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It is known that branches of homoclinic orbits emanate from a singular point of a
dynamical system with a double zero eigenvalue (Takens-Bogdanov point). We
develop a robust numerical method for starting the computation of homoclinic
branches near such a point. It is shown that this starting procedure relates to
branch switching. In particular, for a certain transformed problem the homoclinic
predictor is guaranteed to converge to the true orbit under a Newton iteration.

1. Introduction

One of the important discoveries of dynamical systems theory says that global
bifurcations (such as homoclinic or torus bifurcations) appear locally in the
neighbourhood of singular stationary points. We find these phenomena near
singular points of codimension at least 2, i.e. stationary points which occur
generically in dynamical systems with at least two parameters

ii=/(u,A), ueU", AeR2 (1.1)

The most prominent examples are

(i) the formation of saddle-saddle homoclinic orbits close to a Takens-
Bogdanov singularity, i.e. a stationary point with a double zero eigenvalue of the
Jacobian (see Takens, 1974; Bogdanov, 1975; Arnold, 1988; Guckenheimer &
Holmes, 1983);

(ii) the occurrence of saddle-focus homoclinic orbits of Shilnikov type and
of torus bifurcations close to a Gavrilov-Guckenheimer singular point, i.e. a
stationary point with a zero and two imaginary eigenvalues (Langford, 1979;
Guckenheimer, 1984; Guckenheimer & Holmes, 1983; Arnold, 1988; Kirk, 1991;
Gaspard, 1992);

(iii) focus-focus homoclinic orbits created at a double Hopf point (Morozov,
1982; Arnold, 1988).

In some sense these global bifurcations render the analysis of phase portraits
near singular points more and more difficult. However, if such an analysis is
possible, it provides an interesting insight into the interplay of bifurcations.

From a numerical point of view this effect shows that computed branches of
singular stationary points and global bifurcations are connected to each other and
that this should have some impact on continuation codes such as AUTO (Doedel &
Kern^vez, 1986) or LOCBIF (Khibnik, 1990; Khibnik et al 1992). In particular, we
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FIG. 1. Unfolding of Takens-Bogdanov point.

could use codimension 2 singular points to start the numerical continuation of
global bifurcation curves.

The purpose of this paper is to carry out such a procedure in full algorithmic
detail for the branch of homoclinic orbits emanating from a TB-point (Takens-
Bogdanov).

For the sake of convenience let us mention the two-dimensional model example
of a TB-point (cf. Guckenheimer & Holmes, 1983; Arnold, 1988; Beyn, 1991)

u2 = A, + X2u2 - u\ + uxu2. (1.2)

Its bifurcation diagram is well-known (cf. Guckenheimer & Holmes, 1983;
Arnold, 1988) and is shown in Fig. 1. There exists a branch of homoclinic orbits
which, in the parameter plane, is approximately given by A, = (j(A2)

2, A2<0.
In a generic sense the system (1.2) represents the normal form of a system near
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a TB-point. It is this type of TB-point which we will treat in the current paper.
However, if the problem has a symmetry, other normal forms become appropri-
ate. For example, if the symmetry forces the existence of a trivial solution for all
parameter values, a suitable normal form is (cf. Carr, 1981; Hale, 1983)

ul = u2, u2 = A,Ui + k2u2 — u\ + u,u2. (1-3)

Here the critical lines in Fig. 1 become transversal, and it is not too difficult to
adapt our approach to this situation.

The idea of starting homoclinic branches near TB-points in planar systems with
the help of Melnikov's method was first used in Rodriguez Luis et al (1990). In
this paper we will treat the general n-dimensional case. Moreover, in our
development of the overall algorithm (summarized in Appendix A) we emphasize
the following features.

1. All linear systems which have to be solved during the computations
exhibit the same type of matrix. These matrices result from bordering the
(possibly singular) Jacobian fu with one or two vectors. There are well-known
techniques for such systems which employ black box solvers for /„ and hence fully
exploit its possible structure such as sparsity (see Chan, 1984; Moore, 1987;
Govaerts, 1991; Govaerts & Pryce, 1991).

2. From the centre manifold reduction and the normal form transformations
we try to extract the minimum number of coefficients which are needed for the
approximate homoclinic orbits.

3. Melnikov's original method (Melnikov, 1963; Guckenheimer & Holmes,
1983) is used in the version of Hale (1983), who reformulates it as a
Liapunov-Schmidt reduction in function spaces. In this way, starting homoclinic
orbits at a TB-point may be viewed as branch switching and we use this view-point
to establish convergence of Newton's method close to the predicted homoclinic
orbit (§5). It turns out that the convergence cones from Jepson and Decker
(1986) have to be refined.

In §2 we discuss the numerical computation of TB-points using the approach of
Griewank and Reddien (1989) (see Roose, 1987; Pdnisch, 1991; for related
methods). The resulting transversality conditions and further algorithmic details
prove to be useful for the next steps in §3 and §4. There we perform the centre
manifold reduction and the unavoidable scalings and normal form
transformations.

Finally, in §6 we apply the above procedure to a few examples. The above
algorithm is utilized to start a branch of homoclinic orbits and then to continue it
by the method described in Beyn (1990a).

Our examples are all low dimensional though the above algorithm is well-suited
for large scale problems (1.1) (see feature 1 above). The reason is that the initial
approximate homoclinic may be obtained cheaply, but the correction to the true
homoclinic involves the solution of a large boundary value problem. In Bai et al
(1992) a typical case of this type is treated where (1.1) is obtained by the method
of lines from a spectral approximation to a PDE.

In concluding, let us remark that our numerical results suggest that the theorem
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on convergence in §5 should carry over from the reduced transformed system to
the original system (1.1). But we are not aware of any rigorous result yet.

2. Defining equation for TB-points

In this section we analyze a denning equation for TB-points based on the approach
of Griewank and Reddien (1989). In addition to their paper some more details
will be worked out which will prove to be useful in the following sections. Other
direct methods for TB-points have been proposed in Roose (1987) and Ponisch
(1991).

