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1 Introduction 
 

The employment of magnetic particles and magnetic beads in microfluidic 

systems has been investigated extensively and led to the development of components 

in MEMS- and NEMS-devices (Gijs 2004, Pamme 2006; Niarchos 2003; Deng et al. 

2001). Superparamagnetic microbeads are a vital component, since these composite 

objects, which consist of superparamagnetic nanoparticles embedded in a polymer 

matrix, combine properties of nano- and microscale systems (Haukanes and Kvam 

1993). If subjected to on-chip or off-chip generated magnetic gradient fields, the 

magnetic content and, therefore, the magnetic particle may be manipulated 

(Weddemann et al. 2009; Weddemann et al. 2010 d; Panhorst et al. 2005; Brzeska et 

al. 2004, Auge et al. 2009). Usually, the generation of on-chip magnetic gradient 

fields involves lithography steps during the device fabrication. 

However, the magnetic colloids themselves may be used to introduce a local 

magnetic gradient field on the microscale, which results from the inhomogeneous 

magnetic particle stray fields and may reduce the complexity of the microfluidic 

device. As extensively reported in the context of ferrofluids or magnetorheological 

liquids, the field contributions from the particles and the entailed magnetic interplay 

may strongly influence the fluid properties such as, e.g. viscosity or flow velocity 

(Shliomis and Morozov 1994; Love et al. 2005; Rosensweig 1996; Zahn and Pioch 

1999; Moskowitz and Rosensweig 1967; Ginder et al. 1996; Ginder and Davis 1994). 

The coupling of the magnetic entities depends on the magnetic moment of the objects 

and on the concentration of the respective magnetic particles. In general, this means 

that the magnetic interplay needs only to be taken into account if a high 

concentration of magnetic particles is present within the suspension. For the strongly 

diluted case, low particle concentrations are present and the magnetic interplay can 

be omitted in the corresponding applications (Pamme and Manz 2003; Weddemann 

et al. 2009; Østergaard et al. 1999). 

 

 
Fig. 1.1: Applications employing suspensions of magnetic particles in dependence on the 

particle concentration. 
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Between the extreme scenarios lies a regime of concentration which has only very 

recently attracted interest (figure 1.1) (Leunissen et al. 2009, Jäger and Klapp 2011; 

Jäger et al. 2012). The high concentration case can be modeled in the framework of 

continuum theories (Tang and Conrad 2000; Yeh and Chen 1997; Brigadnov and 

Dorfmann 2005), whereas the case of low concentrations needs to be described in the 

frame of discrete particle dynamics. The intermediate regime is governed by both 

types of scale behavior: mesoscale continuum fluid flow is superimposed by discrete 

particle motions (Laroze et al. 2008; Mørup et al. 2010; Kim and Park 2010; Derks et 

al. 2010; Karle et al. 2011 Lacharme et al. 2009).  

 

Erickson et al. have developed on-demand configurable matter (Kalontarov et al. 

2009) suspended in a carrier liquid, based on anisotropic porosity for hydrodynamic 

driven self-assembly. A comparable approach would be helpful for magneto-based 

microfluidics. Sawetzki et al. (2008) presented the employment of clusters of 

paramagnetic particles for mixing and flow guiding design. However, the cluster 

preparation is achieved by optical tweezers and, thus, difficult to be transferred to 

lab-on-a-chip systems. A possible realization of the concepts of on-demand assembly 

in a microfluidic device is presented in figure 1.2. The microvalve application 

presented in figure 1.2 shall not be scope of this work, but it illustrates the advantage 

of the employment of interacting superparamagnetic particles. Small isolated  

 

 
Fig. 1.2: Schematic representation of a microfluidic valve based on the on-demand assembly 

of superparamagnetic particles in the carrier fluid. (a) Small single particles may pass the 

constriction, whereas (b) large particles block the particle flow at the constriction of the 

channels irreversibly. (c) In contrast, on-demand assembled magnetic agglomerates may block 

the particle flow, but can also be disassembled if necessary by switching the magnetic field 

off. 
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particles may pass the constriction of the channel presented in figure 1.2(a), whereas 

larger particles block the particle flow due to interaction with topological features of 

the channel. However, the blocking of the flow with large particles is irreversible 

and, therefore, unfeasible in microfluidic applications. The interaction of magnetic 

particles, which have similar sizes as those in figure 1.2(a), may result in the 

formation of a magnetic agglomerate which allows to hinder the particle flow 

through the channel constriction (figure 1.2(c)). If superparamagnetic particles are 

employed, switching the magnetic field off, results in disassembly of the particle 

agglomerate (figure 1.2(d)) due to demagnetization of the particles. Applications 

based on these interactions employ particle suspension in the intermediate 

concentration regime, which allows to assign different functional tasks to the liquid 

itself. 

The scope of this work is to increase the understanding of fundamental properties 

of the discrete dynamics in the intermediate concentration regime and to develop 

novel approaches to common challenges in microfluidics, e.g. mixing of self-

assembly, based on these findings. A brief summary of the underlying phenomena 

and the governing equations of hydrodynamics and magnetism are given in chapter 2. 

Chapter 3 briefly describes the relevant experimental methods such as microfluidic 

channel fabrication, characterization and data evaluation. The fourth chapter 

summarizes the study on the formation dynamics and stability of dipolar coupled 

magnetic superstructures of different dimensionality. In chapter 5 two applications 

based on coupled magnetic superstructures are presented. Both involve homogeneous 

external magnetic fields, which allow for the perturbation of particle suspensions. 

However, the proposed microfluidic geometry presented in chapter 5.1 employs a 

static magnetic field, whereas the device operation of the microfluidic gate structure 

for simultaneous mixing and separation (chapter 5.2) is based on the employment of 

a rotating magnetic field. Despite the continuous flow applications presented in 

chapter 5, the dipolar coupling of magnetic particles may also be used for the 

generation of highly ordered two-dimensional hexagonal arrays, which may give rise 

to an efficient and fast method for surface patterning (chapter 6).  
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2 Theoretical background 
 

In this chapter, important theoretical aspects of microfluidics as a special case of 

hydrodynamics and the basics of magnetism relevant for this thesis are summarized. 

We begin with hydrodynamic phenomena and afterwards discuss the relevant 

additional body force contributions to the (Navier-) Stokes equation.  

 

 

2.1 A brief introduction to hydrodynamics with focus 

on the special case of microfluidics 
 

In the field of hydrodynamics fluids are described, which consist of a larger number 

of discrete particles on the microscale O(1023). To describe the state of the fluid 

exactly, complete knowledge of the particle positions and momentum would be 

essential. However, the large resulting number of degrees of freedom leads to the 

necessity of an effective theory, which reduces the problem of the large number of 

interacting discrete particles to the description of the fluid by the introduction of a 

small set of dependent variables. Additionally, an effective theory is also more 

suitable for the actual description of fluids, because usually the macroscopic behavior  

 

 
 

Fig. 2.1: Sketch of the dependence of some measured quantity on the size of the volume 

element Ω. At the microscopic scale fluctuations occur due to the discrete structure of the 

system. A well-defined measurement may be obtained at the mesoscopic scale. Due to external 

forces a variation of the measured quantity at macroscopic volume elements is entailed; 

adopted from (Batchelor 2000). 
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of the fluid is of interest and no detailed information on the motion state of each 

contributing particle contained in the fluid is required. In this chapter, the validity of 

the continuum hypothesis may be assumed, which means that the fluid may be 

assumed to be perfectly continuous in structure without changing the macroscopic 

properties. In context with the continuum hypothesis, the concept of volume elements 

is introduced. A volume element has, in contrast to a point particle in classical 

mechanics, a finite size. If the size of the volume element was chosen to atomic 

dimensions, a measured quantity would show large fluctuations due to the discrete 

structure of the fluid as shown in figure 2.1. In order to reduce fluctuations, the 

volume element needs to increase in size. Once the number of atoms or molecules 

inside the volume element is sufficiently large, well-defined average values can be 

obtained. If the size of the volume element is chosen on a macroscopic scale, the 

measured quantity is averaged over a large number of atoms or molecules, but 

external influences may vary and the average may be taken over the region of 

interest. If the volume element of a liquid is chosen to be cubic with side length 

of ~ 10 nm, the number of atoms or molecules contained in the volume element 

is ~ O (104). The size of such volume elements is large compared to the microscopic 

scale, but small compared to the macroscopic scale. In the following, volume 

elements of such mesoscopic dimensions may be assumed. If a certain liquid 

property at space point r is considered, strictly speaking the average of the liquid 

property over the volume element at space point r is meant. Additionally, to the 

continuum hypothesis states that along the described volume element, the system has 

reached thermal equilibrium in respect to the small set of space-dependent variables. 

 

2.1.1 Effective parameters 

 

The description of fluids in the framework of the continuum hypothesis allows to 

describe the effective behavior of a volume element by two fields. The velocity of a 

volume element is described by a vector field u, and the pressure inside the volume 

element is described by a scalar field p. 

The reduction to an effective continuum theory entails that the interaction 

between discrete fluid particles needs to be described by material parameters, since 

the fluid elements are described as averages over a large number of molecules. In 

general, three parameters are sufficient to characterize the inner state, i.e. the 

microstructure of a fluid: the compressibility κ, the viscosity η, and the density ρ. The 

compressibility describes a relative change of volume when a fluid element is 

subjected to a pressure change and is defined as 

 

 
dp

dV

V

1
        (2.1) 
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Fig. 2.2: Experimental setup employed in rheology measurements. The shear stress which 

results from the force F induces a fluid flow u; reprinted from (Weddemann 2009). 

 

where V and p denote the volume and the pressure, respectively. Compressibility 

values for liquids are usually very small compared to gases. In particular, the 

compressibility may be omitted if the flow velocities involved are very small 

compared to the speed of sound in the liquid. In the case of the microfluidic systems 

discussed in this work only liquids need to be described and the constraint of low 

flow velocities mentioned above is  

 

met. Therefore, for the following κ = 0 may be assumed.  

The density ρ(r) represents a measure of the ratio of mass m and volume of a fluid 

element at a certain space point r. The assumption of incompressible liquids allows 

to reduce the density to constant 

 

 
V

m
  .       (2.2) 

 

The viscosity η describes the internal resistance to flow and is, therefore, a measure 

of the internal friction of a liquid. Experimentally, the viscosity can be measured in a 

simple setup which consists of two parallel plates with a liquid in between as 

presented schematically in figure 2.2. A shear stress τ = F/A, where A is the surface 

area of the upper plate, is observed if a force F acts on the upper plate parallel to the 

plane, while the lower plate is kept stationary. The shear stress τ results in a fluid 

flow, which is parallel to the applied force and only dependent on the y-direction, 

which means that the velocity can be written as u = ux(y)ex. The derivative of u with 

respect to the y-direction is called the strain rate ∂yu(y). In general, the shear stress is 

a function of the strain rate. The actual dependence of the shear stress on the strain 

rate differs for different liquids and is studied extensively in the field of rheology. A 

fluid is called Newtonian if the linear relation 
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y

yx






)(u
τ         (2.3) 

 

is satisfied, where the constant η is the viscosity of the fluid. In this work, we will 

focus on Newtonian liquids, in our case, water or aqueous suspensions in general, 

which were used in all experiments. Examples of non-Newtonian fluids, which 

means that the assumption of a constant viscosity is not applicable, are blood, 

ketchup or modern paint which show a decrease of the viscosity with increasing 

shear rate. In contrast to blood, ketchup or paint, which are shear thinning materials, 

shear thickening fluids show an increase in the viscosity if the rate of shear increases. 

All material parameters introduced in this section are dependent on the temperature 

T. The viscosity of water, for example, decreases from ηwater(20°C) = 1.002 mPa·s at 

20°C to ηwater(80°C) = 0.355 mPa·s at 80°C (Bruus 2008). However, all experiments 

presented in this thesis were performed at room temperature and we will, therefore, 

omit the temperature dependence of the material parameters in the following. 

