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TOPOLOGICAL HOCHSCHILD HOMOLOGY

R. SCHWANZL, R. M. VOGT anp F. WALDHAUSEN

1. Introduction

In the appendix to [20] Waldhausen discussed a trace map tr: K(R) — HH(R),
from the algebraic K-theory of a ring to its Hochschild homology, which can be used
to obtain information about K(R) from HH(R). In [1] Bokstedt described a factor-
ization of this trace map. The intermediate functor THH(HR) is called the topological
Hochschild homology of the Eilenberg-MacLane spectrum HR associated with R,
because it is constructed similarly to Hochschild homology with the tensor product
replaced by the smash product of spectra.

There has been considerable interest in computations of THH(HR), primarily
because it coincides with the stable K-theory of R [5]. Bokstedt himself determined
THH(HZ) and THH(HF ) [2] (see also Remark 4.7). Using a spectral sequence from
[2], Lindenstrauss [9] and Pirashvili [13] showed that THH, (HR) is the derived tensor
product of ordinary Hochschild homology HH,(R) and topological Hochschild
homology of the respective ground ring if R is a certain ring extension of Z or [ o
Their results can be summarized as follows.

If Ris Z[X]/(X™), Z[X]/(X"—1), a group ring Z[G], or an extension F [X]/(f) of
F,, where fis a monic polynomial, then

THH,(HR) = @ HH,(R)®,THH(HZ)® @ Tor(HH,(R), THH (HZ)).

ptg=n pP+g=n—-1
(1.1)

The objective of this paper is to provide a conceptual frame for such reductions:
the existence of a lift of the extension to an extension of the sphere spectrum S. We
prove the following.

THEOREM 2.1.  Let K be a commutative ring and R be a K-algebra. Suppose there
is a good S-algebra spectrum E (for example, a cell algebra spectrum) and a weak
equivalence of HK-algebra spectra E AgHK—— HR; then there is a homotopy
equivalence of HK-module spectra

THH(HR) ~ THH"*(HR) A ., THH(HK).

The results (1.1) are fairly immediate consequences of this theorem (see Corollary
2.2 and the applications). If R is a commutative ring, THH(HR) is a ring spectrum
and the above homotopy equivalence is multiplicative, providing information about
the ring structure of THH_(HR) (Corollary 2.3).

2. Definitions and main results

We recall the following definition of Hochschild homology, which easily
generalizes to suitable spectra. Let K be a commutative ring, R be a K-algebra, and
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M be an R-bimodule. The Hochschild homology space HHX(R; M) of R with

coefficients in M over the ground ring K is the topological realization of the simplicial
K-module

[f]— R®" @, M
with the face and degeneracy maps

Ty k- @y ®glr-m) izq
A, Qx... @1 ®ym) = P @ Olriyy 1) ... @ m QS Isn.
Fa1 @k .. @plm-r,) I=n

1 A1
si(rn®K"~®Kr1®Km):rn®K"'®K1®Kri®K"‘®Km O<ign (21)

ochschild homology groups are defined to be the homotopy groups of the
;l;l;eollc){gical K-module Hgli)K(R; M). We write HH¥(R) for HH%(R; R) and HH(R) for
HHZ(R).

T(op)ological Hochschild homology is defined analogously. One has tO' repcliéll:l?:
rings, algebras, and bimodules by suitable ring spectra, algebra spectra, and bimo
spectra, and the tensor product by the smash product of spectra. .

When Békstedt constructed topological Hochschild homology in 1985,' there wa;
no known category of spectra with an associative, commutative and unital smas
product functor. This situation has changed in recent years; there? are competing
constructions of symmetric monoida] smash product functors on suitable categories

of spectra having the same forma properties as the classical tensor product [6, 8, 10].

In this paper we work in the setting and, unless stated otherwise, use the terminology
of [6].

