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We  investigate the phase structure of the Georgi--Glashow model  at positive temperature ,  realized by using an 
asymmetr ic  6 3 x 3 lattice. We find a clear signal for the deconfining phase transition at all values of the Higgs coupling 
constant.  On  the other  hand,  there is no unambiguous  signal for a transition between a "Higgs"  and a "symmetr ic"  
phase at modera te /3  ; very high values of /3  cannot  be studied with the icosahedral subgroup used here, because of the 
freezing transition. W e  use some new observables as probes of the different behaviour  of the system at different values of 
the Higgs coupling constant.  

1. Introduction. Higgs fields in the adjoint 
representation of a unitary group play an 
essential part in grand unified theories [1]. 
Effective potential calculations [2] suggest the 
existence of a first order  phase transition from a 
"symmetric" to a "Higgs" phase as the tem- 
perature is lowered; this is the basis of the so- 
called inflationary scenario for the early uni- 
verse [3]. 

For this reason, we find it worthwhile to 
study the phase structure of the simplest model 
with adjoint Higgs fields, the Georgi-Glashow 
model [4] at positive temperature.  This model 
has been studied before at zero temperature (at 
least, this was the interpretation used) by Lang 
et al. [5] and by Brower et al. [6]. 

The Georgi-Glashow model involves the 
coupling of a Higgs field ~b in the adjoint 
representation of SU(2) to a standard SU(2) 
Yang-Mills field. We fix the length of the Higgs 
field at I~1 = 1. The lattice action is then the 
following: 

S -~- ~j~Sw + I ~ H S H  • (1)  

Here  Sw is the standard Wilson action for the 
gauge field {Un~} 

Sw = - ~  tr Up, (2) 
p 

where Up = II0pU~, is the ordered product of 
the SU(2) valued link variables U~, around the 
boundary of the plaquette p and the sum is over 
all plaquettes in a chosen orientation. Further- 
more, 

1 
Su = -- -~ ,~.,, cki(n )dp~(n + p. ) tr U ~ o - i U ~  ~ , (3) 

where ~bi(n), i = 1, 2, 3 are the components  of 
the Higgs field at site n obeying ~b2+ ~b~+ ~b 2 = 
1 and o'i are the Pauli matrices. Expectation 
values are to be calculated with the probability 
m e a s u r e  

d/z = Z -1 ex p ( -S )  I-I d Un.~, 1-I df~(~b(n)), (4) 
n,/~ n 
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where d U,~ is the Haa r  measure  on SU(2), d ~  
the standard measure  on the unit sphere in F! 3 
and Z is chosen to make  J" d/x = 1. 

For not too large/3, it is convenient to elim- 
inate the Higgs field degrees of f reedom by 
going to the unitary gauge. We use the gauge 
f reedom to rotate th into the two-direction; the 
Higgs action becomes 

t SH = - ~ tr Un~,o'2U,,~,tr2, (5) 
n,/z 

and expectation values will be computed  with 
the measure  

d/z = Z - '  e x p ( - S )  1-[ dUnz. (6) 
tl,/~ 

To simulate finite t empera ture  field theory on 
an euclidean space - t ime  lattice, we work on an 
asymmetric lattice of size N~ × N ,  N~ (N,) 
denoting the number  of lattice points in space 
(time) direction. As we use equal couplings for 
space- and timelike links, the tempera ture  T = 
1/N~ is fixed in units of the lattice spacing a. 
Varying the temporal  lattice size NT allows us to 
relate the lattice spacing a with the couplings 
/3 and/3~ using renormalization group con- 
siderations, which in turn allows us to define a 
continuum limit of the lattice model  at fixed 
physical tempera ture .  We  will, however,  not be 
concerned with this problem in the following; 
instead we will work at a fixed tempora l  lattice 
size N, and vary the couplings/3 and/3H. This 
should still allow us to explore the phase boun- 
daries of the model.  

