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Zusammenfassung 
Teil I. Die Analyse der elektrooptischen und konduktometrischen Messungen an 
unilamellaren Lipid-Vesikeln (mittlerer Radius von a = 90 nm gefüllt mit 0.2 M NaCl Lösung, 
suspendiert in 0.33 M Sucrose- und 0.2 mM NaCl-Lösung) in exponentiell abfallenden 
elektrischen Feldern der Feldstärke 10 ≤ E0  /(kV/cm) ≤ 90 (Zeitkonstante τE = 154 µs) zeigen, 
dass zyklische Änderungen in der Vesikelform und in der Membranleitfähigkeit  auftreten. 
Die zwei Maxima in den dichroitischen Turbiditätsrelaxationen lassen sich auf die schnelle 
Bildung und langsame Ausheilung der Membran-Elektroporen (Hysteresezyklus) 
zurückführen. Die feldinduzierten strukturellen Übergänge zwischen geschlossenen (C) und 
porierten (P) Membranzuständen werden mit 2 Typen von Poren, Typ P1 und Typ P2, 
beschrieben. Das Einschwingen der Membranleitfähigkeit und die oszillatorische 
Gestaltänderung der Vesikel werden in Rahmen eines chemischen Hysteresezyklus in der 
Porendichte der  (größeren) P2-Poren quantitativ analysiert. Im Hysteresemodell führt der 
Netto-Ionenfluss durch die P2-Poren zur transienten Reduktion des Membranfeldes. Zur 
kinetischen Datenanalyse wurde ein neues Iterationsprogramm entwickelt, um die 
gekoppelten Struktur-Relaxationsmoden numerisch zu analysieren. Das „Torus-Loch“-
Porenmodell liefert die mittleren Porenradien r1 = 0.38 (± 0.05) nm und r2 = 1.7 (± 0.1) nm. 
Die Beobachtung, dass die elektrisch-induzierten Membranporen (in exponentiell langsam-
abfallenden elektrischen Feldern) oszillieren, ist richtungsweisend für die Entwicklung neuer 
Pulsprogramme zur Effizienzerhöhung des elektroporativen Transfers von Wirkstoffen  in 
biologische Zellen. 
 
Teil II. Die feldinduzierten Aggregationsmuster der (kleineren) Polystyrene Latex Teilchen 
rund um die (größeren) S. pombe Hefezellen wurden quantitativ auf feldinduzierte Dipol-
Dipol Wechselwirkungen zurückgeführt. Die gefundene, unerwartet hohe Polarisierbarkeit 
der Hefe-Zellen (die nicht mit dem klassischen Polarisations-Model deutbar war), wurde mit 
einem neuen „Polarizationsfluß“-Modell analysiert. Darin wird das höhere ionische 
Dipolmoment der Zellen auf die hohe Gegenionendichte und die hohe Ladungsdichte in  der 
Zell-Glycocalyx quantitativ zurückgeführt. Dazu wurde ein neues Simulationsprogramm 
(finite element, fast differential calculus) entwickelt.    
 
Teil III. Die elektrooptischen Daten der Elektroporation und die Orientierung von ellipsoid-
förmigen biologischen Zellen bei niedrigen Frequenzen (unter 3 kHz) zeigen, dass sich die 
elektrooptischen Messgrößen, die bisher als anomale Orientierungssignale bezeichnet wurden  
(„anomalous orientation signals“), zwanglos durch die im Teil II vorgeschlagene ionische 
Hoch-Polarisation der Zell-Glycocalyx quantitativ beschreiben lassen. Dieses Hyper-
Polarisationsmodell kann auch die beobachtete hohe Elektroporations-Effizienz bei niedrigen 
Frequenzen beschreiben. 
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Graphical Abstract 

 

 
 
 
 
The constant electric field (10µs) causes transient vesicle elongation. 
The decaying field (10-200µs) leads to the second transient elongation. 
The transients are rationalized by coupling between membrane pores and field. 
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 Transient oscillation of shape and membrane conductivity changes by 
field pulse-induced electroporation in nano-sized phospholipid vesicles* 
Vasil Dimitrov,a Sergej Kakorin a,+ and Eberhard Neumann a 
 

The results of electrooptical and conductometrical measurements on unilamellar lipid vesicles 5 

(of mean radius a = 90 nm), filled with 0.2 M NaCl solution, suspended in 0.33 M sucrose 
solution of 0.2 mM NaCl, and exposed to a stepwise decaying electric field (time constant τE = 
154 µs) in the range 10 ≤ E0  /(kV/cm) ≤ 90, are analyzed in terms of cyclic changes in vesicle 
shape and vesicle membrane conductivity. The two peaks in the dichroitic turbidity relaxations 
reflect two cycles of rapid membrane electroporation and slower resealing of long-lived 10 

electropores. The field-induced changes reflect structural transitions between closed (C) and 
porated (P) membrane states, qualified by pores of type P1 and of type P2, respectively. The 
transient change in the membrane conductivity and the transient shape oscillation are based on 
changes in the pore density of the (larger) P2-pores along a hysteresis cycle. The P2-pore 
formation leads to transient net ion flows across the P2-pores and to transient changes in the 15 

membrane field. The kinetic data are numerically processed in terms of coupled structural 
relaxation modes. Using the torus-hole pore model, the mean inner pore radii are 
r1 = 0.38 (± 0.05) nm and r2 = 1.7 (± 0.1) nm, respectively. The observation of a transient 
oscillation of membrane electroporation and of shape changes in a longer lasting external field 
pulse is suggestive for potential resonance enhancement, for instance, of electro-uptake by, and 20 

of electro-release of biogenic molecules from, biological cells in trains of long-lasting low-
intensity voltage pulses. 

* Dedicated to Manfred Eigen, the founder of chemical relaxation spectrometry and chemical electric 
field analysis, at the occasion of his 86th birthday, May 9, 2013  

a Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Bielefeld, 25 

Germany 

+ Corresponding author, sergej.kakorin@uni-bielefeld.de 

1. Introduction 
Membrane electroporation (MEP) is an electric technique to 
induce structural changes in the lipid part of cell membranes or 30 

lipid vesicle membranes. Thereby the applied electric field causes 
the formation of electropores and electromechanical shape 
changes. The concept of “electroporation”, short for electric pore 
formation, was introduced in 1982 in the context of the first 
functional electrotransfer of foreign gene DNA into mouse lyoma 35 

cells by high voltage pulses. 1 - 2 This first electro-reprogramming 
of biological cells by MEP has been seminal for many subsequent 
biotechnological and clinical applications to transfer biogenic 
agents into tissue cells, culminating nowadays in gene electro-
vaccinations and electro-chemotherapeutical tumour curing. 3 - 6 40 

Prior and complementary to functional electro-uptake, the electric 
pulse technique had been used in 1972 to achieve (non-

destructive) electro-release of cellular components, such as 
catecholamines, ATP and proteins from isolated chromaffin 
granules (vesicles) of bovine adrenal medullae.7 Similarly, 45 

electric pulse trains have been applied to produce large syncythia 
of living cells by electroporation of aggregates of single cells. 8 
A key observation is that field-induced porous membrane states 
can be structurally long-lived as compared to the rapid process of 
pore formation. This longevity is instrumental for the successful 50 

use of MEP for cellular material exchange in general and, in 
particular, for various biotechnological and medical applications.   
Although the fundamentals of the electroporation phenomena are 
slowly being elucidated, many application details, in particular 
for the various electroporation based medical treatments, are still 55 

not sufficiently understood. 
A specific chemical-physical (i.e., thermodynamic) theory of 
MEP was based on data of organelles and culture cells,2 whereas 
pure physical theories were developed to analyze the electro-
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mechanical properties of both, planar and vesicular lipid 
bilayers,9 - 15 and cellular systems such as erythrocytes.16 Despite 
differences in size and time scales, the induced transmembrane 
voltage and the curvature effects17 of cell membranes and of 
moderately small vesicles are well comparable.18 Details are 5 

given in the Appendix 7. Therefore, with respect to electro-
poration, the curved membrane shells of lipid vesicles serve 
traditionally as models for the lipid parts of the membranes of 
cell organelles and of cells 19 - 21 It has been previously shown 
that, at higher field strengths (and 10µs field duration), the 10 

electro-optical turbidity relaxations of nano-sized lipid vesicles 
exhibit a pronounced extremum (peak) very similar to the first 
peak observed here in long-lasting fields.22 This peculiar feature 
has been interpreted as being due to a decrease in the membrane 
field by cross-pore ion conduction, reducing the conductivity 15 

factor of the membrane. At that time, however, the first 
quantitative estimates suffered from too rough approximations as 
to the specification of the thermodynamic pore fraction, largely 
overestimating the conductivity factor. 
The data of unilamellar lipid vesicles22 as well as of biological 20 

membranes23  suggested that the electric field can induce two 
types of ion conducting electropores: (a) short-lived fluctuating 
hydrophilic single-file pores (here called P1-pores) involving 
small salt ions and (b) larger electropores (here called P2-pores) 
of higher pore conductivity and permitting actual net transport 25 