 

2.1.2 Conservation of mass and momentum 

 

The first of the governing equations is the equation of continuity, which expresses 

the conservation of mass in classical mechanics. If we consider a fixed volume 

element Ω of arbitrary shape, we may write the total mass inside the domain as the 

volume integral over the density  

 

 
Ω

ttΩM ),(d),( rr  .      (2.4) 

 

In non-relativistic mechanics, M (Ω,t) can only change due to a mass flux through the 

surface ∂Ω of the domain Ω. Furthermore, we introduce the mass current density 

 

 ),(),(),( ttt rurrJ        (2.5) 

 

which is given as the product of the density and the convection velocity u. The time 

derivative of M (Ω,t) can be obtained by either the differentiation of the volume 

integral in (2.4) or the calculation of the surface integral of the mass current density 

through the surface ∂Ω. Comparison of both results leads, together with Gauss’s 

theorem, to the equation of continuity 

 

  u t  .      (2.6) 
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In the special case of an incompressible fluid, we may assume the mass density to be 

a constant material parameter independent of time and space as already mentioned 

above. As a result, the equation of continuity simplifies to 

 

 0 u .       (2.7) 

 

In order to obtain the second governing equation, the equation of motion for the 

velocity field u, we may again consider a domain Ω, which is of arbitrary shape, but 

fixed and apply the conservation of momentum. The rate of change of the ith 

component of the total momentum inside Ω may be written as 

 

  

Ω

ititi

Ω

tit uututtΩP  )(d),(),(d),( rrrr .  (2.8) 

 

The momentum Pi (Ω,t) is influenced by convection similar to the mass M (Ω,t) but 

Pi (Ω,t)  also changes under the action of external forces according to Newton’s 

second law. In general, we may distinguish contact forces from body forces. 

Whereas, the former act on the surface ∂Ω of Ω, e.g. pressure forces and viscosity 

forces, and the latter act on the volume of Ω, e.g. gravitational and magnetic forces. 

In summary, we may write the rate of change of the ith component of the total 

momentum inside Ω as  

 

),(),(

),(),(),(

bodyvisc

pressconv

tΩPtΩP

tΩPtΩPtΩP

itit

ititit




   (2.9) 

 

where the components ∂tPi 
force denote the respective contributions due to contact and 

body forces. We will skip a detailed discussion of the contributions, which can be 

found in (Bruus 2008) and directly present the result for the general equation of 

motion of a viscous fluid in integral form 

 

      

 Ω

iijijjij

ΩΩ

itit fpuunauu rr d'd)(d  (2.10) 

 

with -ni pda the ith component of the pressure force and the ith component of the 

viscous force σij’ nj da, where σij’ denotes the viscous stress tensor. The contribution 

fi dr describes an additional body force, which acts on the interior of Ω, e.g. a 

magnetic or gravitational force. By the combination of the pressure p and the viscous 

stress tensor σ’ to the full stress tensor σ and under the assumption of a Newtonian 

fluid, which means that the internal friction due to shear stress and the internal 

friction due to compression show only small variations and may be assumed as 
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constants, and an incompressible liquid, we obtain the Navier-Stokes equation as the 

governing equation of motion 

 

   fuuuu  2)(  pt .   (2.11) 

 

2.1.3 Microfluidics: a special case 

 

The non-linear term in the Navier-Stokes equation makes the mathematical treatment 

of (2.11) complex and difficult. However, in the special case of microfluidics, where 

usually low flow velocities are present, the term may be omitted under certain 

circumstances. In order to determine the regime, where the non-linearity can be 

omitted, The Navier-Stokes equation can be recast in a dimensionless form by 

substitution of all physical variables in terms of characteristic scales. In particular, 

this reformulation of the Navier-Stokes equation allows to introduce one effective 

parameter, the so-called Reynolds number 
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with the characteristic velocity U and length scale L of the system. The 

dimensionless Reynolds number allows to estimate the relevant contributions in the 

Navier-Stokes equation. In the case of small Reynolds numbers, Re << 1, inertia 

effects play a minor role. This flow regime is often referred to as creeping flow 

regime. The time dependence of the solution can be omitted and the non-linear term 

vanishes, the linearized Stokes equation  

 

 p u
2       (2.13) 

 

is obtained. In the special case of microfluidic devices, the characteristic velocities 

are usually on a scale of U = O(10-4 m/s) and the geometrical features have 

characteristic length scales L = O(10-4 m). If we assume the density and viscosity to 

be ρ = O(103 kg/m3) and η = O(10-3 Pa·s), which corresponds to water at room 

temperature, we obtain Re = O(10-2) << 1. Therefore, in the special case of 

microfluidics, inertia effects may be omitted and the fluid flow is described by the 

linearized Stokes equation (2.13), which may be solved analytically if highly 

symmetric problems are considered. One of the most famous examples is the 

Poiseuille flow through a cylindrical tube of length L with the radius R. Under the 

assumption of a pressure difference Δp between the tube entrance and exit, the 

solution for the flow profile results with ‘no-slip’-condition to the parabolic profile 
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Fig. 2.3: Poiseuille flow through a pipe,which results from a pressure difference Δp between 

the inlet and outlet, reprinted from (Weddemann, 2010). 
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Figure 2.3 shows a representation of the flow profile. A similar result can be found if 

two parallel plates are considered. In the case of the microfluidic channels that will 

be presented in this thesis, where the fluid flow results from a pressure difference of 

the inlet and outlet reservoirs, neither (2.14) nor the result for parallel plates, describe 

the flow profile exactly. The actual resulting flow profile has to be calculated by 

numerical methods, e.g. finite element methods (FEM). Nevertheless, the general 

properties of the flow profiles obtained will still be comparable to the Poiseuille flow 

which means that the velocity of the boundary layer of the fluid at the channel walls 

will vanish (‘no-slip’-condition) and the shape will be comparable to the profile 

obtained from (2.14). 

 

2.1.4 Diffusion and related problems 

 

In addition to the steady time-independent flow solutions obtained from the 

linearized Stokes equation (2.13), the time-dependent phenomena of diffusion need 

to be discussed. The important equations for diffusion can be derived from two 

fundamental assumptions: (1) a substance moves down its concentration gradient and 

(2) the conservation of mass is satisfied. The material flux J depends on the 

concentration gradient dc/dx if we restrict the discussion to a one-dimensional 

problem. We obtain Fick’s first law  
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There is a linear relation between the material flux and the concentration gradient. 

The constant D is called the diffusivity of the substance. We obtain a change in the 

concentration c(x) within a small one-dimensional (liquid) element of length dx 

where the material flux into dx and out of dx differs as a direct consequence of the 

assumption of conservation of mass. Therefore, we may conclude for the difference 

of the material fluxes with respect to the region dx in the time interval Δt that 
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By rearrangement of (2.16) and conversion to derivatives, we find 

 

 
x

J

t

c









      (2.17) 

 

which can be combined with (2.15) and results in Fick’s second law, the diffusion 

equation, if D may be assumed to be constant, 
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The diffusion equation can also be derived for the three-dimensional case analogous 

to the discussion above, see e.g. (Jackson 2006). Based on the diffusion equation, the 

time evolution of a concentration distribution can be calculated. In the following, two 

specific examples will be analyzed: (1) the diffusion from a point source and (2) the 

diffusion across an interface. In order to calculate the one-dimensional diffusion from 

a point source, we define the initial concentration distribution with the Dirac delta 

function as c(x,t = 0) = c0δ(x). The solution of (2.18) to this initial condition is given 

by the Gaussian distribution 
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In the context of microfluidic systems, the diffusion across an interface is a more 

common problem, which needs to be addresses. Experimentally, this can be realized 

by filling a tube with a solution from the one side and water from the other side as 

schematically presented in figure 2.4.  
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Fig. 2.4: Schematic representation of a tube filled with two fluids with analyte concentrations 

c = 0 and c = c0. The interface at x = 0 separates the different concentration regimes. As time 

evolves intermixing results solely from the diffusion of the analyte species towards the lower 

concentrated phase according to (2.22) if no convective flux is present. 

 

After filling the tube, the concentration is c = c0 for x > 0 and c = 0 for x < 0, if we 

choose the interface of the liquid as the origin and we assume the filling of the tube 

to occur without intermixing of two solvents. In order to solve the diffusion equation 

with the initial condition described above, the region with c = c0 can be described as 

an infinite row of infinitesimal point sources. Each of those point sources 

individually shows an evolution of the concentration according to (2.19). The 

solution to the problem of diffusion across an interface is then the superposition of 

the point source solutions, since the diffusion of a solute from one of the point 

sources occurs independently of the solute concentration which spreads from the 

other point sources. The linearity of this behavior directly results from the first 

fundamental assumption which already led to (2.15). Therefore, the concentration 

distribution can be written as 
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with x’ the center of a point source and dx’ the respective distance between adjacent 

point sources. With the complementary error function 
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the results for the concentration distribution in (2.20) can be written as 
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Fig. 2.5: Time evolution of the concentration distribution according to (2.22). The diffusivity 

was chosen to D = 1 m2/s. 

 

The result for the time evolution of c(x) is plotted in figure 2.5 for a diffusivity of 

D = 1 m2/s and times t1 = 10-6 s, t2 = 10-4 s, t3 = 10-3 s, t4 = 10-2 s. In particular, we 

find that the slope at x = 0 reduces in steepness as time evolves. The result for the 

diffusion across an interface (2.22) will be used in section 5.2 to allow to estimate the 

mixing efficiency of the microfluidic gate structure.  

 

2.1.5 Spherical objects in a liquid 

 

For small spherical objects, which are dissolved in a liquid, the forces exerted on the 

particles are either induced by the fluid flow or arise from external sources. 

Examples for the external forces are gravity and buoyancy, but also magnetic 

contributions which will be discussed in section 2.2 in more detail. For the sake of 

simplicity, all external force contributions will be summarized in Fext in the 

following. The transfer of momentum towards the particles can only be calculated if 

the flow itself is known. As explained in section 2.1.3, there is usually no analytical 

solution to the velocity profile and, consequently, the momentum transfer to the 

particles needs to be evaluated by numerical methods. However, in the case of very 

small Reynolds numbers (Re << 1), Stokes drag law  

 

  uvF  hyddrag 6 R      (2.23) 

 

applies if a sphere with hydrodynamic radius Rhyd moves at the speed v in a flow u. If 

very small particles are considered, inertia effects may be omitted and the particle 

velocity v instantaneously equals the flow velocity of the surrounding liquid u. If the 

particle diameter is assumed to be small compared to the geometrical size scale L, the 
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particle can be described as a point mass of density ρpart and Newton’s second law 

may be applies to calculate the behavior of the particle. The particle velocity is then 

given by (Warnke 2003) 
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if in addition to the momentum transfer from the flow, external forces influence the 

particles. In the special case of a spherical object in a liquid, the diffusivity is given 

by 
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where kB and T denote Boltzmann’s constant and the temperature, respectively. The 

relation (2.25) was derived by Einstein (1906) in his work on the explanation of 

Brownian motion. 

 

 

2.2  Superparamagnetic beads and dipolar interaction 
 

For magnetic-based microfluidic applications, superparamagnetic particles are 

mainly used. A schematic representation of a superparamagnetic bead is shown in 

figure 2.6. These usually micron-sized spherical objects consist of three main 

components: (1) nanometer-sized superparamagnetic particles embedded in a (2) 

polymer matrix, which is encoated in a (3) functional ligand shell allowing for the 

optional specific of non-specific binding of additional components to the particle 

surface (molecules, DNA strands, cells etc.). The magnetic moment of the 

microbeads can be adjusted by external field contributions and demagnetization on 

short time scales can be achieved once the perturbation is switched off again 

(Weddemann et al. 2010 c). At room temperature the magnetic state of free 

superparamagnetic particles is governed by thermal contributions which exceed the 

inner anisotropy energy. Such interplay results in a rapid fluctuation of the 

orientation direction of the magnetic moment, where orientation changes occur on 

smaller time scales than the minimum measurement times. Consequently, a free 

superparamagnetic particle resembles a virtually non-magnetic characteristic. If the 

particle is brought into a magnetic field, a resulting torque leads to the alignment of 

moment vector and field axis which reduces the fluctuation and entails an effective 

magnetic moment m. If a spherical homogeneously magnetized particle is  
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Fig. 2.6: Schematic representation of a superparamagnetic bead. 