Let  us now discuss the various limiting cases 
of our  lattice model.  For/3H = 0, we have the 
pure SU(2) lattice gauge model  which is known 
to undergo a deconfining phase transition [7-9] 
at some/3  =/3¢(N~) for all N¢. Monte  Carlo 
simulations support  the continuous nature of 
this transition and indicate [9] that the transition 
will also persist in the cont inuum limit of the 
theory as the critical coupling scales according 
to the SU(2) renormalization group equation. 

In the limit/3H-> 0% the model  reduces to the 
pure U(1) lattice gauge model  that also shows a 
second order  [10] deconfining phase transition. 
It is known - a fact which is also borne  out by 
our d a t a -  that 

/3c03. = ~, N,)  </30q3.  = 0, NT). (7) 

For /3  = ~, the gauge field becomes a pure 
gauge, at least locally; because of the periodic 
boundary conditions, the gauge field cannot, in 
fact, be gauged away completely, since Up = 1 
fo r  all plaquettes still allows non-trivial Poly- 
akov (thermal Wilson) loops. A little thought 
shows, however,  that these Polyakov loops will 
essentially (in the infinite volume limit exactly) 
be  frozen to values in the centre 7-,2 of SU(2), so 
the Higgs fields do not feel them and the form 
(3) of the Higgs action reduces to the action of 
the classical 0(3)  Heisenberg model. This is a 
little harder  to see in the unitary gauge action 
(5) (cf. ref. [5]). Also, the usual Monte  Carlo 
algorithms have difficulties in the unitary gauge 
for large/3. 

The critical tempera ture  of the Heisenberg 
O(N)  models is known to be well approximated 
(to about  10%) by the so-called infrared bound 
[11], which for our case states: 

flr~.c <~ NI(d, N,) ,  

where 

I(d, N,) =- (2~) 1-d ~ N~ ~ dd-~p 
n = l  

(8) 

× (1 -- COS Pi) + 1 - cos(2~rn/ , (9) 
.= 1 

and d is the space- t ime dimension, i.e., 4 in our  
case. We have in general: 

I(d + 1, 1) = I(d, ~) =-- I(d) 

= (2~-) -a ddp (1 -- cos Pl) • (10) 
\ i = l  

So we see that by varying N, we interpolate 
between three and four dimensions. We have 
computed  •(4, N,)  for various N~ and used the 
bound (9) to estimate flH.¢. The results are 
shown in table 1. It can be seen from this table 
that at /3 = ~ the finiteness of N ,  i.e., the non- 
zero temperature ,  has only a very small effect 
on the location of the phase transition. 

Finally, for /3  = 0 our lattice model with 
frozen I~b[ = 1 reduces to a trivial one-link 
model without any phase transitions (see, 
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Table 1 
The  infrared bound on the critical/3r~ for the finite tem- 
perature (-1/NT) transition of the four-dimensional  O(3) 
Heisenberg model. 

N, ~I(4, N,,) 

1 1.5 
2 1.08 
3 1.0 
4 0.96 
5 0.96 
6 0.95 

/>7 0.94 

however, ref. [12] for variable radial com- 
ponents). Thus, from the discussion of the 
boundaries of the phase diagram, we might 
expect the phase diagram displayed in fig. 1, 
which also presents our results for the 63 × 3 
lattice used (the discussion of the results is 
relegated to section 3). Indeed, the existence of 
the deconfining transition for the pure SU(2) 
model [8] works just as well for/3~ > 0. Thus 
there will be deconfinement for/3 >/3c(flH, N~) 
for all /3H, as the critical points on the U(1) and 
SU(2) boundaries enter the interior of the phase 
diagram. Our data show this phenomenon 
clearly. On the other hand, whether the critical 
point on the/3 = ~ boundary will really enter 
the interior of the phase diagram, as indicated 
by the dashed horizontal line in fig. 1, is un- 
clear. 
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\ dec0nf. U(1)' ~ ''l'liggs'' I 

\ ' \ ii 0t3 

confinement deconf! 
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0/2+f3 

2 I~H 

I 

0.5 

1.0 

Fig. 1. Tentat ive phase diagram for the lattice 6 3 × 3. The  
dashed-do t ted  line indicates the icosahedron freezing tran- 
sition as given in ref. [5]. 