Let S denote the sphere spectrum, and let K be a commutative S-algebrg, R bfna K-
algebra, and M be an R-bimodule (note that we consider spectra!). We write R*" for
the n-fold smash product R Ak AR, if the ground S-algebra K is clear from the
context. We define the topological Hochschild homology spectrum THH®(R; M) of R

with coefficients in s over K to be the realization in the category of spectra of the
simplicial spectrum

[n]k—»thhff(R;M) =R A M
with face and degenerac
that of [6] where THHX*(R

thh*(R; M), respectively. The topological Hochschild homology groups are the

homotopy groups of THH*(R; M). We write THH*(R) for THH*(R;R) and
THH(R) for THHY(

R). The equivalence of our definition with the one of Bokstedt in
the g-cofibrant case (see Section 3) can be deduced from the combined results of [18]
and [19].

The ‘inclusion of the 0-skeleton’ defines a map of K-modules

¢:M—THHX(4; M),

algebra, thhé(R) is a sim
mmutative K-algebra, The

IfRisa commutative X-

plicial commutative K-algebra;
hence THHX(R) is a co

map
¢:R—s THH*(R)
bra with unit ¢,

» R is a K-algebra, anqd ps is an R-bimodule in the
ated Eilenberg-MacLane spectra HK, HR and HM so

makes it a Commutative R-alge
IfKisa Commutative ring
classical Sense, there are assocj
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that THH*%(HR; HM) can be defined. Here some care is required ; to make sure that
the homotopy type of THH¥X(HR; HM') does not depend on the choice of the models
for HK, HR and HM we have to take g-cofibrant models (see Remark 3.7). We will
always assume this. For details on the notion of g-cofibrancy see Section 3. The
Eilenberg-MacLane spectra constructed in [6] have this property.

Our main observation is the following result.

TueoREM 2.1.  Let K be a commutative ring and R be a K-algebra in the classical
sense. Suppose there is a g-cofibrant S-algebra E and a weak equivalence of HK-
algebras E A g HK—— HR, where HR is represented as q-cofibrant HK-algebra; then
there is a homotopy equivalence of HK-module spectra

THH(HR) ~ THH"*(HR) A ., THH(HK).

If R is commutative, E is a g-cofibrant commutative S-algebra, and HR is represented
by a g-cofibrant commutative HK-algebra, this homotopy equivalence is a homotopy
equivalence of commutative HK-algebra spectra.

Given the assumptions of the theorem we in principle can calculate the homotopy
of THH*®(HR) A ,,, THH(HK), and we obtain the following.

COROLLARY 2.2. Suppose that K is a semi-hereditary commutative ring (see [3]),
that R is K-flat, and that the assumptions of Theorem 2.1 hold. Then there is a non-
natural isomorphism of graded K-modules

THH, (HR) = ® HHX(R)®,THH(HK)® @ Torf(HHX(R), THH(HK)).

pHg=n prg=n—1

In the commutative case we obtain information about the multiplicative structure.

COROLLARY 2.3. If R is a commutative K-algebra, the assumptions of Theorem 2.1
for the commutative case and the assumptions of Corollary 2.2 hold, and if HH(R) is

K-flat for all p, then
THH,(HR) ~ HHE(R) ® , THH, (HK)
as graded K-algebras.

REMARK 2.4. Theorem 2.1 and its corollaries can be slightly generalized : we can
replace the ‘ground ring spectrum’ S by any g-cofibrant commutative S-algebra 4
throughout and obtain the analogous results by exactly the same proofs.

3. Background on spectra and proofs

Proof of Theorem 2.1. (1) We have a sequence of isomorphisms
THH(E A (HK) = THH(E) A THH(HK) (by Lemma 3.1)
~ THH(E) A gHK A 4 THH(HK)
~ THH*X(E A (HK) A ., THH(HK) (by Lemma 3.2).

(2) Given the assumptions of the theorem there are genuine homotopy
equivalences of HK-modules (HK-algebras in the commutative case)

THH(E A ¢HK) ~ THH(HR) and THH®X(E A HK) ~ THH**(HR). [J
We first provide the steps of part (1) of the proof.
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LEMMA 3.1. Ler K be a commutative S-algebra, and let Q and R be K-algebras.
Then

THH*(Q A 4 R) @ THH%(Q) A , THH*(R)
as K-modules. If R is commutative, this is an isomorphism of R-modules, and if both Q

and R are commutative K-algebras, this is an isomorphism of commutative (Q A ; R)-
algebras.