 

considered, the external magnetic field H is given by the dipolar expression (Jackson 

1975) 
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where  , denotes the Euclidian inner product. 

The force which acts on a particle with magnetic moment m exposed to an external 

magnetic field Hext is given by (Zborowski et al. 1999) 

 

   ext0 HmF        (2.27) 

 

with 0µ  the permeability of the vacuum. In particular, no resulting forces can be 

reported if an isolated magnetic object is placed in a homogeneous magnetic field. 

Employing rotating magnetic fields introduces additional effects due to shear 

stresses, which may act on particle agglomerates as presented in chapter 4. A first 

estimation of the governing physical driving force can be obtained from calculation 

of the dimensionless Mason number 
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by comparison of typical scales of hydrodynamic and magnetic contributions, where 

η is the viscosity of the fluid surrounding the particles, ω the angular velocity of the 

magnetic field, χ the effective dimensionless susceptibility of the beads and H 

denotes the field strength. The Mason number was originally introduced in a different 

form for the study of electrorheological fluids under shear (Gast and Zukoski 1989). 

Different definitions of the Mason number can be found in the literature (Melle et al. 

2003; Bosis et al. 2002). We will employ the definition of the Mason number (2.28) 

given by Petousis et al. (2007). 
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3 Experimental methods 
 

This chapter describes the experimental methods employed to fabricate and 

characterize microfluidic structures. Additionally, the techniques for the generation 

of external magnetic fields are presented. Furthermore, methods for the evaluation of 

experimental data are discussed.  

 

3.1 Fabrication of microfluidic channel structures 
 

All microfluidic channel structures in this thesis were fabricated by the employment 

of standard soft-lithography methods of polydimethylsiloxane (PDMS) as vastly 

described in the literature (Friend and Yeo 2010; Ng et al. 2002). The general 

fabrication steps can be summarized as shown in the flow chart in figure 3.1. In the 

following, the employed fabrication steps for the microfluidic systems used in this 

work are described. 

In our experiments, we use classic choice of PDMS which is Dow Corning’s Sylgard 

184 Kit. This is a two component kit which contains a curing agent and the base 

polymer. The cross-linker and elastomer are mixed in a mass ratio of 1:5. The 

rigidity of the PDMS can be reduced by an increase of the base polymer contribution. 

As shown in figure 3.1, the first step during the channel fabrication is to draw and 

fabricate a mask in order to use it afterwards for the structuring of a mold. The masks 

used in this work were all prepared by optical laser lithography: a glass slide is 

covered with a positive photo resist which can be patterned using a light source and a 

developer bath. After patterning, the glass slide with the residual resist is covered 

with a thin metal film (usual thickness about 100 nm) by magnetron sputtering. The 

metal film can be removed along with the residual resist from the glass substrate in a 

remover bath. A more detailed description of the laser lithography process which 

includes all relevant process parameters can be found in (Wittbracht 2009).  

 

3.1.1 Mold fabrication 

 

The molds are fabricated by optical lithography of the negative photo resist SU-8 

3025 (Microchem) on previously cleaned silicon wafers. In a clean room, the silicon 

substrates are coated with the negative photo resist in a spin-coater. The thickness 

dependence on the spin-coating parameters of the resist can be obtained from the 
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manufacturer. Afterwards, the photo resist needs to pass through three heating cycles 

in a furnace: 

 

(1) soft-bake: 65°C for 5 min, 95°C for 15 min, cool to room temperature 

(2) post-exposure bake: 65°C for 5 min, 95°C for 5 min, cool to room 

temperature 

 (3) hard-bake: 160°C for 15 min, cool down to room temperature 

 

As the name of the second heating step already suggests, the exposure is performed 

after the soft-bake. The exposure of the SU-8 3025 to the ultraviolet light from the 

lithography system (Thermo Oriel) and the following post-exposure bake lead to an 

increased chemical stability of the exposed portions of the resist. Therefore, in the 

following development step, the unexposed regions of the resist can be washed away 

with the developer solution mr-dev 600 (Microresist). Finally, the hard-bake further 

increases the mechanical stability of the mold and allows to reliably reuse the mold 

after casting the PDMS. 

 
Fig. 3.1: Soft-lithography fabrication process for microfluidic channels. (Reprinted with 

permission from Friend and Yeo 2010. Copyright 2010, American Institute of Physics) 
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3.1.2 Casting, curing, cutting and bonding 

 

For casting, the two components of PDMS are thoroughly mixed and degassed. 

Afterwards, the PDMS mixture is poured onto the mold and a curing procedure is 

performed. In our case, curing is obtained from heating the PDMS-covered mold to 

80°C for 4 hours. Finally, the PDMS may be peeled off the mold and cut according 

to the designated geometry which includes inlet and outlet reservoirs. 

After the release and cutting of the PDMS structure, the obtained microfluidic 

channels need to be sealed. In addition, the surface of the fabricated PDMS will be 

hydrophobic, which is unfavorable for the designated microfluidic application, since 

water-based suspensions of magnetic beads are employed. The plasma oxidation of 

the PDMS allows for both reducing the hydrophobicity and bonding of the PDMS to 

a substrate. Plasma bonding entails the formation of covalent bonds between two 

plasma treated surfaces; in our case, the PDMS channel structures and a previously 

cleaned silicon wafer terminated with silicon oxide. Details on the method of plasma 

treatment and the plasma chamber that was used can be found in (Hellmich 2006). 

 

 

3.2 Optical microscope 
 

Experiments are recorded with the digital optical microscope shown in figure 3.2. 

The commercially available microscopy system Keyence VHX-600 is equipped with 

a CCD camera and allows for different magnifications by the employment of zoom 

objectives. For the experiment presented in this thesis, the VH-Z100UR objective is  

 

 
 

Fig. 3.2: Optical microscope Keyence VHX-600 with VH-Z100UR zoom objective. 
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used. This setup allows to observe magnetic micro beads with a maximal spatial 

resolution of about 0.375 µm at a maximum frame rate of 28 frames per second (fps). 

The adjustable stand of the microscope together with the pivotable stage allows for a 

simple integration of the magnetic field setups presented in the following section. 

 

 

3.3 External magnetic fields 
 

Basically, two different types of magnetic field setups are used throughout the 

experiments: (1) a coil setup for the generation of a homogeneous magnetic field 

with static orientation and (2) a magnetic stirrer for the generation of a rotating 

magnetic field.  

 

3.3.1 Coil setup 

 

The coil setup which is used for the experiments presented in chapter 5.1 is shown in 

figure 3.3. It consists of two electromagnetic coils with a rectangular cross-section, 

which are mounted onto a coil frame. Together with an iron core, this coil setup 

allows to generate a homogeneous magnetic field at a field strength of 490 Oe at the 

sample position between the opposing pole pieces. In order to change the relative 

orientation of the microfluidic channel structure and the external magnetic field, the 

sample is mounted onto the stage of the optical microscope, which can be rotated. 

 

 
 

Fig. 3.3: Image of the coil setup for magnetic field generation 
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3.3.2 Magnetic stirrer 

 

The rotating magnetic fields employed in the experiments presented in the chapters 4, 

5.2, and 6 are generated by a commercially available magnetic stirrer (RCT basic, 

IKA GmbH, Germany) as often employed in chemistry laboratories to accelerate 

chemical reactions. In contrast to the usual application, no macroscopic magnetic stir 

bar is present in the experiments, but the magnetic micro particles in the bead 

solution are subjected to the field generated by a mechanically rotated permanent 

magnet. The magnetic stirrer setup shown in figure 3.4 may be used in a frequency 

regime between 50 rpm and 1500 rpm. However, due to stability of the rotation 

movement, preliminary experiments have revealed that the frequency regime 

between 50 rpm and 900 rpm is feasible for experiments due to the occurrence of 

mechnical vibrations at the sample position if higher rotation frequencies are 

employed. The variation of the magnetic field strengths is limited to the use of 

different permanent magnets in the stirrer setup. Two different stirrers are equipped  

 

 
Fig. 3.4: Image of the magnetic stirrer setup. 
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with two different permanent magnets, which result in a maximum field strength of 

330 Oe and 690 Oe at the sample position. According to video microscopy results of 

low concentrated bead solutions under the influence of the static magnetic fields 

generated by the permanent magnets, the magnetic field gradient at the sample 

position does not result in a particle movement if the sample is positioned in the 

centre of the stirrer setup. Therefore, we may omit the gradient of the magnetic field 

and assume the magnetic field to be homogeneous at the sample position. 

 

 

3.4 Data evaluation 
 

In all experiments presented in this thesis, microscopy data are recorded with the 

Keyence VHX-600. Based on the microscopy images or the video footage, further 

analysis of the data is required. Basically, three different aspects need to be 

addressed: (1) in the experiments which are performed in microchannel structures 

(chapter 5), the movement of particles or superstructures has been monitored. In the 

following, we will refer to this as particle tracking, regardless, if isolated particles or 

superstructures are of interest. In all studies the (2) counting of particles, 

agglomerates or objects in general needs to be achieved and, in particular, in the 

context of surface patterning as presented in chapter 6 the investigation of the (3) 

structural properties of agglomerates will be addressed.  

Manual particle tracking is performed with the free software ImageJ (Rasband 1997-

2011) and the MtrackJ plugin (Meijering et al. 2012). In order to count particles, two 

methods are feasible: (a) manual counting of individual particles and (b) counting of  

 

 
 

Fig. 3.5: Optical microscopy image of a highly ordered two-dimensional assembly under the 

influence of a magnetic field rotating at 400 rpm (a). The FFT of (a) shows the hexagonal 

symmetry of the assemblies and the high degree of ordering (b). (c) Voronoi tessellation of (a) 

where cells with 4-, 5-, 6- and 7-fold symmetry are dyed in yellow, red, white and green, 

respectively. 



28 

particles based on the number of pixels within a specified area at a defined color 

value. In comparison with the manual counting, the pixel-based counting of particles 

entails an error of about 2.4%, which can be attributed to fluctuation of contrast 

within the microscopy images. The structural properties of resulting agglomerates are 

evaluated by manual counting in the case of vacancies (zero-dimensional defect 

structures) and grain boundaries (one-dimensional defects). Grains are defined as 

regions with unbroken hexagonal symmetry. Furthermore, the structural properties of 

larger grains can also be identified with fast Fourier transforms (FFT) of the 

microscopy images. The FFT can be performed with ImageJ. An example of a 

microscopy image of an agglomerate and the corresponding FFT of the image is 

presented in figure 3.5(a) and figure 3.5(b), respectively.  

As can be seen in the FFT image, we can directly identify the hexagonal ordering of 

the clusters. Additional information on the structural properties can be obtained from 

the Voronoi tessellation of figure 3.5(a) which is presented in figure 3.5(c). Voronoi 

cells with 4, 5, 6 and 7 neighbors are dyed in yellow, red, white and green, 

respectively. The Voronoi tessellation also shows the high degree of hexagonal 

ordering inside the clusters, but additionally reproduces the frustration along the edge 

and around the two vacancies in the middle of the cluster. 

 

 

3.5 Magnetic beads 
 

All superparamagnetic beads employed in this work are commercially available and 

were purchased from Invitrogen Dynal. In dependence on the actual experimental 

conditions either Dynabeads® MyOneTM, Dynabeads® M-270 or Dynabeads® M-280 

were used. The beads are suspended in adequate solution. In case of the Dynabeads®  

M-270 SA (streptavidin functionalization), the carrier liquid is, e.g. PBS buffer 

solution. Datasheets and manuals for the suspensions of these spherical beads can be 

obtained from the manufacturer. Some characteristics of the employed microparticles 

 

Table 1: Characteristics of the magnetic beads used in this work according to Fonnum et al. 

(2005). CV denotes the standard deviation of the bead diameter distribution in percentage of 

the mean bead diameter. 

