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Abstract
People communicate multimodally. Most prominently, they co-produce speech and gesture. How do they do that? Studying the interplay
of both modalities has to be informed by empirically observed communication behavior. We present a corpus built of speech and gesture
data gained in a controlled study. We describe 1) the setting underlying the data; 2) annotation of the data; 3) reliability evalution methods
and results; and 4) applications of the corpus in the research domain of speech and gesture alignment.

1. Introduction

In face to face conversation, interlocutors co-produce lan-
guage and gestures. The term ‘gesture’ refers to gesticu-
lations according to Kendon’s continuum (Kendon, 1980),
that are spontaneous co-verbal hand and arm movements
which are meaningful and contribute to the conversational
participants’ contributions. Both, words and gesture, are
temporarily and semantically coupled so that they cohere
into bimodal information units (McNeill, 1992). To put it
in psycholinguistic terms: speech and gestures of a speaker
are aligned (Pickering and Garrod, 2004). For the time-
span of a dialogue they enter into crossmodal signs called
bimodal or multimodal ensembles (Lücking et al., 2008).
However, to date there is no systematic account for the di-
vision of labour between verbal and non-verbal means for
their cooperative consitution of a common meaning.

We address this challenging topic in an interdisciplinary
way viewing it from a linguistic and a computer science
perspective. Theoretical linguistic reconstructions, on the
one hand, allow for a formally explicit as well as a precise
modelling of the interface between speech and gesture. The
implementation of theoretical models with computational
means, on the other hand, enables us to simulate multi-
modal communicative behavior in virtual agents or robots.
Both research lines necessitate a rich empirical basis in the
form of a detailed and systematically annotated multimodal
corpus. In Section 2 we present the Bielefeld Speech and
Gesture Alignment (SaGA) corpus. We describe the pri-
mary experimental data as well as the secondary annotation
data. Corpus evaluation in terms of interrater reliability is
presented in Section 3. In order to compare the concor-
dance of gesture performance transcriptions we distinguish
two kinds of data types and apply chance-corrected agree-
ment measures as well as a method developed in Bergmann
and Kopp (2009a) that is based on the translations of anno-
tation predicates into angle measures. Applications from
linguistics and computer science that exemplify how the
SaGA corpus is utilized in investigating and simulating the
alignment of speech and gesture are given in Section 4.

(a) VR presentation phase (b) Part of stimulus: church
square with two churches

Figure 1: Experimental setting

2. The SaGA Corpus
The primary data of the SaGA corpus are made up of 25
dialogs of interlocutors which engage in a spatial commu-
nication task combining direction-giving and sight descrip-
tion. There is extensive evidence that “speakers gesture
more when they talk about spatial topics than when they
talk about abstract or verbal ones” (Alibali, 2005, p. 313).
This scenario is, therefore, well-suited for systematically
studying aspects of natural speech and gesture utterances
used to communicate information about the shape of ob-
jects and the spatial relations between them. The stimulus
is a model of a town presented in a Virtual Reality (VR)
environment (see Figure 1(a)). The VR scenario affords
better determination and experimental control of the con-
tent of multimodal messages. Additionally, it secures that
all participants receive the same stimulus. Upon finishing a
“bus ride” through the VR town along five landmarks (see
for instance the church square with two churches in Figure
1(b)), a router explained the route as well as the wayside
landmarks to an unknown and naı̈ve follower.

2.1. Primary Data
Our primary data consists of 25 direction-giving dialogs.
Audio- and videotapes were taken of each dialog. For the
videotape, three synchronized camera views were recorded
(see Fig. 2), as well as body movement data and eye-
tracking data from the router. In total, the SaGA corpus
consists of 280 minutes video material containing 4961
iconic/deictic gestures, approximately 1000 discourse ges-



Figure 2: Experimental dialogue situation from three cam-
era views, capturing the router (left), the follower (right)
and the dialog scenario as a whole (middle).

tures and 39,435 words. To our knowledge, this is the
largest and most comprehensive collection of naturalis-
tic, yet controlled, systematically annotated (see below)
speech-gesture data currently available.1 Our multimodal
dialogue data are stored, retrieved, and transformed within
the Ariadne system (Gleim et al., 2007) which is used as an
Alignment Corpus Management System.

