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Abstract. We propose a computational model for building a tactile body schema
for a virtual human. The learned body structure of the agent can enable it to
acquire a perception of the space surrounding its body, namely its peripersonal
space. The model uses tactile and proprioceptive informations and relies on an al-
gorithm which was originally applied with visual and proprioceptive sensor data.
In order to feed the model, we present work on obtaining the nessessary sensory
data only from touch sensors and the motor system. Based on this, we explain the
learning process for a tactile body schema. As there is not only a technical mo-
tivation for devising such a model but also an application of peripersonal action
space, an interaction example with a conversational agent is described.

1 Introduction and Related Work

In order to carry out sophisticated and challenging interaction tasks in a spatial envi-
ronment like a virtual world, one requisite is to perceive how far away objects in the
peripersonal space are in relation to the protagonist’s own body. The peripersonal action
space is the space which immediately surrounds our body, in which we can reach, grasp
and manipulate objects with our limbs without leaning forward. The ability of virtual
humans to perceive and adapt to their peripersonal space enables them to manipulate
and also to avoid objects while moving their limbs through this space. Additionally, it
raises more interpersonal interaction possibilities with other agents and also with human
partners.

Since virtual worlds are fast-changing and becoming more demanding, we go along
with Magnenat-Thalmann and Thalmann who stated that it is important to enable virtual
humans to have a realistic perception of the environment surrounding them, and to make
them aware of it by building touch, vision and proprioception modeled on humans’
perception [9]. Conde and Thalman [1] presented a model which emphasizes the role of
a unified agent perception to establish a cognitive map of the Virtual Environment. This
perception model integrates multiple virtual sensors and enables an autonomous virtual
agent to predict object locations in an agent-centered vision space. In our definition we
also consider the agent’s peripersonal space as being centered on the agent, but spanned
by its body. It enables the agent to predict object locations in reaching space.
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In humans the representation of peripersonal space is intimately connected to the
representation of the body structure, namely the body schema [6]. The most compre-
hensive definition of the body schema, as a neural representation, which integrates sen-
sor modalities, such as touch, vision and proprioception, was provided by Gallagher
[3]. This integration or mapping across the different modalities is adaptive and explains
phenomena like tool use as an integration of tools into the body schema [10]. Learn-
ing of body schema is very versatile. We can not only learn configurations of a body
structure, but according to Holmes and Spence [6] it also supports learning of the space
surrounding the body.

Learning a body schema can also be of great interest for developing advanced virtual
characters in computer games. Especially games, which integrate user generated game
content become more and more popular since they offer more diverse game courses.
One example is the game Spore1, where players are allowed to create characters and
creatures according to their own imagination. The player can, for instance, add several
legs, arms, wings and other body parts to the creature. Its locomotion changes with the
added parts, but is predefined in the game. For these new kinds of games, where the
body structure of the characters are built by the player, learning the kinematic functions
of body structures could, in the future, lead to smoother and more lifelike movements
and behaviour.

To our knowledge, work on learning reaching space for embodied agents has yet
been done isolated from body schema acqusition ([7], [4]). So far, this topic has been
dominated by robotics researchers in order to build adaptive body schemas. For exam-
ple, Yoshikawa et al. [12] presented work on how a robot learns a body schema by
mapping visual, proprioceptive and tactile sensor data using a cross-modal map. Fuke
et al. [2] used the same modalities for learning a representation of a simulated face,
using a self-organizing map. One crucial argument for an adaptive representation of the
body structure are possible changes in the body configuration of humanoid robots. This
method can replace laborious, manual adjustments. Although the topic is mainly treated
by roboticists and has yet not been applied to virtual agents, we want to point out how
learning a body schema can also further the design of virtual humans and characters.

