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Abstract—Multiparameter imaging techniques provide large
numbers of high-dimensional image data in modern biomedical
research. Besides algorithms for image registration, normal-
ization and segmentation, new methods for interactive data
exploration must be proposed and evaluated. We propose a new
approach for auditory data representation, based on sonification.
The approach is applied to a multiparameter image data set,
generated with immunofluorescence techniques and compared
to a conventional visualization approach and to a combination
of both. For comparison, a psychophysical experiment was con-
ducted, in which one standard evaluation procedure is modeled.
Our results show, that all three approaches lead to comparable
evaluation accuracies for all subjects. We conclude, that both,
acoustical and visual approaches can be combined to display
data sets of large dimensionality.

Keywords—Biomedical Imaging, Multiparameter Image
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I. INTRODUCTION
In recent years, substantial progress has been achieved in

the development and application of optical microscopy in
molecular and cellular biology. Advanced staining techniques
and multiband imaging allow highly sensitive visualization
of macromolecules and compartments in the cells (e. g. [1],
[2]). In multimodal imaging approaches, different imaging
techniques are merged to give additional insight into cell
functions [3]. In this paper we summarize all these approaches
as multiparameter imaging approaches. The recorded data is a
stack of n parameter images of the same site in the sample. In
general, these multiparameter imaging approaches are applied
to cell samples from different specimens or in certain stress
conditions to get more comprehensive descriptions of spatial
and temporal molecular dynamics in the cell [4]. The basic
aspect of such multiparameter approaches in biomedicine is
that the information about spatial correlations between the
mapped channels is preserved, which is a valuable feature not
owned by many other methods, as e. g. gel-electrophoresis or
microarrays.
After post-processing and registration, the data usually has

to be analyzed by (a) direct manual exploration (generally by
visual inspection) and/or (b) statistical datamining methods.
To perform (b), quantitative data has to be extracted from

the images. To this end, it is inevitable to perform an image
segmentation interactively or full automatically. This is often
impractical, because (i) the manual evaluation is error-prone
(especially on large datasets) and (ii) for an automatic eval-
uation with image processing algorithms a constant quality
in the data is required, resulting in lots of time consuming
standardization work. In this work, therefore we focus on
the evaluation of methods to support (a), the direct manual
exploration of multiparameter data. Manual exploration in
multiparameter images aim at the local discovery of molecular
patterns and their association with cellular functions. These
observations shall culminate in the development of integrated
models of cell functions. Simulation and graphical display of
such models in virtual cells are corner stones in the rapid
evolving field of systems biology [5]. Because a comprehensive
and efficient analysis of multiparameter images is vital to
this field, innovative methods for the manual exploration of
this data are urgently required. In this paper we compare a
traditional visualization and a new sonification approach to
display multiparameter image data. For first time, we apply
visualization, sonification and the combination of both to
the field of exploratory multiparameter image analysis and
quantitatively evaluate the approach in an experiment.
The task of manual exploration of multiparameter image

exploration can be described as follows: In a single two-
dimensional referential display of the sample, a region-of-
interest (ROI) is selected using a pointing device (e. g. a cursor
controlled by a computer mouse) and the image parameters
of the object within the ROI are displayed1. The parameter
display must be designed to meet requirements that follow
from the general research framework outlined above and from
individual research tasks in single laboratories. Any display
must meet the following terms, to be applicable in the general
framework of multiparameter image analysis:
Identity: Objects with identical biological parameters must
be identically displayed. To this end, a normalization and

1To analyze the entire content of a multiparameter image, the parameters
of all ROIs can in principle also be visualized at once. But this must be
preceeded by a full segmentation of the image. Because we focus on direct
manual exploration without time-consuming comprehensive segmentation we
display the parameters of only one selected region at a time.
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Fig. 1. The set up of interactive exploration of multiparameter images with visualization and sonification methods

thresholding procedure is applied to the signal values.
Similarity: Displays for biological parameters of two regions
must be perceived similar or different, corresponding to their
distance in the parameter space. The distance in the n-
dimensional parameter space can be measured using a metric
function (e. g. an Euclidean distance).
Extensibility: The display technique should not be restricted
to n-dimensional patterns and in principle has to be extensible
to additional parameters.
Stability: The display should not change drastically in case
of missing values. Missing values can occur at the imaging or
the registration step.
Compactness: Display and visual inspection should not take
too much time in order to enable exploration in appropriate
time. It also has to allow the display of parameters of several
selected regions.

II. EXPLORATORY MICROGRAPH ANALYSIS

Basis of our study is as an exemplary data set of multi-
channel fluorescence images which has been selected from the
same set as the data in [6]. The stack shows a set of cells in a
blood sample. In each image of the stack, the intensity values
identify the presence of a molecule via immunofluorescence
[7]. In principle, many more protein signals than illustrated
here can be captured in one biological sample by using new
robotic imaging approaches.

