
The Dynamical Nightwatch’s Problem Solved by
the Autonomous Micro-Robot Khepera

A. Löffler?, J. Klahold, and U. Rückert

Paderborn University, Heinz Nixdorf Institute, System and Circuit Technology,
Fürstenallee 11, D-33102 Paderborn, Germany

E-mail: loeffler,klahold,rueckert@hni.uni-paderborn.de
http://hni.uni-paderborn.de/fachgruppen/rueckert

In Jin-Kao Hao, Evelyne Lutton, Edmund Ronald, Marc Schoenauer, and
Dominique Snyers, editors, selected papers of the 3rd European Conference on
Artificial Evolution (AE97), volume 1363 of Lecture Notes in Computer Science,
pages 303-313, Nı̂mes, France, 22. - 24. October 1997. Springer-Verlag 1998.
This work was awarded with the first prize at the international Khepera contest.

Abstract. In this paper, we present the implementation, both in a sim-
ulator and in a real-robot version, of an efficient solution to the so-called
dynamical nightwatch’s problem on the micro-robot Khepera. The prob-
lem consists mainly in exploring a previously unknown environment while
detecting, registering and recognizing light sources which may dynami-
cally be turned on and off. At the end of each round a report is requested
from the robot. Therein we made use of an agent-based approach and
applied a self-organizing feature map in order to refine some of the be-
haviour generating control-modules.

1 Introduction

1.1 Motivation

Our basic motivation to consider the implementation of behaviour generating
control structures in mobile autonomous systems is represented by the following
question: “What is the most complex task a robot is able to carry out, thereby
coping with its limited resources, e.g. the available sensor sources, finite energy
supply and limited processor power? The encountered consequences may be a
restricted perception of its environment, runtime constraints and the problem of
severe real-time demands.” To be able to successfully envisage this kind of prob-
lem, we strongly believe in adopting the following two-step program: firstly, to
implement software solutions making recourse to concepts of neural information
processing; secondly, to replace single software modules by resource-efficient mi-
croelectronic components. In this framework, the contents of the present paper
corresponds to the first point, i.e. the implementation of a software solution to
a hard robotics’ problem. Hereby, the micro-robot Khepera (see Fig.1) serves as
an exemplary model for a mobile autonomous system.

Processing the sensor data of a mobile robot appropriately seems still to
be a difficult and largely unsolved problem [1]. Hence, it remains an in general
challenging task to consistently implement a set of behaviour generating control
? Supported by DFG-Graduiertenkolleg “Parallele Rechnernetzwerke in der Produk-

tionstechnik”, GRK 124/2-96.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University

https://core.ac.uk/display/15987467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

modules based on the different sensor sources of the system in question. Consid-
ering the micro-robot Khepera in its basic configuration, there are three main
sources of sensor data which may be used to implement such modules:

source of sensor data task of the respective control-module
(1) the infra-red proximity sensors −→ exploration of the environment
(2) the ambient light sensors −→ detection and registration of light

sources
(3) the wheel-based step counters −→ basic positioning system.

Fig. 1. Khepera is a micro-robot which has a diameter of 55mm, a height of 30mm
and weighs 70g. The processor system contains a Motorola 68331 with 256Kbyte RAM
and 256Kbyte ROM. Khepera perceives its environment using 8 infrared distance- and
light-sensors; moreover incremental encoders placed on each motor axis are available
for step counting.

In the next paragraph, we define an appropriate problem, i.e. one which
includes all three of the above mentioned tasks.

1.2 The Dynamical Nightwatch’s Problem

Imagine the town’s nightwatch strolling over central square at late evening, look-
ing for light sources, e.g. street lamps, lighted windows, etc., thereby avoiding
obstacles, following walls (because he is a bit short-sighted) and turning round
at dead ends. Having found the first light source, he fixes his report-board at
the wall next to it to write down everything he will have encountered when he
will arrive again at this location. In fact, he notes whether he has found a new
lantern or recognized an old one and its current state (on/off) since the last
stop at the board. Probably he would try to guess his position on the square by
counting his steps and using already registered light sources as local landmarks
to verify his counting.

The micro-robot Khepera should be able to perform an analogous task when
transferred to a kind of suitable toy-world.