2. Monte Carlo simulations. To clarify the 
structure of the phase diagram discussed in the 
previous section, we have performed Monte 
Carlo simulations on a 63 × 3 lattice using the 
icosahedral subgroup of SU(2). Let us first dis- 
cuss the deconfining transition as a function of/3 
and/3H. As we are dealing with an SU(2) Higgs 
model with the Higgs fields in the adjoint 
representation of SU(2), the lattice action eq. 
(1) is still invariant under global Z(2) trans- 
formations of the form: 

Ux.o~ zUx, o, z ~ Z(2), x - -  (x0, x) ,  x0 fixed. 
(11) 

Thus the trace of the Polyakov loop 

/~ -= S?~ 3 ~'~ tr Lx, Lx ~-- ~[ U(~0,x),0, (12) 
X X 0 = 1 

is still an order parameter for the deconfining 
transition. 

We have measured (L 2) as a function of fl for 
several values of flu, using the unitary gauge 
[see eq. (5)]. The results are presented in fig. 2. 
They show clearly the deconfining transition 
characterized by the appearance of a non-zero 
value for (L2). It is also clearly visible that this 
transition moves towards smaller fl as fin in- 
creases, as announced. We remark that at high 

i s  i 
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Fig. 2. The  order parameter  (/~2) for the deconfining tran- 
sition as a function of fl for flu = 0.0, 0.3, 2.0 and 3.0. For 
f l u  = 5.0, the quanti ty (/~2) + ((~----2-2~)2) is plotted instead. Typi- 
cal error bars are also indicated. 
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/3n, the adequate quantity to use is (/7 z) + 
((o '2L)2),  which is constant while the terms of the 
sum oscillate. Here  

cr2L ~ N ~  3 ~ tr(o-2Lx), (13) 
X 

see the discussion further below. 
In the /3H = 0 case, it has been shown [13] 

that the deconfining transition leads to an ab- 
rupt change in the difference of the spatial and 
temporal  plaquettes, i.e., plaquettes with only 
spacelike and with space- and timelike links 
respectively. In the pure SU(2) Yang-Mills 
model, this difference gives the dominant con- 
tribution for large/3 [13] to the gauge field phys- 
ical energy density: 

eGa 4 = 3/3((tr U p ) l p s p a t i a  I - (tr U p ) l p t e m p o r a l )  . (14) 

Furthermore,  e~a  4 approaches its limiting ideal 
gas value, 

•SBa 4 = fc(N,~, N r ) l T r 2 N ~  4 , (15) 

already for /3  values quite close to the critical 
point. In eq. (15), f counts the degrees of 
f reedom besides the spin degrees of freedom, 
i.e., f = 3 for SU(2), and c(N,, ,  N~.) includes finite 
size corrections [14]. In fig. 3, we present data 
for EG a4  a t  /3H = 5. They show a sudden increase 
around/3 = 1.3, like the corresponding Polyakov 
loop in fig. 2. Above this value, EGa 4 approaches 
the asymptotic value esBa 4 with f = 1 indicating 
that, for/3r~ = 5, only one massless gauge boson 
remains participating in the thermal equilibrium 
(black body radiation); i.e., two of the three 

0.02' 

0.01 

+++++ 
r~=5 

I I It ,  

1.3 1.5 2.0 215 i3 

Fig. 3. The  Yang-Mil ls  part of the energy density, •Ga 4, as 
a function of 0 at OH = 5.0. The  dashed line corresponds to 
an ideal gas with one degree of f reedom ( f  = 1). 

gluons present at /3n = 0 become heavy and we 
are left with only one massless gauge boson, 
"photon"  (compare with fig. 11 in ref. [13] for 
pure SU(2), where all three degrees of freedom 
are visible to the right of the phase transition). 