In this paper we will show how to model a tactile body schema for a virtual agent
and how this can be used to build a representation of its peripersonal action space. Both
approaches, as far as we can see, have not been presented in previous works. Precon-
ditions for the tactile body schema are our work on building touch sensors and motor
abilities for a virtual agent. For learning a body schema, we base our computational
model on the algorithm proposed by [5]. Unlike their approach, we will not use vision
but will feed touch and joint information into the algorithm, in order to learn a tactile
body schema, which therefore gets along without any visual information. Combining it
with motor abilities, the virtual human is able to perceive its peripersonal space. This
can also be regarded as a proof of concept which shows that the spatial representation
of the body and peripersonal space, respectively, are not bound to visual information,
since congenitally blind people are also able to perceive their peripersonal space. There-
fore, everytime the agent perceives tactile stimuli on a certain body part (e.g. the left
upper arm), coming from objects within his reaching space, the learned body represen-
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tation provides the spatial relation between the object and any other body part (e.g. the
right hand). This enables the agent to carry out adequate movements, like avoiding or
reaching an object, by taking the objects’ spatial location into account.

The remainder of this paper is organized as follows. In the next section, we describe
how virtual sensors were realized and prepared in order to feed our model of tactile
body schema, described in Section 3. In Section 4 we present a demonstration scenario
in which the tactile body schema can make an impact on peripersonal space. In Section
5 we briefly discuss how the properties of the model account for designing intelligent
virtual humans on the one hand and virtual characters and creatures in computer games
on the other hand. Finally, in Section 6 we give a brief conclusion and an outlook on
future work concerning the interaction abilities of our virtual human Max.

2 Touch Perception and Proprioception for a Virtual Human

In this section we will first describe in general how a virtual sense of touch was realized
for the virtual human Max [11]. In order to feed our computational model which we
present in Section 3, we had to prepare the sensory data from the touch modality and
complement it with sensory data from the motor modality. Therefore, in this section we
specify which informations are extracted from the touch sensors and from the motor
system to feed the model.

The touch receptors were developed and technically realized for Max’s whole vir-
tual body. These receptors allow for differentiating between different qualities of tactile
stimulation. Findings from studies on the human tactile systems were incorporated to
build an artificial sense of touch for Max, which is conceived not only for virtual but
for artificial agents in general. In our work on modeling and realizing passive touch for
Max’s whole body, each tactile stimulation is associated with characteristics, namely,
where on Max’s body it was applied and what kind of tactile stimulation it was, e.g.
stroking or tapping.

Max has a segmented body, i.e. his virtual graphical embodiment consists of several
geometry parts. Around every geometry representing a limb of Max’s body, 17 prox-
imity geometries were added forming a ”proximity aura” (see Figure 1, middle). This
allows for predicting when an object in the VR environment is approaching Max’s body.
In humans, the somatosensory modality is represented in body-part-centered reference
frames [6]. This aspect is also modeled by the virtual proximity auras and therefore
they enable Max to identify the body part an object may be going to touch. Below the
proximity aura, the surface of Max’s body is covered with a virtual ”skin”. The virtual
skin consists of flat quadrangle geometries varying in size, each representing a single
skin receptor (see Figure 1, right). Altogether the virtual skin consists of more than 200
virtual skin receptors. The receptors are located on the body in neighborhoods, which
are represented in a somatotopic map (similar to the map in the human brain).

This representation encodes the information which body limb a virtual skin recep-
tor is attached to, and it allows to determine, in a fine-grained way, where Max is being
touched. Depending on the location on the body, a tactile stimulation can thus be inter-
preted differently. Instead of different kinds of skin receptors as in the human skin, only
one kind of virtual skin receptor is utilized for Max, for it is sufficient to discriminate



Fig. 1. Max’s segmented body (left) with proximity geometries allowing for predicting
touching of objects and identifying the touch receptor’s corresponding limb (middle).
Max’s virtual body covered with over 200 virtual skin receptors (right).

between different tactile stimulations. Every object that is graphically represented in
our VR environment can cause tactile stimuli on Max’s virtual skin.

Any geometry’s collision with a skin receptor is regarded as tactile stimulus. This
also includes skin receptors colliding with each other which is crucial for identify-
ing self-touch. Specific stimulation patterns arise from the temporal and local spatial
changes connected to the stimulation. When a stimulus is, e.g., moving continuously
over the skin, neighboring receptors are responding successively over time. This tem-
poral information along with the spatial information about each triggering receptor, ex-
tracted from the somatotopic map, allows for classifying the stimulation as a continuous
touch movement about the respective body parts. A central component, that fuses these
stimulations of the receptors into a coherent touch sensation, forms our touch sensor.