1.3 Design Principles

Animals may be considered as biological analogies to mobile autonomous robots.
Other than the latter, they constantly had (and still have) to prove their fitness
by surviving a natural selection process. Thus, it seems profitable to exploit
their evolutionary optimized strategies for robot design, in this context especially
those which deal with information processing. In order to do this, we adopted the
following design principles inspired by concepts of neural information processing
thereby making recourse to the so called agent paradigm [2–4] and some earlier
works in cybernetics [5] :

– simple modules cope with simple tasks (e.g. obstacle avoidance, edge follow-
ing, etc.)

– the control-modules are organized in parallel, i.e. no explicit hierarchical
structure is implemented, and their results are simply superpositioned. In
case of this not being possible, a data/event-driven decision is made (e.g. in
dead ends, the turning-round-module takes control).

– no global goals are explicitly given to the robot
– arising complex behaviour is thus a result of the interaction of the basic

modules
– adaptive algorithms, e.g. neural networks, are used to incorporate acquired

informations about the environment.

2 Exploration

Enabling Khepera to explore its environment, we had to ensure free motion,
i.e. avoiding obstacles, leaving substructures of the environment and not getting
stuck in dead ends or similar structures. This was attained by implementing the
following three basic control-modules:

2.1 Obstacle Avoidance

The obstacle avoidance was implemented as in Braitenberg’s vehicle IIIb [5]
using the very simple neural concept of cross-inhibition. This means that if one
of Khepera’s infra-red sensors detects an obstacle, the opposite wheel will be
slowed down proportionally to the sensor input. By this way the obstacle is
avoided (see Fig.2).

2.2 Edge Following

Khepera tries to keep the distance to the wall, i.e. the value of the outmost sen-
sor, constant (see Fig.3). Note that no explicit distance to the encountered wall

Sensor

Distance

Fig. 2. A sketch of the robot avoiding a cylindrical obstacle (left) and an infra-red
sensor vs. distance-to-light source characteristic are shown (right).

is be kept which allows a more flexible behaviour of the robot than otherwise be
possible, especially in narrow corridors and similar structures. When a wall is
detected for the first time (and avoided by means of the obstacle avoidance mod-
ule), the outmost sensorvalue is registered. Afterwards, the robot will turn away
from the wall, if this sensorvalue increases, and respectively will turn towards
it, if it decreases. This algorithm is particularly simple, easy to implement and
robust. Edge following allows to leave substructures of the environment quicker
than it would be possible otherwise.

Fig. 3. Visualisation of the simple edge-following algorithm where three different sit-
uations might occur: a wall is detected (register sensorvalue memory), turn away
from wall (if sensorvalue > sensorvalue memory), turn towards wall (if sensorvalue
< sensorvalue memory).

2.3 Turning

If a situation occurs in which Khepera is not able to leave a small area (symbol-
ized by the circle) after some tries, it simply turns round to where it came from
(see Fig.4). This module ensures that the robot does not get stuck in dead end
like structures.

Fig. 4. The turning procedure.

Obstacle avoidance

Edge following

Turning

change of
position

Fig. 5. The interplay of the three control modules ensuring constant exploration.

The interplay of the three modules is shown in Fig.5. A module, recognis-
ing the change of the position of Khepera, decides whether obstacle avoidance
and edge following or the turning procedure get active. This means that if the
robot is not able to change its position sufficiently during some 50 steps, it will
turn around thereby suppressing the two other exploration modules; otherwise
a superposition of the normal obstacle avoidance/edge following algorithms is
used.

3 Positioning

An at least locally reliable positioning system had to be necessarily at basis of
the light-source mapping process. For this purpose, we used the step counting
functionality of Khepera. The position vector of Khepera consists of an x-value,
y-value and the direction-indicating angel α. The new position (x, y, α) is cal-
culated from the old one (x0, y0, α0) using the values nr and nl given by the
incremental encoders placed on each motor axis. The table below shows how the
new position is calculated:

Table 1. Calculation of the change of position

nl nr

|nl| = |nr|

|nl| < |nr|

|nl| > |nr|

nr

nr

S nr - nl

nr + nl

-2 * nl

- (nr + nl)

nl

nr - nl

nr - nl

2 * nr

S
C

S

C

T

T

T

B

C

nr - nl

nr + nl

-2 * nl

- (nr + nl)