Proof. By [6, X.1.4] THH*(Q) A , THH(R) can be viewed as the realization of
the simplicial K-module

[n] N QA(n+1) A KR/\(7H—1) ~ (Q A KR)A(n+1)‘

If R is commutative, this is an isomorphism of R-modules, and if both Q and R are
commutative, this is an isomorphism of (Q A x R)-algebras. ]

LEMMA 3.2, Let K be a commutative S-algebra, and let R be a K-algebra, and B
be a commutative K-algebra. Then

THH*(R) A , B~ THHA(R A , B)

as B-modules. If also R is commutative, this is an isomorphism of commutative
(R A g B)-aigebras.

Proof. THHE(R A, B) is the realization of the simplicial B-module
[l—(R A xB) Ay... A 4R A g B).

Note that we have a B-module structure only if B is commutative. This simplicial
-module is isomorphic as simplicial B-module to

[1]— RA®D A B,

Since — A ; B commutes with realizations, the result follows. If R is commutative,
we have isomorphisms of (R A x B)-algebras. O

Part (2) of the proof of Theorem 2.1 is not a trivial consequence of the
assumptions. If one tries to show directly that the weak equivalence E A { HK—>
HR induces a weak equivalence THHX *(E AgHK)—THHH K(HR), or if one tries
to deduce Corollary 2.2 from the theorem by calculating the homotopy groups of
THH"*(HR) A ,,, THH(HK), one runs into problems which can best be explained
by an analogy: the situation for chain complexes and tensor products is similar. Taking
homotopy groups corresponds to taking homology groups, and weak equivalences
correspond to quasi-isomorphisms. If Cis a chain complex of R-modules, the tensor
product C ® , - preserves homotopy, but not quasi-isomorphisms unless C is flat in
some sense. Similarly, the homology of the tensor product of two chain complexes
can be computed by the Kiinneth spectral sequence provided one of the complexes
satisfies a flatness condition [11, XI1.12.3]. We are in an analogous situation:

(1) Let R be an S-algebra and let M be a g-cofibrant right R-module. Then
MA,—: rMod —— Mod preserves weak equivalences [6, 3.8].

(2) Let R be an S-algebra, M be a right R-module and N be a left R-module.

There is a strongly convergent natural right half-plane spectral sequence of differential
74(R)-modules

E; = Tor'®(x, M, s N)=mn, (M ALN)
provided that M or N is g-cofibrant as a right, respectively left, R-module [6, IV.4.1]
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A projective resolution of a chain complex is certainly flat. A g-cofibrant object
corresponds to a projectively resolved one in the context of closed model category
structures in the sense of Quillen [14].

Let R be an S-algebra. The categories ;Mod, Mod,, Alg,, and ¥Alg, of left and
right R-modules, R-algebras, and commutative R-algebras admit topological closed
model category structures. Their weak equivalences are the weak equivalences of
underlying spectra, their cofibrations, called g-cofibrations, are retracts of relative cell
objects in their categories, and all objects are fibrant. A relative cell object is a
morphism 4— B obtained by successively attaching cells to 4. The following
results are a consequence of this structure:

(i) Each object X has a g-cofibrant resolution, that is, there is a weak equivalence
I'XY— X with T'X g¢-cofibrant.

(ii) Since all objects are fibrant, any two weakly equivalent g-cofibrant objects
are genuinely homotopy equivalent in their category.

(iii) Given a sequence of g-cofibrations X,— X, — ... then the induced map
X,—colim X, is a g-cofibration.

(iv) Our categories ¢ are tensored and cotensored over Top, that is, we have
continuous functors

¢xTop—¥¢, (X, K)—X®K
Z xTop*®—%, (X,K)—X*¥
and natural homeomorphisms
FX®K,Y)~Top(K,4(X, Y)) = €(X, Y¥).