 

Bead Diameter (µm) CV (%) ρ (g/cm3) Iron (mg/g) 

 

MyOneTM 1.05 1.9 1.7 255 

M-270 2.80 < 3 n.a. n.a. 

M-280 2.83 1.4 1.4 118 
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are summarized in table 1. In particular, the small standard deviations of the size 

distributions are important for experiments, which involve ordering of particles. As 

vastly described in literature, particle size distributions with small standard 

deviations are beneficial for the ordering of particle assemblies (Ennen 2008; Sudfeld 

2005; Korgel et al. 1998; Motte et al. 2005; Ohara et al. 1995) and, therefore, the 

standard deviations of the particle size distributions also influence the magnetic field 

induced assembly. 
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4 Stability and formation dynamics of dipolar 

coupled superstructures 
 

In order to develop functional components with the ability to assemble on-demand, it 

is essential to understand their fundamental properties and the underlying formation 

dynamics. The investigation of microscaled systems allows to understand the 

magnetic force contributions relevant for the formation, since the size and time scales 

of these systems allow for the dynamic observation by optical microscopy.  

As described in section 2.2, no magnetic force is obtained if an isolated magnetic 

particle is placed in a homogeneous magnetic field. However, for sufficiently high 

particle concentrations, the interaction becomes increasingly important and may 

result in agglomeration of contiguous magnetic objects as schematically summarized 

in figure 4.1. If the distance between two particles is not too high, the alignment of 

their magnetic moment vectors entails an attractive force which leads to the 

formation of one-dimensional chain structures (figure 4.1(a – c)). The chain direction 

is parallel to the field axis as long as viscous drag forces are small enough to be 

omitted. The chain orientation follows the field vector if changes are carried out 

adiabatically (figure 4.1(d)). The chain rotation is damped by the viscosity of the 

carrier liquid which exerts shear forces along the chain and leads to a phase lag 

which results in a mismatch of the chain direction and magnetic field orientation if 

rotational magnetic fields are considered. If the angular field velocities exceed a 

critical limit, stresses surpass the breaking point of the chain and such rod structures  

 

 
Fig. 4.1: Schematic representation of the magnetic field induced assembly of magnetic 

particles for different configurations of the external magnetic field. 
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cannot maintain their stability. As described in this chapter, chain breakage is 

followed by reorganization of particles in highly ordered two-dimensional sheets 

(figure 4.1(e)). The results presented in this chapter originate from a project which 

was experimentally realized together with Bernhard Eickenberg and have been 

published in (Wittbracht et al. 2011) and (Wittbracht et al. 2012 b). 

 

4.1 One dimensional agglomerates 
 

The fundamental behavior and stability of one-dimensional magnetic agglomerates 

have been investigated by numerous research groups. As can already be concluded 

from (2.28), the properties of these combined objects strongly depend on the external 

magnetic field and, therefore, most studies focus on the stability behavior in 

dependence of the field characteristics. We immediately learn from equations (2.26) 

and (2.27) that the magnetic moments involved determine the magnetic force. Under 

the assumption that all other related parameters are fixed, an increase in the magnetic 

force can be found, if the magnetic moment is increased. Consequently, the chain 

stability is enhanced, if larger magnetic moments are present. This relation was 

directly proven in the force spectroscopy experiments of Furst and Gast (1999). They 

employed dual-trap optical tweezers to determine rupture forces of particle chains 

parallel and perpendicular to the applied magnetic field direction. The analysis of the 

micromechanics of dipolar particle chains was realized with 0.85 µm polystyrene 

beads with embedded mono-domain iron-oxide particles. Typical rupture forces of 

particle chains as determined by Furst and Gast lie in the range of 6.4 pN to 45 pN 

depending on the strength of the dipoles. The influence of a rotating magnetic field 

on paramagnetic particle chains was investigated by Vuppu et al. (2003) by video 

microscopy of rotating chains immersed in a carrier liquid. Up to a critical rotation 

frequency, the angular velocities of chain and field rotations were identical. A further 

increase of the field frequency resulted in chain breakage due to the viscous drag 

forces parallel to the chain axis and reordering of the chain fragments is obtained. In 

particular, they were able to show the existence of an S-shaped dislocation of 

particles in the assembly in the frequency transition regime. At such frequencies, 

magnetic cohesion and viscous shear forces are on the same scale. Such S-dislocated 

states were further investigated by Petousis et al. (2007) who characterized the chain 

breaking event in dependence on the Mason number and lengths of individual chains. 

Within their works, they developed a discrete theoretical model and were able to 

conclude that the maximum number of particles in a stable chain is proportional to  

Mn -1/2. In the following, our experimental findings on the formation of 

superstructures and the transient dynamics will be presented. 

For the experimental realization, commercially available superparamagnetic 

Dynabeads M-280 streptavidin are employed (Fonnum et al 2005). These beads have 
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Fig. 4.2: Optical microscopy image of the magnetic bead assemblies during field rotation. 

Two-dimensional particle arrays (continuous) can be distinguished from bead chains (dashed) 

and individual particles (dotted). 

 

a mean diameter of 2.8 µm with a standard deviation of 1.4% of the mean bead 

diameter and are delivered at a concentration of 10 mg/ml. Three dilutions of the 

bead solution at concentrations of 83 µg/ml, 100 µg/ml and 125 µg/ml are prepared. 

The rotating magnetic field is realized by the magnetic stirrer setup as described in 

section 3.3.2 with a magnetic field strength of 330 Oe at the sample position. 

According to the data obtained by Fonnum et al. (2005), for the applied magnetic 

field strength, the bead magnetization exhibits a linear response. At the beginning of 

the experiment, a 1 µl droplet of the bead solution is deposited on top of a silicon 

wafer which is situated in the centre of the magnetic stirrer hotplate. During the 

spotting procedure, the field direction is kept stationary which results in the assembly 

of particles within chain structures. After 3 minutes, the field is set into rotation with 

different frequencies and microscopy images are collected at fixed time steps.  

Exemplarily, a typical microscopy image of magnetic bead assemblies in a rotating 

magnetic field is shown in figure 4.2. Three different classes of objects can be 

distinguished: (1) two-dimensional particle arrays/clusters (2) bead chains with high 

aspect ratio consisting of more than 4 beads (3) individual beads and small 

agglomerates which consist of a maximum of up to 4 beads. The separation between 

the classes (2) and (3) is chosen to match the expectation value of superstructures 

prepared without a magnetic field as we will see in chapter 6. 

We start the analysis of the dynamics by focusing on the evolution of the mean 

chain length in respect to various experimental parameters. The dependence of the 
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Fig. 4.3: The mean chain length decreases with increasing rotation frequency of the applied 

external magnetic field and with increasing particle concentration. 

 

mean chain length on the rotation frequency of the magnetic field and the particle 

concentration is shown in figure 4.3. Corresponding microscopy images are 

presented exemplarily in figure 4.4. The micrographs show characteristic particle 

structures for 200 rpm, 500 rpm, and 750 rpm. The samples only contain a small 

degree of isolated beads but the formation of two- dimensional clusters was not 

initiated. In particular, transitional objects can be identified as exemplarily presented 

in the upper right corner of figure 4.3(a). The S-shaped chain agglomerate results 

from the interaction of the chain with the surrounding carrier liquid. Similar objects 

are also reported by Petousis et al. (2007) and Melle et al. (2003). 

The results presented in figure 4.3 are obtained from the evaluation of 

microscopy images taken 15 s after the initiation of the magnetic stirrer rotation. At  

 

 
 

Fig. 4.4: Optical microscopy images in (a), (b) and (c) show characteristic chains for rotation 

frequencies of 200 rpm, 500 rpm and 750 rpm, respectively. In the upper right corner of (a) a 

transitional S-shaped chain object can be observed. 
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Fig. 4.5: The mean chain length decreases with increasing time. For high rotation frequencies 

of the magnetic field, a rapid decay of the mean chain length can be observed. 

 

the chosen time, a high concentration of bead chains is obtained. With increasing 

field rotation frequency, a decreasing mean chain length for all investigated 

concentrations can be reported. 

Qualitatively, the frequency dependence of the mean chain length is in good 

agreement with the experimental work of Vuppu et al. (2003) who already reported a 

slow decrease of the chain length with increasing rotation frequency of the external 

field in the range between 200 and 450 rpm. In comparison to the theoretical results 

by Petousis et al. (2007), we can conclude that we also obtained a decrease in the 

stable chain lengths with increasing rotation frequency of the external magnetic field. 

Surprisingly, a higher bead concentration also entails lower mean chain lengths. 

Qualitatively, this effect can be understood equivalently to the nucleation dynamics 

according to the LaMer model (LaMer and Dinegar 1950) for nanoparticle 

fabrication: In a first step, particle nuclei are formed if the local concentration 

exceeds a critical concentration threshold. The higher the concentration, the more 

nuclei are formed during this process. With monomers forming nuclei, the monomer 

concentration falls below the critical threshold and no additional nucleation processes 

take place. Instead, the remaining free monomers contribute to the growth of 

particles. If the monomer concentration is equally distributed along the sample, larger 

particles are obtained the less particle nuclei are formed in the previous step. 

Therefore, high initial concentrations may result in a high number of small particles 

while a small number of large clusters can be obtained via employment of a low 

concentration of monomers. This mechanism corresponds to the magnetic bead chain 

formation if we replace the monomers by the magnetic beads and the particle nuclei 
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by small one-dimensional assemblies: For high bead concentrations, a high degree of 

small chains are formed due to the higher probability of initial cluster formation.  

However, variations for the different concentrations are in the range of 1 to 2 

beads in length only. Therefore, we may average over the concentrations for further 

data series. If we assume the growth of clusters to be governed by the addition of 

bead chains to a two-dimensional cluster, the details about the microscopic process 

remain uncertain. However, the evolution of the mean chain length with time may 

lead to further understanding of the dynamics involved. The time-dependence of the 

chain lengths for different rotation frequencies is presented in figure 4.5. The mean 

chain length decreases with increasing time for every set of data presented. 

Furthermore, a descending order of the mean chain length with increasing rotation 

frequencies is found, which corresponds to the findings displayed in figure 4.3 and 

discussed above. At this point, it is not clarified whether the chains as a whole or 

partially attach to clusters, because both processes may lead to a reduction of the 

mean chain length with increasing time. 

 

4.2 Two-dimensional agglomerates 
 

In order to analyze the formation and growth mechanism of two-dimensional 

magnetic bead arrays, the time-dependence of the object ratio is evaluated. The 

results are shown in figure 4.6. No significant time dependence of the object ratio for 

free particles is obtained, whereas the ratio of objects classified as chains and clusters  

 

 
 

Fig. 4.6: Object ratio in respect to time for rotation frequencies of 250 rpm (black), 500 rpm 

(blue) and 750 rpm (red) classified according to the object superstructure. 
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decreases and increases with time, respectively. The growth of two-dimensional bead 

arrays is governed by the addition of chains to previously formed clusters. The time 

dependence of the object ratio may also be used as an indication for the microscopic 

processes involved in the cluster formation: At a rotation frequency of 750 rpm, we 

obtain a saturation value for the ratio of bead chains which can be found in the 

solution after approximately 60 s. If we assume that bead chains attach as a whole, 

the chain ratio would decrease with time and no saturation value would be found. 

Therefore, we may conclude, that both processes are involved: During the cluster 

growth, chains are not only attached as a whole but also partially. The time-

dependent behavior of the mean cluster area is presented in figure 4.7(a) which 

shows an increase of the cluster size with time. The experimental observations reveal 

a mean cluster size of about 20 particles after less than 10 s of exposure at low 

frequencies and concentrations. At higher rotation frequencies, larger clusters are 

formed due to the reduced chain stability and, consequently, a higher probability of 

chain addition to previously formed agglomeration seeds. In particular, the 

adjustment of field frequency and bead concentration in the solvent allows to control 

the cluster size after a certain exposure time which will define the working regime of 

future devices. 