A. Visualization approach
Most works about visual exploration of biomedical data

propose and discuss approaches to provide a graphical display
for revealing a multivariate structure, in particular similarities
and clusters [8]. In this context graphical primitives like
autoglyphs or icon plots are used to support a scatter plot
or other visualizations of equivalent type and are preceded
by the extraction of numerical data from the image. Usually,
the parameter vectors are visualized independently upon their
location. But the spatial information is an essential feature
of the microscopy approach, that enables the researcher to
identify the molecules at the anatomical site in contrast to other
experimental approaches like e. g. 2D electrophoresis and
microarrays. In other works stick figures are used to compute

Fig. 2. Three example star glyphs of three different six dimensional parameter
vectors are shown.

a texture map from the n-dimensional image stack. The local
texture in the map is determined by the local image parameter
values that control the shape of the texton (or texel) which is
a stick figure. The technique is limited to reveal raw image
structures. A more promising approach is the computation of
so-called Chernoff faces [9], [10] to represent the parameters
of image regions. Each parameter value controls a single
image feature in a graphically rendered image. Thus, for
different parameters faces of different emotional expression
are computed. One advantage of this method is that missing
values are represented by missing features in the face, but
the rest of the face obeys the similarity term, stated above.
Nevertheless in the context of this work, the Chernoff faces are
not further considered because it makes no sense to associate
an emotional state to a molecular expression pattern, which is
a priori neutral.
In this work we display the local image parameters with so

called star glyphs [11] which belong to the family of sequential
icon plots. Glyphs are well suited to reveal correlations in
the data, which is one of the key issues in data analysis.
Additionally, glyphs can be positioned at their original location
in the image, which is vital to find regularities in the relative
positions of molecular patterns. To display the parameters of
one region, it is represented by a star or a polygon. The length
of the vector to each vertex corresponds to the thresholded
value of a particular variable (see Fig. 2).

B. Sonification approach
Sonification is the presentation of data using sound [12].

As in visualization techniques, the data is transformed into
a modality in which humans have extraordinarily high-
developed skills in discerning and comparing patterns. The
auditory presentation of high-dimensional patterns is a very
promising strategy, since we usually are able to process a
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Fig. 3. Illustration of concatenative synthesis of cell pattern sonifications,
using recorded diphon sound samples.

multitude of sound attributes at the same time, e.g. we are
able to perceive the pitch, loudness, roughness, brightness,
localization, duration, reverberation, etc. of a piano tone in a
single moment. This mapping from data to sound parameters
(called Parameter Mapping) however suffers from various
problems, for instance nonlinear scales of acoustic parameters
or lack of orthogonality between the attributes. Some of them
can be circumvented by using more complex sound segments
to represent a single high-dimensional vector. Different strate-
gies for this have been proposed in [6], using rhythmical,
harmonic -and by combining them- melodic musical motives
for representing a single multi-dimensional vector as for
instance the vector of image intensities through the image
stack at a certain location. The different aspects reported
above like extensibility etc., can be easily incorporated into
the structure of the sound patterns, although the medium
sound poses here some principal limitations, e.g. using a
chord of tones, it becomes difficult to discern more than
about 8 tones at the same time. Also, musically untrained
listeners have disadvantages in processing and comparing the
stimuli. This led us to employing sounds from a domain
where most listeners have high-developed perceptual skills
without the need of additional training: two promising domains
for this are environmental sounds and linguistic sounds. The
latter were finally employed to render “artificial words” for
presenting a data vector. Practically this is done by using
a concatenative synthesis of diphone sequences like ’do’,
’ka’, ’fi’, ’re’, etc. This sonification strategy is illustrated
in Figure 3. Thus, a diphon becomes the acoustic marker
for representing a biomedical protein marker. The pattern
(0,1,0,0,1,0,1) is thus represented by the spoken word ’ka-se-
la’ whereas (0,0,1,0,1,0,1) would become ’fi-se-la’. As a result,
similar patterns are easily recognizable from similar word
forms. Also, since we are highly trained to process similar
stimuli in real speech sounds, the pattern can be processed
within a rather short time of about one second. This technique
is applied here in its simplest form, leaving the huge range of
lingual variations in prosody, like pitch, rhythm, accentuation,
voice timbre unused, so that this way of mapping data to
acoustic stimuli still has great potential for further extensions.

C. Combination approach

In a third approach, the region parameters are displayed
in both ways simultaneously to study the effect of redundant
display on the evaluation performance.