Moreover, if A— B is a g-cofibration and X—— Y is a g-fibration and a weak
equivalence in €, then the induced map

EB,X)—>C(A4, X)X 44 v,¢(B,Y)

is a Serre fibration and a weak equivalence. Passing to adjoints, this implies that if i: 4
— B is a g-cofibration and K < L is a CW-pair, then 4 ® L| ) ,gx B® K—
B® L is a g-cofibration.

(v) Let Q— R be a map of (commutative) S-algebras. Since R A o— preserves
cell objects it preserves g-cofibrant objects.

We are now in a position to prove part (2) of the proof of Theorem 2.1. Since E
is a g-cofibrant (commutative) S-algebra, E AgHK is a g-cofibrant (commutative)
HK-algebra by (v). Hence the weak equivalence E AsHK—— HR is a genuine
homotopy equivalence in Alg,,, (respectively $¥Algy,) by (ii). The induced maps of
simplicial HK-modules (respectively commutative HK-algebras)

thS(E A ¢ HK)— thhE(HR) and  thhi*(E s HK) — thha™(HR)

are dimensionwise homotopy equivalences. By [6, X.2.4] we obtain homotopy
equivalences of HK-modules after realization, provided the simplicial objects involved
are proper as simplicial HK-modules. This is proved in Lemma 3.3 below.

In the commutative case we want a homotopy equivalence in €Algy,,. This
follows from (ii) and Lemma 3.6 below.

LemMa 3.3. Let R be a g-cofibrant object in Algy or $Alg,. Then thhZ(R) is
proper (the term will be explained in the proof) as simplicial K-module, and it is proper
as simplicial R-module in the commutative case.
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We have to distinguish between the associative and the commutative case, because
the forgetful functor ¥Alg, — Alg, does not preserve g-cofibrant objects. This is
a well-known phenomenon: in ordinary algebra free associative resolutions use tensor
algebras, while free associative and commutative resolutions use symmetric algebras.

Proof of Lemma 3.3. We use results from [15]. A map f: X — ¥ of module or
algebra spectra is called a strong cofibration if each Hurewicz fibration in the category
has the relative homotopy lifting property with respect to /- By assumption, the
unit map n: K-—— R is a g-cofibration. We show in [15] that the forgetful functors
from Alg, or #Alg, to Mod, map g¢-cofibrations to strong cofibrations. Hence

n:K—— R is a strong cofibration of K-modules. Let sR*" denote the ‘union of the
images’ of the maps

4" A AR R 0 i,

that is, the appropriate iterated pushout in Mod - By the pairing theorem for strong
cofibrations the induced map sR** —— R"" is a strong cofibration [15]. The map
SR*™ A g R— R*™*V s the ‘inclusion’ of the degenerate part deg(thhZ(R))
into thh;(R). Recall that thhX(R) is called proper if this map has the homotopy

extension property for each n. Since — A , R preserves strong cofibrations, the
result follows. O

To compute the homotopy of THH”*(HR) A ,,, THH(HK) using (1) and (2), it
suffices to know that a g-cofibrant resolution I'(THH(HK))— THH(HK) of
THH(HK) as HK-module induces a weak equivalence

THH"(HR) A  '(THH(HK))— THH*X(HR) A ,,, THH(HK).

For the commutative case, where THH"*(HR) and THH(HK) are commutative HK-
algebras, this follows from [6, VIL6.5, VIL6.7] and Lemma 3.6. For the associative
case this follows from Lemma 3.4 and a relative variant of (1), Lemma 3.5.

LEMMA 34. Let R be g-cofibrant in Algy,. Then &:R——THHX(R) and its
composite K—— R—— THH*(R) with the unit of R are g-cofibrations in Mod,.