2.2. Secondary Data
The data has been completely and systematically anno-
tated2 based on an annotation grid that has been developed
according to theoretical considerations and refined in pilot
annotation sessions.
All gestures have been segmented in order to specify the
stroke phase (Kendon, 1980). The gestures (i.e., strokes)
are then typed for belonging to a certain kind, namely de-
ictic, iconic or discourse. ‘Iconic’, a term coined by Mc-
Neill (1992), who alludes to a Peircean trichotomy (Peirce,
1867), is an “umbrella term” (cf. Eco (1976)) that covers
a variety of different signifying methods. (Müller, 1998),
drawing on the work of (Wundt, 1911), sets up a more fine-
grained classification of gestures according to the distinc-
tion of four techniques of representation on the ground of
what the hands do. According to our domain of applica-
tion we adopt or modify the sets of representation tech-
niques as posited by (Müller, 1998; Kendon, 2004; Streeck,
2008). The classification of gestures within SaGA now dis-
tinguishes the following eight representation techniques:
(1) Indexing: pointing to a position within gesture space;
(2) Placing: an object is placed or set down within gesture

space;
(3) Shaping: an object’s shape is contoured or sculptured

in the air;
(4) Drawing: the hands trace the outline of an object’s

shape;
(5) Posturing: the hands form a static configuration to

stand as a model for the object itself.
(6) Sizing: indicating distances or sizes;
(7) Counting: iconic representation of a tally sheet;
(8) Hedging: a depiction of uncertainty (typically by a

wiggling or shrugging movement).
In addition, each gesture has been coded for its morphology
consisting of handshape, wrist position, palm, back of hand

1There is a more multifarious collection of routes, though,
hosted at the McNeill Lab (http://mcneilllab.
uchicago.edu/) which comprises about 13 direction di-
alogs of different languages (English, Chinese, Huichol) – see
also (McCullough, 2005) (McCullough, p.c.).

2We used Praat (www.praat.org) for speech transcription and
Elan (www.lat-mpi.eu/tools/elan/) for gesture annotation.

orientation. Movement within any of these dimensions is
coded in terms of movement features.

• To code handshape we use a modified ASL (American
Sign Language) lexicon.

• Palm orientation is devoted in terms of the direction
of an axis orthogonal to the palm, whereby the fol-
lowing six speaker-centric half-axes were used (Her-
skovits, 1986): forward, backward, left, right, up
and down. Up to three of these basic values are
combined to encode diagonal or mixed directions,
e.g. ‘up/right’ or ‘up/right/forward’. In order to cap-
ture palm movements it is possible to build a tempo-
ral sequence of these values by means of the “>”-
concatenator. ‘up>down’, for instance, denotes an
upwards-downwards movement sequence.

• The orientation of back of hand is treated like palm
orientation.

• We use wrist position for anchoring a gesture within
regions of gesture space like “right of body, at the
height of shoulder”. In addition, the extension of a
gesture is specified via its distance to the gesturer’s
body.

• For dynamic gestures the movement direction is anno-
tated in terms of the six cardinal directions in space.
As already described for palm and back of hand orien-
tation, combinations and sequences of the categories
are used to describe directions in between the six ba-
sic values as well as temporal sequences.

• To further classify the type of movement trajectory,
we distinguish between linear and curved movements.
Assume, for instance, the sequence of orientations
‘up>right>down>left’. If it is performed linearly, the
resulting trajectory is a square whereas it would be
a circle if the same sequence would be performed in
curved fashion.

We also transcribed interlocutors’ speech on the level of
words. The dialogs of the corpus are enriched with fur-
ther information about the overall discourse context. For
this purpose, the utterance is broken down into clauses,
each of which holding to represent a proposition. Each
clause then is annotated by its associated communicative
goal. Denis (1997) developed several categories of commu-
nicative goals that can be distinguished in route directions.
We revised and refined these for our purposes into four
categories: (1) Naming a landmark; (2) Landmark prop-
erty description; (3) Landmark construction description; or
(4) Landmark position description.
Following Halliday (1967) we distinguish the thematiza-
tion structuring of clauses in terms of theme and rheme.
Additionally, the information foci given, and new are an-
notated and, borrowing the terminology of (Stone et al.,
2003), classified according to the information states ‘pri-
vate’ and ‘shared’
The gestures of a subset of seven dialogs have also been an-
notated semantically. Gestures used in object descriptions
have been coded for the descriptions referent and some of
the referent’s spatio-geometrical properties. These object
features are drawn from an imagistic representation built
for the VR stimulus of the study. Note that this kind of
information is hardly unequivocally available for field data.