We consider an n-dimensional dynamical system with two parameters

« = / ( « , A), u(t)eU", A = (A,,A2)eR2 (2.1)

where / e Ck(U"+\ 0T), k & 3.
A stationary point (w°, A") of (2.1) is called a TB-point, if

(0 ^
'••< I)

is the only entry in the Jordan normal form of

which belongs to the zero eigenvalue. Of course, the double zero eigenvalue is
not sufficient to guarantee a specific singularity (up to flow equivalence) and an
unfolding picture as in Fig. 1. But for simplicity we refrain from calling such a
point a 'potential TB-point' as has been done for Hopf points in Keller and
Jepson (1984).

The extra conditions on the higher-order Taylor terms usually fall into two
categories (cf. Arnold, 1988; Khibnik, 1990):

non-degeneracy conditions for the higher derivatives of/with respect to the
state variable u;

transversality conditions for the higher derivatives of / with respect to u
and A.

Violating one of the non-degeneracy conditions increases the codimension of the
singularity while violating a transversality condition means that the given
parameters may not exhibit the standard unfolding picture (see (1.3) for a typical
case).

In what follows we will investigate the relation between the extra conditions
and the regularity of the defining equation.

Let us assume that we are given vectors bn, cn e U" such that the (n + 1) x (n + 1)
matrix (where T represents transpose)

(«^> :)

is non-singular for («, A) in some domain Q c R"+2. Of course, this requires the
rank of/, to be at least n - 1 in Q.
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Then we calculate a TB-point by solving the following defining equation

/ / ( « . A ) \

S(«,A)= g(u,A) =0. (2.3)

Here the functions g, h e Ck~\Q, U) are implicitly defined through

<)<)• <)<) *<-*>•* ™
The Ck~l functions v and w are useful since they give us the generalized
eigenvectors at the TB-point and since they help us to calculate the derivatives of g
and h according to the following lemma (see Griewank & Reddien, 1989; Beyn,
1991).

LEMMA 2.1 In addition to (2.4) define the functions g, h e C*~'(fl, U) and
V, £ e Ck~\Q, R") by the adjoint equations

{WT,g)A = {Q, 1), ( r ,AM = (f r ,0) . (2.5)

Then the following relations hold for all z = («, A) e Q

g=g = - VTfuv, h=R=VTv (2.6)

g* = - ¥ / 7 »> A, = -«" /«" - £?«"• (2-7)
A proof of this lemma may be found in Griewank and Reddien (1989).

During the Newton process for equation (2.3) we use formulae (2.6) and (2.7)
in order to evaluate

and

The matrix S' is obtained by bordering /„ with two rows and two columns. One
linear system with 5' can be reduced to 4 linear systems with the matrix A from
(2.2) and a small 3 x 3 system (see Griewank & Reddien 1989; Beyn 1991). If, in
addition, the second derivatives in (2.7) are approximated by forward differences
of fz, then one Newton step for (2.3) requires 5 linear systems with A, two with
AT and 4 evaluations of fz = (/,,/i).

Initial approximations for the TB-point are usually obtained when following a
branch of turning points or Hopf points (Roose, 1987; Ponisch, 1991; Spence et
al 1989).

Obviously, any TB-point (u°, A0) e Q is a solution of (2.3), but the converse only
holds if we assume the eigenvalue zero to be of multiplicity at most 2.

Now we analyze the non-singulairty of S'(«°» A0) = 5'" at a TB-point. In contrast
to Roose (1987) and Ponisch (1991) we do not assume that (w", A") is a quadratic
turning point, i.e. /2ut>

uu°£ R(f%)- Such a non-degeneracy condition will only be
used for the homoclinic orbits in Section 4.

Let the superscript '0' always denote evaluation at (u°, A"). From (2.4) and
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(2.5) we have

/V=0, / V = f0, V"72 = O, ?Tfu=V"T. (2.8)
Moreover,

V07"^ = 0 and a: = f0 V = £" V * 0.

There is no practical loss of generality in assuming biorthogonality

t ^ V ' = £ ° V = 0, «^>rH'0 = £ ° V = 1. (2-9)

This can always be achieved by replacing V" by ar~'V° and £° by ar~'(f° —
a/~1(£orw°)l//<)). Equivalently, we may view this process as an a posteriori
normalization of the vectors bn, c0 from (2.2).

Let us put f°u into block diagonal form

. =(/? t/° wo)elR"-" (2.10)

where // e R"~2"~2 is non-singular and the columns of R form a basis of the
invariant subspace {f*1, £°}x. The matrices H and R are introduced for
theoretical reasons only. They need not be computed for the construction of the
homoclinic orbits, see Section 4 and Appendix A. This is particularly important
for large sparse matrices fi.

Using (2.10) we put (2.1) into linear normal form (including parameters) by the
transformation

The matrices D e R">2 and BeR2 '2 will be determined in such a way that the
transformed system

satisfies

I
From (2.10) we find that this holds iff

°) (2.14)

In order to achieve this, we assume the transversality condition

O * ^ 7 / ? =:(/},,&). (Tl)

Clearly, this is equivalent to rank (fl f\) = n and hence also a necessary condition
for the non-singularity of S'u. By (Tl) there is a non-singular matrix B such that

has both columns in the range of f°u. For example, we may take B, to be
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orthogonal

h Pi

The two columns of D can then be computed in a numerically stable way from the
system

AZr) = : • (2-15)

By the construction of C we have d = 0. In practice we can use \\d\\ to check the
accuracy. Using the linear transformation (2.11) for the defining operator 5 from
(2.3) yields

and by (2.12), (2.13)

r(o,o) = s'°r = r ; i | g°r I. (2.16)(o,o) = s'°r = r u) g?r .

From the structure of / ' (0, 0) we find that 5'" is non-singular if and only if the
/g°\

2 x 2 minor of I IT formed by the last and fourth but last column is non-zero, i.e.