2 * nr

T

T

T

C

C

nr

nr

S

nl

nr - nl

nr - nl

S

C

S

C

Curve:Strait: Turn:
α α0

n
2 r⋅
--------- l∆⋅+=

x x0 r αcos α0cos–()⋅+=
y y0 r αsin α0sin–()⋅+=

α α0
n

2 r⋅
--------- l∆⋅+=x x0 n l∆⋅ αcos⋅+=

y y0 n l∆ αsin⋅ ⋅+=

nl nrnl nrnl nr

4 Sensor Calibration

Adapting an one-dimensional self-organizing feature map [7, 8] by training with
a real robot data set, we managed to calibrate the ambient light-sensors (see
Fig.6), i.e. to transform the coarse grained information of Khepera’s angle-to-
light-source into a fine grained one; this also helped to overcome sensor-response
variations due to fabrication tolerances. Calibration of the ambient light sensors
means to classify the sensor vectors by an one-dimensional Kohonen feature
map. Each neuron is active for a certain class of sensor vectors giving a direct
information about Khepera’s angle-to-light source.

The charts (Fig.7) show the sensor data, respectively used to learn and to
test the neural network. Before usage, the data were standardized by a scaling
process, which increased the accuracy considerably.

1
2 3 4 5

6

ϕ
1 2 3 4 5 6

Fig. 6. The picture on the left shows that every neuron belongs to a specified angel.
Each neuron is trained to react on a special characteristic of sensor values (e.g. the
neuron represented by the filled circle reacts on the sensor vector given in the bar chart
on the right).

0

100

200

300

400

500

-100 -50 0 50 100

Se
ns

or
in

pu
t

Angle

sen0
sen1
sen2
sen3
sen4
sen5

0

100

200

300

400

500

-100 -50 0 50 100

Se
ns

or
in

pu
t

Angle

sen0
sen1
sen2
sen3
sen4
sen5

0

100

200

300

400

500

-100 -50 0 50 100

Se
ns

or
in

pu
t

Angle

sen0
sen1
sen2
sen3
sen4
sen5

0

100

200

300

400

500

-100 -50 0 50 100

Se
ns

or
in

pu
t

Angle

sen0
sen1
sen2
sen3
sen4
sen5

Fig. 7. The sensor data sets used to train and test the neural net; upper left: learning
data, upper right: test data, lower left: scaled learning data, lower right: scaled test
data.

The network consists of 60 neurons. It was trained in 20 cycles with an
incremental change of the neighbourhood-width from 10 to 1 and a learning rate
from 0.6 to 0.1. The result was an average error of 1.52 and a maximum one of
6.66 degrees at the recall process. The test at double distance caused an average
error of 6.52 and a maximum one of 21.89 degrees. The results are graphically
depicted in Fig.8.

-100

-80

-60

-40

-20

0

20

40

60

80

100

-100 -80 -60 -40 -20 0 20 40 60 80 100

A
ng

el
 f

ro
m

 a
ct

iv
 N

eu
ro

n

Angle to lightsource

Tested
Learned
Optimal

Fig. 8. The result of the adaptation process is shown in this chart. The dotted line
serves as a referential, the bold dots correspond to the data being learned and the strait
line belongs to data registered at the double distance with respect to the learning set.

5 Mapping Procedure

The procedure of the position-determination of detected light-sources was im-
plemented as follows (see Fig.9). If the robot detects a light-source (1), Khepera
approaches it (2) until one sensor value exceeds a certain threshold (optimal
range for the neural network is reached) (3). Then Khepera registers its position
vector (x1, y1, α1), turns by 90 degrees and moves in a strait line (4) to a second
turning point (5). Afterwards, the robot reapproaches the light-source (6) until
the optimal range is reached again (7). With the new position vector (x2, y2, α2)
and the old one, the location of the target can be calculated.

In this section, the conditions for changing the state of a light source are
explained (see Fig.10). If Khepera penetrates the inner circle (in the Manhattan
distance) of a previously discovered light source without detecting it, the state of
the light source will be changed from on to off. If a “new” light source is registered
within the outer circle of a previously discovered one, they are recognized as
being identical. Eventually, the internal position of the robot is readjusted by a
comparison of the previously and the currently registered location of the light
source.

1

2

3

4

5

6

7

(x2,y2)
(x1,y1)α2

α1

x

y

Fig. 9. A schematic view of the successive steps of the mapping procedure (right) and
a sketch of the triangulation process using the registered data (left), hence determining
the detected light source’s location.

Fig. 10. Proportional view of Khepera and the two circles (in the Manhattan distance)
relevant for changing the state of a previously discovered light source.