Proof. By|[6, VIL6.2] the unit 7: K—— Risa g-cofibration of K-modules. Hence
(R, K) is a retract of a relative K-cell module (R,K). Let 7: K——> R be the inclusion.
Form the degenerate parts deg(thh%(R)) and deg(thh%(R)) as in Lemma 3.3. Then
deg(thh7(R)) is a subcomplex of thh“(R) so that deg(thh*(R)) — thh’(R)
is a g-cofibration of K-modules. Hence so is deg(thh(R)) —— thhX(R). Let
THH*(R)™ denote the n-skeleton of the realization. Then by (iv) the map

THH*(R)™ — THH%(R)™*V s a g-cofibration of K-modules, and the statement
follows from (iii). O

LEMMA 3.5, If R—s M isq q-cofibration of right R-modules, then the functor
M A p—:zMod —> Mod preserves weak equivalences.

Proof. ‘ Since retractions preserve weak equivalences, we may assume that
R—> M is a relative cell R-module. If ¢:N,— N, is a weak equivalence of

-modules, so is R A $:RA_N,—5R A &Ns. Now proceed as in the proof of
[6, I11.3.8]. O
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LEMMA 3.6. Let R be g-cofibrant as commutative K-algebra. Then THH®(R) is
g-cofibrant in €Alg, and hence also in €Algy.

Proof. By [12, 4.5] THHX(R) is isomorphic as R-algebra to the internal realiz-
ation of the simplicial R-algebra thh&(R) in %Alg,, constructed by using its
tensor structure over Top (iv). We investigate this internal realization. The functor
— A g R:%Alg,— %Alg, preserves colimits and g-cofibrations. Applying it to
the pushout

K— R

Jn "W\id
idAy

R—— RAR

in ¥Alg, we obtain the pushout

R————— RAR

|

RAR — RARALR

in #Alg, showing that thhi(R) is degenerate. By the same argument thh%(R) is
degenerate for all n > 2. Hence we have a pushout

RO zpu RAR® I ——— RARRI

]

R — THHK(R)

in €Alg,. Since R is g-cofibrant in ¢Alg,, the map nAild:R——RA R is a
g-cofibration in ¥Alg,; hence so is

R oo RAxRY®U— (R A R)®I
by (iv) and &: R— THH¥(R). O

Proof of Corollaries 2.2 and 2.3. If Kis a semi-hereditary ring, Tor} =vanishes
for p > 1 [3, V1.2.9]. Hence the spectral sequence (2) collapses, giving rise to a short
split exact sequence [3, VL.3.2]. Since R is K-flat, we have a natural isomorphism
HHX(R) = THHZ*(HR) by [6, IX.1.7].

In the commutative case the spectral sequence is multiplicative. Hence Corollary

2.3 follows from Corollary 2.2, because Tor*(HHX(R), THH (K)) vanishes. O
O

REMARK 3.7. There are many possible models for Eilenberg-MacLane spectra
HR of classical rings R, which are all weakly equivalent. We have assumed
throughout that our models are g-cofibrant. In this case THH#%(HR) is well defined
up to weak equivalence. If Ris a commutative K-algebra, we can represent HR as a
g-cofibrant object HR, in Alg, or as a g-cofibrant object HR, in ¥Alg, together with
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a weak equivalence HR,— HR, in Alg,. This map induces a weak equ?valencc of
the associated topological Hochschild spectra, which is a homotopy equivalence of
underlying spectra [6, VII §6].

4. Applications

Let R be a classical commutative ring and IT be a based monoid, that is, a discrete
monoid with a unit and a multiplicative 0 which serves as base point. Let R[IT] be the
associated monoid ring, that is, the usual monoid ring with 0 € R identified O€ll. In
abuse of notation, but in accordance with common practice, we write THH(R) for
THH(HR). We deduce the following theorem from Corollary 2.2.

THEOREM 4.1. If R is a semi-hereditary ring, then, as R-modules,
THH,(R[II))

> @ HHXRI)®,THHR)® @ Torf(HHA(R(IT]), THH,(R)).
PHg=n ptg=n—1
Proof. Let E—— X*(I1) be a g-cofibrant resolution of L*(IT) in the category of

non-commutative S-algebras. Since HR is g-cofibrant, the unit S—— HR is a
g-cofibration in jMod, and we have a weak equivalence

EANgHR—I°(I1) AgHR = HR A T1 = H(R[TT})

by Lemma 3.5. O

If I is the based monoid IT = {0, 1, x, 2, ..., x*1} with the multiplication given by
the rule x* = 0, then Z[IT) = Z[X]/(X™).

