983). It is one of
several studies arising from an extended teaching experiment conducted
while the subjects were in fourth and fifth grade. The teaching experiment
extended over 30 weeks, starting at about the middle of Grade 4.

Subjects

The subjects of the teaching experiment were 8 children from DeKalb,
Illinois (Site A), selected to reflect the full range of ability, and 34 homoge-
neously grouped children of average ability from a relatively high-achieving
school in Minneapolis, Minnesota (Site B). Data from two videotaped clinical
interviews with each of the 8 DeKalb children and 8 Minneapolis children
were used in this study. The children had received instruction on estimating
whole number sums by rounding. At the time of the interviews, the children
had had considerable experience with the addition of like and unlike fractions
and with order and equivalence tasks. They had not been given any formal
instruction on strategies that might be used in estimating the sum of two
rational numbers.

Task

Version 1 of the Construct a Sum task consisted of six cards with the
numerals 1, 3, 4, 5, 6, 7 and a form board as shown in Figure 1. Version 2 used
cards with 11, 3, 4, 5, 6, 7. Version 1 was presented in an interview following
20 weeks of instruction, and both versions were presented in an interview
after 27 weeks of instruction. The child was directed to “put number cards
inside the boxes to make fractions so that when you add them the answer is as
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close to 1 as possible, but not equal to 1.” To discourage the use of algorithms,
the child was encouraged to estimate, and a time limit of 1 minute was
imposed.

D D get
= 4 = closest 1
)

[] to

Figure 1. Form board for Construct a Sum task.

A successful solution within the constraints required at least:

1. Knowledge that each fraction addend must be less than 1 and that the
numerator must consequently be less than the denominator

2. Knowledge that each fraction addend represents a quantity greater than
zero and that the combination of two such quantities results in a third that
is greater than either

3. Knowledge that if one addend is small relative to 1, the other must be
large, and vice versa

4, Ability to construct a trial addend, estimate the size of the interval between
that addend and 1, and estimate and construct, from the whole numbers
given, either the largest fraction less than the interval or the smallest
fraction greater than the interval

Thus a multifaceted domain of children’s rational number knowledge was
evoked in the task, including operations with fractions and fraction size.
Estimation was involved in that the children were encouraged to think about
size in ranges rather than to compute unique answers using algorithms.
Because of the time limit, a trial-and-error method of choosing any two
fractions and working out the addition algorithm would not have been
successful. The children were informed accordingly: ““You won’t have time to
work out the addition. What you have to do is think about how big each
fraction is and then think about how big the answer will be.”

In Version 1 it is possible to make 1 exactly (4/6 + 1/3). Some children
quickly found this sum. The second constraint—to get close to 1, but not to
get 1 itself—required the children to deal with the magnitude of the fractions.
For example, if 1/3 cannot be added to 4/6, then a judgment must be made as
to what fraction, close in size, can replace 1/3 (1/52, 1/7?, 3/72, . . .) so that
the resulting sum is as close to 1 as possible. Consequently, we expected that
children who had a workable concept of rational number size would succeed
in the task, whereas children lacking such a quantitative notion would exhibit

considerable difficulty. E
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Scoring

The deviation from 1 of each child’s responses was computed as a percent.
The arithmetic mean of the three deviations for each child was used to define
performance categories of high, middle, and low scores. A high score meant
that the average deviation was less than or equal to 10% ; a middle score, that
the average deviation was between 10 and 30%; and a low score, that the
average deviation was greater than or equal to 30%. The criteria were set on a
pragmatic basis without theoretical guidelines about what constituted high,
middle, or low scores.

RESULTS

Table 1 gives each subject’s response for each task and the average devia-
tion for the three tasks. The percentage deviations varied from 2% to 392%
with an average percentage deviation over all children on all tasks of 55%.