3. Reliability Assessments

The annotation data has been evaluated in terms of inter-
rater reliability. Here, a qualitative distinction has to be
made, namely the distinction between Type I vs. Type II
ratings (Gwet, 2001). Type I measurements are those where
the human interpretation effort leading to a rating is well-
understood and the outcome easily interpretable. To the
contrary, this is not the case for measurements of Type II.
Note that Type I ratings usually make up data on an inter-
val or ratio scale, wheras Type II ratings are strongly as-
sociated with nominal scales. Accordingly, this difference
has to be accounted for in evaluations of respective annota-
tions: Type II ratings have to be adjusted for chance-based
agreements (Cohen, 1960), whereas “chance” has no inter-
pretation in Type I ratings. However, in the context of the
latter but not the former one can speak of annotation errors.
The gesture annotation comprises both types of annotation
data, Type I and Type II. The classification of gestures in
terms of representation techniques, reference ojects and di-
alogue context information is interpretive and therefore of
Type II. The respective annotation labels are categories on
a nominal scale. Descriptions of gesture morphology make
up data of Type I. With one exception (hand shape, see be-
low), the labels for annotating a gesture performance are
ordered on an ordinal scale. Accordingly, we employ dif-
ferent methods in order to evaluate annotations of represen-
tation techniques and context information on the one hand,
and annotations of gesture morphology on the other hand.
As a chance-corrected coefficient determining the level of
agreement to be found in Type II data, we calculate the
first order agreement coefficient AC1 developed by Gwet
(2001). In order to assess the extent of association between
annotations of the Type I gesture morphology, we employ
an approach based on angle measures previously used by
Bergmann and Kopp (2009a).

3.1. Type II Data.

In the run-up of the reliability study we set a reasonable
agreement level of 70% with an α-error of 0.05 and a β-
error of 0.85 for Type II annotations. The appropriate sam-
ple size of 477 gestures has been drawn from gesture anno-
tations. The Type I morphology sample has been classified
by four, the Type II technique sample by three annotators.
The resulting first-order agreement coefficient AC1 for ges-
tures’ representation technique rating is 0.784. Its confi-
dence interval is (0.758, 0.81). The proportion of agree-
ment on gestures’ representation techniques, given that the
agreement is not due to chance, is significantly greater than
75%. In particular, this result complies with our reliability
level initially demanded. The degree of reliability of the an-
notations of reference objects and context information was
calculated for one dyad taken from the subset annotated for
this information. The agreement coefficient AC1 for the
classification of reference objects was 0.91, for information
structure 0.95, for information state 0.86, and for commu-
nicative goal 0.88. All values are collected in Table 1. In
sum, the highly interpretive Type II data show a reasonable
degree of interrater reliability.

Technique Referent InfoStruc InfoState Goal
0.784 0.91 0.95 0.86 0.88

Table 1: Overview of Type II data reliability evaluation.
Values denote AC1 coefficients.

3.2. Type I Data.
The annotations that make up the secondary Type I data
of the SaGA corpus transcribe the movement of a gesture
within gesture space – cf. the afore-mentioned annotation
description. The gesture space is a three-dimensional re-
gion which is spanned over the saggital, transversal, and
frontal planes of a speaker. The respective directions thus
have a clear spatial interpretation. Nevertheless, annotators
may map an observed movement onto different category
labels or simply err. However, the disagreement between,
say, “movement to the right” and “movement to the right
and slightly down”, is less than that between “movement
to the right” and “movement to the left”. Comparing just
for sameness of annotation labels would not capture the de-
gree of spatial difference between them. In other words:
treating movement annotations as nominal data will miss
their ordinal scale information3. We address this problem
by translating the annotation labels into angular measures
which can be analyzed in terms of numeric differences. The
smallest angular deviation is 2.36° for the movement direc-
tion of hand shapes, the biggest one is 46.16° for back of
hand orientation. On average, the angular difference for
gesture morphology as a whole is 27° (with average stan-
dard deviation SD = 45). Given that the annotation cate-
gories resolve gesture space into “slices” of 45° each, the
average difference comes close to the theoretically unde-
cidable mean value of 22.5° (45°/2). Table 2 provides an
overview of the angular deviations between annotators.