So far, the classification of the different tactile stimulations depend on a somatotopic
map, which was constructed manually. The skin receptor geometries are each assigned
to a unique ID and are organized in 8-neighborhoods. That is, for each skin receptor
ID, there exists an entry in the map, which contains the skin receptor IDs of the eight
neighbors. Additionally, each skin receptor is assigned to a unique body limb, there-
fore the receptors’ locations and distances are not centrally encoded, which reflects the
already mentioned body-part-centered representation of the human touch modality. In
the computational model described in Section 3, for each skin receptor, the touch sen-
sor provides the assignment to the unique body limb and its position in the frame of
reference (FOR) of that corresponding limb.

In addition to the artificial sense of touch, we need proprioceptive information about
Max’s body. In humans, proprioception is the sense of the orientations and positions of
the limbs in space. It is important for perceiving motor control and body posture. We
will refer to it, as commonly used in embodied agents, as the angle configuration of the
joints in Max’s body skeleton. The virtual agent’s body has an underlying anthropo-
morphic kinematic skeleton which consists of 57 joints with 103 Degrees of Freedom
(DOF) altogether [8]. Everytime Max is executing a movement, the joint angle infor-



Fig. 2. Tactile body schema learning: For each random posture, sensory consequences
are output by the sensory systems. The touch sensor provides an ID of the receptor,
the limb it is attached to, and the position in the frame of reference (FOR) of the cor-
responding limb. Angle data for the involved joints are output by the motor system,
representing the proprioceptive information.

mations of the involved joints are output. Synchronously with the tactile informations,
the proprioceptive informations can be observed. In Figure 2 we can see the data for a
sample posture, where Max is touching his own arm. In the next section we will explain
how these input data can be integrated to form a body schema.

3 A Computational Model of Peripersonal Space Based on a Body
Schema

In this section we present our model on how to learn a tactile body schema for our
virtual human Max. The idea is to integrate tactile and proprioceptive information from
his virtual body. In a first step, Max executes random motor actions resulting in random
body postures. For each posture he perceives proprioceptive data from his joints and
tactile stimuli when touching himself (see Fig. 2). The model integrates input data given
by the touch sensors and joint angle data given by the proprioception sensors described
in Section 2.

3.1 Tactile Body Schema for Peripersonal Space

The tactile body schema, learned by the virtual human, in our model depends on its sen-
sory system and FOR transformations associated with the sensory input coming from
the touch and proprioception sensors. For our purposes, that is, perceiving and acting in
peripersonal space, a tactile body schema is sufficient. We do not need a precise repre-
sentation of the physical properties of the body, rather we need the kinematic structure



Fig. 3. Kinematic tree (right) representing Max’s body skeleton (left). Following an
edge in direction to the root node representing the hip joint (joint 1), a FOR transforma-
tion Ti and a rotation Ri associated to the respective joint i (numbers are free chosen)
have to be carried out, in the other direction we use the inverse FOR transformation T−1

i
and rotation R−1

i . Example: The following composition transforms a FOR centered on
joint 7 to a FOR centered on joint 6 (joint 5 is located between them): R−1

6 ◦ T−1
6 ◦ T7

◦ R7.

and functions of the body for controlling and predicting the sensory consequences and
movements with regard to tactile stimulations coming from objects located within the
reaching space.

Given a proprioceptive input, together with input from a certain touch receptor to
a corresponding particular posture, the body schema can predict proprioceptive sen-
sor consequences for other touch receptors. This can be used to generate a movement,
corresponding to the proprioceptive data. The following example makes its utilization
more clear. Let us assume a virtual human accidentally touches an object located in its
peripersonal space with its right upper arm. Note that there is no visual information. In
order to ”touch” the same object with the left hand, the agent needs to know how to
move the left arm (see Section 4).