(e.g., electrolyte release) also of larger ions. The after-field 
longevity is particularly pronounced for the P2-pores; the mean 
life times in nano-sized vesicles are in the order of milliseconds, 
in cell membranes in the order of seconds and minutes.23 The two 
pore types are characterized by different stress balances, leading 30 

to two different stable pore sizes. The stress balance in P1-pores 
comprises electrical polarization stress, reduced by ion current, 
and stress due to a line tension in the pore edge.24 - 26 In P2-pores 
there is additionally a stress due to the net outflow of electrolyte, 
which is caused by the global electric Maxwell stress on the 35 

vesicles. 
The conventional high-voltage apparatus provided rectangular 
pulses of 10 µs duration. Here, we use a new variant of applying 
a field pulse of long-lasting decaying electric field. As 
previously, the primary electrooptical data are first subjected to a 40 

numerical code analysis27 yielding the surface area function, fs(t), 
which is the relative surface area increase due to water entrance 
accompanying the formation of electropores. The combination of 
fs(t) with the kinetics of the conductivity changes permits to 
determine the mean pore polarization volume, thus the mean pore 45 

radius of a specified geometry of the pore. The field dependence 
of the relaxation times and the amplitudes, respectively, yields 
the pore polarization energies and the activation volumes of the 
cyclic membrane permeability changes and of the shape changes. 
In the context of the observed transient oscillation of the shape of 50 

nano-sized vesicles, it is instructive to recall that giant vesicles 
(vesicle radius in the order of 10 µm) under special electrolyte 
conditions, exhibit a transient shape change in long-lasting 
constant external fields.11- 15, 27 
In the field of applications of electroporation in human clinical 55 

strategies, the use of longer lasting voltage pulses is guided by the 
original recognition of the longevity of the membrane pore states, 
permitting massive membrane transport of larger molecules after 

the pulse train termination.1-2 The structural feature of pore 
longevity is instrumental for rationalizing the voltage pulse data 60 

for pulse train combination modes of high voltage (HV) pulses 
and low voltage (LV) pulses and the effects of a time interval 
between the pulses.28 Viewed afterwards, the originally applied 
“exponential field pulses” 1-2 with the longer RC- circuit 
discharge times, combine the experimental conditions of a 65 

sequence of one HV-pulse followed by a long-lasting LV- pulse, 
thus achieving effective gene transfer in living tissue.28 Because 
of less body stress, low voltage-pulses are desired in clinical 
protocols, but they are less efficient for human gene vaccination 
and for electro-chemotherapeutic treatments. Therefore, several 70 

cycles of field applications are projected to increase the otherwise 
low small-field efficiency of clinical electroporation treatments. 
In line with the previous theory-guided experimental approaches, 
the observation of transient oscillations in membrane transport in 
lipid vesicles is projected to enter into strategies to optimize field 75 

strength and pulse duration of a single pulse in a pulse train. The 
final aim is to improve the pulse protocols for clinical gene 
electrotransfer and electrochemotherapy. 
 

2. Materials and methods 80 

2.1 Unilamellar phospholipids vesicles 

Unilamellar phospholipid vesicles have been prepared by the 
extrusion method 21 using the commercial chloroform/methanol 
extract of 20 (mass) % lecithin (Soy 20 or Avanti 20) kept deep-
frozen at −80 oC. The purified extract contains 20 (mass) % 85 

phophatydilcholine (PC), 10 (mass) % phosphatidic acid (PA), 
30 (mass) % phophatidylethanolamine (PE), 20 (mass) % 
phophatidylinositol (PI), and 20 (mass) % other not specified 
lipids from Avanti Polar Lipids. 
The electrooptic data of a mixture of synthetic lipids at similar 90 

conditions of lipid concentration, buffer, and temperature are 
similar described here. The mean diameter ∅ = 180 nm, i.e., the 
mean vesicle radius a = 90 nm, has been determined by dynamic 
light-scattering measurements (data not presented). All samples 
are vesicle suspensions of aqueous 0.2 mM NaCl solution. In 95 

order to remove external NaCl, the vesicle suspension is dialyzed 
against degassed sucrose solution of the same osmolarity (0.33 M 
sucrose). The vesicle samples are subjected to measurement 
immediately after preparation.  The final total lipid concentration 
used for the electrooptical measurements is [LT] = 1 mM, 100 

corresponding to a vesicle number density of ρν ≈ 1014 − 1016 
dm−3. For vesicles of radius of a = 90 nm and vesicle number 
density of ρν ≈ 2.4 × 1015 dm−3, the average distance between the 
surfaces of single vesicles is calculated to be about 0.6 µm. 
Compared with the vesicle diameter of 0.18 µm the suspension 105 

may be qualified as diluted, such that the induced dipole forces 
during the short field pulse is unlikely to induce dielectrophoretic 
(dipole-phoretic) clustering of vesicles at the low vesicle 
density.20 
 110 

 2.2 The electric field-jump technique 

The electric field-jump relaxation technique, originally 
introduced by Eigen and DeMaeyer,29 has been further developed 
such as to achieve simultaneous measurements of field induced 
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changes both in the electric conductance and in the optical 
properties of solutions in the time range of 0.1 µs up to about 200 
µs with high resolution. Voltage pulses of field strengths up to 
100 kV/cm and variable pulse durations are applied to a plate 
condenser sample chamber, using an extended version of the 5 

original cable discharge technology. The diagram of the field-
jump relaxation spectrometer is shown in Fig. 1. The sample 
chambers are thermostated at the temperature T = 293.0 (± 0.1) K 
(20°C). The electrooptical chamber is equipped with quartz 
windows and parallel planar graphite electrodes. The electrode 10 

distance h can be adjusted between 3 mm and 10 mm, providing 
additional adjustment of the field strengths. The field-induced 
changes in the transmittance of plane-polarized light is measured 
at the wavelength of λ = 365.5 nm (Hg-line, highest intensity). 
The optical path length of the sample cell is lopt = 10 mm.  The 15 

triggered discharge of a 1000 m high-voltage cable provides a 
voltage U of constant amplitude U0 (10µs) within the first 10 µs 
followed by a stepwise (exponentially) decaying part U0 ⋅exp 
[−(t−10µs)/τU] of the time constant τU = 154 µs.  Because h is 
adjustable, the nominal external field function E(t) = U(t)/h  is 20 

expressed by the step function: 

( )0 0( ) (10 ) exp 10 UE t E s E t sµ µ τ= + − −    (1) 

In order to use E(t) in the analysis as a continuous variable, the 
decrease of E in steps of 10µs (cable-discharge technique) is 
approximated as a continuous function according to: 25 

( )0
*( ) exp EE t E t τ= −   (2) 

In Eq. (2), the step-to-exponential conversion is expressed in 
terms of a time function τ*E(t) = [τU + A⋅exp(−t/τe)], where 
A = 5×107 µs and τe = 1 µs, to achieve 1% accuracy relative to 
the step function.  30 

On a logarithmic scale, the time point t’ = 0.2 µs (Fig. 2) is taken 
as time zero, t = t’ − 0.2 µs = 0, for the analysis of the relaxation 
processes including the Maxwell-Wagner polarization of the 
vesicles suspended in aqueous NaCl solution.  
 35 

2.3 Electrooptical turbidity relations (one-chamber system) 

The light intensity change ∆I σ, caused by the electric pulse and 
measured at the polarization angle σ  relative to the direction of 
the applied external field vector E, is related to the optical density 
change by 40 

( ) ( )log 1OD OD E OD I Iσ σ σ σ σ∆ = − = − + ∆  (3) 

where ∆Iσ = Iσ(E) − Iσ is the light intensity change from Iσ  (at 
E = 0) to Iσ(E) in the presence of the electric field E, Fig. 1(a). 
The terms ODσ(E) and ODσ

0 are defined as the optical densities 
at E ( > 0) and E = 0, respectively. Generally, OD = A + T, 45 

comprising both absorbance (A) and turbidity (T) along the light 
path length. In the wavelength range where the approximation 
A << T can be used, the reduction of the intensity of light, passing 
through the sample, is solely due to light scattering. Therefore, 
here ∆ODσ = ∆Tσ. 50 

The field induced changes ∆T || and ∆T ⊥ at the two light 
polarization modes σ = 0° (||, parallel to the external field vector  

 
 

Fig. 1 Principle scheme of the “field-jump” relaxation spectrometer for 55 

the measurements of (a) electro-optical relaxations and (b) conductance 
relaxations of aqueous suspensions of nano-sized lipid vesicles. In (a), I σ 
is the intensity of the light after the passage of the sample cell, analysed at 
polarization angles σ = 0° (|| , parallel to the direction of the external 
field) and σ = 90° (⊥ , perpendicular to the field direction), LS is the light 60 

source and A is the analyser. In (b), the tandem-chamber system permits 
to measure the difference ∆Y(t) =YHEC(t) – YLEC(t)  of the conductivity 
term YHEC of vesicles of high electrolyte content (HEC), and of YLEC of 
vesicles of low electrolyte content (LEC). (c) The network of the 
components of the relaxation spectrometer set-up. 65 

 
E) and σ = 90° (⊥, perpendicular to E) are given by ∆T || = T || − 
T0 and ∆T ⊥ = T ⊥ − T0, respectively. The scaled turbidity minus-
mode (turbidity dichroism) is defined by 

0 0

T T T
T T

− ⊥∆ ∆ − ∆
=



  (4) 70 

where T0 is the turbidity at E = 0, i.e., before field application. 
The measured difference (∆T || − ∆T ⊥) ≡ ∆T − is not simply the 
classical (orientation) dichroism ∆T = ∆T ||OR − ∆T ⊥OR, originally 
defined for optical density changes due to pure deformation and 
orientation. If during the orientation process there is a chemical-75 

structural transition, this is covered by the mixed term ∆Tσ
OR,CH. 

