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(~‘3 x fi)R30” Xe-layers on Pt(l J J) and Pd(J 11) arc studied by rprn-polarized LEED. In the experiment spin-polarized ekctrons 

from a GaAs phot~mission source were scattered and the spin-dependent intensities are measured in different diffracted heama. 

Corresponding caiculations were performed using a new relativistic LEED code. Measurements and calculations agree reasonably. 

They show strong contributions from multiple scattering between substrate and adlayer. and therefore spin-polarized LEED reveals 

strong sensitivity to structural parameters 

Spin-polarized low energy electrons are dif- 
fracted at the surface and the spin-dependent in- 
tensities of the diffracted beams are measured. 
The source of spin-polarized electrons is a nega- 
tive electron affinity GaAs photoemission source 
[l-3] with a degree of polarization of 26% 
f 3%/2%. The surface normal is chosen to be in 
the scattering plane, which is defined by the in- 
coming and outgoing beam. The spin-polarization 
vector P of the incident beam is aligned normal to 
the scattering plane. P is switched between the 
two normal directions ( +, - ) by switching the 
helicity of the circularly polarized light incident 
on the GaAs crystal. The resulting spin-dependent 
intensities I + , I_ yield the scattering asymmetry 

A, 

The target crystal can be rotated about its surface 
normal and about a polar axis lying on the surface 
and being perpendicular to the scattering plane. 
The asymmetry profiles were measured as a func- 
tion of the scattering angle 0. The (J3- X & )- 

R30” Xe-layer was prepared at 70 K for both 
Xe/ Pt( 111) and Xe/ Pd( 111). 

Fig. 1 shows angular dependent asymmetry 
profiles of A I (0) for identical adsorbate induced 
beams measured at Xe/ Pt(ll1) and at Xe/ 
Pd(ll1). The asymmetry profiles of Xe/Pd( 111) 
are much smoother and are less structured than 
those of Xe/ Pt( 111). As the lattice constant of the 
(43 X 6 )R30” Xe-layers on these two substrates 
is identical within 1% these differences clearly 
show the influence of the substrate. 

Fig. 2 shows measured angular dependent 
asymmetry profiles in the specular beam of clean 

Pt(ll1) and (& x&)R30° Xe/Pt(lll) at 52 
eV. The asymmetry profiles of clean and Xc- 
covered Pt(ll1) are similar in their general struc- 
ture. The adsorption of the Xe-layer leads to de- 
creased heights and displaced positions of the 
asymmetry peaks and to a new peak around H = 
80”. 

The spin-dependent LEED calculations are 
performed in three steps. Firstly the scattering of 
the electrons at a single muffin-tin uore is treated 
fully relativistically hy solving the Dirnc cyuation 
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Fig. 1. Angular dependent asymmetry profiles of the adsorbate induced (l/3, l/3)-beams measured at (6 X &)R30 o Xe/Pt(lll) 
and (fi x fi)R30 o Xe/ Pd(l11). The length of the error bars represents the statistical error. There is an additional scaling error of 

+ 12%/ - 8% of the given values due to the calibration of 1 P 1. 
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Fig. 2. Asymmetry profiles of the specular beam of clean 
Pt(ll1) and (6 X&)R30°Xe/Pt(lll) for 52 eV (errors: see 

fig. 1). 

[4]. Secondly intra layer multiple scattering is taken 
into account by a two component analogue of the 
“layer-KKK”-formulation of Pendry [5-71. Third- 

ly interlayer multiple scattering is treated by com- 
bining the scattering matrices of the bulklayers by 
layer doubling [5]. The reflection matrix of the 
whole system is constructed by combining the 

bulk reflection matrix with the scattering matrices 
of the adlayer. 

The ion-core phase shifts are modified to ap- 
proximate the effects of thermal lattice vibrations 
[6]. In the calculations the Debye temperatures of 
Pt and Xe are assumed to be 229 and 200 K, 
respectively. The inner potential of the Pt-bulk 
and of the Xe-adsorbate has been varied from 5.0 
to 15.0 eV (real part) and from 1.0 to 5.0 eV 
(imaginary part). For an inner potential of the 
Pt-bulk of 12.5 eV (real part) and 3.4 eV (imagin- 
ary part) best agreement with measurements from 
clean Pt(ll1) is achieved and thus these values are 
taken for the presented calculations. The inner 
potential of the Xe-adlayer in the presented 
calculated data is 10.0 eV (real part) and 3.0 eV 
(imaginary part). At an electron energy of 64 eV 
typically 60 reciprocal lattice vectors are included, 
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and phase shifts up to I,,, = 7 for Pt and up to 
I max = 10 for Xe are taken into account. 

Fig. 3 shows a series of calculated asymmetry 
profiles in comparision with the measured data for 
(6 x &)R30”Xe/Pt(lll). Peak positions are 
very sensitive to small variations in the layer spac- 
ing d. So an exact determination of this parameter 
is possible in principle. However, measurement 
and calculations show agreement for d = 3.2 A 

and for d = 4.2 A as well. The periodicity in 
calculated asymmetry profiles is observed also for 
higher values of the layer spacing. Further investi- 

gations are necessary to find out the right value. 
This includes studies at different energies and in 
different beams and in addition an R-factor anal- 
ysis. 

The value d = 4.2 A corresponds to the value of 
4.8 A for the distance between Xe-atoms in the 
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Fig. 3. Calculated asymmetry profiles of the specular beam for different layer spacings in comparison to experimental data of 

(6 x ~)R30”Xe/Pt(lll) for 52 eV. 
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Fig. 4. Calculated asymmetry profiles of the specular beam for 

different adsorption sites of (6 X &)R30° Xe/Pt(lll) for 

70 eV. 

overlayer and to the value of 4.4 A of a xenon 
crystal. If hollow sites are assvmed to be the 
adsorption sites, the value of 3.2 A agrees with the 
minimum layer spacing resulting from the hard 
sphere radii of 2.2 A for Xe and of 1.4 A for Pt. 

It is not yet possible to distinguish between fcc- 
and hcp hollow sites. Fig. 4 shows asymmetry 
profiles calculated for these two adsorption sites. 
Only peak heights differ significantly. These peak 
heights are connected with minima in the calcu- 
lated intensity. The low intensity in these minima 
cannot be reproduced in the experiment because 
of a background due to disorder scattering. Thus 
it is not possible to get structural information 
from fig. 4. 

In conclusion our investigations show spin- 
polarized LEED to be a powerful method to study 
adsorbate structures. The calculations show the 
spin-dependent scattering properties to be very 
sensitive to variations of structural parameters, 
and the general agreement between measurement 
and calculation allows us to evaluate these param- 
eters. 
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