Table 1
Responses to Tasks and Average Percentage Deviation from 1
After After
20 weeks 27 weeks

Average

Subject Site Version 1 Version 1 Version 2 deviation
High score
Bert A 5/6 + 117 5/6 +1/7 3/6 + 5/11 2.62
Joan B 4/5 + 1/6 4i6 + 1/3 nr 3.33
Brett B 1/5 + 3/4 1/3 + 4/5 3/5 + 4/11 7.32
Kristy A 1713 + 4/6 1/3 + 4/5 6/11 + 317 7.96
Margret B 1/6 + 517 113 + 4/6 3i6 + 4/11 8.20
Andy B nr 7/24 + 15/24 nr 8.63
Middle score
Jessie A 3/7 + 4/6 1/3 + 5/6 3/11 + 4/7 13.93
Erica B 3/6 + 1/4 nr nr 25.00
Jeremy A 1/5 + 3/4 2/3 +4/5 nr 25.48
Low score

Mack A 5t6 + 3/4 1/6 + 3/5 4/6 + 3/7 30.39
Ted A 5/6 + 4/7 1/6 + 3/7 3/11 + 417 32.18
Richard B 716 + 1/3 3/5 +1/4 7111 + 3/4 34.55
Tricia B 46 + 1/3 5i6 + 3/4 nr 58.33
Terri A 1/6 + 4{7 6/7 + 315 11/3 + 4/7 129,72
Till B 4/5 + 6/7 1/3 + 6/7 11/3 + 5/4 159.12
Jeannie A 6/7 + 3/1 3/5 + 4/6 5/3 + 11/6 187.46

Note. nr = no response.

On the basis of the children’s explanations, their responses were sorted into
five categories plus an other category. The categories suggest the cognitive
strategies that the children used to perform the task. The sorting was first
carried out independently by two of the investigators; the results were com-
pared, and the few discrepancies were resolved. Almost complete agreement
was found between the independent categorizations. Sample responses exhib-
iting the subjects’ thinking on the tasks are given below with descriptions of
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the categories. Especially observable in the responses is the variation in the
children’s use of estimation, fraction order, and equivalence concepts and in
their reliance on a correct or incorrect computational algorithm.

"orrect Reference Point Comparison (CR)

The explanations categorized as CR indicated a successful attempt to
estimate the constructed rational number sum by using 1/2, 1, or some other
fraction as a point of reference. The spontaneous use of fraction equivalence
and rational number order was evident.

Bert: (Makes 3/6 + O/00, pauses, thinks, changes to 5/6 + 0/0J, and finally
to 516 + 1/7.)

Interviewer: Tell me how you thought about the problem.

Bert: Well, umm. . ., five sixthsis . . ., well, a sixth is larger than the seventh,
and so there [5/6] is one piece away from the unit covered. A seventh is

smaller, so a seventh can fit in there [between 5/6 and the whole unit]
without covering the whole.

Kristy: (From11 34567 constructs 6/11 + 3/7 and changes to 5/11 + 3/7.)
Well, five and a half is half of eleven [pointing to 5/11], and [pointing to
3/7] three and a half is half of seven, so it would be one away from. . . . [I
changed 6/11 to 5/11]. . . because [pointing to 6/11] that would be a little
more, and that’s [pointing to 3/7] less than one [half]. ... I was afraid
they’d get exactly 1. (Recall that sums of 1 were not permitted.)

Mental Algorithmic Computation (MC)

The MC explanations indicated that the child did a mental computation to
carry out a correct standard algorithm (e.g., common denominator) to de-
termine the sum of the generated fractions. The spontaneous use of fraction
equivalence and rational number order was also evident in these responses.

Kristy: (Using13435 67 makes1/3 + O/4, then changesto 1/3 + 4/5.). .. 1f
you find the common denominator, twelve, but. . .. And then four times
one would be four [explaining the change of 00/4 to 4/5], but then three
times . . . I didn’t have a 2 or anything [among the number cards given and
remaining] and I used up my 3 so. . . . (Observe what Kristy is apparently
doing: 1/3 is equivalent to 4/12. How many more twelfths to get close to 1?
This is determined from 0/4 or 3 x [J/12. Realizing that she has only 5, 6,
or 7 to choose for the box, each of which gives too many twelfths, she
changes the denominator to 5 and now must do the same type of thinking

with fifteenths.)
Incorrect Reference Point Comparison (IR)

The IR explanations indicated that the child attempted to estimate the
constructed rational number sum by using 1/2, 1, or some other fraction as a
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point of reference. Little understanding of fraction equivalence and rational
number order was evident.