= (<51( 62) e Rn+22. (2.17)

By Lemma 2.1 we can express A in terms of the original function/. We introduce
the coefficients

e2..2= ^T^uvv0, e U 4 =
G2..« = f°722t;0<52, e2 .2 4 = <P<)7/>0<52.

The index notation for the Qs will be made clear in the next section where they
appear in the quadratic terms of the centre manifold reduction. (2.17) may now
be written as the transversality condition

0 * A = 02.1.(0..u + Q2.24) - G2.i4(Gui + G2.12) (T2)

and we can summarize the preceding discussion in the following theorem.

THEOREM 2.2 Let (u°, A0) be a TB-point of (2.1) in some domain Q cz W+2 where
the matrices (2.2) are non-singular. Then (u°, A0) is a regular solution of the
defining equation (2.3) if and only if the transversality conditions (Tl) and (T2)
are satisfied.

A few remarks concerning (T2) seem to be in order. If we truncate 5 to
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then (Tl) and (T2) imply rank _(S'°) = /i + 1. Hence there exists a branch
z(s) = (u(s), A(s)) of solutions to S = 0 such that z(0) = (uu, A0). Moreover, by
differentiating S(z(s)) = 0 and using (2.16) we obtain

z'(0) = y[g552( Q°) " G?>°)<52] for some y # 0. (2.19)

The points z(s) are singular solutions of (2.1) with the left and right eigenvectors
of fu being *P(z(s)) and v(z(s)), see (2.4), (2.5). The transversality condition
used in Roose (1987) and Ponisch (1991) is

£ * ) ) M z ( * ) ) ] | , = o . (2-20)

With the help of Lemma 2.1 and (2.19) we find

and hence (2.20) and (T2) are equivalent. In Roose (1987), Spence et al (1989),
and Ponisch (1991) the additional non-degeneracy condition Qi.w^® is
imposed, so that z(s) becomes a branch of quadratic turning points. A typical
example where Q2.n vanishes, but Theorem 2.2 is still applicable is

u, = u2, u2 = A, + A2u, + Mi«2-

This is of course a singularity of codimension higher than two, but the defining
equation (2.3) does not take into account these dynamical features. However, for
the construction of the homoclinic orbits in the next section we will need the
non-degeneracy condition Q2,w =£0.

3. The centre manifold redaction and scaling

Since the centre manifold reduction is a fairly standard technique (see e.g. Carr,
1981; Guckenheimer & Holmes, 1983) we emphasize here the computational
aspects needed for the overall algorithm.

Let us assume that we have computed a TB-point («°, A0) as a regular solution
of (2.3) and that f°u has no other eigenvalues on the imaginary axis except zero.
The matrix H in (2.10) is then hyperbolic. Let us write the transformed system
(2.12) as

x = 'f(x,fi), /i = 0 (3.1)

where / = ( i j ^ ) e r ' z x K 2 , neU2. Then there exists a locally invariant
centre manifold for (3.1)

Wfoc = {(F(§, It), | , It) : (I, It) € U(0) c R4}

where F e C*~'(f/(0), K"~2) and

F(0,0) = 0, F(0 ,0) = 0. (3.2)
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The reduced system within W^. is

, 11), g, n) =: r(§, I*). (3.3)

By (2.9), (2.12), (2.13) and (3.2) the right hand side has a Taylor expansion

o° 1 D
B)0l

where O3 denotes third-order terms and the quadratic form Q :U4 xU4—*U2 \s
given by

If we consider /i i, n2 as the third and fourth component of ( ) then the indices in

(2.18) are consistent with (3.4). In addition to the coefficients from (2.18) we also
need

22 .44=^7^1 . (3.5)

All the other quadratic and higher-order coefficients will not be used later on, so
we work with the system

#2 = Ml + \Qi.\\t\ + G2..2?1^2 + e2..4^.^2 + (22.24^2 + ^ +

The next two steps for simplifying this system usually are normal form
transformation of the quadratic terms and scaling (cf. Wiggins, 1990, Chapters 3.1
and 4.9). We put these two steps together and try to minimize the number of
quadratic terms in the normal form transformation. The variables (£,, §2> Mi> M2)
are replaced by (x, y, e, T) as follows

2 , ju2 = re2 (3.7a)

Z2{t) = a5e
3y(«3et). (3.76)

Here the constants a, are yet to be determined. The terms which involve au aA

are necessary for the normal form and in case or, = or4 = 0 we perform a
well-known scaling (cf. Guckenheimer & Holmes, 1983; Wiggins, 1990). A
straightforward but tedious calculation yields the transformed system

by setting

aro=-(l/2£>2.ii), a'i

«3 = l, »4 =-2O2.M. a5=-2
xa0.

The coefficients in the quadratic terms of (3.8)—except for a3, which is not
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needed later on—are found to be

(3.9a)

(3.96)

We notice that it is this step which requires the quadratic turning point condition

which we were able to avoid in the previous section. Moreover, the transversality
condition (T2) now translates into

(3.11)

For e = 0 the system (3.8) is Hamiltonian and has the well-known homoclinic
orbit (cf. Guckenheimer & Holmes, 1983).

( i (0 ,>(0) = 2(l-3sech 2(r) ,6sech 2(0tanh(0) , feR. (3.12)

This explicit formula provides the root to all approximate homoclinic orbits for
the original system (2.1).

4. Melnikov's method and branch switching

The persistence of homoclinic orbits for the perturbed system (3.8) with e =£0 is
usually analyzed by Melnikov's method (Melnikov, 1963; Guckenheimer &
Holmes, 1983; Wiggins, 1990). This method is oriented at the geometric
behaviour of stable and unstable manifolds in phase space. Here we prefer to use
Hale's approach (Hale, 1983). He shows that Melnikov's method can be viewed
as a Liapunov-Schmidt reduction of a suitable operator equation in function
spaces. In fact, in the case of equation (3.8) a simple bifurcation point occurs.
Therefore, Melnikov's method relates to branch switching and it is this view-point
which will be used in Section 5 to establish convergence of our numerical
method.