3.3. Hand Shapes.
Evaluating the annotation of hand shapes requires a spe-
cial treatment, since the categories developed to classify
the hand shape observed comprise both Type I and Type
II shares. In the first instance, there is a set of basic shapes
derived from the ASL lexicon. These Type I labels are then
enhanced by Type II modifiers such as ”loose” or ”spread”.
The strategy we pursue is to map all modified hand shapes
onto their basic type and treat them as Type I data. As a re-
sult, we found that the four annotators agree on 83% (AC1
= 0.9, to give the Type II statistics for comparison) of the
hand shapes within the reliability sample of gestures.
In sum, the evaluation of the secondary data of the SaGA
corpus reveals a satisfactory degree of reliability. Chance-
corrected agreement on Type II data surpasses the self-set
threshold of 70%. Observed interrater agreement on Type
I data results in angular values which, by and large, de-
note rather harmless dissent between annotators. Hence,
the SaGA corpus provides a reproducible data base which
can be exploited for empirically driven research.

3Since the movement annotation categories are coarse-grained
in the sense that they map a range of positions within gesture space
onto just one category, they are ordinal rather than interval or ratio
scaled.



BoH orient BoH dir Palm orient Palm dir HandShape dir Wrist dir HandShape
20.66° (2.47) 46.14° (13.64) 19.14° (1.92) 36.86° (20.33) 2.36° (1.11) 37.08° (6.5) 83% (AC1 = 0.9)

Table 2: Overview of Type I data reliability evalution. Values denote mean angular deviation between annotations. The
respective standard deviation is given in parenthesis. “BoH” stands for “Back of Hand”; “orient” and “dir” abbreviate
“orientation” and “direction of movement”, respectively. For the sake of completeness the Table also lists the percentage
of agreed Hand Shapes – for details, please consult the text.

4. Applications
So far, the SaGA corpus is put to use in two application
domains. First, the gesture annotation is used to build an
interpretive domain ontology, that is, an underspecified se-
mantic representation of gesture morphology arranged in a
typological grid. Second, the annotation data are used to
trigger Baysian networks of gesture production as depend-
ing from semantic and discourse context factors. Both ap-
plications are shortly illustrated subsequently.

4.1. The Typological Grid Methodology
Considering SaGA, the question is: Are the gestures ob-
served, lines, rectangles, the three-dimensional entities aris-
ing from them, idiosyncratic tokens or are they systemati-
cally used in one datum by two agents and throughout the
whole SaGA corpus by many or even all agents? In order
to investigate both these typological questions we set up a
typological grid (Rieser, 2010) for one datum (SaGA video
film 5) in the following way: gestures build a space con-
sisting of hierarchies of simple and more complex morpho-
logical entities. The most basic properties we have are the
individual annotation predicates like hand shape or palm
orientation. For example, for a horizontal line we need the
predicates hand shape, wrist movement and palm orienta-
tion. The annotation predicates’ values are atoms of the
gesture space, called features and represented in attribute-
value matrices (AVMs). Only unified do these single bits
of information describe a horizontal line, as represented by
the following AVM (RH abbreviates “Right Hand”, FC ab-
breviates “Feature Cluster”):

R-Line-RH

R-FC-RH-1a


R-FC-RH-1a-cat
HandShape G
PalmOrient PDN
BoHOrient BAB


R-FC-RH-2a

WristMovement-RH-1a-cat
PathofWrist Line
WristLocMovDirection MR or ML




The single features form the most basic stratum of the
gestural space and the kernel of our observational lan-
guage. We also set up 0-dimensional entities originat-
ing from indexing which are considered to have no spa-
tial extension. Lines come in different shapes and direc-
tions, straight, bent, horizontal, vertical and so on. They
form the one-dimensional layer below the features and the
theoretically motivated cluster layers. Similar to the line
distinction, we have two-dimensional entities, rectangles,
squares and so on, followed by three-dimensional entities

left hand

right hand

(a)

left hand

right hand

(b)

left hand

right hand 2.

right
hand 1.