Analogous to the treatment of absorbance changes,30 the field-
induced turbidity changes may be decomposed into deformation-
orientation parts, ∆Tσ

OR, and structural-chemical parts, ∆Tσ
CH, 

according to: 31 80 

,OR CH OR CHT T T Tσ σ σ∆ = ∆ + ∆ + ∆  (5) 

The measured difference mode ∆T − is thus explicitly given by: 32 

,OR OR CHT T T T T− ⊥ − −∆ = ∆ − ∆ = ∆ + ∆  (6) 

Therefore, here the (total) term ∆T − represents the general linear 
turbidity dichroism, covering both ∆T −OR and ∆T −

OR,CH .   85 
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Fig.2 The dichroitic mode, ∆T−/T0, and the chemical mode, ∆T+/T0, of the 
turbidity relaxations (at wavelength λ = 365.4 nm) as a function of time at 
different field strengths E0 of the applied voltage pulse (one-chamber 5 

system). The dots (•) refer to the post-field relaxation values of the plus-
mode at E0 = 70 and 80 kVcm−1. Sample: unilamellar lipid vesicles (high 
electrolyte content) of mean vesicle radius a = 90(±10) nm; internal 
[NaCl] = cin = 0.2 M; total lipid concentration [Lt] = 1.0 mM, suspended 
in isotonic 0.33 M sucrose and 0.2 mM NaCl solution; vesicle number 10 

density ρV = 2.4 ×1012/ml. The zero-field conductivity of the vesicle 
suspension is λ0 = 24.7 µS/cm. Temperature: T = 293 K (20 °C). The 
onset of the electric field (logarithmic time scale) is at t’ = 0.2 µs. 

 
In the line with, e.g., Revzin and Neumann, 33   the plus turbidity 15 

mode is given by: 

0 0 0

2
3

CHT T T T
T T T

+ ⊥∆ ∆ ∆ + ∆
≡ =



  (7) 

The turbidity plus-term ∆T +/T0 generally refers to non-
orientation changes in the scattering cross section. Here, the cross 
section is changed due to entrance of water (and salt ions like Na+ 20 

and Cl−) local (aqueous pores) into the electroporated membrane 
shell as well as due to global changes of the vesicle shape. 31 
 

2.4 Conductivity relaxation spectrometry (tandem-chamber 
system) 25 

The electric field pulses for the conductance changes are the same 
as for the electrooptical changes. In order to compensate for Joule 
heating and electrode effects, two (equal) chambers in a tandem 
mode are used, both with identical initial conductivity (λ0). The 
field strengths of the high voltage pulses are here in the range 10 30 

≤ E0 / (kV/ cm) ≤ 90. The measuring diagram is illustrated in 
Fig. 1(b). The conductance chambers are equipped with parallel 
planar graphite electrodes separated by the distance h, adjustable 
within 0.3 ≤ h / cm ≤ 1, dependent on the field strength. 32 One of 
the chambers is filled with vesicles of low electrolyte content 35 

(LEC), suspended in low electrolyte solution. The other chamber 
is filled with vesicles with high electrolyte content (HEC), but 
suspended in low electrolyte solution. The external solution is 
adjusted with electrolyte solution, such that the initial 
conductivities are equal, i.e., the same (λ0) for both chambers. 40 

The other experimental conditions are the same as those for the  

 
 

Fig. 3 The difference conductivity function (tandem-chamber system), 
∆Y(t) = ∆λHEC(t)/λ0 - ∆λLEC(t)/λ0, defined in Eq. (8) as the difference of the 45 

conductivity functions of the high electrolyte content (HEC) vesicles and 
that of the low electrolyte content (LEC) vesicles, as a function of time  at 
different field strengths E0: (a) logarithmic time scale and (b) linear time 
scale, t/µs = t’/µs – 0.2. (c) The post-field conductivity value Y400µs, at t = 
400µs, viewed as quasi-stationary, as a function of E0. The bold curve in 50 

(c) corresponds to calculations using Eq. (76), where the mean radius of 
the release-pores (P2-pores) r2 = 1.7 nm (conductivity increase due to the 
P2-pores) is used to satisfactorily cover the range from 20 kV/cm up to 50 
kV/cm, see section 4.5.3. The vertical MW arrow in (a) indicates the 
characteristic time constant tMW  ≈ 100 ns of the (ionic) Maxwell-Wagner 55 

polarization. Experimental conditions as in Fig. 2. 

 
electrooptical measurements (Fig. 2). The primary signals are 
relative current changes ∆i(t)/i0 = [i(t) − i0]/i0 at a given applied 
voltage U, yielding first the relative conductance change ∆g(t)/g0 60 

that is then expressed as relative conductivity change ∆λ(t)/λ0 
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(=∆g(t)/g0). If now a conductivity function Y(t) = ∆λ(t)/λ0 is 
defined as the relative conductivity change, the tandem-chamber 
system yields  the “difference conductivity function”, defined as: 

0 0

( ) ( )( ) ( ) ( ) HEC LEC
HEC LEC

t tY t Y t Y t λ λ
λ λ

∆ ∆
∆ = − = −  (8) 

In Eq. (8), HEC refers to high electrolyte concentration (0.1 M 5 

NaCl) in the vesicle and LEC, respectively, to low electrolyte 
concentration (0.2 mM NaCl, 0.33 M Sucrose) of the vesicle 
suspension. The initial conductivity of the vesicle suspension is 
λ0 = 24.7 µS cm-1 before pulsing, measured with a KNICK digital 
conductometer (Krüss, Hamburg) using low voltage (U = 5 V). 10 

3.  Experimental Results and Discussion 
3.1 Turbidity relaxation spectra 

As seen in Fig. 2, the dichroitic mode (∆T −/T0) passes through 
two subsequent maxima and, finally at about 10 ms, relaxes to 
zero. The first maximum occurs at constant external field and is 15 

similar to the maximum observed previously at high fields. 22  
Remarkably, the second maximum occurs in the decaying field 
phase, approximately in the same time range for all applied E0. 
On the other hand, the chemical mode ∆T +/T0 passes smoothly 
through a broad minimum before it relaxes along the decaying 20 

field.  In the field strength range of 0 ≤ E0 /(kV cm-1) ≤ 30, the 
post-field time course of the chemical mode returns towards the 
initial (zero) level. It is remarked that, in this field strength range, 
the application of a second pulse, some minutes after the first 
one, yields the same optical response as found for the first pulse. 25 

Even a series of several pulses applied within several minutes 
does not change the optical response. 
However, at field strengths E0 > 30 kV/cm, the chemical mode 
returns only very slowly towards the level before pulsing. Since 
the chemical mode mainly reflects entrance of water (and ions) 30 

into the porous membrane phase (electropores), the slower 
relaxation mode reflects the longevity of, in particular, the larger 
membrane electropores. As seen in Fig. 2 , the (negative) peak 
value of ∆T +/T0 gradually increases with increasing field 
strength. At about E0 = 70 kV/cm, the signal approaches zero 35 

only after about t = 20 min, indicating interference of additional 
processes. 
 

3.2 Conductivity relaxation spectra 

The time course of the “conductivity difference function”, ∆Y (t), 40 

starts at t’ = 0.2 µs (log time scale). The onset of the field pulse is 
concomitant with the onset of the capacitive transient of the 
Maxwell-Wagner (MW) ionic polarization of the vesicles. The 
estimated MW time constant of 0.1 µs, see Fig. 3 (a), is close to 
the calculated value of τpol = 0.096 µs according to the 45 

approximation: 34 

2
2
in ex

pol m
in ex

aC λ λτ
λ λ
+

= ,  (9) 

where Cm = 0.8 µF/cm² is taken as the lipid typical specific 
membrane capacitance, λex  the (external) medium conductivity 
and λin the conductivity of the vesicle interior.  50 

Subsequent to the Maxwell-Wagner polarization current there is 
another capacitive current contribution caused by Maxwell stress 
leading to membrane thinning due to (a) lipid tilting (membrane 
state C1, and (b) due to smaller surface depression spots 
(intrusions) or eventual hydrophobic pores (capacitive-55 

conductive, membrane state C2, see below). The concomitant 
(ohmic) part in the total term ∆Y(t) is caused by the ion-
conductive electropores. Remarkably, after the onset of the decay 
of the external field E0, the conductivity of the suspension still 
continues to increase passing through a broad maximum (second 60 

peak, in the time range of 10 ≤ t /µs ≤ 40) before decaying toward 
an apparent stationary level which is higher than that before the 
pulse (Fig. 3 a, b). Obviously, the second kinetic phase confirms 
that there is (diffusive) after-field continuation of the field-
induced release of electrolyte ions from the vesicle interior into 65 

the bulk suspension due to pore longevity. 
The data analysis suggests that the first kinetic phase (mode I) 
reflects membrane conductivity changes due to electropores 
without net release of electrolyte from the vesicle. This pore type 
(P1) has been previously interpreted as “Nernst-Planck-pore”, 70 

transporting in a fluctuating opening phase and in single-file 
fashion, either a cation or an anion, but not both at the same 
time.22 The second (slower) mode (II) is accompanied by net 
outflow of ions; i.e., in one longer lasting opening phase both 
cations and anions are transported from the HEC (high-salt) 75 

vesicles across the long-lived P2 - pores. 
On the time scale displayed in Fig. 3, the relaxation curves appear 
to approach a quasi-stationary level at the end of the continuous 
recording at t = 400 µs. But it is seen that the external electric 
field still continues to decrease, yet the conductivity difference 80 

function ∆Y(t) approaches the finite limit value Y400µs. In 
Fig. 3(c), it is shown that the quasi-stationary value Y400µs 
increases with increasing field strength in a way which is known 
to be typical for electroporation phenomena. 23 