We introduce the Banach spaces

*„ = jz e C(R, R2): lim z(f) and lim z{t) exist!

with norm

||z||o = sup{ | |z (0l | : reR}, II-II some norm in R"1

and
Xt = {ze C'(R, R2): z, z e Xo}, 11*11, = ||z||0+ Pllo-

With w = (z, e) = (x, y, e) e X, x U let us write (3.8) as

F(W,T) = 0 (4.1)

where F : A', x R x R -> Xo x R is defined by

The condition y(0) = 0 is used to fix the phase of the homoclinic orbits.
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A careful inspection of the transformation (3.7b) shows that F is only defined
for arguments (w, r) = (z, e, x) satisfying | e | «£ 0 , |T|«Ce~2 , | |z | |0«Ce~2 for
some €0>0. This will be sufficient for our purposes and we will not always
meniton it explicitly.

Setting w = (x, y, 0) with (x, y) from (3.12) we find

F{w, r) = 0 for all x.

Hence we have a trivial branch (w, r) of homoclinic orbits and we look for values
of T at which bifurcation occurs.

THEOREM 4.1 Consider the two-parameter system (3.8) with g in C2 and assume
a2 + b2^0 as in (3.11). Then equation (4.1) has a unique simple bifurcation
point (in the sense of Crandall & Rabinowitz, 1971) at

(4.3)w, T 0 •

7 a2 + b2

The emanating C'-branch can be parametrized by e

(w(e), T(6) ) = (z(€), e, r(e)) eX,x R2. (4.4)
It has tangent

where Zo = (xn, y0) is the unique solution in X\ of the linear system

REMARK By our construction we only know that both limits

lim z(t, e) = z+ and lim z(t, e) — z_ exist.

These points must be stationary points of (3.8) at r = z(e) and lie close to the
stationary point (2,0) of the unperturbed system (e = 0). Since (2,0) is
hyperbolic, the implicit function theorem guarantees unique nearby stationary
points of the perturbed system which then have to coincide with z_ and z+.
Therefore, the orbits z(e) are in fact homoclinic.

Proof. Consider the linearization of F with respect to w e XtxR about the
trivial solution (vv, r) .

w = (z,e) = (x,y,e)eX,xM (4.6)

where L : Xt—*• Xo is given by (cf. (3.8))

* - < * • > > • ( 4 - 7 )

We now need a few facts from the Fredholm theory of linear differential
operators Lz = i — A(t)z which have the property that \im,^A(t) = Iim,__
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exists and has no eigenvalues on the imaginary axis (see Beyn, 1990a, Lemma
2.2, and also Palmer, 1984, Lemma 4.2; Hale, 1983).

(i) L : Ar, -* Xo is Fredholm of index 0;
(ii) dim N(L) = dim N(L*) where L*z = z + A(t)Tz;
(iii) z

For the special case (4.7) we have

= span{i} ( N{L*) = span {(-y, £)}. (4.8)

Notice that z e N(L) follows by differentiating (3.8) with respect to /. Further-
more, the second fundamental solution of L cannot be in A',, for otherwise the
Wronskian determinant tends to zero as t—>°° in contradiction to Liouvilles
theorem. The representation of N(L*) then follows easily from (ii).

Using (i) and the bordering lemma (Beyn, 1990a, Lemma 2.3) we find that
Fw{w, r ) : ^ | X R - > X n x R also has Fredholm index 0. Since _y(0) * 0 the only
way that Fw(w, x) can have a non-trivial null space is in case

gc(z,0,T)eR(L).

By (iii), (4.8) and (3.12) this is equivalent to a vanishing Melnikov integral

(-y,x)gf(z,0,T)dt

= -x(\alx
2 + a2rx + a3r

2) +xb}xx + b2Tx d/
J — 3C

(a, + b,)xx2 + r(a2 + b2)x
2 dr = 192(-2(fl | + bt) + (r/5)(a2 + b2)).

This is satisfied at T = r0 and we obtain

*, TO)) = span {(z,,, 1)}, R(Fw(w, T(,)) = R(L) X U (4.9)

where z^ is the unique solution of (4.5).
The final condition for bifurcation from (M>, T0) is (cf. Crandall & Rabinowitz,

1971)

Using (4.9) and once more (iii) and (4.8) this turns out to be equivalent to

0 * f (-y, x)g€t(z, 0, T0) dt = \ -x(a2i + 2a3T0) + xbj dt = ̂ {a2 + b2)
J — cc J — -x.

which is true by assumption.
Finally, (4.9) shows that we may parametrize the non-trivial branch such that it

has tangent (z,,, 1, T ' ( 0 ) ) in Xx x R2. •

In Theorem 4.1 we have analyzed the homoclinic orbits of the system (3.8)
without using the transformations which led to this system. In fact, the special
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transformation (3.7) induces a certain symmetry in (3.8) which yields x'(0) = 0,
i.e. a vertical bifurcation. This idea was pointed out to me by M. Stiefenhofer
(1991).

PROPOSITION 4.2 Assume that the system (3.8) is obtained from (3.3) with r in C3

by the transformation (3.7) and let the assumptions of Theorem 4.1 hold. Then
the non-trivial branch of homoclinic orbits

(z(t, e), e, r(e)) = (x(t, e), y(t, e), e, r(e)), t e R, |e| < e0

satisfies

x(-t,e)=x(t,-e), y{-t,e) = -y{t,-e), r(e) = r ( - e ) . (4.10)

In particular T'(0) = 0.

Proof. Let E{t, §„, n) and <P(t, r/0, e, x) denote the f-flows of (3.3) and (3.8),
respectively. We set

* - ( J - , ) • . • )

From (3.7) we find the relation

0(s, r/o, e, T) = D7l~[(s/a3€), £>e(?jo + *4T(l, 0)), (oro + ar,T2)e4. re2]

and hence
<P(s, D0r]0, -e, r) = D0<P(-s, r/0, e, T), e ^ 0 .