Thus the deconfining phase transition is well 
established by our measurements. Moreover,  a 
clear difference shows up between the upper- 
and lower-right-hand part of the phase diagram 
fig. 1. Much more difficult, however, is the 
identification of a phase boundary between a 
"Higgs" phase (fin large) and a "symmetric" 
phase (fin small). In fact, at the moderate /3  
values for which we can take reliable 
measurements with the icosahedral subgroup of 
SU(2), no clear signal of such a transition is 
seen. Nevertheless, it is interesting to study how 
the system changes with fill. 

At/3r~ = w, the Polyakov loops are restricted 
to the U(1) subgroup H = {exp(ittr2)} of SU(2), 
and behave like the spins in an xy model, 
showing a global U(1) symmetry. For/3H < ~, 
this U(1) symmetry is broken down to a Z(2) 
symmetry; the Polyakov loop variable Lx is no 
longer forced to lie in H, but will fluctuate 
around it; on the other  hand, the neighbour- 
hood of the centre Z(2) -- {1, -1}  is favoured 
energetically. This effect becomes more 
pronounced fo r / 3 H ~0 ,  whereas for large/3r~, L~ 
will still be distributed almost uniformly on a 
strip surrounding H in SU(2). 

To study these phenomena,  we measured 
both L and cr2L [eqs. (12) and (13)] using the 
action eq. (5). Notice that tr2L is invariant under 
the residual gauge symmetry but not under the 
full SU(2) symmetry. Therefore,  it is meaningful 
only in the unitary gauge. Fig. 4 shows the 
"t ime evolution" of these quantities. They are 
clearly correlated and therefore, if taken as co- 
ordinate in a plane, move on a circle. At small 
/3H, however, they seem to have come to a 
standstill and execute at best small oscillations 
around ]E[ = 1 and o'2L = 0 (see fig. 4a). On the 
other  hand, the deconfining transition shows up 
clearly as the collapse of the radius of the circle 
for small/3 (see fig. 4b). The resulting averages 
(L 2) and ( (o '2L)  2) o v e r  a total of -2000  iterations 
are shown in fig. 5. Again, the change in 
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Fig. 4. Plots  or2L versus  [ ;  t he  po in t s  co r r e spond  to 
ave rages  over  50 or  100 sweeps .  (a) fl = 2.5, var ious  fin; (b) 
flH = 5.0, va r ious /3 .  

Higgs transition [15]. However,  they involve 
obtaining the asymptotic behaviour of some 
kinds of correlations for which large lattices are 
necessary. Nonetheless, even without an order 
parameter,  a phase transition should also show 
up in the usual thermodynamic quantities; i.e., 
the difference of space-space and space-time 
plaquette expectation values [eq. (12)] which 
contributes to the energy density of the system. 
This quantity is shown in fig. 6 for /3  = 2.5 and 
various values of fin- One sees a rapid change 
from the asymptotic SU(2) behaviour (fin = 0; 
three gauge bosons) to the U(1) limit (/3H = ~; 
one gauge boson) for/3H--~ 1.0--4.0, which, 
however, is difficult to interpret as a signal for a 
first order phase transition. 

The question whether such a transition exists 
at higher/3, ending up in the Heisenberg tran- 
sition, is delicate. With a discrete subgroup we 

0--2.5 
.(E) 
x (~--c) 

+ +++÷ 
1 

, ÷ +t+ 

+ + + l 
05 1.~) 

~HI2 +/3H 

Fig. 5. (/2) (points) and (((72L) 2) (crosses) for/3H = 0.0, 1.0, 
2.0, 3.0, 4.0, 5.0 and 6.0 at/3 = 2.5. 

behaviour taking place between /3H = 1 and 
/3H = 5 is clearly visible in these quantities. This 
change, however, cannot be taken as a signal 
for the Higgs transition: for/3 = ~ the Higgs 
transition becomes the transition of the 
Heisenberg model, but in this limit, the Poly- 
akov loop Lx will be frozen to the centre Z(2), 
as discussed before, and no such changes as 
seen in figs. 4 and 5 will occur. 