4.  Theory and data analysis 85 

4.1 Nonequilibrium thermodynamic theory of membrane 
electroporation 

Since MEP is a complex electro-mechano-chemical phenomenon 
involving local structural changes such as pore formations and 
global geometrical changes of membrane thinning and vesicle 90 

shape changes, any MEP theory has to comprise chemical-
structural aspects as well as pure physical changes due to 
Maxwell stress. The analysis of the primary kinetic data (Fig. 2 
and Fig. 3) will show that the elongation function p(t) (p = c/b, 
see section 4.4.4) exhibits a first characteristic peak (at constant 95 

E0). For instance, at E0 = 47 kV cm−1, the peak time point is tpeak 
= 4 µs, see Fig. 4 below. At the same field strength, the 
conductivity function ∆Y(t) indicates the (delayed) onset of the 
formation of P2-pores at about t = tdel = 4 µs.  
This peculiar feature suggests that an intermediate pore state is 100 

rate limiting in the coupling between the two overall reaction 
cascades underlying electropore formation.  In brief, in line with 
previous data,23 the first kinetic phase involves a structural 
reaction cascade (I) toward forming electropores of the type P1. 
The second kinetic phase (II) is delayed and reflects the build-up 105 

of pores of larger conductivity, previously called electropores 
(release pores) of type P2. 
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4.2 Reaction scheme for the state transitions of MEP 

The structural changes underlying the changes in conductance 
and vesicle shape have previously been represented by chemical 
reactions (C)  (P) between closed (C) and porous (P) 
membrane states.1 The new kinetic data confirm that at least two 5 

separate, but coupled, cascades of reaction steps are necessary to 
describe the kinetics of the electrooptical and conductometrical 
signals.  

4.2.1 Reaction subscheme (I) 

The first reaction cascade (I) comprises the reversible state 10 

changes and the respective rate coefficients (ki) according to: 

0 12 1

0 21 1
1 2 1(I) k k k

k k k
C C C P

− −

  

  

 (10) 

In Eq. (10), the first step (C C1) represents Maxwell stress-
induced tilting of the lipids relative to the membrane normal. The 
state C2 represents a torus like surface depression or eventually a 15 

small hydrophobic pore of diameter of the size of one or two 
water molecules.35- 36 The conductivity difference relaxations 
∆Y(t) suggest a transient capacitive part ∆YC (t), preceding the 
actual formation of P1-pores. In brief, the states C1 and C2 model 
the capacitive-conductive states, both impermeable for small ions 20 

(except perhaps for H3O+-ions). The kinetic curves up to the first 
peak (reversal of the dichroitic turbidity mode; see Fig. 2) are 
found to be described solely by the reaction cascade (I). This part 
is therefore denoted as the kinetic mode (I). 
 25 

4.2.2 Reaction subscheme (II) 

The second reaction cascade (II) is specified in terms of the two 
unidirectional reaction branches constituting the hysteresis loop 
in the sequence of state changes according to: 

*11 2

11

2

1 11 2

*
2

*

(II)

_____ ( ) _____

k k
k

k

P P P

P

−

−

→

↑ 





 (11) 30 

The different pathways in the hysteresis scheme II are required to 
describe the second peak in the oscillatory elongation of vesicles 
in the decaying field. This second peak in the decaying field is 
more pronounced than the shoulder of the axis ratio function 
observed by Riske and Dimova (2005)12 in giant vesicles after the 35 

rectangular field pulse (i.e., at field zero), and may be related to 
the same mechanism as in our case.  
The hysteresis mechanism requires different intermediates for the 
two hysteresis pathways. Therefore, we model the upper branch 
of the hysteretic state transition P1  P2 in terms of intermediate 40 

state P11 (possibly two P1 pores in very close contact). Note that, 
in Eq. (11), P1 is the end state of the reaction scheme I, Eq. (10). 
The actual irreversible step is the unidirectional transition from 
P11 to P2. The overall hysteresis loop is closed by the 
unidirectional transition back to pore state P1. This lower branch 45 

probably represents the shrinking of P2 pores, passing through a 
different (compared to the upper branch) intermediate state P2

*. 
So, the cyclic reaction scheme describes the oscillatory shape 
changes between the pore states P1 and P2, caused by the changes 
in the membrane field due to ion flow. 50 

4.3 Rate equations. 

Conventionally, the reaction modes are described in terms of time 
constants and amplitudes.  Here, the rate equations are formulated 
such that they can be extended to incorporate ‘time dependent 
amplitudes’. For the case of constant field E0, the amplitudes 55 

[ ]iX  of the membrane states Xi (= C, C1, C2, P1, P2) are used as 
the final reference equilibrium states. The kinetics of the field-
induced state densities [Xi(t)] is expressed in terms of state 
density deviations defined as: 

[ ( )] [ ( )] [ ]i i iX t X t Xδ = −   (12) 60 

Mass conservation implies: 

[ ]( ) 0iX tδ =∑ .  (13) 

4.3.1 Kinetic overall phase (I) 

The actual pore formation process of the P1-pores is the intrinsic 
reaction step C2  P1 in the cascade (I), Eq. (10). The respective 65 

(intrinsic) rate equation is d[P1]/dt = k1[C2] − k−1[P1], where k1 
and k−1 are the rate coefficients.  The specific terms [Xi (t)] = 
δ [Xi (t)] + [ ],iX  Eq. (12), are now inserted into the rate equation. 
If in addition, the equilibrium amplitude conditions [ ] /id X dt  = 
0 and 1 1 1 2[P ] [C ]k k− =  are used, respectively, the rate equation is 70 

rewritten as: 

[ ] [ ] [ ]1
1 1 1 2

( )
( ) ( )

d P t
k P t k C t

dt
δ

δ δ−= − +  (14) 

In the actual coupled system, Eq. (10), mass conservation implies 
that δ [P1 (t)] =  − δ [C2 (t)]  − δ [C1 (t)]  − δ [C (t)]; Eq. (13). 
In the case of time dependent amplitudes, the rate equations will 75 

be extended to cover the amplitude terms ( ).iX t   
 

4.3.2 Kinetic overall phase (II) 

The observed delay, at about tdel ≈ tpeak I (Fig. 3(a)), in the ∆Y(t) 
function suggests that the reaction mode (I) can be considered as 80 

rapidly equilibrated to the subsequent slower formation of P2 - 
pores starting at times t ≥ tdel. The rate equation of the reaction 
hysteresis (II) involves two unidirectional steps comprising the 
states P1, P11, P2 and P2, P2

*, P1, respectively, Eq. (11). They are 
here lumped together in terms the respective state densities [Xi (t)] 85 

and deviations δ [Xi (t)]. 
The overall rate equation covering the intrinsic irreversible steps 
P11 → P2 and P2 → P1, respectively, is given by d[P2]/dt = 
k*

2⋅[P11] − k*
−2⋅[P2], where k*

2 and  k*
−2 are the rate coefficients.  

Since the actual formation of P2-pores is slower than the 90 

preceding steps, the reaction P1 

P11 is considered rapidly 
equilibrated during the slower step P11 → P2. Hence [P11] is given 
by [P11] = K11[P1]. The equilibrium constant K11 = [P11]/[P1] << 1 
can be expressed  in terms of the respective state density 
deviations as: K11 = δ [P11] / (−δ [P1]).  95 

The particular feature of the delayed appearance of the P2-pores 
above a critical field strength E * can be rationalized if, at E ≥ E *, 
a critical concentration *

1[P ]  of the P1-pores is reached. The peak 
values are apparently independent of the electric field. This 
indicates that the respective state density [P1(t = tpeak)] is the 100 

constant critical pore density *
1[P ]  for the formation of P2-pores. 
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The conditions for the formation of P2-pores are thus: [P1] ≥ *
1[P ]  

or δ [P1
*] =  [P1] − *

1[P ]  ≥ 0 at E ≥ E* and at t ≥ tdel. 
To incorporate these critical conditions, the rate equation is 
rewritten as d[P2] /dt = k*

2K11([P1] − *
1[P ] ) − k*

−2[P2], where [P11] 
= K11[P1] is used and [P1] is replaced by the difference ([P1] − 5 

[P1
*]). Applying now Eq. (12) and substitution of the equilibrium 

conditions 2[P ] /d dt = 0 and * *
2 11 1 1([P ] [P ])k K −  = *

2 2[P ],k−  
respectively, yields: 

[ ] [ ]* * *
2 2 11 1 2 2( ) ( ) ( )d P t dt k K P t k P tδ δ δ− = −   (15) 

where the relationship δ [P1] =  [P1] − 1[P ]  = [P1] − *
1[P ]  − 1([P ]  10 

− *
1[P ])  ≥ 0 is used. Note that, at E ≥ E *, the maximum 

(amplitude) of the P1-pore density, is given by:  1[P ]  = *
1[P ] . 