In order to quantify the growth dynamics in more detail, we introduce the bead ratio  
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with Nobj (t) the time-dependent number of beads within a certain object class and 

Nall (t) the overall number of beads within the sample. The evaluation of cbead for 

different object classes and rotation frequencies is presented in figure 4.7(b). Clusters 

grow at the cost of chains while the ratio of individual beads and small 

agglomerations shows variations on the scale of statistical fluctuations. They are 

randomly dispersed along the sample and have no further magnetic beads nearby to 

interact with and, therefore, do not form larger assemblies. 

Since the concentration of individual beads can be assumed to be time-

independent, the transition from individual beads to chain-like agglomerates can be 

omitted for the cluster formation dynamics. Therefore, only the transition from chain-

like agglomerates to clusters has to be taken into account for the time-dependent 

formation dynamics. The formation of clusters resembles the case of a first order 

reaction comparable to deposition of monomers during the growth of nanoparticles 

(Sugimoto 2001), therefore, we may conclude that the decay of the concentration of 

particles in chain structures cchain can be assumed to be proportional to the 

concentration itself. Hence, the cluster growth follows the exponential law 
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Fig. 4.7: Cluster growth dynamics. (a) The mean cluster area increases in respect to time and 

depends on the rotation frequency of the magnetic field. (b) Evolution of the object 

concentrations cbead for confinements of different dimensions. (c) Time constant achain obtained 

from exponential fits to the experimental data represented in subplot (b). 
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with achain(f) the frequency dependent chain dissociation rate. In general, the chain 

dissociation rate would be expected to be dependent on the Mason number (2.28), but 

as only the rotation frequency of the magnetic field is changed in the experiments, we 

will limit the analysis to the frequency dependence of achain which can be obtained 

from the data presented in figure 4.7(b) if the data points are fitted according to 

equation (4.2). This simple model is in very good agreement with the experimental 

observations. In particular, this approach allows to estimate the frequency 

dependence of achain. As shown in figure 4.7(c), a linear relation, achain ~ f, is in strong 

agreement with the obtained experimental data along the analyzed frequency regime. 

This behavior can be understood in the frame of a very simple model: Due to the 

regarded length scales, the Reynolds number of the system satisfies Re << 1, and, 

consequently, the stresses which act along the chain are governed by Stokes friction. 

Therefore, the fluid exhibits forces that are linear in the chain velocity which itself is 
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linear in the chain rotation frequency and the chain length and, consequently, an 

increase of frequency results in a linear increase of chain lengths that will no longer 

maintain their stability. For the frequencies discussed, this behavior can be seen in 

figure 4.3. In the case of a wider regime of frequencies, this is no longer true, but the 

maximum chain length decreases ~Mn -1/2 and consequently, if only the frequency 

dependence is studied ~f -1/2 according to Petousis et al. (2007). Our results are in the 

range of Mason numbers between 0.001 for 250 rpm and 0.0025 for 750 rpm 

according to the magnetic data for M-280 beads presented by Fonnum et al. (2005). 

In this Mason number regime, Petousis et al. obtained a Mason number dependent 

decrease of the chain stability, which can be approximated linearly. In the case of a 

wider Mason number regime, the above stated proportionality to Mn -1/2 is reported 

due to additional instability phenomena, which originate from the increasing phase 

lag of rotating chains as the field rotation frequency is increased. The obtained results 

for the frequency dependent chain dissociation rate and mean size of one- and two-

dimensional objects allow to adjust the experimental parameters for specific 

microfluidic applications based rotating magnetic fields. 

To conclude, we have investigated the formation of two-dimensional magnetic 

bead arrays under the influence of a rotating magnetic field. The growth process 

dynamics of bead clusters is governed by the addition of bead chains to previously 

formed agglomeration seeds and may be characterized as a first order reaction. Since 

the formation dynamics are described by exponential laws in respect to time, large 

clusters can already be observed after short exposure times. This particular finding 

supports the applicability of such agglomerations as switchable microfluidic 

components triggered by an external magnetic field. According to our findings, it 

should be possible to realize switching times down to 10 s, however, with various 

parameters free to adjust the cluster properties to specific needs, the setup may be 

further optimized in this regard. In particular, we found the rotation frequency to be 

linearly connected to the time constant for the assembly of cluster-like objects which 

could be related to the increasing forces on bead chains with increasing rotation 

frequencies due to Stokes friction for the frequency regime up to several 100 rpm. 

Therefore, the results show the trend to obtain even higher cluster formation rates at 

higher field frequencies. The choice of a suitable rotation frequency will be of great 

importance for the design of microfluidic applications involving micro bead arrays, 

e.g. programmable valves. Concerning such applications, future experiments need to 

be carried out in order to analyze the stability of assembled clusters against fluid flow 

induced shear stresses and transitions between open and closed states. 
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5 Direct employment of dipolar coupling in 
microfluidic devices 
 

In chapter 4 the fundamental behavior with respect to formation dynamics and 

stability of dipolar coupled superstructures which consist of superparamagnetic beads 

are analyzed. In dependence of the dimensionality of the particle agglomerates 

various applications are possible. Since the dimensionality strongly depends on the 

applied magnetic field properties, applications for different external magnetic field 

configurations are presented. The results are also published in (Weddeman et al. 

2011), (Wittbracht et al. 2012 a) and (Wittbracht et al. 2012 b)  

 

5.1 Employing a static magnetic field for the control of 

particle flow in microfluidic devices 
 

This section focuses on the possibility to use the dipolar coupling of particles in 

diluted magnetic particle suspensions in order to achieve a controlled particle flow. 

As already discussed in chapter 4, the formation of chain-like agglomerates occurs on 

small time scales and stability of these objects is maintained if shear stresses do not 

surpass critical values. Therefore, the flow of particle agglomerates may be 

controlled via the relative orientation of the microfluidic channels and the external 

homogeneous magnetic field. Since a macroscopic magnetic field can be used for the 

flow control, no magnetic components on the microscale are necessary for the 

operation of the proposed microfluidic device. 

In order to discuss the operation principle of the proposed microfluidic geometry 

a schematic representation of the main components is presented in figure 5.1. A 

reservoir of circular shape is connected to a rectangular channel (figure 5.1(a)). If a 

pressure difference between the inlet and outlet is assumed, the expected flow profile 

at the junction, is obtained from (2.13) via finite element simulations and depicted in 

figure 5.1(b). The simulations were performed by Alexander Weddemann. When 

immersed in a homogeneous magnetic field H the magnetic moments of diluted 

particles within the microfluidic structure aligns with the external field direction. If 

the particle concentration is sufficiently high, adjacent particles interact with the 

stray fields of neighboring particles, which results in an attractive force. As a result, 

the dipolar coupling of the particles entails a self-assembly process as presented in 

figure 5.1(c). The movement of sufficiently long chains is determined by the angle 

between the chain axis and the fluid flow direction. For large angles, the chains are 

blocked at the junction area due to interaction with the reservoir wall. Chains below a  
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Fig. 5.1: Schematic representation of the key components of the proposed microfluidic device. 

(a) Reservoir channel junction: the orientation of particle superstructures can be controlled by 

the external magnetic field direction and determines the movement. The hydrodynamic torque 

which results from the flow profile (b) has to be considered in addition to the magnetic torque. 

(c) Finite element simulation results show the self-assembly process of neighboring magnetic 

particles due to their stray fields. 

 

critical length may enter the channel, but their migration can be limited by the 

magnetic torque which is entailed by a mismatch of the external field direction and 

the flow direction through the channel. Based on the previous discussion of the 

reservoir-channel junction, an extended device, which employs the presented guiding 

strategy for particles, is shown in figure 5.2(a). This programmable reaction chamber 

consists of two inlet channels IB and ID and two outlet channels drain and waste, 

which are connected to the reaction site R. Alignment of the magnetic field direction 

parallel to the orientation B or D results in a particle flow from the respective inlet 

channels to the reaction site R. The particle flow can be blocked, if the magnetic field 

direction is changed, as already discussed above.  

The optical microscopy image in figure 5.2(b) shows the PDMS channel structure 

(upper) and a cross section of the SU-8 mold (lower). The 2 mm long channels have 

a width of 30 µm and a height of 25 µm. Dimensions of the semiaxes’ of the 

elliptical reaction site were chosen to 160 µm and 90 µm. During operation of the 

microfluidic device, the channel structures are positioned on the pivotable sample  
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Fig. 5.2: (a) Schematic representation of the microfluidic device for particle flow control. (b) 

Optical microscopy image of the PDMS channels (upper) and a cross section of the SU-8 mold 

(lower).  

 

holder of the Keyence VHX-600 (3.2) between the pole pieces of the coil setup 

described in 3.3.1. 

The reservoirs IB and ID are filled with 1 µl droplets of suspensions of  

Dynabeads® MyOneTM and Dynabeads® M-280. The different sizes of the particles 

allow to distinguish between particle species which enter the reaction site from 

different reservoirs. Particle concentrations of 10 mg/ml are applied in both cases. 

The sequence of optical microscopy images in figure 5.3 shows a typical fill/drain 

process. To ease the particle tracking M-280 beads are highlighted in red and 

MyOneTM beads are highlighted in blue. No particle flow to the reaction site can be 

observed, if the magnetic field direction is not aligned with the microfluidic 

channels. Rotating the magnetic field towards direction D results in a flow of 

magnetic superstructures from inlet ID towards the reaction chamber (figure 5.3(a-b)). 

The flow velocity during the filling process is about 100 µm/s. No flow of MyOneTM 

beads to the reaction site can be found, if the direction of the magnetic field is kept 

parallel to the channel which is connected to the inlet ID. By field rotation towards 

direction B, the flow from inlet ID to the reaction chamber is inhibited and 

simultaneously a flow of particles from IB to the reaction site can be found (figure 

5.3(c-e)). Similar to the situation presented in figure 5.3(a), flux of particles from 

channel directions which do not coincide with the magnetic field direction is 

inhibited. As the MyOneTM bead chain enters the reaction chamber R, the stray field 

interaction between the two agglomerates within R entails merging to a new 

superstructure composed of both bead species (figure 5.3(f)). As the magnetic field 

rotates towards direction A, the newly composed superstructure breaks apart due to 

interactions with the walls of the reaction site (figure 5.3(g)). Alignment of the field 

with direction A enables the flow of the large fragment of the superstructure to the 

drain channel (figure 5.3(h-i)), while the small chain fragment remains in the reaction  
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Fig. 5.3: Sequence of optical microscopy images which show a typical fill/drain process of the 

microfluidic device. Particle flow can be controlled by the orientation between external 

magnetic field and the fluid flow direction. (a-c) A bead chain which consists of Dynabeads® 

M-280 (red) enters the reaction site. (d-f) MyOneTM agglomerates may flow to the reaction 

chamber if the appropriate orientation of magnetic field and fluid flow direction is realized. (g-

i) Bead chains merge at the reaction site and afterwards travel through the drain channel as 

confined objects. Residual fragments may remain at the reaction site.  

 

chamber. For further applications, the geometry of the reaction site needs to be 

optimized to allow for a more efficient formation of superstructure and inhibition of 

breaking events during the rotation of the field. The reaction site may afterwards be 

washed through the waste channel and subsequent cycles of the fill/drain process can 

be performed. Additional effects can be identified, which result in an enhanced 

effectiveness of the device. The external magnetic field fixes the rotational degree of 

freedom of an agglomerate along the axis perpendicular to the sample plane. 

However, the rotational degree of freedom along the chain axis is not affected by the 

magnetic field. As shown in figure 5.4(a) this degree of freedom allows to enhance 

the stability of the chain agglomerates due to interaction with the carrier liquid. A 

chain within the reaction chamber which interacts with the channel wall may rotate 

along the chain axis to obtain a geometric configuration where the interaction with 

the fluid flow and, thus, shear stress along the chain is minimized. To ease the  
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Fig. 5.4: Additional phenomena which entail a higher efficiency of the device. (a) 

Agglomerates blocked at positions within the reaction chamber may enhance their stability by 

rotation along the chain axis due to the interaction with the carrier liquid. (b) Disassembly of 

particle chains occurs on time scales of several seconds which can be necessary for specific 

applications. (c) Blocking events at the inlet channels depend on the angle between magnetic 

field and fluid flow direction. 