COROLLARY 4.2.
THHAZ[X)/(X™)

> 5?_ kHH,Z,(Z[X]/(X")) ®;THHZ)® @ Tord(HHL(Z[X]/(X")), THH/(Z))

pte=k-1
as abelian groups.

If G is a discrete group and IT = G, that is, G with an addit; iplicati
=Y ) tional multiplicative
0, then Z[IT} is the usual g N an additional multip

is known i roup ring of G over Z, whose classical Hochschild homology
;‘an?n n terms of group homology; for example see [21, 9.7.5]. We obtain the
ng.

COROLLARY 4.3.  Let A be g set of r ; .
J epresentatives o I of elements
of G and C,x) be the centrg P ves of conjugacy classes of

lizer subgroup of x€G. Then, as abelian groups,
THH,(Z(G])

x (g ,ﬁ_ H,(Col);2) ®ZTHHq(Z)) ® (@ ® Tor(H,(C,(x);2), THHq(Z)))
zeA p+g=k-1
where H (C(x): Z) is the usual

; group homology with trivial Z- ents.
In particular, if G is abelian p gy with trivial Z-coefficients

of order n then
THH,(Z[G]) = O HG:2r®, THE@® @ Tor(H,(G;2r, THHD).

Ptg=k~-1
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This recovers the results of (1.1), except for the case of F,[X]/(/).

ReEMARK 4.4. Theorem 4.1 and Corollary 4.2 were also observed by Hesselholt
and Madsen as a corollary to [7, Theorem 6.1]. Recall that Bokstedt’s original
construction of topological Hochschild homology took functors with smash products
as inputs. Let F be a functor with smash products. It has an associated S-algebra
spectrum which we also denote by F and [7, Theorem 6.1] states that

THH(F([IT]) @ THH(F) A [N, (IT)]

as spectra, where N, (IT) is the cyclic nerve of IT formed using the smash product.
This result is a special case of Lemma 3.1:

THH(F[II]) = THH(F A ¢S[IT]) = THH(F) A  THH(S[IT]).
Since (S[II)"" = (SAIN)"" = S AII"", we obtain THH(S[IT]) = Z*|N*, (IT)|. Hence
THH(F[II]) = THH(F) A ¢Z°|NS, (IT)] = THH(F) A NS, (IT).
THEOREM 4.5.  Let R be a subring of the rationals Q. Then, as graded rings,
THH,(R) % R ®, THH,(2).

Proof. Any subring R< Q is a localization Z[X'] where X = Z is a set of
primes, Consider X as subset of 7y(S) = Z. By [6, VIII.4.2] the algebraic localization
74(S)— 7,(S)[X '] can be realized by the unit S—— S[X ] of a commutative cell
S-algebra. Then S[X'] AgH(Z) is a g-cofibrant commutative HZ-algebra with the
same homotopy groups as H(Z[X']) = HR. Hence S[X~'] A ¢ H(Z) is a model for HR
and Corollary 2.3 applies. ]

Theorem 4.5 is a special case of a more general result: one can prove that THH
commutes with localizations [16].

Away from the characteristic it is possible to adjoin roots of unity to a ring
spectrum [17]. We have the following.

THEOREM 4.6. Let R = Q be a subring and { be a primitive nth root of unity such
that the prime factors of n are invertible in R. Then

THH,(R()) = HHY(R()) ®, THH,(Z)
as graded rings.

ReEMARK 4.7. The following results allow the explicit computation of topological
Hochschild homology groups [2, 4]:

Z k=0
HH(Z)={ Z/i k=2i-1
0 otherwise

and
THH,(F,) = F[x] with degree (x) = 2.