Insertion leads to the equality:  δ [P1] = δ [P1
*]; thus all 

supercritical P1-pores are converted to P2-pores. 
Mass conservation for the casade (II) for this supercritical range 15 

implies that δ [P1
*] = − δ [P11] − δ [P2] = − δ [P2] / (1−K11).  

Substitution into Eq. (15) finally leads to: 

[ ] [ ]2
2* *

2

( ) 1 ( )del
del

d P t t
P t t

dt
δ

δ
τ

≥
= − ≥  (16) 

where the overall relaxation rate is given by 1/τ 2** = k2
*K11/(1− 

K11) + k−2
*. In the case of time dependent amplitudes, the rate 20 

equation will be extended to cover the amplitude term 2[P ( )]t  = 
2[P ] f ( )t⋅  in terms of the forcing function f(t), see section 4.5. 

 

4.3.3 Capacitive contributions to phase (I) 

The rate equation for the capacitive current contribution, written 25 

in state densities, reads: d[C2]/dt = − (k21 + k1)[C2] + k12[C1] + 
k−1[P1]. Since lipid tilting is known to be rapid as compared to the 
slower water entrance to form small hydrophobic pores, the 
reaction step C C1 is assumed to be rapidly equilibrated. The 
respective equilibrium constant K0 = k0 / k−0  = −δ [C1] /δ [C] is 30 

used to express δ [C1] in terms of δ [C]. Rearrangement leads to 
the (capacitive) reaction mode within the first reaction cascade, 
Eq. (10). It is expressed in terms of Eq. (12) as: 

[ ] [ ] [ ]2
2 1

( ) 1 ( ) ( )C
C

d C t
C t k P t

dt
δ

δ δ
τ

= − +'
'  (17) 

In Eq. (17), the capacitive relaxation rate 1/τ’C = k1+ 1/τ’12 is 35 

given in terms of the mode relaxation rate 1/τ’12 = −k’12+ k21 and 
the rate coefficients k21 and k’12 = k12K0 /(1−K0), respectively. The 
overall capacitive rate coefficient is k’C =  k’12 + k−1. 
Again, in the case of time dependent amplitudes, the rate 
equations will be extended to cover the amplitude terms ( ).iX t . 40 

 

4.4 Thermodynamics of electroporation field effects 

4.4.1 The induced membrane field 

The external electric field directly acts as an electric force on the 
charged groups of the lipid structure of the membrane and also on 45 

the ion transport directly within the electropores; the electric 
force refers to the induced membrane field Eind. For spherical 
shells, Maxwell’s original solution of the Laplace’s equation 

refers to the stationary values of the electric potential ϕm at the 
membrane sites of the polar angle θ, i.e., in the angular range 50 

0 ≤ θ ≤ π. 
In the case of homogeneous external fields, the two hemispheres 
of the shell may be considered electrically equivalent relative to 
the direction of the homogeneous external field. Thus, at the pole 
caps, the induced membrane field Eind = |∆ϕm|/dm is collinear with 55 

the direction of the external field E, where ∆ϕm is the potential 
difference between the external and internal membrane sites on 
the pole capes of vesicles. Thus, for field effects the 
(hemispherical) polar angle ranges 0 ≤ θ ≤ π/2 and π/2 ≤ θ ≤ π are 
equivalent. In this context it is recalled that the electric current 60 

density vector jm for the cross- membrane ionic flows (of both 
cation and anion) is given by jm = λm(−∇ϕm) = λmEm, where λm is 
the conductivity (or specific conductance) of the membrane 
(referring to the conductive pores) and Em = Eind; here, the 
Maxwell definition of the field (Em = −∇ϕm) as negative gradient 65 

of the electric potential ϕ is inherent.  
It is recalled that the very primary effect of the external field in 
ionic solution is the built-up of the (ionic) Maxwell–Wagner 
polarization leading to the induced electric potential difference 
∆ϕind across the membrane shell. In the case of a larger outer 70 

shell radius a (the inner radius is r = a − dm ), the approximation 
dm /a  1 may be applied. Hence the time course of the induced 
potential difference is, analogous to Fricke, 37 given by: 38 

( )( , ) (3 / 2) cos 1 exp / polt a E f tλϕ θ θ τ ∆ = − − −   (18) 

In Eq. (18), fλ is the conductivity factor, specified below. In the 75 

case of larger shells of very low membrane conductivity λm , we 
may use the approximations dm << a, and the inequality 
λm << λex; λin. Hence the conductivity factor of spherical shells in 
ionic medium is approximated by: 22-23 

1 mλ ν λ= −f ,  (19) 80 

where ν is defined as: 

ex in

ex in

2
2 /md a

λ λν
λ λ

+
=   (20) 

The stationary value of the induced membrane field at the polar 
angle θ  is given by 

( ) ( )( ) (3 / 2) | cos |m m
m

m m m

U aE E
d d d λ

θ ϕ θθ θ−∆
= = = f  (21) 85 

In the case of major vesicle elongation at constant volume 
(∆V/V0 ≈ 0), Eq. (21) is replaced by: 

( , )( , ) (3 / 2) ( ) | cos |m
m p

m m

U p aE p g E
d d λ

θθ θ θ= = f  (22) 

where gp(θ) is the shape factor related to the elongation ratio p 
and the polar angle θ  and is given by the approximation: 90 

( )
2 2 2

1 0.28 1
( )

sin cos
p

p
g

p
θ

θ θ

+ −
=

+
  (23) 

Eq. (23) is valid in the interval 1 ≤ p ≤ 3 with relative accuracy of  
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3 × 10−3. The derivation of Eq. (23) is based on the exact solution 
of ∆ϕm(p,θ ), 39 see Eq. (C3) of ref. 39.  
 

4.4.2 Field dependence of the chemical reaction parameters 

If the intrinsic equilibrium constant Ki = ki / k−i is field-dependent, 5 

in general also the respective rate constants ki  and k−i and thus the 
relaxation times τi depend on the local field Em. The van’t Hoff-
like relationship for Ki of the formation of aqueous pores of type 
i, at constant pressure P and constant absolute temperature T, is 
given by: 10 

r
( )Δ 0 Pi L Pi i

m
P,T B

iε ε - ε Vn K M= = E
E RT k T

∂ 
 ∂ 

  (24) 

In Eq. (24), ε0 is the permittivity of the vacuum. At membrane 
fields Em > 300 kV/cm, as in our experiments, the dielectric 
coefficient εPi is very near to that of water εW (293 K) = 78; see 
the Appendix 8. Thus we use εPi = εW (293 K) = 78. The dielectric 15 

coefficient of the lipid phase is given by εL = 2.3; kB is the 
Boltzmann constant and VPi is the local polarization volume of the 
pore state Pi. 
For the two-state transition of the type i, integration of Eq. (24) 
yields the explicit polarization field dependence of Ki (E): 20 

( )2 2
,( ) (0)expi i i iK E K b Eλ= f  (25) 

In Eq. (25), Ki(0) is the distribution constant at the membrane 
field Em = 0, i.e., before applying the external voltage pulse. As to 
the definition of the term bi⋅fλ,i it is important that in a suspension 
of vesicles, the thermodynamic and kinetic quantities refer to 25 

|cosθ |-averages of θ on both hemispheres.   
Measured quantities like electrical currents reflect electropores on 
both hemispheres. But the local pore density of the electropores 
in the membrane shell depends on the membrane field Em (θ, p), 
thus on the polar angle θ.  30 

The averaging comprises the membrane field Em (θ, p). It is 
shown in the Appendix 4, that the θ -average is given by:  

3 3( , ) ( ) cos
2 2m m p

m m

a aE E p E g E
d dλ λθ θ θ= = ≈f f  (26) 

For the data analysis we use the simple approximation given by 
Eq. (26). Further, the field parameter bi (referring to the 35 

polarization of the pore water) is specified as: 

2

03 ( )
2 2

W L
i P

m B
i

ab V
d k T

ε ε ε  −
= ⋅ 

 
 (27) 

The torus-hole model characterizes VPi in terms of the inner pore 
radius ri according to: 

( ) ( )2 24 10 3
4 24P m i i m miV d r r d d

π π
π

 − − 
= + + 

 
 (28) 40 

Eq. (28) describes the volume VPi of the torus-hole as the sum of 
the inner cylinder volume (π dm ri 

2) and the remaining two 
volume rings of outer radius (dm/2 + ri). 
Recalling Eq. (19), the conductivity factor (of pore type i) is 

rewritten as: 22- 23 45 

, ,1i m Piλ ν λ= −f   (29) 

In Eq. (29), λm,Pi is the contribution of the pores of type Pi to the 
membrane conductivity. Recalling the context of Eq. (20), here 
λin = 1.56 S m−1 and λex = 2.85 × 10−3 S m−1, thus ν = 3.158 × 103 
S−1 m.  50 

For vesicles of outer radius a = 90 nm, membrane thickness dm = 
5 nm, the ratio is dm / a = 0.0556. Hence the approximation 
dm / a << 1 is justified only within 5.6 % accuracy. 
Similar to Eq. (25), the field dependence of the rate coefficient ki 
is given by: 55 