 

tracking of the rotation along the long axis of the chain, the contour line of the 

agglomerate is highlighted. The movement can be interpreted as schematically 

presented in figure 5.4(a). If the external magnetic field is switched off, the 

superparamagnetic behavior of the employed beads enables a rapid disassembly as 

presented in figure 5.4(b). The particle agglomerates decay on time scales of several 

seconds. Therefore, a particle mixture prepared at the reaction site may be 

disassembled and afterwards act as a suspension of individual particles when washed 

out through the drain channel, if the actual application after the preparation at the 

reaction site demands isolated particles.  

In addition blocking events as already explained above can be observed (figure 

5.4(c)). The efficiency of blocking of chains in inlet channels depends as can be seen 

in figure 5.1(a) on the angle between the microfluidic channel axis and the magnetic 

field direction, but also on other parameters, such as the Mason number, geometric 

properties of the beads, the flow profile, and the surface properties of the beads and 

the channels. A more detailed analysis of these critical parameters is missing up to 

now, but will play a vital role in the further investigation of the proposed device. The 

critical values for the mentioned parameters will have to be determined for the 
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application of the reaction chamber since these values determine the applicability of 

the device.  

In conclusion, dipolar coupling of superparamagnetic particles can be employed 

for the control of particle flow in a microfluidic system. The magnetic assembly of 

particle superstructures under the influence of a static magnetic field allows to inhibit 

the particle flow on demand on the basis of interaction between the magnetic 

agglomerations and channel walls at reservoir-channel junction. The operation of the 

proposed microfluidic device is demonstrated by employment of magnetic beads of 

different sizes, which allow for the optical tracking of individual beads and bead 

assemblies flowing from different reservoirs. Furthermore, the fill/drain procedure of 

the integrated reaction chamber is presented, which includes additional effects, such 

as flow-induced reorientation and on-demand disassembly leading to an enhanced 

stability of the device operation. Future works need to focus on the stability criteria 

of device operation with respect to experimental parameters, such as Mn, the flow 

profile of the carrier liquid and surface properties of beads and channels.  

 

5.2 Enhanced fluid mixing and separation of magnetic 

bead agglomerates based on dipolar interaction in 

rotating magnetic fields 
 

The applicability of magnetic agglomerates in stationary magnetic fields is presented 

in the previous section. In this chapter, we propose a microfluidic device which 

enables enhanced fluid mixing and colloidal separation based on the formation of 

one- and two-dimensional, rotating superstructures of superparamagnetic beads in a 

rotational magnetic field. Both functional tasks are based on the motion of magnetic 

bead agglomerates in a rotating magnetic field. The proposed structure utilizes free-

flowing dynamically assembled components as active micromixers. The separation is 

based on the interaction between rotating magnetic bead agglomerates and the 

topological features of the microfluidic geometry. Based on a similar mechanism, the 

control of the particle flow was already demonstrated in the previous section. As 

described in chapter 4, the application of a rotating magnetic field favors the 

formation of highly ordered two-dimensional agglomerates which consist of large 

particle numbers. These large agglomerates are beneficial for the efficiency of the 

separation of the device as presented in the following. A schematic overview of the 

proposed device is shown in figure 5.5(a): Under the influence of an external, 

homogeneous rotating magnetic field the beads form chains that rotate with the field 

frequency. At the T-junction, enhanced mixing of fluids flowing from the inlet 

reservoirs is achieved based on the rotational motion of the magnetic agglomerates. 

The separation junction is represented by a barrier between two diverging channels. 
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Fig. 5.5: Microscopy image of the SU 8-3025 casting mold. The inset (a) shows the operation 

principle of the microfluidic gate: Under the influence of a rotating magnetic field, the 

agglomerates are guided to either of the two diverging channels depending on the orientation 

of the rotation at the moment of contact with the barrier between the channels. Therefore, the 

particle flow is restricted to one of the two channels. (b) Magnification of the area where the 

guidance of beads at the separating barrier takes place. 

 

The rotation of the chain leads to a transversal movement into one of the two 

channels, depending on the rotation direction. If no field is applied, individual 

particles are distributed statistically over both channels. 

Experimentally, the proposed microfluidic device was realized by Bernhard 

Eickenberg in the framework of his Master’s thesis (Eickenberg 2010). A 

microfluidic structure as shown in figure 5.5 was realized by soft-lithography 

techniques according to the procedure described in 3.1. Two inlet reservoirs I1 and I2 

are connected by microfluidic channels of 77 µm width to a T-junction. Along this 

intersection area, the mixing capabilities of the device are demonstrated. The main 

channel which contains the separation junction is 79 µm in width and branches into 

two diverging channels of 28 µm width separated by a 23 µm wide barrier. Liquid 

flow through the device is generated by hydrostatic pressure. In the experiments, 

superparamagnetic Dynabeads MyOneTM with a mean diameter of 1.05 µm and a 

carboxylic acid coating were chosen as magnetic particles. 

A concentration of 120 µg/ml is achieved by dilution of the 10 mg/ml stock solution 

with deionized water and filled into the bead reservoir I1 of the structure. The 

reservoir I2 on the opposite side of the T-intersection is filled with a 65 mM flavin 

adenine dinucleotide (FAD) solution to allow for the optical evaluation of the 

interface layer between the two laminar flows. The rotating magnetic field necessary 

for chain formation and subsequent rotation of the superstructures is created by a  
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Fig. 5.6: Enhanced mixing effect induced by the rotation of magnetically assembled bead 

agglomerates. The interface between the liquids from the different inlet reservoirs I1 (upper) 

and I2 (lower) is highlighted (red) to ease the tracking. 

 

magnetic stirrer with maximum in-plane field strength of 690 Oe as described in 

3.3.2. This field strength leads to a degree of magnetic saturation of about 73% 

(Fonnum et al. 2005). The rotation frequency is set to 50 rpm throughout the whole 

experiment. At the chosen frequency, a stable rotation of the magnetic stirrer is 

obtained. Moreover, the stability of bead chains exposed to a rotating magnetic field 

decreases with increasing field frequency as was already demonstrated in chapter 4. 

Therefore, the chosen field frequency entails enhanced stability at high 

concentrations of bead chains. The amount of chains (transversal width of one or two 

beads) and clusters (transversal width of three or more beads) passing through either 

of the channels is counted separately. In case of chain or cluster breakage at the 

barrier, the superstructure was counted as flowing through both channels. Flow 

velocities are evaluated by tracking of superstructures in the channel. 

The behavior of the fluid profile at the mixing junction under the influence of a 

rotating magnetic field is shown in figure 5.6. If no magnetic agglomerates pass the 

junction, thermal diffusion is the only driving force for the mixing of the liquids 

flowing from the inlets I1 and I2 (figure 5.6(a)). The assisting effect of bead 

agglomerates that pass the junction is presented in figure 5.6(b-i): due to a finite 

viscosity of the fluids, the rotation of a bead chain induces a laminar flow nearby its 

position. For a clockwise rotation, such fluid flow entails a convective flux from the  
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Fig. 5.7: Clockwise rotating magnetic bead chains increase the mixing of FAD solution and 

water. Resulting concentration profile in comparison to a thermal reference. 

 

FAD-phase into the deionized water phase in the traveling direction of the 

superstructure and vice versa behind it. The interface between the two liquids from 

the different inlet reservoirs I1 and I2 is highlighted to ease the tracking. One and 

two-dimensional bead agglomerates act as free-flowing magnetic micro stirrers. In 

order to quantitatively analyze the influence of these free-flowing magnetic 

microstirrers, the intensity profiles of the FAD solution 310 µm downstream from the 

T-intersection are evaluated. The resulting data are compared to the analytic solution 

of free diffusion across an interface (2.22) to evaluate the effective diffusion constant 

Deff. As shown in figure 5.7, the diffusion constant of sole thermal diffusion results in 

a value of D0 = 3.04  10-10 m²/s which is in very good agreement with the finding of 

Radoszkowicz et al. (2011) who reported D0 = 3  10-10 m²/s for the diffusion 

constant of FAD in water. Under the influence of rotating bead chains, an increase to 

Deff = 4.02  10-10 m²/s is found corresponding to a diffusivity increase by 32%. The 

dotted lines in figure 5.7 show the resulting concentration profiles according to (2.22) 

which are employed for the calculation of the respective effective diffusion 

constants. Along the separation junction, bead assemblies are guided due to their 

interaction with the channel walls as schematically shown in figure 5.5(a). 

Agglomerates are guided to channel A or B depending on whether the rotation of the 

external magnetic field is counter-clockwise or clockwise, respectively. 
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Fig. 5.8 (a) Movement of a rotating cluster structure composed of aggregated MyOneTM beads 

that is guided to the lower channel through the influence of the (clockwise) rotating magnetic 

field at a flow velocity of about 250 µm/s. (b) Successful guidance of a chain superstructure 

into channel B at a flow velocity of 240 µm/s. (c) At a flow velocity above 160 µm/s a chain 

superstructure breaks apart at the barrier due to high shear stresses that occur when the 

agglomerate interacts with the channel wall. (d) A cluster structure breaks apart at a flow 

velocity of about 200 µm/s. 

 

Figure 5.8 presents a series of optical microscopy images which show the successful 

guidance of chain superstructures (figure 5.8(b)) and clusters (figure 5.8(a)) as well 

as the breakage of superstructures at the barrier (figure 5.8(c,d)). Breakage events 

occur due to shear induced stresses if agglomerates interact with the channel wall by 

steric repulsion. The flow velocities for the cases mentioned above are in the range 

between 160 µm/s and 250 µm/s. In this velocity regime, the breakage of 

superstructures reduces separation efficiency (figure 5.10). Additionally, the presence 

of small fragments with a lateral dimension smaller than the channel width entails a 

lowered separation efficiency. These fragments do not interact with the barrier during 

rotation and, therefore, no guidance is performed. In contrast to the breakage events, 

the formation of these small fragments can be observed for all flow velocities that 
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were investigated, whereas the breakage of superstructures was not observed in the 

regime of flow velocities below 63 µm/s. Due to the small size of the fragments, the 

effect on the separation efficiency is, nevertheless, insignificant, as can be seen from 

the high separation yield throughout the experiments. The concentration of these 

small fragments may be tailored by the choice of suitable magnetic bead 

concentrations since higher bead concentrations entail the formation of larger two-

dimensional agglomerates (chapter 6). 

Even for large two-dimensional agglomerates, the separation at the barrier is 

achieved. As depicted in figure 5.9, large agglomerates are sorted and break apart 

afterwards. In the experiments, no blocking of the diverging channel was observed 

by the employment of the above mentioned bead concentration of 120 µg/ml.  

The efficiency of the device is evaluated for the clockwise rotation direction. Figure 

5.10(a) shows the fraction   of superstructures and beads that are successfully guided 

to channel B as a function of the flow velocity. At mean flow velocities of 42 µm/s 

and 63 µm/s, a high fraction of well above 90% of the superstructures is obtained. 

Particles that pass the junction area via channel A can be attributed to small 

fragments which do not interact with the device walls as mentioned above. At a 

higher mean flow velocity of120 µm/s, the yield slightly decreases to 89%. 

At this point, the probability of chain breaking due to higher shear stresses is 

 

 
 

Fig. 5.9: Separation of large two-dimensional agglomerates at the separation junction under 

rotation of the external field. 
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increased, which decreases the amount of sorted chains to 71%, while the larger part 

of the clusters (84%) maintains stability against steric repulsion and is, consequently, 

guided to channel B. At significantly higher flow velocities (274 µm/s), breakage of 

clusters reduces the fraction of clusters in channel B down to 61%. In addition, high 

flow rates allow for clusters to bypass the junction area without completion of a 180° 

rotation; superstructures reach channel A without contact with the barrier. 

Consequently, in order to obtain higher throughput rates, higher field frequencies are 

required to provide sufficient cluster-wall interaction. However, the possibility to 

further increase the rotation frequency is limited, because the stability of the 

agglomerates needs to be maintained. Still, a significant fraction of 63% of the total 

bead number is successfully manipulated by the developed gate structure.  