III. EXPERIMENTAL SETUP

One basic task in the analysis of multiparameter images is
exploration of images for regularities in the data. One basic
kind of regularity is a “parameter pattern” in the data which is
observed at several regions in the image (or in different images
from different samples). To analyze the efficiency and accuracy
of the display approaches introduced above, the detection of
such repeated “parameter patterns” task is modeled in an
experiment, in which the subjects had to solve this task in
referential data sets. In one experimental run the subject had
to detect and mark regions of identical parameters in a six-
dimensional multiparameter image stack using one of the three
display techniques. The regions are cell bodies in a blood
sample. Because the subjects were not biological experts the
regions (i. e. cell bodies) were highlighted in order to guide
their search in a reasonable way. One cell was highlighted
differently to be the reference cell for the identity search.
Each subject had to perform ten runs. The performance

of the subjects was used to assess the efficiency of vi-
sual, auditory and combination display. The efficiency was
measured from two experimental outcomes: duration of the
entire evaluation and evaluation accuracy. The experiment was
performed by 60 non-expert subjects, divided into three groups
of same size, called V, A, and C. After indicating the start
of the experimental session by pressing the start button, the
subject searched the image for cells which were identical to
the reference cell. To judge the similarity of the inspected
and the reference cell, a left mouse button press offers a
(visual, auditory, or combined) display of the inspected cell’s
parameter pattern. If a cell’s parameters were perceived as
being different to the reference cell, the cell was marked with
the middle mouse button and a red cross was displayed on the
cell in the image. In case of a cell identical to the reference
cell the subject marked it with a green cross by clicking with
the right mouse button on the cell. The subject could convert
marks by pointing and marking the cell again. The session
was finished by activating a stop button. For each session, the
marks and the session duration were recorded. Two kinds of
errors were evaluated: cells wrongly labeled as being identical
to the reference cell (false positives) or wrongly marked as
being different (false negatives). We followed the simplest
possible hypothesis and assumed that both kinds of errors
happen to all subjects with the same probability.

IV. RESULTS

The first interesting factor is the evaluation accuracy, i. e. the
number of errors in one experimental run. Two subjects in
group V showed an outstanding high error rate, caused by
individual handling problems. Thus, they are classified as
outliers, so they are not considered in the statistical analysis.
For each subject the number of wrong marked cells x(k)

i with
i = 1, . . . , n(k) (n(k) = 18 for the V group and n(k) = 20
for group A and C), and k ∈ {V,A, C} is determined and
for each approach mean and variance (µ(k)

x ,σ(k)
x ) of the

error rate is computed (see Tab. I). A F-test is applied to



Fig. 4. Experimental set-up of visualization/sonification-based exploration

TABLE I
ERROR RATES AND EVALUATION DURATIONS FOR VISUALIZATION,

SONIFICATION OR COMBINATION DISPLAY.

Error rates in subject groups Evaluation duration in subject groups
k = V A C k = V A C
n(k) 18 20 20 n(k) 165 178 177
µ

(k)
x 1.28 1.45 1.75 µ

(k)
t 49.86 60.17 55.88

σ
(k)
x 1.99 2.11 2.65 σ

(k)
t 15.38 18.12 17.33

the data to compare the variances and showed no change in
variance between V, A and C experiments. Based on the F-
test results, a T-test is applied to the data and showed that no
significant change in the error rate can be observed between
different display modalities. The second interesting factor is
the evaluation time. For all experimental runs, the evaluation
time t(k)

ij with i = 1, . . . , 20 (subject ID), j = 1, . . . , 10
(run ID) and k ∈ {V,A, C} was recorded. To compare the
three approaches, again the means and variance (µ(k)

t ,σ(k)
t )

were computed. To eliminate any dependencies with the factor
error rate, only those experimental runs were considered that
contained no errors, i. e. the subjects marked all cells correctly.
The means and standard deviations are shown in Tab. I.
A F-test showed the absence of any significant differences

between the variances for the three approaches with a signif-
icance level of 95% concerning the evaluation duration, apart
from a comarison of V with A. Based on these findings a T-
test was applied and showed that the subjects from group V
required the shortest time, the subjects from the sonification
group performed in the slowest time both on a significance
level of 95%. However, the overall difference in evaluation
time is less than 15%.

V. DISCUSSION
We proposed a new approach for the display of cellular

parameters in multiparameter images. The approaches are
tested and evaluated in a psychophysical experiment. The
experiment modeled one basic type of task in the evaluation

of multiparameter images.
The experimental data shows, that with regard to error rate

visualization and sonification approaches are equally suited
to support the analysis of cellular parameters. Thus, they can
be combined in a equitable fashion. For example, one set of
parameters can be displayed graphically and the other set can
be displayed acoustically.
Another interesting observation is, that for the chosen

experimental setting the evaluation time of single visualization
alone is the shortest for all three display techniques. This could
be caused by the low number of six parameters. The star
glyphs of different patterns can be well discriminated for a
low number of vectors, which can not be expected for a larger
number of parameters. Thus, in future experiments the number
of parameters will be increased to study the dependence of
evaluation duration on the parameter number.
We observed that the combination approach did not improve

the performance. This is surprising, because in the literature
an increase in performance was reported in comparable studies
[13]. Again, this will be further studied for larger numbers of
parameters.
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