( )* 2 2
,( ) (0)expi i i ik E k b Eλ= f  (30) 

The relaxation rate 1/τi can be approximated by: 

[ ] ( ){ }* 2 2
,1 ( ) 1 (0) exp i i ii iE b b Eλτ τ= − f , (31) 

where [1/τi(0)] = ki(0) / Ki(0). Eq. (31) is an approximation 
derived in the Appendix 5. Data analysis yields the activation 60 

field parameter bi
* and the activation volume VPi

*. 
It will be shown below that, due to the changes in the membrane 
conductivity, the equilibrium constants and the rate coefficients 
are “indirectly time dependent”. Therefore, a simple integration 
of the respective differential equations is not possible. 65 

 

4.4.3 Surface area function and pore density 

Before the primary data (Fig. 2) can be used in terms of the 
structural reaction schemes, the connections to the membrane 
state densities have to be defined.  During pore formation in the 70 

membrane, the projected surface area S(t) increases by ∆S(t), 
relative to the initial surface area S0  = 4πa2, before pulse 
application. The surface area function fs(t) is then defined as 
relative surface change according to: 

0

0 0

( ) ( )( )S
S t S t Sf t
S S

∆ −
= =   (32) 75 

If fs,C is the small contribution due to the closed membrane states 
C1 (tilted lipids) and C2 (small intrusions or hydrophobic pores), 
see the reaction scheme (I),  and  fs,P1 is the contribution of the 
P1 - pores and  fs,P2 that of the P2 - pores, the total surface area 
function is given by: 80 

, , ,( ) ( ) ( ) ( )s s C s P1 s P2f t f t f t f t= + +  (33) 

It will be seen that the experimental results of the transient 
conductivity term ∆Y C(t) (see Fig. 5(a)) suggest that the 
assumption fs,C (t) << fs (t) holds true. Therefore, here we may use 
the approximation: 85 

, ,( ) ( ) ( )s s P1 s P2f t f t f t≈ +   (34) 

Defining now the surface number-density [Ni] of the Ni pores of 
type Pi and radius ri by [Ni] = Ni /S0, the surface area function is 
expressed in terms of the two pore types P1 and P2. For practical 
purposes, it may be assumed that at zero-field certainly [N2 (0)] = 90 
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0, whereas [N1(0)] = 0 is a rather rough approximation, but may 
be justified within the experimental accuracy. The individual pore 
contributions are given by: fs,P1 = πr1

2[N1] and fs,P2 = πr2
2[N2], 

respectively. Finally, the pore surface area function is: 

2 2
1 1 2 2( ) [ ] [ ]sf t r N r Nπ π= +   (35) 5 

Further, the concentration terms in the reaction equations of the 
membrane states can be replaced by the state surface densities 
and by number surface densities. For instance, the equilibrium 
constant Ki (E) for the transition step i can be defined by the 
respective equilibrium terms: 10 

,max

[ ( )]( )
[ ] [ ( )]

i
i

i i

N EK E
N N E

=
−

  (36) 

In Eq. (36), ,max[ ]iN is the maximum amplitude of the number 
density, referring to the theoretical limit of pore formation in the 
membrane shell, assuming no loss of membrane patches, here up 
to about E0 ≤ 50 kV cm−1.  15 

The amplitude ,s Pif  of the individual function fs,Pi (t) = π ri
2 [Ni] 

is connected to the thermodynamic pore fraction fPi. Generally, 
since fractions are in the range 0 ≤  fPi ≤ 1, the Pi -pore fraction 
is defined by: 

,
0

,

( )
( )

(max)
s Pi

P
s Pi

i
f E

f E
f

=   (37) 20 

where the fictive maximum (max)sf refers to the limit of 
,max[ ]iN in a given lipid membrane shell. Since for a two-state 

transition the equilibrium constant is given by Ki = fs,Pi /(1− fs,Pi), 
the dependence of fs,Pi on the external field E0 is given by: 

( )
( )

2 2
0, 0 0

0 2 2
, 0 0

,

,

(0)exp( ) ( )( )
(max) 1 ( ) 1 (0)exp

i is P i
P

s P i i i

ii
i

i i

K b Ef E K Ef E
f K E K b E

λ

λ

= = =
+ +

f

f
 (38) 25 

Eq. (38) provides the tool to determine pore polarization volumes 
(and thus pore radii) from the respective amplitudes of the surface 
area functions. This classical relationship serves as the reference 
for the non-classical approach of apparently “time-dependent 
amplitudes” and “time-dependent equilibrium constants” as 30 

required for the description of the hysteretic coupling between 
membrane conductivity, pore state changes and shape changes. 
 

4.4.4 The electro-deformation functions p(t), fV(t) and fs(t) 

It is recalled that the applied electric field polarizes, and the 35 

(tangential) Maxwell stress elongates, the vesicles (of high 
electrolyte content). If the elongation is modelled in terms of 
ellipsoids of revolution,40 the extent of elongation is described by 
the axis ratio p = c/b of the two principal semi-axes c and b, 
where c > b. Because the electro-elongation is relatively rapid 40 

(µs) and the rotational diffusion of the elongated vesicle is slower 
(usually ms), the long axes of the vesicle spheroids are 
considered oriented in the direction of the external field vector. 
The elongation of the spherical vesicle from the initial volume V0 
to V(t) requires that either the vesicle membrane surface area S 45 

increases by ∆S, or that the vesicle internal volume V decreases 
by ∆V , respectively.  The elongation function is then expressed 

as: 

1 V Sp p p= + ∆ + ∆   (39) 

In Eq. (39),  1V Vp p∆ = −  and  1S Sp p∆ = −  are the increases in 50 

p(t) at constant vesicle volume and at constant membrane surface 
area, respectively. The axis ratios Vp  and Sp  refer to the 
respective conditions. During the process of pore formation water 
enters locally the membrane forcing the lipids to form a pore 
wall. For elongation at constant volume, p ≈ pV, ∆pS ≈ 0; thus p(t) 55 

is solely a function of fs(t). 
To obtain the surface area functions, the experimental turbidity 
modes ∆T−/T0 and of ∆T+/T0 are first subjected to a numerical 
code analysis27 yielding the elongation function p(t). The 
numerical code analysis is based on the solution of the 60 

electromagnetic Mie-type scattering problem for coated spheroids 
by separation of variables in a spheroid coordinate system. Fig. 4 
shows an example for the elongation function p(t), calculated 
from the turbidity relaxation data at E0 = 47 kV cm−1. Applying 
Eq. (A1.1) of the Appendix 1, yields the approximation: 65 

( )
0

8 5( )( ) ( ) 1S V
S tf t p t
S

α∆
= = −  (40)   

where α = 0.082. 
Analogous to the surface function fs(t), the volume function 

( )Vf t  is defined by: ( )Vf t = ∆V(t) /V0 = [V(t) − V0] /V0. Applying  
Eq. (A2.1) of the Appendix 2 yields the approximation: 70 

( )
0

8 5( )( ) ( ) 1V S
V tf t p t
V

β∆
= = − −  (41) 

where β = 0.118. Eq. (40) and Eq. (41)  are valid in the range 
1 ≤ p(t) ≤ 1.8 with the accuracy of ∆fs,V = ± 0.003. It is shown 
below that, alternatively, the volume function ( )Vf t  can be 
determined from the conductometrical data. The exact solutions 75 

for fs(t) and ( )Vf t  are reproduced in the Appendices  1 and 2. 
Rewriting Eq. (39) in the form (p − 1) = ( 1)Vp − + ( 1)Sp − and 
substitution of Eq. (40) and Eq. (41) yields the final expression: 

5 85 8( ) ( )( ) 1 S Vf t f tp t
α β

 − − = +   
   

 (42) 

Thus, using p(t) calculated from the electrooptical data (Fig. 2) 80 

and applying Eq. (42) yields fs(t), provided fV(t) is known. The 
function fV(t) is determined by measuring the conductivity 
changes in the suspension of vesicles, see below. 
 