Jessie: (From 13 4 5 6 7 makes 5/6 + 3/4. Points to 5/6.) That’s less than a
half, and. . .. If you add, wait. . .if you add one third, it would be bigger
[than 1]. ... [Points to 5/6.] That. . .that’s bigger than one half. . . [and
1/3] is less [than 1/2]. (Interviewer again calls her attention to 5/6.) Less
than half, wait bigger than, less than half. . . .

Mack: (From 11 34567 makes4/6 + 3/5.). . . Well, [pointing to 4/6] it had
two [sixths] to get. ... It would take two ... uh ... to equal 1, and 1
thought[pointing to 3/5], and this takes two [fifths]. . .to getto 1. . .and the
less they [the difference between each fraction addend and 1] are, the
greater they’d be [the fraction addends], so Isaid [the sum]would be a little
bit less [than 1]. .. [pause]. . . a little bit more than 1.

Mental Algorithmic Computation Based on an Incorrect Algorithm (MCI)

The MCI explanations indicated that the child used mental computation
based on an incorrect algorithm to compute the actual sum.

Ted: (From 134567 makes 5/6 + 4/7.)... Well, first I thought, I tried to
figure out what would come closest to 1, and I found out that five sixths
and four sevenths would come the closest . . . cause I used the top number
.« . [If I added them] nine thirteenths.

Jeannie: (From 1345 6 7 makes 6/7 + 4/3, changes to 6/7 + 3/1.). . . This
[pointing to 6 and 3] would be 9, and this [pointing to 7 and 1] would be 8.
That’s [pointing to 8] the whole, and this [9] is one after it [i.e., 1 greater],
so it’s [i.e., 9/8] close, but not right on the dot.

Gross Estimate (G)

The G explanations suggested that the child made a gross estimate of each
rational number addend but did not make a comparison to a standard
reference point and did not use fraction equivalence or rational number
ordering.

Ted: (From 13 45 6 7 makes 3/11 + 4/7.). .. I wanted to use up the little
pieces for the top,. . .then use the highest number of pieces for the bot-
tom. . . . Well, if I ever thought if it was equal, or one’s less or greater and
stuff, I always have to be greater than the top number.

The responses in the categories of correct reference point comparison and
mental algorithmic computation represent the highest performance on these
tasks as measured by the deviation of the constructed sum from 1. (Cases
where the constructed sum was equal to 1 were not included in the computa-
tion of the average deviation.) The responses categorized as correct reference
Point comparison (7 = 11) had an average deviation of 6% and those as
mental algorithmic computation (# = 1) 13%. For the category of incorrect
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reference point comparison (n = 4), the average deviation of responses was
27%. These percentages can be contrasted to the average deviation of re-
sponses in categories other than these three (# = 19), which was 92%. (Two
subjects, Andy and Erica, were omitted from these calculations, and from the
subsequent discussion, because of incomplete data.)

Table 2 gives the response category by subjects for each of the three tasks.
The data in Table 2 show that among the five children who were ranked as
high scorers on the tasks, 11 of 14 responses (no response was given by Joan
on one task) were in the correct reference point category, and the remaining 3
were in the mental algorithmic computation category.

Table 2
Classification of Responses
After 20 weeks After 27 weeks
Subject Version 1 Version 1 Version 2
High score
Bert CR CR CR
Joan CR MC nr
Brett CR , CR CR
Kristy MC MC CR
Margret CR CR CR
Andy nr other nr
Middle score
Jessie MCI IR CR
Erica MC nr nr
Jeremy G G nr
Low score

Mack IR IR IR
Ted MCI G G
Richard MCI G G
Tricia other other nr
Terri MCI other other
Till MCI MCI MCI
Jeannie MCI other other

Note. nr = no response. See text for key to abbreviations.

DISCUSSION

The high scorers almost uniformly used estimating procedures in the
solution process. These procedures generally referred to some intermediate
“reference point” (Trafton, 1978). The high scorers also displayed an ability
for the spontaneous and flexible application of fraction order and equiva-
lence concepts. It appears that a combination of skills in estimation and a firm
grasp of order and equivalence notions are a prerequisite to success on the
task. We view the task as related to the quantitative concept of rational
number, and therefore skill on fraction estimation and with fraction order
and equivalence seems to provide an important prerequisite link to a good
quantitative concept of rational number.