(c)

Figure 3: Illustrations of n+m-dimensional composite en-
tities (0 ≤ n,m ≤ 3). Reproduced after (Hahn and Rieser,
submitted).

such as cuboids, spheres or prisms. An interesting typolog-
ical fact is that we get composites of n-dimensional entities,
the most functionally conspicuous ones being lines touch-
ing circles orthogonally from the outside, horizontal and
orthogonal lines meeting or two objects held and related
to a previously introduced one – see Figure 3 for illustra-
tions. Thus, the typological grid provides a compositional,
semantic interpretation for gestures. The methodology ap-
plied here secures that even the most complex semantic fea-
tures of gestures are strictly tied to annotation predicates. It
is the systematic and fine-grained annotation of SaGA that
makes this empirical backing of gesture meaning feasible.
This in turn exposes the typological grid, and hence the re-
construction of gesture meaning, to Popperian falsifiability,
a feature that sets this methodology apart from qualitative
or interpretive inspections and exemplar-based analyses.
The questions we have to investigate with respect to the
grid are: How many features do we use, how many ges-
tures of which dimensions do exist, how many composites
of which dimensional parts are there and so on. Statistically
based answers to these questions tell us which simple and
complex gestural forms Router and Follower exploit. The
following results emerged for the grid data (see (Hahn and
Rieser, submitted)): Generally speaking, the Router con-
centrates on depicting routes, regions and locations as well
as objects as (part of) landmarks. Composites consisting of
n ≥ 2 gestures provide the possibility to “hold” the land-
marks and specify the route to them: at the same time both,
landmark and route are relationally placed in Router’s ges-
ture space. Interestingly, the Follower sets up his interactive
map using one-dimensional gestures most of his time. In
other words, he concentrates on representing routes. For
both, Router and Follower, the right hand is dominating
when gesturing. The Router uses far more two-handed
composites than the follower. He populates gesture space
with more objects than the Follower does. Since gesture
space functions as depictional model, his gesture space is
more informative than the Follower’s. A series of interest-



ing results emerged with respect to the “atoms” of the ges-
ture hierarchy, the features and how they enter into clusters:
The five features, HandShape, BoHOrientation, PalmOri-
entation, WristPosition, and WristMovementDirection are
most frequently used by both Router and Follower in their
left and and right hands, respectively. The annotationally
motivated grouping of the features HandShape, BoHOrien-
tation and PalmOrientation into feature cluster at the out-
set of the typological work thus gets statistical support. At
the same time the large number of WristPosition features
and WristLocationMovementDirection features motivates
the set up of clusters for WristPosition and WristMove-
ment. Both Router and Follower predominantly use their
right hands. This can be seen from the greater number of
feature clusters there.

4.2. Autonomous generation of speech and gesture

The SaGA corpus is also used as an empirical basis to
model speech and gesture production. We have proposed
an architecture that simulates the interplay between the
two modes of expressiveness on two levels (Bergmann and
Kopp, 2009b). First, two kinds of knowledge representa-
tions – propositional and imagistic – are utilized to cap-
ture the modality-specific contents and processes of content
planning (i.e., what to convey). Second, specific planners
are integrated to carry out the formulation of concrete ver-
bal and gestural behavior (i.e., how to convey it). Of par-
ticular importance in this framework is the question how
to generate gestural forms from an abstract representation.
According to empirical results based on the SaGA cor-
pus, iconic gesture generation on the one hand generalizes
across individuals to a certain degree and these common-
alities may pertain primarily to gesture’s iconicity. On the
other hand, inter-subjective differences must also be taken
into consideration by an account of why people gesture the
way they actually do (Bergmann and Kopp, 2010). Our
research methodology to investigate this puzzle of iconic
gesture production is based on computational modelling:
we have proposed GNetIc (Gesture Net for Iconic Ges-
tures), a probabilistic network to model decision-making
in the generation of iconic gestures (Bergmann and Kopp,
2009a). Individual as well as general networks are learned
from annotated corpora by means of automated machine
learning techniques and supplemented with rule- based de-
cision making. Three different types of factors are in-
cluded in the network to influence the resulting gestures:
(1) visuo-spatial referent features, (2) linguistic and dis-
course context, and (3) the previously performed gesture.
A prototype of the generation model is employed in an
architecture for integrated speech and gesture generation.
In this prototype implementation a virtual agent explains
the same virtual reality buildings that we already used in
the previously described empirical study. Being equipped
with proper knowledge sources, i.e., communicative plans,
lexicon, grammar, propositional and imagistic knowledge
about the world, the agent randomly picks a landmark and
a certain spatial perspective towards it, and then creates his
explanations autonomously. Currently, the system has the
ability to simulate five different speakers by switching be-
tween the respective decision networks built as described