4.4.5 Relaxation kinetics of conductivity changes 85 

Analogous to the surface area function fs(t), Eq. (33), the 
difference conductivity function ∆Y(t), see Eq. (8), of the vesicle 
suspension involves the contributions of the vesicle membranes 
∆Yves(t) and of the solution Ysol(t): 22 

( ) ( ) ( )

( ) ( ) )( ( )
ves sol

C P1 P2 sol

t t t

t

Y Y Y
Y Y t Y t Y t

= +

= ∆ + + +

∆ ∆
∆ ∆

 (43) 90 

The vesicle term comprises the ‘displacement conductivity’ ∆YC 
due to both, rapid global lipid tilting and the C2 membrane states. 
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The contributions ∆YP1 (t) and ∆YP2 (t) result from the field-
induced ion-conductive electropores. 
The contribution Ysol(t) = ∆λsol(t) / λ0 is due to release of 
electrolyte solution from the vesicle interior through the 
electropores of type P2 in the second relaxation phase (II). The 5 

concomitant volume change is given by: 22 

( )( )V sol tf t Yξ= −   (44) 

Applying Eq. (44), the factor ξ can be calculated according to  ξ 
= (Ysol 

max)−1 =  λ0 /λmax, where Ysol 
max is the maximum value of 

Ysol = ∆λsol / λ0. For vesicles of radius a = 90 nm, vesicle number 10 

density of ρν ≈ 2.4 × 1015 / L, internal conductivity λin = 1.56 S/m 
and the external conductivity λex ≈ λ0 = 2.85 ×10-3 S/m, we obtain 
λmax = 16.4 (± 0.1) × 10−3 S/m, yielding ξ = 0.174. 
Analogous to Eq. (33), the membrane conductivity function is 
defined as: 15 

, 1 , 2( ) ( ) ( ) ( ) ( )m C m P m P solt t t t tλ λ λ λ λ= + + +  (45) 

In Eq. (45), the various contributions are analogous to those in 
Eq. (43). The conductivity contribution λm,Pi of a pore of type i 
can be expressed in terms of the conductivity of a single pore λPi 

and the respective surface area function fs,Pi according to: 22 - 23 20 

, ,( ) ( ) ( )m P i P i s P it t f tλ λ= ⋅   (46) 

The field dependence at constant field E0 is expressed as: 23 

( )0
, 0( ) exp 1 ( )P P m P ii i it c t Eλ λ ν λ = −   (47) 

where λ0
Pi is the “zero” field (E0 → 0) pore conductivity, and the 

voltage factor ci is defined by: 25 

3 1
2 m

i
i i

ra Fc n
RT d

 
= − 

 
  (48) 

In Eq. (48), F is the Faraday constant, R is the gas constant and ni  
the shape factor of the (torus-hole) pore type i; Fig. 5(c). Insertion 
of Eq. (48) into Eq. (46) yields the membrane conductivity 
contribution of the pores of type Pi: 30 

{ }0
, , , 0( ) ( ) exp 1 ( )m P i s P i P m P ii it f t c t Eλ λ ν λ = −   (49) 

The solution of Eq. (49) for the term λm,Pi  involves a Lambert W- 
function according to: 

( )0
, 0 0

,
0

exp( )
( ) s P i P

m P i
i i i

i

W f t c E c E
t

c E
ν λ

λ
ν

  =  (50) 

where W is the Lambert-W function; see, e.g., ref. 42. Eq. (50) is 35 

used for the determination of the respective pore radius from the 
(experimental) functions λm,Pi (t) and fs,Pi (t) . 
 

4.4.6 Vesicle volume function and surface-area function 

It is recalled that the Maxwell stress elongates the vesicle and 40 

thereby increases the hydrostatic pressure in the vesicle interior. 
After the formation of electropores, the pressure difference, ∆P =  

 
Fig. 4. The calculated time courses of system parameters at E0 = 47 kV 
cm−1: (1) The relative elongation function  [ ] [ ]( ) ( ) 1 / (4 ) 1p t p t p µs= − − ; 45 

(2) the relative surface area function  ( ) ( ) / (4 )S SSf t f t f µs= ; (3) the 
relative difference conductivity function ( ) ( ) / (20 )ves vesY t Y t Y µs∆ = ∆ ∆  
and the relative change of the vesicle volume fV(t) = ∆V(t)/V0. All curves 
(except fV) are normalized to the values at t = tpeak I of the first maximum 
of p(t); here tpeak I  = 4 µs. Experimental conditions are as in Fig. 2. 50 

 
Pin – Pex between vesicle interior and exterior, causes electrolyte 
efflux from the interior of the vesicles through the membrane 
pores, thereby reducing the vesicle volume.  
In the simplest case of a spherical non-conductive vesicle, 55 

( ) 2
0 w3 20 ,P Eε ε∆ = 41 where E is the intensity of the applied 

field strength, ε0 is the permittivity of the vacuum and εw the 
dielectric coefficient of water; at T = 293 K (20°C), εw = 78. If 
the vesicle membrane contains NP pores with average pore radius 
rp, the volume flow (rate) is described by the Hagen-Poiseuille 60 

formula: dV(t)/dt = −πrp
4NP∆P/(8ηdm), 20 where dm ≈ 5 × 10−9 m 

is the membrane thickness and η = 10.02 × 10−4 kg m−1 s−1 is the 
viscosity of  water in the pore volume at the temperature T = 293 
K (20°C). 
Mean system parameters. It is now for practical reasons of data 65 

processing, that the calculation strategy first introduces a formal 
mean radius 〈rp〉 and a formal mean pore number density [NP] 
over both pore types such that the total surface area function is 
specified as: 

[ ]
2

2
2

( )
( ) ( )

4
P P

S P P

r N t
f t r N t

a
π= =  (51) 70 

Insertion into the Hagen-Poiseuille formula finally results in: 

2
2 20 w3

40
( ) ( )P s

m

dV t a r f t E
dt d

π ε ε
η

−=  (52) 

Here, after 10 µs of constant E0 , the external field is a function of 
time, see Eq. (2). Since, by definition, 〈rp〉 is independent of time, 
the total decrease in the volume function ∆V(t) = V(t) − V0 is 75 

given by the general integral function: 

0

2
2 20 w

0
( ) ( ) ( )

3
40 P s

m

V t

V
t t t

aV dV r f E dt
d

π ε ε
η

∆ = = −∫ ∫  (53) 

In Eq. (53), the general time boundaries are t and t = 0. Data 
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analysis will show that the volume function is finite only for the 
time range t ≥ tdel; thus ∆V (t ≥ tdel) ≥ 0. Eq. (53) is now used to 
express the respective volume function as:  

2 2

0 0

( )( ) ( ) ( )PV s

tV tf t w r f t E t dt
V

∆
= = − ∫  (54) 

where V0 = 4πa3/3 is used to obtain w = (9/160)⋅(ε0εw /ηadm). 5 

Insertion of Eq. (54) into Eq. (41) yields the final form: 

2 2

5 85 8

0

( )( ) 1 ( ) ( )P
s

s

ttf wp t r f t E t dt
α β

  − = +        
∫  (55) 

It is recalled that p(t) – 1 represents the experimentally accessible 
time-course of the vesicle elongation at a given field strength E0. 
In Eq. (55) there are two unknown parameters: the surface area 10 

function fs(t) and the mean pore radius 〈rp〉. Both, fs(t) and 〈rp〉, 
are related to the conductivity function Ysol(t) associated with the 
release of vesicular electrolyte. Substitution of Eq. (54) into 
Eq. (44) yields: 

0

2 2( ) ( ) ( )sol P s

t

t

wY t r f t E t dt
ξ

= ∫  (56) 15 

At t = 400 µѕ, Fig. 3(c) indicates that ∆Y(t) appears to level off 
towards a quasi-stationary value (Y400µs), where the external 
electric field is heading towards zero. The number of pores has 
further decreased due to pore resealing finally approaching zero, 
too. Therefore, the approximation ∆Yves ≈ 0 is applied to Eq. (43). 20 

Hence, towards the end of exponentially decaying electric pulse, 
Y400µs is assumed to refer solely to the solution term Ysol(t ≥ 
400µs). Therefore, the approximation Ysol(t ≥ 400µs) = Y400µs is 
used for analysis, except for high field strengths, where other 
processes can decrease the projected surface area. 25 

Calculation of the surface area function fs(t). Eqs. (54) - (56) 
together with the boundary condition Ysol(t ≥ 400 µs) = Y400µs are 
used to calculate the surface area function fs(t). In Eq. (55) and 
Eq. (56), 〈rp〉 is a fitting parameter, p(t) and Y400µs are 
experimental data. The procedure of the calculation is outlined in 30 

the Appendix 3.  
 

4.4.7 Determination of the inner radius of the P1 pores. 

The membrane conductivity λm is related to the relative 
conductivity change ∆λves /λ0 due to the electroporation of the 35 

vesicles by: 22  

max

max
0 0

1ves ves
m

m

λ λ λ
λ λ λ

 ∆ ∆
=  

 
  (57) 

where ∆λves
max

 /λ0  and λm
max are the maximum values of ∆λves /λ0 

and of λm , respectively. Applying the vesicle radius of a = 90 nm, 
the vesicle number density ρv ≈ 2.4 × 1015 / L, the vesicle-internal 40 

conductivity λin = 1.56 S m−1 , and that of the external medium 
λex ≈ λ0 = 2.85 × 10-3 S m−1, we obtain (∆λves

max /λ0) = 3.3 × 10−2 
and λm

max = 1.1 × 10−4 S m−1. In the time interval 0 ≤ t ≤ tpeak , the 
first kinetic phase fs

(I)
  reflects dominantly the formation of P1 

pores. Therefore, the time range 0.3 ≤ t ≤ tpeak is qualified by fs 
I(t)  45 

 
Fig. 5 Calculated parameters: (a) The surface area function fs(t) (•, 
connected by an eye-help line); the difference conductivity functions 
∆Y(t) (ο, open circles, connected by an eye-help line); ∆Yves

I (t) (bold 
line), ∆YC(t)= ∆Yves(t) − ∆Yves

I (t) (◊) and Ysol (t) (�), at E0 = 47 kV cm−1. 50 

Recall that ∆Yves
I (t) = ∆YP1(t) and ∆Yves

II(t) = ∆YP1(t) + ∆YP2(t). It is seen 
that the concomitant capacitive part is fs,C ≈ 0. (b) The correlation between 
∆Yves

I (t) and fs
I (t), each at a given t, at E0 = 40 kV cm-1 and 47 kV cm-1 in 

the time range 0.3 ≤ t/µs ≤ tpeak  (of the P1-pore state). Using Eq. (37) of 
the text yields the mean inner pore radius r1 = (0.38 ±0.05) nm and the 55 

pore shape factor n1 = (0.50 ± 0.01). (c) Scheme of the (charged) 
membrane states C1 and C2 and the pore states P1 and the image force 
potential barrier at a field E. (d) Scheme of the image potential barrier 
ϕim

0 determined by the shape factor n for the thermodynamical treatment 
of the energy barrier for ions in the pore without molecular details; see 60 

Eqs. (47-50). 