For further analysis of the device, we define the separation efficiency ɛ by 

 

 12  x .       (5.1) 

 

The efficiency defined above takes into account that without a magnetic field applied 

the expected fraction of beads in channel B would be 50% and, therefore, the 

separation efficiency would vanish. The dependence of   on the flow velocity is 

presented in Fig. 5.10(b). If the flow velocity increases, the efficiency decreases due 

to higher shear stresses as mentioned above. For flow velocities up to 120 µm/s, 

efficiencies between 0.92 and 0.77 are obtained. A further increase of the flow 

velocity leads to an additional decrease in the separation efficiency. However, due to 

the higher flow velocity larger, volumes pass the separation junction so that larger 

amounts of beads are transported. To take this effect into account, we introduce the 

mass separation rate ξ by 

 

  beadc        (5.2) 

 

with cbead the bead concentration in the solution and Γ = |u| a the volume flow rate 

depending on the flow velocity |u| and the geometry parameter a. The bead 

concentration cbead and the geometry parameter a depend on the experimental details, 

which we summarize by the experimental parameter 

 

 acbead .       (5.3) 

 

Since the geometry parameter a depends on the details of the flow profile, which 

itself strongly depends on the exact geometry of the channels, the comparison of 

different channel geometries is difficult, if only the mass separation rate is discussed. 

Therefore, we divide (5.2) by (5.3) and obtain 
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 



 u .       (5.4) 

 

Figure 5.10(c) shows the behavior of the quantity ξ/α under variation of the flow 

velocity. Because ξ/α takes all flow velocity dependent effects into account, it is a 

proper measure for the evaluation of the optimal working regime of the proposed 

device if both throughput and separation efficiency are of similar importance for the 

actual application. If the application focuses either on a high separation efficiency or 

on high throughput, additional weighting factors need to be introduced to (5.2), 

which will not be taken into account in the following. As depicted in Figure 5.10(c), 

we obtain an increasing device efficiency for flow velocities from 42 µm/s to 

120 µm/s. The employment of a flow velocity of 274 µm/s entails lower efficiencies. 

Thus, we may conclude that the maximum mass separation ratio and, consequently, 

the most efficient working regime of the proposed device lies between 63 µm/s and 

274 µm/s for the chosen rotating magnetic field operation frequency of 50 rpm.  

The developed microfluidic device allows to enhance fluid mixing and separation 

of magnetic bead agglomerates simultaneously. If free-flowing magnetic 

microstirrers are present, the mixing of two fluid streams is enhanced due to the 

interaction of the magnetic entities with the carrier liquid. Quantitatively, the mixing 

enhancement can be determined based on the simple analytical model of diffusion 

across an interface and allows to estimate the increase of the diffusivity of FAD to 

32% if magnetic microstirrers are employed.  

 

 
 

Fig. 5.10: Evaluation of the separation performance. (a) The fraction of clusters, chains and 

beads in superstructures decreases with increasing mean flow velocity of the carrier liquid. (b) 

For the separation efficiency, a decrease with the mean flow velocity is obtained. (c) The 

quantity     allows to evaluate the optimal working regime of the structure, which reveals that 

the maximum of the mass separation rate is obtained in the velocity range between 120 µm/s 

and 274 µm/s.  
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The proposed separation principle allows to achieve high separation efficiencies at 

lower flow velocities. The yield decreases with increasing flow velocity mainly due 

to the higher probability of chain and cluster breaking induced by shear stresses. 

However, if the increasing volume flow rate is taken into account, an optimal 

working regime of the device between 63 µm/s and 274 µm/s at a rotation frequency 

of 50 rpm may be identified. Current and future works, which are partly already 

conducted by Bernhard Eickenberg, need to focus on the dependence of the device 

efficiency on the magnetic field strength and the rotation frequency of the magnetic 

field. This investigation will, consequently, also allow to the estimate the dependence 

of the efficiency of the microfluidic device on the Mason number.  
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6 Surface patterning based on magnetically 

induced self-assembly of magnetic particles 
 

In the previous chapters, the fundamental behavior and dynamics of dipolar coupled 

magnetic superstructures and their applicability in the framework of microfluidic 

application have been presented. In addition to the applicability in microfluidic 

applications, the highly ordered structures may also be employed in surface 

patterning. For that purpose various aspects, such as transfer of the highly ordered 

structure from the liquid phase to the evaporated sample, size of resulting 

agglomerates, defect structure and their dependence on the experimental parameters 

need to be addressed. The findings on surface patterning in rotational magnetic fields 

are summarized in this chapter and were published in (Weddeman et al. 2010 a) and 

(Wittbracht et al. 2012 b). 

 

 
 

Fig. 6.1: Monolayer of magnetic beads which results from the magnetic field induced 

assembly process. The grayscale inset shows the FFT of the particle grid positions which 

reveals the strongly pronounced hexagonal symmetry. (a) Areas without defects in the 

monolayer can be distinguished from (b) zero- and one-dimensional defect structures. (c) 

Particles within the second layer of agglomerates can be identified since they appear as dark 

spots. 
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Experimentally, the assembly method is investigated by spotting of suspension of 

Dynabeads® M-270 SA on a silicon wafer which itself is situated on the centre a 

magnetic stirrer hotplate. The employed magnetic stirrer setup allows for the 

generation of a magnetic field strength of up to 330 Oe at the sample position. Three 

different dilutions of the stock solution of the beads are prepared at 0.2, 1.0, and 

5.0 mg/ml and rotation frequencies of 400 rpm 800 rpm and 1200 rpm are 

investigated. Our preliminary experiments revealed that during evaporation of the 

liquid salt crystallization strongly hinders the ordering process. Therefore, the PBS 

buffer in the stock solution is exchanged with DI-water by subsequent centrifugation 

and resuspension. 

Figure 6.1 shows a particle agglomerate which results from the magnetic field 

induced assembly in the liquid phase before evaporation of the carrier liquid. Large 

areas of highly ordered monolayers can be identified as supported by the inset in 

figure 6.1 (upper) which depicts the corresponding FFT of a highly ordered region. 

Strong hexagonal ordering of the superstructures can be observed. The insets (a-c) in 

figure 6.1 show several details concerning the ordering in the superstructures. Figure 

6.1(a) shows a region of the agglomerate with negligible defects, whereas figure 

6.1(b) represents an example of an agglomerate region with zero- and one-

dimensional defects. In particular, the one-dimensional defects introduce a grain-like 

structure in the agglomerates, which is comparable to the case of grain boundaries in 

nanostructured material (Ovid’ko 2004). Dark spots in figure 6.1(c) represent 

particles which assembly in the second layer of the agglomerate. Approximately 5% 

of all particles in the agglomerates grow in the second layer. Therefore, it can already 

be concluded that the proposed method is suitable for the generation of highly 

ordered two-dimensional particle layers. In liquid phase, no breaking of clusters is 

observed after the assembly. However, in our experiments, the liquid evaporation 

results in high shear stresses as the contact line between substrate and liquid moves 

along the surface. Therefore, closed particle layers break under the induced shear 

stresses, which results in smaller agglomerates. In order to allow to form larger 

monolayers with reduced amount of defects, different liquids with a lower surface 

energy need to be tested in future experiments. In contrast to the induction of lattice 

impurities based on liquid evaporation another mechanism which leads to defect 

structures is based on the reordering dynamics during agglomerate formation in the 

liquid phase. In figure 6.2(a) the absorption of a particle chain to a previously formed 

cluster due to dipolar particle coupling (Hayes et al. 2001) is presented. As can be 

seen in the image sequence the approaching particle chain breaks prior to absorption 

and reordering processes along the rim of the cluster structure can be observed. Due 

to the reordering the cluster remains without defects, even after the particle chain was 

absorbed. In contrast to the process of chain absorption, the merging of clusters 

results in the creation of additional defect structures. In figure 6.2(b) a multi-

fragment agglomerate is presented which results from the merging of previously  



55 

 
Fig. 6.2: Sequences of optical microscopy images, which show the reordering processes 

during the growth of cluster structures. (a) The absorption of a magnetic particle chains to a 

previously formed cluster allows for the growth of the cluster structure without introducing 

additional defects. (b) Merging process of clusters, the insets show individual fragments which 

assembly to a larger cluster object. The arrows indicate regions with ordering defects which 

result from the merging of the fragments. (c) The time evolution of monolayer structures under 

the influence of the external magnetic field reveals that reordering processes occur along the 

marked regions. While one-dimensional defects (black arrows) are reduced by the external 

perturbation, isolated vacancies (white arrows) are created during the process.  

 

formed clusters. Insets show the fragments before the formation of the larger clusters. 

The arrows in figure 6.2(b) indicate the contact lines between the fragments which 

show a reduced symmetry. Under the influence of subsequent rotation of the external 

magnetic field, geometric and magnetic reordering leads to increased symmetry 

along the contact lines (figure 6.2(c), black arrows) until a stable configuration is 

achieved. This process of reordering may lead to isolated vacancies as can be seen in 

figure 6.2(c) (white arrows). The quantitative analysis of cluster growth and 

properties of the resulting clusters is based on the iterative replenishment of particle 

concentration after the agglomeration of superstructures and evaporation of the 

liquid. The data obtained from optical microscopy of the agglomerates after 

evaporation of the carrier liquid allows for the conclusion that the rotation frequency 

of the applied magnetic field does not influence the size of clusters within the 

frequency range of investigation. In contrast, the particle concentration strongly 

influences the size of the agglomerates as shown for the concentrations of 0.2 mg/ml  
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Fig. 6.3: (a) Cluster growth in dependence for 1, 3 and 5 iterative replenishments of droplets at 

particle concentrations of 0.2 mg/ml and 1.0 mg/ml. The inset shows the agglomerations 

obtained from the reference sample without magnetic field. Dependence of the defect 

concentrations in the ordered agglomerates resulting from magnetic field induces assembly. (c) 

The influence of the field frequency of the rotating magnetic field and (b) iterative 

replenishments of particle concentration are summarized. 

 

and 1.0 mg/ml in figure 6.3(a). In the case of the reference sample, where the particle 

solution is spotted onto the substrate and liquid evaporation occurs without the 

influence of a magnetic field, the agglomerate size distribution depicted in the inset 

of figure 6.3(a) is obtained. The particles are randomly dispersed along the substrate. 

Ordering cannot be obtained from FFT images of the particle grid positions. If the 

spotting and liquid evaporation is performed under the influence of an external 

rotating magnetic field, magnetic field induced assembly is entailed. Evaluation of 

the respective microscopy images leads to the agglomerate size distribution presented 

in figure 6.3(a). The influence of the magnetic field manifests itself under 

comparison of figure 6.3(a) with the inset. The comparison of, e.g. the samples 

prepared with 5 droplets of the c = 0.2 mg/ml suspension shows that without the field 

influence the maximum agglomerate size obtained from the microscopy is 16 

particles, whereas due to the rotational magnetic field clusters which consist of up to 

512 particles can be found.  

Iterative replenishment of particle concentration to the samples entails a shift of 

the cluster sizes to higher particle numbers. Therefore, it can already be concluded 
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that the provision of additional particle concentration does not necessarily result in 

additional cluster formation, but may lead to the growth of already existing 

superstructures. A similar phenomenon occurs in the context of the Ostwald ripening 

in nanoparticle fabrication (Ostwald 1896), where also the formation of few large 

particles is favored over the assembly of many small particles.  

In figure 6.3(b-c) the defect concentration of the resulting assemblies is presented. In 

case of low particle concentration within the suspension, the replenishment of 

particle concentration onto the substrate allows for a decrease in the defect 

concentration (figure 6.3(b),red). The trend holds for zero- and one-dimensional 

defect structures. However, if the particle concentration within the suspension 

increases (figure 6.3(b),blue), the provision of additional particle concentration 

results in an increased defect concentration. The underlying mechanism can be 

understood together with the observation of the cluster merging dynamics presented 

in figure 6.2(c): Since the increase in particle concentration results in less accessible 

free volume, reordering processes are inhibited. Therefore, above a certain critical 

particle concentration, the provision of additional particles entails an increased defect 

concentration. If the rotation frequency of the magnetic field increases, an increasing  

 

 
Fig. 6.4: Microscopy image and corresponding FFT of the particle grid positions for the 

reference samples which are prepared with c = 5.0 mg/ml without the employment of a 

magnetic field. No spatial ordering of the particles can be found. 
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defect concentration is obtained as displayed in figure 6.3(c). The trend of the defect 

concentration in figure 6.3(c) can be explained by differing reordering time scales. 