6 Report

We developed a simple code to enable the robot to report its findings during the
last round using the two LEDs of Khepera.

The signals have the following meaning (legend: x on, h off):

x x New light source found
x h Previously discovered light source recognized
h x Previously discovered light source turned off
x x Previously discovered light source turned on again

7 Results

This paragraph is dedicated to the obtained results for both the simulator solu-
tion to the dynamical nightwatch’s problem and the real-robot implementation
(see Fig.11, Fig.12) using the obtained paths of the robot in the respective en-
vironments as an evaluation benchmark. We state a very satisfactory behaviour
of the simulator solution whereas the real-robot version unveils to be feasible
only locally. Note that the compiled C-code of the whole program has 87Kbyte,
hence we are using only about one third of the RAM capacities of Khepera’s
processor.

Fig. 11. In the visualisation window of the Khepera simulator [6], the robot’s current
angle-to-light-source is depicted.

0

200

400

600

800

1000

0 200 400 600 800 1000

Y

X

Path of Khepera Robot

’path.dat’
’light.dat’

-400

-300

-200

-100

0

100

200

300

400

0 200 400 600 800

Y

X

Path of Khepera Robot

’path.dat’
’light.dat’

’testpath.dat’

Fig. 12. The left gnuplot shows the path of the simulated Khepera. Note that the small
location errors are solely caused by the remaining inaccuracies of the neural network.
The right gnuplot shows the path of a real Khepera wherein the bold line represents
the path with and the dotted line one without readjustment of the position using the
already discovered light source as a landmark.

8 Conclusion and Future Work

Inspired by concepts of neural information processing and the agent paradigm,
we implemented a solution to the dynamical nightwatch’s problem, both on the
simulator and on the real Khepera. In particular, we used an one-dimensional
self-organizing feature map for sensor calibration attaining maximum accuracy
in average. The simulator solution proofed to be globally reliable, whereas the
real-robot implementation had some short-comings due to step-counting errors
inducing inaccuracies into the position determination procedure. This was partly
cured by taking into account the already registered light sources as local land-
marks in order to readjust the current position. The results showed to be sat-
isfactory locally, i.e. when either the robot’s environment was restricted to a
certain area or the runtime was limited.

Nevertheless, some further research on the topic of navigation is to be done.
We hope to enhance the robot’s performance considerably by incorporating as-
sociative memory and neural classifiers into the control structure. Moreover, it
is also envisaged to replace some of the software modules by resource-efficient
microelectronic devices as described for example in [9, 10].

References

1. S. Geva, J. Sitte and H. Sira-Ramirez, When are tasks “difficult” for learning con-
trollers?, 1994 World Congress on Computational Intelligence WCCI, July 1994,
Orlando, Florida, USA. Proceedings of the IEEE International Conference on Neu-
ral Networks, Volume IV, pp.2419–2423

2. P. Maes, Modeling Adaptive Autonomous Agents, Artificial Life Journal, edited
by C. Langton, Vol 1, No. 1 & 2, MIT-Press, 1994

3. R. A. Brooks, Intelligence without Representation, Artificial Intelligence, 47, pp.
139-159,1987

4. R. A. Brooks, Intelligence without Reason, Computers and Thought lecture, Pro-
ceedings of IJCAI 91, Sydney, Australia, 1991

5. V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT Press/Brad-
ford Books, 1984

6. O. Michel, Khepera Simulator, version 2.0, 1996,
http://diwww.epfl.ch/lami/team/michel/khep-sim/

7. K. Malmstrom, L. Munday, J. Sitte, A Simple Robust Robotic Vision System
using Kohonen Feature Mapping, Proceedings of the 2nd IEEE Australia and New
Zealand Conference on Intelligent Information Systems, pp. 135-139, 1994

8. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, 2nd edi-
ton, 1988

9. A. Heittmann, J. Malin, C. Pintaske, U. Rückert, Digital VLSI Implementation
of a Neural Associative Memory, 6th International Conference on Microelectronics
for Neural Networks, Evolutionary & Fuzzy Systems, 24.-26. September, Dresden,
Germany, 1997

10. S. Rüping, M. Porrmann, U. Rückert, SOM Hardware-Accelerator, WSOM’97:
Workshop on Self-Organizing Maps, June 4-6, pp. 136-141, Espoo, Finland, 1997