3.2 Learning a Tactile Body Schema

We follow Hersch et al. [5] by considering the body schema as a tree of rigid trans-
formations. In our case this kinematic tree is prescribed by the skeleton of the virtual
human Max. In this tree each node corresponds to a joint in Max’s skeleton and each
edge corresponds to a limb between two joints (see Figure 3). That means, the number
of joints linked in their respective order with the number of limbs are represented in
the kinematic tree, but not the joint orientation and position. In our model the touch
receptors are attached to the limbs (see Section 2) and their position is represented in



Fig. 4. Example of a single segment manipulator with A as the origin, C as the end ef-
fector, s1 as the proximal, and s2 the distal segment. A rigid transformation is here pa-
rameterized by vectors l (*joint position) and a (*rotation axis). Along with the known
angle θ and given a vector v in the FOR of s2, and its transform v’ in the FOR of s1, l
and a can be adapted online (after [5], Fig.2).

the limb’s FOR. In the kinematic tree representation, the touch receptors can therefore
be represented as located along the edges.

Following an edge from one joint to another is associated with a FOR transformation
which transforms the FOR centered on one joint to the FOR centered on the other joint.
Therefore, following any path linking one joint to another represents a kinematic chain.
Max’s skeleton prescribes the hierarchy of the FOR transformations. This determines
whether a normal or inverse FOR transformation has to be carried out along a kinematic
chain. Figure 3 shows the transformation hierarchy with the hip joint as root node in the
kinematic tree representing Max’s skeleton. The kinematic chains transform positions
and orientations from the FOR centered on the different joints. Since the touch receptors
are attached to the limbs, we can transform the position for one touch receptor, given in
the FOR of the corresponding limb, into any other touch receptor position also given in
the FOR of its corresponding limb.

So far, we use the number of joints and the hierarchy of Max’s skeleton as prior
knowledge about his body structure. However, what is not yet known is the position
and orientation of these joints which also determine the limb lenghts. This is where the
algorithm proposed by Hersch et al. [5] comes in. We can use the algorithm straightfor-
ward, since it provides a new and general approach in online adapting joint orientations
and positions in joint manipulator transformations. Our challenge in using this algo-
rithm is the adaptation to a case different from the one it was originally applied to. In
our case we do not use visual and joint angle data but instead, replace all visual by
tactile information in order to update all the rigid transformations along the generated
kinematic chains. As far as we know, this case has not been presented before.

Here we will only sketch the key ideas of the algorithm and then describe how they
can be adapted for our purposes. The algorithm deals with the problem of having a
single segment manipulator as shown in Figure 4. A rigid transformation carried out by
the manipulator is parameterized by unknown vectors l (the joint position) and a (the
unit rotation axis) and a known rotation angle θ . The vectors a and l can be adapted, so
that they match the rigid transformation. This is done by means of a given vector v in a
FOR attached to the distal segment s2, and its given transform v’ in a FOR attached to



segment s1 and the rotation angle θ . A gradient descent on the squared distance between
v’ and its guessed transform vector l+R(v) is used in order to update the guesses of the
vectors a and l.

Having sufficient examples of positions (values for v) given in the FOR of segment
s2 and the corresponding positions (values for v’) given in the FOR of segment s1, it
is possible to adapt the joint positions and orientations. For an adaptation of multiseg-
mented manipulators the simulated transform vector l+R(v) was replaced by a trans-
formation T (v), which contains the transformations along the kinematic chain of the
multisegment manipulator. In our case the kinematic chains can be generated using the
kinematic tree representing Max’s body skeleton (see Figure 3). The rotation axes and
translation vectors of joint i can then be updated by using the equations (1) and (2)
(taken from [5]) with a small positive scalar ε , and rotation matrix Ri of axis ai and
angle θi for joint i.

∆ li = ε(v′n−T (vn))
T

i−1

∏
j=1

R j (1)

∆ai = ε(v′n−T (vn))
T ((

i−1

∏
j=1

R j)
∂

∂ai
(Ri(Ti+1 ◦Ri+1...◦Tn ◦Rn(vn)))) (2)

In order to use the algorithm, we have to start with an onset body schema which
is an initial guess of Max’s target body schema. It is described on the one hand by
known parameters and on the other hand by initially guessed parameters. The number
of joints and their hierarchical order are determined by the kinematic tree of Max’s
body skeleton, described above. The parameters which are not known yet are the joint
orientations and their positions, determining the body segment lenghts. Thus we choose
the orientations randomly and assign the segment lengths with small values.