This discussion shows that the basic problem 
in the analysis of the Higgs transition is the lack 
of a suitable order  parameter.  There have been 
some proposals for an order parameter  for the 
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Fig. 6. (a) eGa 4 for  On = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 and  6.0 at 
13 = 2.5, and  for  OH = 0.0, 1.0, 1.5, 2.0, 2.5 and  3.0 a t / 3  = 
3.6. T h e  d a s h e d  l ines co r r e spond  to an  ideal  gas  with f = 1, 
respect ively  f = 3 deg rees  of  f r eedom.  (b) ~aa  4 f o r / 3 n  = 1.0, 
1.5, 2.0 and  2.5 a t / 3  = 3.6. 
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cannot actually approach this region because of 
the freezing transition. We ask, however,  
whether  we might see something to the left of 
the latter. For  this, we did a run a t /3  = 3.6, 
which should be quite near  the freezing tran- 
sition as given in ref. [5]. To  make  sure that no 
metastabilities would be introduced through the 
use of the unitary gauge at this high/3, we 
relaxed the gauge fixing for this run. We thus 
used eq. (3) and took continuous Higgs fields 
~b E $3. The  results are presented in fig. 6. 

A still s teeper  behaviour  is to be  noticed in 
the region/3H-~ 1.0-3.0, especially for the Higgs 
contribution to the energy density: 

EH 24 ~/3H((tbi(n)tlbj(n + It) 
t × tr[ U,,o'i U,~, o'/])] ~: spacelike 

-- (~i(n)~bj(n + t~) tr[Un,,o'iU*~,o'A)]~=0). (16) 

However ,  the general picture is similar to the 
one seen a t /3  = 2.5. 

The/3H dependence of the plaquet te  and the 
links is, in general, smoother  than that of the 
physical energy density. We have also perform- 
ed a heat ing-cool ing cycle at /3 = 3.6, which 
gave no indication of a first order  transition. 

3. Discussion. Our  results can be summarized 
in the tentative phase diagram given in fig. 1. 
The  continuous line is well established, while 
m e  dashed horizontal line is not very well 
established, due certainly also to the softness of 
the presumed transition. It seems, however,  that 
our data rule out a first order  "Higgs"  phase 
transition for /3  ~< 3.6. To clarify the situation, it 
might be  worthwhile to measure  at larger/3, 
closer to the transition of the classical Heisen- 
berg model.  As we have stated earlier, this will 
require working with the full SU(2) group. 

It should be noted that at finite tempera ture  
both the upper  ("Higgs")  and the lower 
("symmetr ic")  phases will show exponential  
clustering (Debye screening) and behave like a 
plasma, so it is not clear what might distinguish 
them. On the other hand, a t /3  = 0% the mag- 
netizing transition of the Heisenberg model  is 
certainly present  and there is no doubt  that 
nearby (i.e., at large/3)  one should observe at 
least a rapid variation of some quantities. The  
plaquette  (and links) difference seems to be a 

suitable quantity, as one sees in fig. 6. The 
change-over clearly becomes steeper by going 
f rom/3  = 2.5 to /3  = 3.6. It is possible that a 
transition would be more easily visible when 
varying the tempera ture  by using asymmetric 
couplings, thus cutting the phase boundary at 
another  angle. 

Finally, we think that for a definitive answer, 
one should also consider the effect of the radial 
degree of f reedom in the Higgs action with the 
full Higgs potential.  

We should like to close with the remark  that 
our results are certainly consistent with those of 
refs. [5] and [6]. We would, however,  tend to 
interpret their data as finite tempera ture  results. 
Certainly, the finite t empera ture  deconfining 
transition should be visible in the phase 
diagrams given (on a 44 lattice it occurs at about 
/3 = 2.3 for/3H = 0). 

We should like to thank Jiirgen Frrhlich,  
Dieter  Maison, Eliezer Rabinovici and Ulli 
Wolff for very helpful conversations. 
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