Therefore, if (x(t, e), y{t, e), e, r(e)) is a homoclinic solution of (4.1) then so is
{x{—t, e), —y(—t, e), —e, r(e)). Moreover, x is an even function and y is odd
(see (3.12)), so both solutions are close to the bifurcation point (w, T0) in
Xx x U2. Our assertion (4.10) now follows from the uniqueness of the non-trivial
branch. •

By Theorem 4.1 and Proposition 4.2 we see that starting homoclinic orbits for the
system (3.8) is a matter of branch switching. The tangent approximation is given
by

(z, e, T) = (z + ezo, e, r0). (4.11)

Our aim is to fix a small e > 0 and then try to solve (4.1) for (z, x).
Actually, we were unable to solve (4.5) explicitly for Zo, so a simpler alternative

is the non-tangent predictor

(z, e, T) = (z, 6, T0). (4.12)

In the next section we will show that this initial approximation is sufficient to
guarantee convergence of a Newton or chord method for (4.1) (with e > 0 fixed).
For the tangent approximation (4.11) this follows from the theory of convergence
cones near bifurcation in Keller (1977) and Jepson and Decker (1986).

For the numerical implementation we actually have to transform the predictors
(4.11) and (4.12) back to the original equation (2.1). This involves the non-linear
transformation (3.7), the centre manifold reduction and the linear transformation
(2.11). A summary of the resulting algorithm will be given in Appendix A. Once
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a homoclinic orbit of (2.1) has been found, we can use standard algorithms (see
Doedel & Friedman, 1989; Beyn, 1990a; Rodriguez Luis et al 1990; Kuznetsov,
1990; Friedman & Doedel, 1992) to continue branches of homoclinics (u(s), A(s))
in the two-parameter system (2.1).

We notice that we have not been able to prove convergence of the Newton
process which starts at the predictor obtained by back-substitution of (4.12) (or
(4.11)) in (2.1). Here, several technical difficulties arise. First, the non-linear
transformation (3.7) does not commute with the Newton iteration. Second, it is
not obvious how a convergent Newton process for a homoclinic of the reduced
system (3.3) carries over to the full system (2.1). Clearly, the numerical
experiments in Section 6 support a positive result and we expect some future
progress in this direction. Generally speaking, it is of great interest to have
theorems which transfer convergent iterations from a centre manifold reduction
to the original system.

5. Convergence of Newton's method near the singularity

In this section we show that the non-tangent predictor (4.12) is sufficient to
generate a convergent Newton process for the operator equation (4.1). We use
the fact that the bifurcating branch can be parametrized by e (Theorem 4.1) and
rewrite (4.1) as

H(v,e) = 0 (5.1)

where v = (z, T) = (x, y , i ) e I , x R and

H(v, e) = (z -g(z, €, r), y(0)) eXoxR. (5.2)

Equation (5.1) now has a simple bifurcation point at u,, = (z, T0), e = 0. For fixed
e =£ 0 we consider the iteration

vn+i = T(vn,e), n = 0 , 1 , 2 , . . . (5.3)
where either

T{v, e) = v- H,,(v<>, e)~lH(v, e)

is the chord operator or

T{v,e) = v-Hv(v,e)-lH{v,e)

is the Newton operator.
We employ the following abstract theorem on convergence wedges for these

iterations. Its proof will be given in Appendix B. We use the superscript '0' to
denote evaluation at (u0, 0).

THEOREM 5.1 Given He C3(V x R, W) with Banach spaces V, W and a point
(vn, 0 ) e V x R with the following properties.

(i) H(vo,0) = 0.
(ii) The operator H° is Fredholm of index 0 with N(H^,) = span {<p} for
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some q>¥=0. Take splittings V = N(H§ © V,, W = /?(H") © W, and let />: K->
N(H°), Q : W—• W, be the corresponding projectors.

(Hi) QH°ue<p±0.
(iv) G«2 = 0.
(v) QH°vvqn) = 0 for all u e V.

Then, for any a, \ < a < 1, there exist en = €Q(a) > 0, c0 = co(ar) > 0 such that

H(v,e) = 0, 0<6«6«, (5.4)

has a unique solution v(e) in

e", \\(1 - P)(v - vo)\\ « coe}. (5.5)

Moreover, the chord and the Newton iteration started at vn (or somewhere else in
Kf) converge to v(e) for any 0< e =s e0.

REMARKS

1. The assumptions of Theorem 5.1 imply that (vt), 0) is a simple bifurcation
point. By (i), (ii) and (iv) we have H°e e R(H°) and

N(H'°) = span {{<p, 0), (f, 1)}

where H°vl; = -Ho
e. The quadratic form induced by H'M on N(H'l)) is given by

q(x, y) = {ax2 + fixy + \yy2

where a = QH°tw<p2 = 0 by (v), p = QHn
vt<p=t0 by (Hi) and y = QHM{£, I)2.

Therefore, the tangents to the bifurcating branches are

(q>,0) and ( £ , i ) - X ( g , > 0 ) .

In general, y and i; do not vanish, so that (0,1) is not tangent to a branch.
Nevertheless, the initial value

(un> e) = (v0, 0) + e(0, 1)

leads to a convergent iteration. The main reason for this fact is assumption (v)
which requires more than just QH^cp2 = 0.

2. Gluing the balls Kf together gives us the domain of convergence

which is illustrated in Fig. 2. It has the shape of a wedge.
Such a wedge seems neither to be covered by the convergence cones for

parameter-dependent problems (Keller, 1977; Jepson & Decker, 1986) nor by the
wedges for the parameter-independent case in Decker et al (1983).

Let us apply this theorem to equations (5.1), (5.2). We simply have to
reinterpret the results from Section 4 with the roles of r and e interchanged.