Two children who were rated as middle scorers on the task displayed some
disposition toward attempting to estimate each addend (sometimes by a
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reference point process) but not as uniformly nor as accurately as the high-
scoring children. Moreover, they showed less consistency in the spontaneous
and flexible use of rational number order and fraction equivalence concepts.
This level of performance appears to be transitional between low and high
performance on the task. We hypothesize an interactive relation between
order and equivalence on the one hand and estimation on the other. That is,
an improved understanding of order and equivalence results in more accurate
estimation, which in turn results in a higher level of perception of rational
number size.

The children ranked as low scorers gave no responses that fell into the
correct reference point comparison or mental algorithmic computation
categories; all their responses were among the remaining categories or other.
These responses indicate an absence of application of order and equivalence
concepts and a failure to use the accurate estimation processes, such as the use
of a reference point, that were used by the more successful students.

Although care must always be exercised when attempting to generalize
from a small sample, it is useful to examine in more detail the responses of
selected children in this study, especially as the responses relate to their
underlying cognitive characteristics. Bert’s explanations, such as his response
cited above in the correct reference point comparison category, suggest that
he imagines episodic experiences associated with the manipulative-based
instruction. Bert shows an impressive ability to translate from ideas expressed
through manipulative aids to ideas expressed in oral language and written
mathematical symbolism. This observation suggests that his thinking is facili-
tated by the capacity to orally describe and reason with mental images of
experiences he has had with manipulative aids.

Kristy has the ability to store a long sequence of memory units together
with a tremendous ability to manipulate symbols mentally. These characteris-
tics are evident in her mental algorithmic computation response cited above.
She is able to mentally “preview’” an entire algorithmic sequence. Kristy’s and
Bert’s explanations further demonstrate excellent applications of order and
equivalence concepts. Other students displayed less ability to apply these
concepts to the task.

Jeannie, one of the low scorers, had one response classified as mental
algorithmic computation based on an incorrect algorithm and two classified
as other. She was chosen for the teaching experiment as a student of middle-
to-high achievement in general school work and in mathematics. On numer-
Ous occasions during the teaching experiment, the participant observers
recorded that Jeannie showed a reluctance to work with manipulative aids,
frequently cutting such activity short and asking for an algorithm or rule that
could be used to obtain answers. We conjecture that her concepts of order and
equivalence, rather than being abstracted from manipulative aids, are more
likely based on given or self-generated rules or procedures and are therefore
not well understood or not available for application. '
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Ted displayed a very imprecise method of estimating fraction size (see the
gross estimate category above). Although firm in his understanding that a
fraction with a denominator greater than its numerator has a value less than
1, he apparently had made the incorrect generalization that the sum of two
such fractions would be less than 1.

Given the amount of instructional time, the degree of special attention, the
extensive use of manipulative aids, and the amount of time devoted to
developing rational nuinber concepts, it is surprising that 20 of the 41
responses (49%) given by these students in the middle of Grade 5—those
responses in the categories of mental computation based on an incorrect
algorithm, gross estimate, and other —reflected a process of fraction addition
that was based on the incorrect algorithm of adding numerators and de-
nominators or on some other procedure reflecting little or no comprehension
of fraction addition or rational number size. The children who gave these
responses were of middle and low mathematics ability, representing a signifi-
cant proportion of the school population. Clearly, the nature of appropriate
cognitive mechanisms necessary for an adequate learning of rational number
concepts, as well as the nature of optimal sequencing and timing of rational
number instruction, must continue to be researched carefully. It is likely that
these children would have performed better on a standard textbook exercise
such as 3/4 + 1/5 than they did on the Construct a Sum task. The tasks
described here may have overwhelmed the cognitive capacity of the less able
students. If so, the students may have elected the course of least resistance—

the activation of an existing, well-internalized binary addition schema (Davis,
1980).