Figure 4: Two example networks (middle column) learned
from individual speakers’ data (left column) resulting in
speaker-specific gesture production (right column). These
gestures are simulated for the same referent (a tapered roof)
in the same initial situation.

above. See Figure 4 for two simulation examples.
Analyzing the modelling results enables us to gain novel
insights into the production process of iconic gestures: the
resulting networks learned for individual speakers differ in
their structure and in their conditional probability distri-
butions, revealing that individual differences are not only
present in the overt gestures, but also in the production pro-
cess they originate from (as an example see the two dif-
fering networks in Figure 4 each of which learned from
a particular speaker’s data). Whereas gesture production
in some individuals is, e.g., predominantly influenced by
visuo- spatial referent features, other speakers mostly com-
ply with the discourse context. So there seems to be a set
of different gesture generation strategies from which indi-
viduals typically apply a particular subset.
In a comparison of learning algorithms for the network
structure it turned out that at best 71.3% of the probabilis-
tically modelled generation choices in individual networks
could be predicted correctly. The accuracy achieved with
general networks is 69.1%. Notably, all accuracy values
clearly outperform the chance level baseline of 30%. The
results show, by trend, that individual networks perform
better than networks learned from non-speaker specific data
(Bergmann and Kopp, to appear).
For the rule-based choices of in the model we calculated the
angle between the predicted and the empirically observed
orientation vector (as in the reliability study). Consider-
ing this, the mean deviation for palm orientation of 54.6°
(SD = 16.1°) and the mean deviation for back of hand ori-
entation of 37.4° (SD = 8.4°). As concerns the gesture’s
movement features, the movement type (linear or curved)
could be predicted with 76.4% accuracy (SD=13.6). For
the movement direction we distinguish between motions
through the sagittal, transversal and frontal planes. Each
segment in the generated movement description is tested
for co-occurrence with the annotated value, resulting in a
accuracy measure between 0 (no agreement) and 1 (total
agreement). The mean similarity for movement direction



.75 (SD = .09). These are quite satisfying results with de-
viations which lie well within the natural fuzziness of com-
municative gestures.
To evaluate GNetIc-generated gestures in terms of their im-
pact on the interaction between humans and machines, we
are currently setting up a study to analyze if (1) seman-
tic information uptake from gestures, and (2) the perceived
interaction quality (expressiveness, naturalness etc.), is in-
fluenced by the agent’s gesturing behavior. Generated ges-
tures whose features do not fully coincide with our origi-
nal data may still serve their purpose to communicate ade-
quate spatial features of their referents – even in a speaker-
specific way.
The conclusion to be taken is that the GNetIc simulation ap-
proach beside allowing an adequate simulation of speaker-
specific gestures, is an valuable means to shed light onto
the open research questions of (1) how iconic gestures are
shaped and (2) which sources individual differences in ges-
turing may originate from.

5. Conclusion
The SaGA corpus is a large collection of naturalistic, yet
content-controlled multimodal data. In order to make sure
that its secondary data fulfill the scientific requirement of
reproducibility, the data have been systematically annotated
and evaluated in terms of interrater agreement methods.
That ensured, the SaGA corpus is used in order to explore
empirically the interplay of speech and gesture in giving
directions and describing objects.
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