396 W.-J. BEYN

(I-P)v

FIG. 2. Convergence wedge for Newton's method near a bifurcation point (Theorem 5.1).

From the proof of Theorem 4.1 we obtain

H°v(z, T) = (Lz, y(0)) with L from (4.7),

N(H°V) = span {q>} with <p = (0, 0, 1) e Xt x R,

since

W(H(v0, 6)) = O(e2) - e f (-y, jc)&(f, 0, r0) dr = O(e2),

•' — a:

H2wqro = (-gw(f, 0, TO)2 -gTr(z, 0, TO)T, 0) = 0 for all v = (z, T) e Xx e R.

Thus we have shown the following.
COROLLARY 5.2 For the two-parameter system (3.8) assume that g is in C3 and
let a2 + b2^0. Then for any e > 0 sufficiently small, Newton's method for
solutions (x, y, x) e Xx x R of the system

(X)=g(x,y,e,T), y(0) = 0 (5.6)

converges to the non-trivial homoclinic orbits (x(e), y(e), t(e)) of Theorem 4.1
when started at (x, y, r0).
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Of course, Newton's method in the Banach space Xx x R is not a practical
method. Also, the phase condition _y(0) = 0 can be replaced by a more efficient
integral condition. Further details on the numerical implementation are contained
in Appendix A and the next section.

6. Examples and numerical calculations

Our algorithm gives us an explicit approximation of homoclinic orbits close to the
TB-point («°, A0) (see Appendix A). This approximation depends on a parameter
e as follows

) DeR"-2, v, weW (6.1a)

BeU2'2 (6.1b)

Ut, O = (c2/G2.n)[l - 3 sech2 ((e/2)/) - Qzl4x0] (6. lc)

%2(t, e) = (3e3/G2...) sech2((e/2)r)tanh ((e/2)/). (6.ld)

We then fix one parameter, say A, = X~}, and solve a well-posed boundary value
problem for (u, A2) e Xt x U (cf. Doedel & Friedman, 1989; Beyn, 1990a
19906; and Section 5).

u=f(u, A",, A2), A2 = 0 forreR (6.2a)

o(u) = 0 (6.2b)

where a:Xx—>R defines a phase condition. For example, the phase condition
_y(0) = 0, which was suitable for the (x, y) system (5.1), (5.2), now transforms into
(cf. (6.1), (2.8))

T ( U ( I A ! | ) ) 0. (6.3)

A more reliable choice is an integral condition (see Doedel & Kerne"vez, 1986)

o(u)=\ u(t)T(u(t)-u(t))dt = O. (6.4)

In the following examples we have concentrated on the local behaviour of the
starting algorithm, i.e. the initial homoclinic orbit (u, A2) was computed and it
was then continued by slightly varying A,.

Of course, for the global bifurcation diagram one should apply the usual
continuation idea of stepping forward tangentially in the A-plane (or the ^-plane
with n as in (6.1/))) and then correcting in the normal direction.

As in Beyn (1990a) we replaced (6.2) by a boundary value problem on a finite
interval J = [T_, T+\ namely

u=f(u,Xu A2), A2 = 0 i n / (6.5a)

Oj(u) = 0 (6.5b)

B_(u(T.),X2) = 0, B+(u(T+),X2) = 0. (6.5c)
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Here, a, denotes a finite phase condition, e.g. the point condition (6.3) or the
truncated integral condition

(6.6)u)=r a(t)T(u(t)-u(t))dt.
hh.

In (6.5c) we employ projection boundary conditions (see Beyn, 1990a)

B_(v, A2) = L,(A2)(u - u(A2)) e 0T«

where u(A2) are the saddles of
<i=/(W,X,,A2) (6.7)

close to u(-oo) = fi(+oo). Moreover, the rows of L,(A2) e W-" (resp. L,,(A2) e K"-")
form a basis of the stable (resp. unstable) subspace of/jT(u(A2), X,, A2). The choice
of 71, 71 was guided by the behaviour of £,(/, e), which is mainly responsible for
the amplitude of the initial homoclinic orbit. To be more specific, 71, 71 were
determined from

lS,(-..,-«r...»-£i«h"(|r.).*.
where 5,, is a prescribed small quantity.

For all calculations shown below we used the integral phase condition (6.6) and
some standard transformations in order to write (6.5) as a two-point boundary
value problem on [0,1] (see Beyn, 1990a). The solver DO2RAF from the
NAG-library, Oxford was applied.

EXAMPLE 1 ii, = u2, u2 = A, + A2«2 ~ ' uxu2-

This is the model example from (1.2). With e = 0 1 , 6o=10~4 and X, =
0-25 x 10"4 the b.v.p. (6.5) could be solved easily. Then A, was increased and a
branch of homoclinic orbits was calculated up to A, = 0-35 x 10"2. Figure 3 shows
the evolving homoclinics in phase space. During the continuation the adaptation

E-2

1 . 4 -

- . 0 6

FIG. 3. Branch of homoclinic orbits in phase space for Example 1 (A, = 0-25 x KrV.,0-35 x 10"2).
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(a) (b)

FIG. 4. (a), (b): Time diagrams of u,, u2 for the homoclinic orbits from Fig. 3.

strategy for [71, T+], as developed in Beyn (1990b), was used. Figures 4(a), (6)
show the time diagrams for the u,- and Uj-components while Fig. 5 displays the
variation of A2, 71, T+ with increasing A,.

EXAMPLE 2 (Nerve excitation (Chay & Keizer, 1983; Rinzel, 1985)).
This two-dimensional system models the time course of voltage oscillations (V)

across the membrane of pancreatic /3-cells. It is a modification by Chay and
Keizer (1983) of the Hodgkin-Huxley model, further simplified by Rinzel (1985).
The parameters are A, = Ca [/JM] (intracellular calcium concentration) and
A2= T[°C] (the temperature).