Let fe R[X] be a monic polynomial. Then
RIX1/(Y) ifk=0

HHE(R[X]/() = { RIX}/(/.S) if k odd
Ann(f”) in R[X1/(f) ifkeven.
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In particular, HH5(R(()) in Theorem 4.6 is additively free.

Einsteps. Letn = pj-...-pk
Proof of Theorem 4.6.  We construct the spectrum ;

be the factorization of # into distinct primes. Let X be the set of these primes, and
S[X~"] be the S-algebra of the proof of Theorem 4.5. Let {, be a pjith primitive root

of unity. By [17] there is a commutative g-cofibrant S[X~"]-algebra S[X'}({,) such
that

SIXT1C) A six HEZIX)

is a model for H(Z[X"]((,)) as g-cofibrant commutative H(Z[X])-algebra. As tYve
have seen in the proof of Theorem 4.5, we can use SIX™'] Ag H(Z) as a model for

H(Z[X)). Hence
SIX1E) AsxSIX 7] A HZ) = S[XY(C)) A HZ)
is a model for H(Z[X ] (£1)). We now iterate the process adjoining {,,...,(,. O

Using this result we can give a simple proof of the last case of (1.1) including its
multiplicative structure,

THEOREM 4.8. Let fe F[X] be an arbitrary monic polynomial. Then

THH,(F,[X]/(f)) = HHA(F,[X]/(/) ® THH,(F,)
as graded F_-algebras.

We need an algebraic lemma.

LeMMA 49, If feF [X] is irreducible, then FLXT/(f™) = (FIXT/ (MY /(Y™

Proof. Now A =F,[X]/(f") is a local ring with maximal ideal m = (f) and
residue field R = FIXV/(f), where g denotes the image of ge F,[X] in A. Let

n: A— Rbe the projection. Also »(X) is a simple root of fin R. Since m is nilpotent,
Hensel’s lemma applies. Hence there is a ze 4 such that #(z) = n(X) and f{z) = 0, s0
the map

[FAX]———)A, Xr—z

induces a ring homomorphism #:R—> 4. Si

nce Ris a field, ¢ is injective. We extend
¢ to a ring homomorphism

0:R[Y]/(Y")-—>A, Y—sf
6 is injective :

n-1 n-1 n~k~1
0= 0(‘2 r, Y’) =Y ¢@r)f* implies that ( = (1 + ) Y rk+iﬁ) vk
-k i=k =1
if r, #0. Since the first fac

contradiction. Hence all
dimension as F,

tor is not in m, it is a unit in 4. Hence ff=0in4,a

7¢ = 0. Since the source ang target of 6 have the same
-vector spaces, 6 is bijective. L

; Proof of Theorem 43, By the Chinese remainder theorem F,[X]/(f) is of the
orm

FLXV/ (N = X0y x . x FLX/(f)

with f,eF [X] monic and irreducibje.
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Let E,, E, be two commutative S-algebras. We have a canonical commutative
diagram of HF -modules

(E, VE) AsHFp = (£, AsHIFp)V(Ez AsH[Fp)

(E\xE) A\gHF, — (E, AGHF ) x (E,AgHT)

whose vertical maps are weak equivalences, so that the canonical map
(Eyx Ey) AsHF,,— (E; A HF ) X (Ey A HE))

of commutative HF -algebras is a weak equivalence. Hence it suffices to consider the
case F [X]/(f™) with f monic and irreducible.

Suppose we can construct a g-cofibrant S-algebra E(f) for an irreducible
polynomial f'in F,[X] such that E(f) AgHF, ~ H(F,[X]/(f)) and II is the based
monoid {0,1,x,...,x"*} with multiplication determined by x" = 0; then E(/)[I1],
made g-cofibrant, is the S-algebra required for /” and we are done.

If fis irreducible of degree k, then F [X]/(f) is a cyclotomic extension F,({) of F,
by a (p*—1)st primitive root of unity {. The S-algebra E(f) is the spectrum
constructed in the proof of Theorem 4.6, for which E(f) A ¢HZ ~ H(Z[X (),
where X is the set of primes dividing p*~ 1. Note that Z[X " |® F, = F,,. O
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