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I. INTRODUCTION

We present an experimentation environment for the ex-
ploration of rich motor skills on a quadruped robot. We
introduce a simulation platform around the (open) quadruped
robot ’Oncilla’ that is integrated with a domain-specific
language (DSL) tool-chain for modeling and execution of
reproducible movement experiments. The Webots-based sim-
ulator, shown in a Screenshot in Figure 1, features an open
source and cross-platform (Linux and Mac OS) interface with
taxonomic structure and rich sensor feedback. By providing
a common abstracted interface for both simulation and
hardware, it enables faster and easier transfer of experiments
between these two domains. This interface is accessible
through a local C++ interface as well as remotely via an
open-source middleware in with C++, Java, Python, and
Common Lisp bindings for extended language and tool sup-
port. Integrated with the common interface, a DSL-based en-
vironment around the simulator allows compact formulation
of experiments in domain-specific terminology and eased
generation of reproducible artifacts for experimentation. We
present how movement architectures and dynamical-systems-
based components of different partners of the AMARSi
project are incorporated in the development of the DSL and
the experimentation toolchain.

II. DSL APPROACH

Research on movement generation in robotics is not only
challenging for reasons of the intrinsic complexity of the
underlying control problems, but also due to the techno-
logical and conceptual fragmentation of the domain. Our
answer to this challenge is a model-driven approach around a
domain-specific language (DSL) environment [1], integrated
with the quadruped simulator. We show our work based on
DSLs to establish a domain-specific hypothesis test cycle for
movement generation on robots.

The two core DSLs separate the domain along the formu-
lation of functional and software architectural aspects. The
AMARSi DSL [2] is designed to allow compact structural
description of motor control architectures. It expresses motor
control systems as combinations of so-called movement prim-
itives, that model flexible and adaptive movements in terms
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Fig. 1. Screenshot of the Oncilla simulator frontend in Webots.

of dynamical systems. It focuses solely on the functional con-
cepts of a system, hiding the software architectural aspects. A
second DSL covers the software architectural aspects, orga-
nizing the system in Components with States, Ports,
and their wiring.

As an example of how we foresee the DSL tool-chain
to speed-up the hypotheses test cycle, we show how we
allow formulation of dynamical system hypotheses directly
in the DSL environment. Figure 2 shows an example of
writing a dynamical system as formula in the projectional
AMARSi DSL editor to be tested on the Oncilla platform. It
supports writing the expression with references to the inputs
and outputs of its context.

III. SOFTWARE ARCHITECTURE

The DSLs are prototyped and built in JetBrains MPS [3], a
language workbench for building domain-specific languages
and their projectional editors. Model to model transformation
between the AMARSi DSL and the Component DSL maps
the functional system model to software concepts defined in
the Component DSL.

The Component DSL allows to automatically generate
experimentation code, targeting the AMARSi software ar-
chitecture, which we exemplify together with the integrated
quadruped simulation platform. The two main software li-
braries of the software architecture are the Compliant Con-
trol Architecture (CCA), a robotics component framework,
and the Robot Control Interface (RCI), a library providing
software abstractions to model robot interfaces [4].

Figure 3 shows the common abstracted interface for both
simulation and hardware. Its interface is locally accessible



Fig. 2. Adaptive Module with its inputs and outputs for goal, feedback and control output. It contains a Dynamical System that is specified by
an mathematical expression referencing inputs and outputs.

through an RCI-based C++ interface, using multiple inher-
itance to expose the node taxonomy. It is also remotely
available through CCA and an open-source middle-ware with
C++, Java, Python and Common Lisp bindings for extended
language and tool support. One of the main design goals was
to implement a common abstraction between hardware and
simulation, with binary compatibility, to facilitate an easier
transfer between hardware and simulation. The abstraction
also allows to potentially exchange the simulation backend.

IV. SIMULATION ENVIRONMENT
The Oncilla robot is an open source, lightweight, bio-

inspired quadruped robot developed by the AMARSi consor-
tium. It can be seen as an improved version of the Cheetah-
Cub robot [5], with one additional degree of freedom per
leg (adduction / abduction), stronger brush-less motor, more
sensors (passive joint position measurement, three axis load
cells per leg and IMU), improved payload capacity and
fastest communication loop (up to 500 Hz). From Cheetah-
Cub, Oncilla retakes the three-segmented Advanced Spring
Loaded Pantograph (ASLP) leg design, based on observation
of leg kinematics in animal locomotion.

A Webots [6] model has been created, with an exact rep-
resentation of the ASLP leg design including the two closed
kinematic loop of each legs, serial and parallel compliance,
and asymmetric actuation of the knee. These complex tasks
have been performed with the use of our open source
library libwebots. These library expose a series of reusable
modules that provide an efficient API to access the Open
Dynamic Engine primitives created by Webots. It allows
to extend the Webots API by further features like closed
kinematic loops, or create new complex functionality like the

Fig. 3. Three-layered Oncilla Software Architecture.

possibility to restraint the robot motion in its sagital plane.
Although a precise description of the Oncilla quadruped
robot could not be created, we motivate our choice of Webots
as physic simulator in comparison to other open source or
more accurate alternatives, for the simplicity of the Webots
interface, targeting education [7]. The simple interface led to
the application of the Oncilla simulator as teaching material
for several master level courses.

V. CONCLUSION

Implementing the Oncilla interface to different simulator-
backends and the Oncilla hardware still requires a lot of
manual (implementation) work. Modeling functional and
non-functional aspects of a platform would allow easier and
faster integration of further backends (further simulators [8]
and robot platforms) into the presented experimentation
environment, by automatic generation of the required glue
code.

The presented approach allows explicit modeling of mo-
tion control architectures and its quick validation in a simula-
tion backend. Algorithmic and system parameters typically
hidden in software artifacts are made explicit through the
DSL approach. Thereby, reproducible experimentation is
facilitated and Experimentation is sped up as long as devel-
opers stay within the modeled domain. That said, adapting
the Oncilla interface to different simulator-backends and
the Oncilla hardware still requires manual (implementation)
work. Modeling functional and non-functional aspects of a
platform would allow easier and faster integration of further
backends (further simulators [8] and robot platforms) through
automatic code generation. Future work at the DSL level will
focus on improved representation of dynamic model aspects
and a more powerful expression language to directly specify
dynamical systems.
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