The dimensionless equations are

CMV = 2gCBMHml(V)h4V)(VCa - V)

n=<P(an(V)(l-n)-pn(V)n)

3

- 3 •

- G
-12 -^ =8 =r

ln|A,|

/n|A,|

« r
FIG. 5. Dependence of In |T_|, In (7"+), In |A2| on the continuation parameter A, for Example 1.



400

where
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VL=-40,

-20 -
e * - l '

20
- 5 0 - V

exp

= 0125 exp

- 2 0 - 1
10

- 3 0 -
80 ' ) •

We found a TB-point at (A,, A2) = (1-88, 14-94), (V, n) = (-34-21, 0-26). We did
some experiments on the quality of the predicted homoclinic (6.1) with varying
values of e (see also Rodriguez Luis et al, 1990). Figure 6 compares the predicted
values A\=:£2(e) with the computed ones A2(e). Note that A2(e) is obtained
by solving (6.5) with A, = At(e) fixed. The predictor was found to be reliable up
to e = 0-3. For this value, Fig. 7 compares the predicted voltage function with its
finally corrected form.
EXAMPLE 3 (CO-oxidation (Bykov et al, 1978; Khibnik, 1990))

2 2 z = l~x-y~s

'S = k{Z~i:S)-
1.66

• 1O1

1.65-

1.64-

1.68-

1.62

1.51-

1.60-

1.4+

1.49-

1.47-

\ i

\v> T V i 7 T 1 1 ^
FIG. 6. Comparison of parameter values A2(e), predicted by the starting procedure, with computed
values A2(e) (Example 2).



NUMERICAL ANALYSIS OF HOMOCUNIC ORBITS 401

-28

-29

-30

-31

-32

-33

-34

-35

-36

-37

-38

V

.0 6.2 1.0

FIG. 7. Comparison of predicted (V(/)) and computed (V(/)) voltage function for e = 0-3 (Example
2).

The underlying reaction scheme is displayed in Bykov et al (1978) and notice that
a factor 2 is missing in front of kxz

z in Khibnik (1990). Most of the reaction
constants above were fixed (see Khibnik, 1990)

kx = 2-5, A:_, = l, A:3 = 10, fc_2 = 0-l, k4 = 0-0675

and a TB-point was calculated at

(x, y, s) = (0-1159, 0-31547, 0-28844)

A, = k2= 1-4176, A2 = k-Jk4 = 0-9714.

0.308

0.301-

0.300-

0.296-

0.292-

0.288
0.109 0.111 0.113 0.115 0.117 0.119

FIG. 8. Homoclinic orbits in (x, *)-phase space for Example 3 (c = 0-005,._, 0-03).
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•f
o

5 . 0 -

i.0-

3 . 0 -

2 . 0 -

1.0-

0 .0 -

-1.0

d(e)

0.000 0.005 0.010 0.015 0.020 0.025 0.030

FIG. 9. Distance of homoclinic orbits from the tangent plane to the centre manifold for Example 3.

The emanating homoclinic orbits for a few values of e are shown in Fig. 8.
In this 3-dimensional example we also measured the deviation of the actual

homoclinic orbit u{t, e) for A, = A^e) from the linear approximation to the centre
manifold (see Fig. 9) by calculating

d(e) = sup

Here y e R 3 spans {v,w}± (see (6.1a)) and it has to be a left eigenvector
corresponding to the non-trivial eigenvalue of/u(u°, A").

Appendix A. Summary of the algorithm

A.I Computation of a TB-point

Let (u°, A0) be a solution of the defining equation (2.3) obtained by a Newton
iteration. As in (2.2) let

JU\U , A. ) Dg

cl 0
Generally, we use the upper index '0' to denote evaluation at (u0, An). However,
we try to suppress this index whenever it does not affect the readability. Compute
v, w, tV, £ 6 R" from the linear systems:

't)-Q <)<)• ^0-0-A

Normalize

a a
-
a
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A.2 Linear normal form

fr^fTS,, ' = 1,2,

Solve the two linear systems

Let <52 e R"+2 be the second column of ( j .

A.3 Coefficients of quadratic terms (equations (2.18), (3.5))

We assume that/2 = (fu, fk) e W-n+1, z = (u, A) can be evaluated explicitly and we
choose a suitable stepsize s > 0 for numerical differentiation

[/u((u°, A0)

Notice that we need only 3 evaluations of fz for this step. Also, we have not used
the equalities f°uv = 0, fuw = v since they will only be true approximately in
practice.

A.4 The approximate homoclinic of the reduced system (3.3)

1.11 + 62.12)

T o ^ — (61.11 + 62.12); a°^^n—((61.14-62.1162.44)*?,-1);

choose an e > 0 and let

i(0 ^-77— ( 1 - 3 sech2 (^ /) - Q2 uz0)Qi.u V \2 / ' /

2(0 « - -p - sech2 ( I /) tanh ( | /).
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A. 5 Approximate homoclinic for the original system (2.1)

Pi

Here we trace back the centre manifold reduction from (3.1) to (3.3) and the
linear transformation (2.11).

Appendix B. Proof of Theorem 5.1

First, we consider the chord operator

and show that T(-, e) is a contraction on Ke in a suitable norm. Later on, we will
indicate the necessary changes for Newton's method. It will be convenient to
work with generalized norms (or distances) |-| : V—*Um, i.e.

|u|&0, | u | = 0 o t / = 0 , |Wi+w2|«|wil + |w2l

holds with the natural partial ordering of W" (cf. Bohl, 1978). Each norm ||-||« in
Um then leads to a norm ||-|| in V via

and any two norms of this type are equivalent. Without loss of generality we will
therefore work in V with the norm

Our choice for the proof of Theorem 5.1 is m = 2 with

(Bl)

We may then write

Ke = {ve V :\v-vo\^rf}, re = ( j .

We use the following version of the contraction mapping theorem (cf. Bohl,
1978).