For modeling peripersonal space we start with learning the schema for Max’s torso,
which includes all nodes above the hip joint to the wrist joints. For a first approach
we do not use the joints in the hands, since a sophisticated touch sensation for the
hands and fingers (with over 30 receptors per hand) may not be nessessary for reaching
space. We then have to choose random joint angle configurations for the torso. For
each randomly chosen posture, the agent will carry out a motion which leads to the
joint angle configuration and then stop. If skin receptors are touching each other during
the motion, Max will immediately stop moving in order to avoid the case of passing
through the graphical limbs. The originally assumed joint angle configuration will then
be discarded, and instead, the current joint angle data is taken and the resulting sensor
data is processed. The input for the algorithm are the positions of two touch receptors
touching each other in the FOR of their corresponding limbs, both provided by the touch
sensor (see Figure 5). Interestingly, both positions can take over the role of the input
vectors v and v’ for the Equations 1 and 2. This is also illustrated in the pseudo code for
the tactile learning process in Algorithm 1. Additionally, the angle values of the joints
involved in the current posture are input to the algorithm. It then takes the sensor data
for updating its guesses of the joint orientations and positions of the involved kinematic
chain.



Fig. 5. Schema of Max touching himself (notation following Figure 3). The following
composition transforms the position v (given in the FOR centered on joint 3) of a touch
receptor into the FOR centered on joint 5: R−1

5 ◦ T−1
5 ◦R−1

4 ◦ T−1
4 ◦ T2 ◦R2 ◦ T3 ◦R3.

Note that retracing the same chain in the opposite direction transforms the position of
the other touch receptor v’ (given in the FOR centered on joint 5) into the FOR centered
on joint 3.

In the adaptation process the idea is to use the algorithm two times for each posture
(see Algorithm 1, Line 18-22). In a first process the transformation of the position v
of one touch receptor is transformed into the FOR of the other touch receptor (Line
13). This is used to update the current body schema (Line 14-16), in a second pass
the angles of the postures stay the same, but the kinematic chain linking the two touch
receptors is retraced to transform the position v’ of the other touch receptor. Note that
this ”double-use” is only possible in the case of learning a tactile body schema.

After completion the learned body schema expectedly contains the kinematic func-
tions derived from the sensory input. This can be used to control Max’s movements
with regard to tactile stimuli.

4 Peripersonal Space in Interaction

Based on the work presented in Section 2, we devised the computational model in Sec-
tion 3 for building a body-representation for the virtual humanoid Max. This model can
enable him to acquire a perception of his peripersonal space, i.e. the space immediately
surrounding his body and which he can reach with his limbs. In this section we outline
an interaction example in which peripersonal space can be utilized by the virtual human
Max. Previous works on peripersonal space and body schema acquisition may lack the
application and interaction possibilities, since the agents are often regarded as technical
platforms. However Max is an embodied conversational agent and is primarily intended



Algorithm 1 Pseudo code: Tactile learning process
1: repeat
2: for all torso joints do
3: choose random angle θ

4: set torsojoint of current body schema to θ

5: end for
6: if two touch receptors trigger then
7: posi← position of touch receptor with ID i
8: pos j← position of touch receptor with ID j
9: jointn← joint of limb n where posi is attached to

10: jointm← joint of limb m where pos j is attached to
11: end if
12: Set Transformation T ← kinematic chain (startnode← jointm, endnode← jointn)
13: pos j = T ( posi )
14: for k = startnode to endnode do
15: update ∆ li
16: update ∆ai
17: end for
18: if pos j not transformed yet then
19: Set T ← kinematic chain (startnode← jointn, endnode← jointm)
20: posi = T ( pos j )
21: GOTO 14
22: end if
23: until (pos j - T(posi)) = 0

for interaction with human or other virtual partners, hence the application of periper-
sonal space can be shown in an example. In this example Max is standing at a table. In
an interaction scenario Max could interact in a CAVE-like environment with a human
partner as shown in Figure 6.