SUMMARY

The responses given by the high-scoring children were characterized by a
spontaneous and flexible application of rational number order and fraction
equivalence concepts and (in most cases) by an accurate application of an
identifiable process of estimation (use of a reference point). The responses
given by the low-scoring children were characterized by a constrained use of
rational number order and fraction equivalence concepts and very uncertain
or inaccurate (if any) use of an estimation process. Thus, a high level of
understanding for rational number order and equivalence appears necessary
to the ability to give estimates of rational numbers and rational number sums.
A “workable” combination of (a) order and equivalence and (b) estimation is
fundamental to the development of a viable quantitative concept of rational
number.

Streefland (1982) suggests that the use of estimation can “elicit a global
orientation to the problem set, which in turn organises the problem domain
and prestructures the solving procedure” (p. 197). We observed this prestruc-
turing behavior in the responses of Bert and Kristy. Bert’s solution process for
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Version 1 is suggestive (see his response in the correct reference point com-
parison category).

In another context, this ability to percéive the global organization of a
problem domain was observed in children who were able to use manipulative
aids flexibly, translate between different aids, and consistently display think-
ing that had progressed from being manipulative dependent to that of being
manipulative independent (Behr, Wachsmuth, Post, & Lesh, 1984). These
issues—estimation, quantitative concept of number, flexibility of thought,
translation between representational modes—appear to be interrelated and
demand additional attention from researchers.

In view of the large percentage of the sample (children in the middle of
Grade 5) who were classified as low scorers on the Construct a Sum task used
in this study, a comment about its difficulty is required. As an instructional
task, the difficulty might lead to undue frustration for the child. From a
research point of view, the issue of task difficulty is of less concern. The
important point is that the task provides a window through which insights
into children’s knowledge of rational numbers can be gained.

An important question is, what makes the task so difficult? The list of
requirements given above for a successful solution suggests that the task is
complex and requires the coordination and integration of many units of
information.

The requirement to do the task mentally, and under a time constraint,
places a potentially heavy load on memory and information-processing ca-
pacity. This load would appear to be particularly heavy for a child who deals
with a fraction as two whole numbers and is unable to perceive it as a
conceptual unit. The task would likely force such a child to deal with, and
store in short-term memory, at least the following memory units: (a) the
numerator and denominator of each fraction addend (4 memory units); (b) a
relationship between each numerator-denominator pair (at least 2 units); (c)
that addition of two quantities results in a greater quantity; and (d) the size of
each addend, that is, its size relative to 1, its size relative to the other addend,
and its size relative to the whole (the sum). For the child who has a good
concept of fraction size, some of these units would likely integrate into single
memory units. Having a knowledge of the numerator-denominator relation-
ship that gives the size of the fraction relieves the child of the need to store
individual numerators and denominators as separate memory units and may
integrate into one unit all of the following: the numerator and denominator of
a fraction, the size relationship between them, the size of the fraction relative
to 1, and the size of the interval between it and 1. This integration would
make available more information-processing capacity for constructing a sum
that met the specified constraints.

Further, the solution of the task seems to involve some sophisticated
mathematical concepts. When a child has constructed a first addend (less than
1), the problem becomes that of finding the largest fraction (constructible
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from the given whole numbers) smaller than the interval between it and 1.
The new problem seems to have an element of the sophisticated mathematical
concept of greatest lower bound.

There are other tasks that in an instructional setting might serve as prepara-
tion for the Construct a Sum task. Examples are to construct a fraction close
but not equal to 1, and then construct another closer still; to construct a
fraction closer to 1 than 5/6, 7/8, or . . . ; to construct a fraction not equal to
1/2 but closer to 1/2 than 3/7, 3/8, . . . ; to construct a fraction greater than 1
but closer to 1 than 7/8, 5/9, or. . . ; and to construct a fraction greater than
1/2 but closer to 1/2 than 3/8, 2/5, or . . .. Such problems would force the
child to think about fraction size in relative terms, either relative to a single
reference point or relative to several reference points.

Our findings suggest that the Construct a Sum task is more complex than
originally meets the eye, and we suggest that it be used in instruction with
some caution. With adequate background work, the complexity of the task
can force children to integrate separate bits of knowledge about rational
number size.
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