THEOREM Bl Let (V, | | ) be a Banach space with a generalized norm | | . Given a
ball

B = {ve V : \v-vo\^r), where reRm, r>0,



NUMERICAL ANALYSIS OF HOMOCLINIC ORBITS 405

an operator T:B—>V and a non-negative matrix L e R m m with the following
properties:

\T(y)-T(y)\*L\v-y\ for all v, y e B (B2)

\T(vo)-vo\<(l-L)r. (B3)

Then T has a unique fixed point v in B and for any yae B the sequence
yn+l = T(yn) converges to v. Moreover,

\v-y\^{l-L)-l\v-T(v)-{y-T{y))\ Vv,yeB. (B4)

REMARK By (B3) and r > 0 we have that / - L is an M-matrix. Moreover, it is
easy to see from (B2) and (B3) that T maps B into itself and is an ordinary
contraction with respect to the norm

f l u I, 1
r = max|—:i = \,...,m\.

Our second aid is a careful estimate of the inverses Hv(vn, e) '. It can be
extracted from Jepson and Decker (1986), but for the sake of completeness we
will give a short proof in terms of generalized norms later on.

LEMMA B2 Under the assumptions of Theorem 5.1 there exists an e ( )>0 and a
C* > 0 such that Hv(y0, e) is a homeomorphism for all 0 < e =s e(). The following
estimate holds with respect to the generalized norms from (Bl)

VueK. (B5)

The estimate (B5) shows that the singularity of Hv(vn, e) near e = 0 only involves
the critical subspaces R(P) and R(Q). We apply Theorem Bl to the chord
operator 7(-, e) with the ball B = Ke. In what follows, C will denote a generic
constant independent of e.

From our assumptions (i), (iv) and Lemma B2 we obtain

0) e) - uo| = \Hv(v0, e)-'tf K , e)\ [*̂  j ] ( ^

With this constant C we now fix c0 in Kt and e, > 0 through

cn = 2C and c o f « e " forO<e=£e,. (B6)

Then the following holds

\T{vo,€)-va\^\rt forO<e=£e,. (B7)

Next we consider the Lipschitz estimate for v, y e Ke

\T(v, e) - T(y, e)\ = \Hv(v0, e)-'[/(,(% e)(w -y)- (H(v, e) - H(y, e))]\
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where

z=\ \ Hvv[(l-s)vo + s(y + t(v-y)),e](y + t(v-y)
Jo Jo

The key idea is to use assumption (v) and H e C3 in order to estimate Qz.

\\Qz\\ « k f' f [/C((l -s)v0 + s(y + t(v -y)), e) - H°m]
II Jo Jo

x (y + t(v -y)- vo)(v -y)ds d/

+ lie f' f' H°m ds(y + t{v - y ) - v0) dt(v - y)\
II Jo Jo II

« C(\\v - u,,|| + \\y - woll + e)(||u - uo|| + \\y - vo\\) \\v -y\\

« Ce2" \\v -y\\ + \\QH°VV[{1 - P){{(v + y) - v„)][(! - P)(v -y)]\\
« C{e2a(\\P(v-y)\\ + ||(/ - P)(v-y)\\) + e \\(I - P)(v -y)\\)
^C{€2"\\P(v-y)\\+e\\(I-P)(v-y)\\}.

Furthermore,

||(7 - Q)z\\« C(\\v - t/oll + \\y - woll) llw -y\\
^Cea(\\P(v-y)\\ + \\(I-P)(v-y)\\).

Summarizing these estimates we obtain

where

.]\v-y\*L€\v-y\

With this Lipschitz bound we calculate

C€2a~l - Ccoe

Thus, for e sufficiently small, (B7) yields

An application of Theorem Bl finishes the proof.

REMARK From (B4) and (B5) we obtain

(v, e) - H(y, e))|

)\ for v,yeKt. (B8)

This is the non-linear generalization of (B5).
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Proof of Lemma B2. Let us approximate Hv(v{), e) by the linear block-diagonal
operator A(e) := eQH°vfP + (/ - Q)H*Xl - P). Expanding Hv(v0, e) with respect
to e it is easily seen that

| VueV.

By assumptions (ii) and (iii) of Theorem 5.1 we have for some C, >0

CA€ ||u|=s|>4(e)u| forallueK.

Both inequalities together imply for v e V

\H,(vo,e)v\*M(e)\v\, M(e) =

For e sufficiently small, M(e) is an Af-matrix and

Therefore, (B9) yields

] (B10)

Hv(v0, e) is a small perturbation of //{!, hence it is also of Fredholm index 0.
Inequality (BIO) then shows that Hv(v0, e) is a homeomorphism which satisfies
(B5). •

Note on Newton's method

We will only indicate the major changes necessary for the Newton operator

T(v, e) = v -//„(«, e)-lH(v,e), veKe.

First, we need an analogue of Lemma B2

\Hv{y, e)-1u|«c[e
e

a_. j] M iovyzKf, veV.

To see this, we replace v by y + tv in (B8) and let /—»0.

For the second step we utilize the known solutions v(e) e Kf and show

\T(v,e)-T(v(e),e)\^Qc\v-v(e)\2, veKf, (Bll)

where Qe : R2 x K2-> R2 is bilinear and satisfies
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Similar to the chord method the crucial estimate uses assumption (v).

\\Q[H(v(e), e) - {H{v, e) + H,(v, c)(v(e) - v))]\\

(v + t(v(e) - v)) - H°vv](v(e) - vf d/1
II

\\Q f (1 -
II Jo

« C(ea \\P(v(e) - v)\\2 + ||(/ - P)(u(e) - v)\\2).

From (Bll) it is straightforward to choose e sufficiently small so that

*a]\v-v(e)\, v e Kf

holds. This proves convergence of Newton's method.
We notice that (Bll) still signals some kind of quadratic convergence.

However, due to the dependence of Qt on e we have to take an e-dependent
norm for this purpose. For example,

with p = min (2(ar - 1), —|) as a possible choice.
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