The transition to structures of higher symmetry as displayed in figure 6.2(c) and, 

therefore, lowered defect concentration is limited since the geometric reordering 

cannot follow the transient magnetodynamics. 

The growth of layers of magnetic beads is studied based on the employment of 

the highly concentrated particle suspension (c = 5.0 mg/ml). One example of a 

resulting layer is presented in figure 6.1 which was already discussed above. As 

already mentioned, one dimensional defects entail a grain structures within the sheets 

of high local symmetry.  

The microscopy images and corresponding FFT images presented in figure 6.4 

suggest that such highly symmetric regions cannot be found in the reference samples 

prepared without the application of the magnetic field. Therefore, the analysis will be 

restricted to the samples prepared without a rotating magnetic field. Figure 6.5(a) 

shows the grain size distribution, which is obtained from optical microscopy of the 

evaporated samples. For these high particle concentration samples, the additional 

provision of particles results in a decreased grain sizes as can be seen 

 

 
Fig. 6.5: (a) Grain size distribution of the agglomerates prepared with magnetic field at a 

particle concentration of c = 5.0 mg/ml. (b) Dependence of the defect concentration of 

agglomerate layers prepared with particle suspensions at a concentration of c = 5.0 mg/ml on 

the rotation frequency of the magnetic field. 
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by comparison of the dotted (1 droplet) and dashed lines (3 droplets) in figure 6.5(a). 

The behavior can be understood equivalent to the argumentation in context with the 

cluster growth and the increasing defect concentration for high particle concentration 

suspensions (figure 6.3 (b)). The lowered free volume for reordering processes 

inhibits the reorganization and, therefore, a lowered symmetry in the assemblies is 

entailed. Consequently, since the grain size is reduced for higher number of particles 

on the substrates, the defect concentration increases as presented in figure 6.5(b). 

Again, a lower rotation frequency of the external magnetic field favors the formation 

of agglomerates with lower defect concentration.  

If a suspension at a concentration of c = 5.0 mg/ml is used and three droplet are 

spotted under the influence of the magnetic field, the average grain size of the 

resulting assemblies is 463 particles. This particle number corresponds to an area of 

~2850 µm2.  

The spotting and liquid evaporation procedure for such arrays takes about 15 

minutes. A similarly large area of highly ordered particle agglomerates could also be 

prepared by Riley and Lidell (2010). The author show highly ordered assemblies 

with areas of about 2900 µm2. However, since their approach for the fabrication of 

the particle patterns is based on sedimentation, the production of large assemblies is 

time consuming. In contrast, our approach is not only fast, but also easy to control 

since the formation can be started by the initiation of the magnetic stirrer rotation. 

Furthermore, the rotating magnetic field might also be realized with a coil setup 

 

 
Fig. 6.6: Optical microscopy images of clusters assembled under the influence of a rotational 

magnetic field. (a) If second layer growth of the highly ordered structures can be found, the 

multilayer sequence is found to be AAA-sequence which may be attributed to magnetic 

coupling. (b) After evaporation of the carrier liquid, the shear stresses which act on cluster, 

while the contact line at the liquid solid gas interface moves, lead to cracks in the cluster which 

usually occur along straight lines.  
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which allows to assemble and disassemble on demand similar to the approach 

presented in 5.1. 

After the detailed analysis of the monolayer growth and defect concentrations, 

additional effects will be presented and discussed. As already mentioned in context 

with figure 6.1(c), the second layer growth is small. Nevertheless from the dynamic 

video microscopy of agglomerates in the liquid phase an interesting feature of the 

second layer growth can be observed. As previously explained, the clusters show 

hexagonal symmetry. However, if second layer growth occurs, this geometrical 

ordering is not continued. From geometric effects a stacking of ABCABC… or 

ABAB… would be expected for the out-of-plane growth direction. As presented in 

figure 6.6(a) this stacking is not present, but AAA… stacking can be found. Since 

steric effects would be assumed to lead to a stacking of ABCABC…. or ABABA…, 

the AAA… stacking may result from the dominant magnetic coupling between the 

beads as was also reported by Albon et al. (2009). While the carrier liquid evaporated 

and the contact line between the liquid-air-interface moves along the substrate, strong 

capillary-induced shear stresses arise. These shear stresses overcome the magnetic 

coupling between beads and lead to breakage of the clusters immediately before the 

solvent evaporates completely. The resulting structures show characteristic straight 

lines along which the breaking of particle film occurs. In order to understand this 

behavior Alexander Weddemann simulated the magnetic equilibrium state of a 

dipolar coupled 13 × 13 particle grid. A numerical model is applied, where each 

magnetic bead is described by a particle of homogeneous magnetization 

MS = 300 kA/m. The detailed method of simulation can be found in (Weddemann 

2010 c). The resulting magnetic equilibrium state is presented in figure 6.7. 

 

 
Fig. 6.7: Magnetic equilibrium state of a 13 × 13 particle grid assuming homogeneously 

magnetized and dipolar coupled particle volumes. Domain-like regions of antiparallel 

magnetic orientation can be found.  
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The color code shows the in-plane component direction of the magnetic moment of 

each individual particle. According to the simulation results, the out of plane 

components may be omitted. The magnetic moments form regions comparable to 

magnetic domains in the solid state. By formation of such domains or domain-like 

regions, the stray field energy is minimized. The magnetic orientation of domains is 

often antiparallel, which minimizes the stray field between the domains. Therefore, 

regions of stronger and weaker coupling may be found within clusters. If the liquid 

evaporates the regions of lower coupling may lead to the characteristic breakage 

along straight lines as presented in figure 6.6(b). 

 

In summary, the assembly of superparamagnetic beads in a rotational magnetic 

field may be used for the generation of highly ordered arrays of particles. Based on 

the magnetic interaction between particles and resulting agglomerations, the particle 

growth occurs on time scales of several tens of seconds to few minutes. In 

dependence on the rotation frequency of the applied magnetic field, hexagonally 

ordered two-dimensional structures with grain sizes up to 2900 µm2 can be produced. 

The concentration of zero- and one-dimensional defects can be controlled via the 

rotation frequency of the external field and the particle concentration on the 

substrate. Iterative concentration replenishment during the self-assembly procedure 

allows to initiate the growth of existing particle clusters similar to the Ostwald 

ripening mechanism in nanoparticle fabrication. Only a small amount of second layer 

growth is observed. However, this growth mechanism seems to be governed by 

magnetic forces, since the stacking sequence is AAA… and not ABAB… or 

ABCABC… as expected from geometrical aspects. Under evaporation of the carrier 

liquid, assemblies may break along straight lines, which can also be explained by the 

magnetic substructure within the assemblies. As a simple numerical model suggest, 

the breaking event occur along lines of reduced coupling and, consequently, 

decreased forces act along these regions, which results in breakage under shear 

stresses.  

Currently the transfer of the assembly mechanism from micron-sized particles to 

nanoscale particles is under discussion. The results of a first approach conducted in 

our workgroup can be found in (Regtmeier et al. 2012). Future works in context with 

the proposed mechanism for particle assembly will need to investigate the influence 

of the surface tension of the carrier liquid in more detail in order to reduce shear 

stress induced sheet breakage during liquid evaporation. Furthermore, calculation of 

the coupling forces inside the sheets based on the already conducted and presented 

simulations (Weddemann et al. 2010 b) would be helpful to understand the stability 

of the agglomerates in more detail. 
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7 Summary 
 

In summary, it was shown that the direct coupling of magnetic particles may be 

employed in microfluidic applications and can lead to a beneficial behavior of the 

proposed devices. Starting from a fundamental study on the formation dynamics of 

dipolar coupled superstructures, objects are classified according to their 

dimensionality and respective formation time scales are obtained. Two-dimensional 

cluster and one-dimensional chain objects may be differentiated. The main process 

responsible for the growth of clusters is the collapse of chain structures induced by 

viscous drag forces which result from the rotation of chains under rotation of the 

external homogeneous magnetic field. According to our experimental results, the 

chain dissociation rate was determined to be linearly connected with the rotation 

frequency of the external magnetic field and therefore also linearly dependent on the 

Mason number. The result is in good agreement with the findings of Petousis et al. 

(2007) who also reported a linear dependence of the chain stability on the Mason 

number in a similar regime of Mason numbers. 

 

The magnetic field induced assembly of magnetic superstructures may be used 

for the application of particle flow control in microfluidic devices as presented in 

chapter 5.1 if a stationary magnetic field is employed. Depending on the relative 

orientation of microfluidic channels and the previously formed magnetic 

agglomerates in the carrier liquid stream, the flow of particles may be inhibited. 

Therefore, the particle flow and the flux of the carrier liquid have to be uncoupled by 

interaction of agglomerates with the channel walls. The proposed microfluidic device 

combines an elliptical reaction chamber with two inlet and two outlet channels and 

allows for the selective transport of particle species towards the reaction site. In the 

reaction chamber merging of agglomerates and subsequent collection of the product 

in a drain channel can be performed.  

 

Based on the findings on the formation dynamics of magnetic superstructures in 

rotating magnetic fields, a microfluidic device which allows for fluid mixing and 

subsequent colloidal separation from the suspension was developed. The separation 

junction of the device consists of a branching channel, where the separation 

mechanism is based on the interaction of particle agglomerates with the barrier at the 

branching junction. In dependence on the rotation direction, the flow into one of the 

daughter channels may be inhibited. The separation efficiency of the device strongly 

depends on the flow velocity of the carrier liquid, because the hydrodynamic shear 

stresses on particle agglomerates, which interact with the barrier, increase with the 
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flow velocity. If the volume flow rate is taken into account, the optimal working 

regime of the microfluidic structure can be determined. We find for our experimental 

parameters of the rotating magnetic field, that the optimal regime of flow velocities 

for device operation at high mass separation efficiencies lies in the range between 

63 µm/s and 274 µm/s. In future works, the dependence of the separation efficiency 

on the magnetic field strength and the rotation frequency of the magnetic field will be 

investigated. In particular, this will allow for the characterization of the proposed 

microfluidic device in dependence on the Mason number.  

In addition to the guidance of particle agglomerates at the separation junction, the 

rotation of the agglomerates can be used for enhanced mixing application by 

introduction of a T-junction. Without the magnetic microstirrers, two parallel liquid 

streams are mixing by thermal diffusion only. Under the influence of rotation of the 

micro stirrers a convective flux between the liquid streams is entailed due to the 

interaction of the particle agglomerates with the carrier liquid. The mixing properties 

are evaluated in a model system with an aqueous magnetic bead solution and an 

aqueous FAD solution. Mixing efficiencies are obtained from intensity plots resulting 

from evaluation of optical microscopy data. The results are compared with the 

analytical solution for diffusion across an interface. This method allows for the 

determination of the FAD diffusivity in water and the enhancement of the diffusivity. 

If microstirrers are employed, an increase of about 32% of the FAD diffusivity is 

observed.  

 

Besides microfluidic applications also surface patterning can be achieved by the 

employment of a rotating magnetic field. Highly ordered two-dimensional sheets of 

particles with sizes up to 2900 µm2 can be prepared based on the magnetic field 

induced particle assembly. The defect structure of the resulting assemblies can be 

tailored by the rotation frequency of the employed particle concentration. Assemblies 

prepared in the carrier liquid break under liquid evaporation induced shear stresses 

along straight lines, which can be attributed to the magnetic interaction inside the 

sheets according to numerical simulations. Due to coupling of neighboring particles, 

domain-like regions inside the assemblies are formed. The breaking events occur 

along the edges of these domain-like regions.  
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