In our test scenario, several objects are located on the table. Let’s assume Max is
(technically) ”blindfolded”. The interaction partner, aware of Max’s inability to see,
asks him to reach for an object near to his body. He then explores his peripersonal
space with one hand. Depending on the object’s location he might touch it with his
hand but also with any other part of his arm, since it also has skin receptors. As soon as
he touches it, the partner could ask him to carry out tasks, such as touching the object
with the other hand or putting it as far from him as possible. The first task is supported
by the tactile body schema which contains the kinematic transformations relating two
touch receptors. This can be used to compute a movement to the respective position.
The task of putting the object as far away as possible is an interesting aspect relating to
peripersonal reaching space. It is conceivable that Max could also learn the kinematic
function of leaning forward in order to extend his peripersonal space.

5 Discussion

Our model aims at learning a tactile body schema using touch and proprioception in-
stead of vision and proprioception. Knowledge about the joint number and hierarchy



Fig. 6. Virtual agent Max with a human interaction partner standing around a table in a
CAVE-like Virtual Reality environment. By means of his peripersonal space Max may
perceive objects located on the table in front of him as near or far away from his body.

of Max’s body skeleton is given in advance. This approach is important to produce the
effectiveness of the used algorithm. Hersch et al. [5] for example argue that the kine-
matic structure in humanoids usually does not evolve over lifetime, limbs grow, but new
joints do not appear. We agree with this opinion, but do not regard it as a contribution to
ongoing neuroscience research of body schema acquisition. In fact we consider it as a
contribution to learning kinematic structures for the special requirements of intelligent
virtual agents like Max. In robots it is not easy to realize a sophisticated skin and it
takes much longer to learn a body schema, since random explorations cannot be exe-
cuted very fast. Due to these circumstances, a ”virtual” simulation model of the robot
is usually employed to learn the schema and afterwards is transferred to the physical
robot. We want to point out that methods from other research fields which already in-
corporate ”virtual bodies” are of special interest for the design of virtual humans. In
Section 1 we mentioned the applications for virtual creatures in computer games. Body
structure learning would enable the players to design creatures even with more unusual
kinematic structures, not comparable to humanoid ones. In these cases, the skeleton
is also predefined by the designer, therefore methods which take this pre-knowledge
for learning lend themselves for an immediate use in character animation in computer
games.

6 Conclusion and Future Work

In this paper, we proposed a computational model for building a tactile body schema
for the virtual humanoid Max, which can enable him to acquire a perception of his



peripersonal space. The proposed computational model uses tactile and proprioceptive
informations and relies on an algorithm, which was originally applied with visual and
proprioceptive sensor data. In order to feed the model, we presented work on obtaining
the nessessary sensory data from touch sensors and the motor system. Based on this,
we described the learning process for a tactile body schema. The next step in our work
will be to test the proposed model for its online learning features.

As Max is a conversational agent, a possible example for using peripersonal space in
interaction was shown. Subsequently the described interaction scenario could be used to
study further research questions. In future work we will investigate how spatial perspec-
tive models of two agents can be aligned. In a cooperative interaction task, two artificial
agents, or an agent and a human partner, jointly have to solve a problem by moving or
manipulating (virtual) physical objects. In the shared space between the partners, one
agent can use his peripersonal space representation (the space immediately surround-
ing the body) and map it onto the interaction partner. This representation could then be
augmented with visual information. Based on the interlocutor’s position and orientation,
the agent can now infer the spatial perspective of the partner, by aligning the mapped
peripersonal space representation of his own with position and orientation parameters
of the other. This perspective model can help the agent anticipate actions performed,
or hindrances encountered, by his partner. For example, when the agent sees an object
which he infers to be hidden from the perspective of the other, the agent can move the
object so the partner can see it. In a further step, the agent can develop a representation
of interpersonal action space, i.e. the space between the two partners where their indi-
vidual peripersonal space representations meet or overlap. A challenge is to develop an
analogical spatial representation suited for peripersonal and interpersonal action space
and, further, to devise methods for a dynamical alignment of interpersonal space repre-
sentation when one or both interlocutors change their positions or body orientations.
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