 
= fs,P1(t) and by ∆Yves( 0.3 ≤ t ≤ tpeak) = ∆Yves

I (t) = ∆YP1
 (t). 

According to Eq. (8), the electroporative conductivity term of the 
kinetic phase (I) is described by ∆Yves 

I = Y I
HEC,ves − Y I

LEC,ves. 65 

Since  YHEC, ves >> Y LEC, ves, the approximation  ∆Yves 
I ≈ Y I

HEC,ves = 
∆λves 

I(t) /λ0 applies. Substitution of Eq. (50) into Eq. (57) yields: 
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Fig. 6 The calculated (inner) mean radius of the P1-electropores r1 = (0.38 
± 0.05) nm, and that of the P2 – electropores  r2 = (1.7 ± 0.2) nm, as a 
function of the field strengths E0 of the applied electric field. The larger 
values of the P2 pores at fields E0 ≥ 50 kV cm−1 reflect imaginary ‘larger 5 

hole’. The respective membrane area of the large circular hole of effective 
radius rp,lost is interpreted as a lost membrane patch. 

 

0max
1 0 1 1 0

max
0 1 0

( ) exp( )
( )

I
s PI ves

ves
m

W f t c E c E
Y t

c E
ν λλ

λ ν λ

  ∆  ∆ =  
 

 (58) 

In Eq. (58), the factor c1 refers to the inner pore radius r1 and the 10 

pore shape factor n, see Eq. (48). The “zero” field (E0 → 0) pore 
conductivity is expressed as λ0

P1 = [(λin+λex)/2]⋅exp(−dm/r1). 42  In 
the time range of the kinetic phase (I), see Fig. 5 (a), the 
difference conductivity function ∆Yves(t) also contains the 
displacement current contributions due to the transitions C   15 

C1   C2, such that ∆Yves(t) = ∆Yves
I(t) + ∆Y Cves(t), where ∆Y Cves 

refers to the displacement current contributions. The function 
∆Yves

I (t) is obtained by interpolation within the time range of the 
kinetic phase (I). 
Now, ∆Yves

I (t) is set, time point by time point, in relation to fs
 I (t), 20 

see Fig. 5(b).  Using Eq. (58), the analysis of variation of the 
numerical values of the two parameters, r1 and n simultaneously, 
for all the time points at all field strengths, respectively, yields as 
the key result that the mean inner pore radius r1 = (0.38 ±0.05) 
nm and the pore shape factor n = (0.50 ± 0.01) are constant, i.e., 25 

independent of reaction time and field strengths, see Fig. 6. 
 

4.5 Hysteresis data evaluation 

In the case of time dependent electric field E(t) = E0⋅f(t), the 
amplitude ( ) f ( ),i iX t X t= ⋅ Awhere iX AAis the conventional  time 30 

independent amplitude,29 changes as a response to the forcing-
function  f(t) =  exp(−t /τE*); see Eq. (2). 
In order to express this feature in terms of practical variables xi(t) 
and amplitudes ( ) f ( ),i ix t x t= ⋅  the initial state densities [Xi 

o] of 
the membrane states Xi (= C, C1, C2, P1, P2) serve as additional 35 

reference equilibrium states (at zero external field). Therefore, the 
kinetics of the field-induced state densities [Xi(t)] are expressed in 
terms of ‘basic state density deviations’ (relative to [Xi 

o]) as: 

( ) [ ( )] [ ]

( ) [ ( )] [ ]

o
i i i

o
i i i

x t X t X

x t X t X

= −

= −
  (59) 

Mass conservation dictates that Σ xi (t) = 0  over all states i. In a  40 

 
Fig. 7 The dependence (a) of the (virtual) amplitudes and (b) of the 
relaxation rate 1/τ1 of the kinetic phase fs 

I (t) due to formation of P1-pores 
as a function of the (constant) external electric field strength E0. Analysis 
yields (a) the pore polarization volume VP1 = 18 (± 2) nm3 and (b) the 45 

activation volume VP1* = 2VP1, see section 4.5.4. The open circles (ο) in 
(a) represent the peak values of fs 

I(t = tpeak 1). The peak values are 
apparently independent of the electric field; this indicates that the 
respective state density [P1(t = tpeak)] is the constant critical pore density 

*
1[P ]  for the formation of P2-pores. See the context of Eq. (15). 50 

 
similar manner, the amplitudes ( )ix t  of the density deviations are 
related by the mass conservation condition: Σ ( )ix t  = 0. 
 Hereafter i = 0 denotes membrane state X0 = C (before electric 
field application), i = 3 is the polarization state C2, and i = 1; 2 55 

refer to the porated membrane states P1 and P2, respectively. 
 

4.5.1 Normal modes 

Insertion of the terms [Xi (t)] = xi (t) + [Xi 
o] and [ ( )]iX t  = A ( )ix t +  

[Xi 
o], Eq. (59), into Eq. (12) yields the ‘conventional state density 60 

deviations’ in terms of ‘basic state density deviations’: 29 

[ ]( ) ( ) ( )i i iX t x t x tδ = −   (60) 

We now apply Eq. (60) to Eq. (14), Eq. (16) and Eq. (17), 
respectively. 
Since the time constants of all the structural state density changes 65 

are very much smaller (in the order of µs) than the time constant 
of the field decay (τE = 154µs, Eq. (2)), it is justified to assume 
instantaneous adjustment 29 of the amplitudes ( )ix t = f ( ),ix t⋅  ix AA 

being independent of time. Thus, if ( ) / ,idx t dt  >> ( ) / ,id x t dt  
the approximation d[xi(t) − A ( )]ix t /dt = dxi(t) /dt can be justified. 70 
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Applying these approximations, we obtain the set of rate 
equations (ordered in sequence of increasing time constants): 

( ) [ ]3
3 3 1 1

( ) 1 ( ) ( ) ( )C
C

dx t x t x t k x t x t
dt τ

= −  −  + − 
'

'  (61) 

[ ] [ ]1
1 1 1 1 3 3

( ) ( ) ( ) ( ) ( )dx t k x t x t k x t x t
dt −= − − + −  (62) 

[ ] ( )2
2 2**

2

( ) 1 ( ) ( ) ; peak I
dx t x t x t t t

dt τ
= − − ≥  (63) 5 

In Eq. (61) - Eq. (63), the time constants (τ’C and τ**
2) and rate 

coefficients (k’C, k1 and k−1) are defined in the context of Eq. (14) 
- Eq. (17). 
 
4.5.2 Integral equations 10 

 
The rate equations are used to describe the (experimental) 
relaxation modes fs,P1(t) and fs,P2(t). 
First, the two coupled differential equations Eq. (61) and Eq. (62) 
are solved analytically (see the Appendix 6), yielding the integral 15 

equation for x1(t). The data suggest that the first mode of the 
surface area function fs,P1(t) can be described in terms of  the ratio 

1 1( ) /x t x   = ,P1 ,P1( ) / ,s sf t f where ,P1sf is the amplitude of  fs,P1(t).  
The final solution reads: 

( )
( )( )

( )
( )( )

* *
C 1* *

C 1

,P1 ,P1 * *
C 1 C 1 C 1

( )
E E

E E

s s
E E

t tt te e e e
f t f

τ ττ ττ τ τ τ

τ τ τ τ τ τ τ τ

− −− − − − = + − − − −  

 (64) 20 

In Eq. (64), the intrinsic time constants τC and τ1 are related to the 
respective intrinsic rate coefficients by 1/τC = k12 + k21 and 1/τ1 = 
k1 + k−1.  
Secondly, integration of Eq. (63) in the time range of the kinetic 
phase (II) leads to the integral equation for x2(t). Since the data 25 

indicate that the second mode of the surface area function fs,P2(t) 
can be described in terms of  2 2( ) /x t x   = ,P2 ,P2( ) / ,s sf t f  where 

,P2sf A is the amplitude of the function  fs,P2(t). The final solution 
reads: 

( ) ( )***
2

*

,P2 ,P2 * **
2

( ) ;delEtE
s s peak I

E

t tf t f e e t tτττ
τ τ

− −− = − ≥  −
 (65) 30 

4.5.2 Electrical coupling in the second kinetic phase (II)  

In the time interval t > tpeak I of the operationally denoted second 
kinetic phase, the fraction P

II
if of electropores pores of type i is 

formulated as ‘electrically’ coupled (via the membrane field Em) 
to that of the pore type j; note i, j = 1, 2; i ≠ j. Thus, Eq. (38) is 35 

rewritten as 

( )
( )

2 2
0,

2 2
, 0

(0)exp
(max) 1 1 (0)exp

II

II

II
i is PII

P
s P i i

i i
i

i i

K b Ef Kf
f K K b E

λ

λ

= = =
+ +

f

f
 (66) 

In Eq. (66), the distribution constant Ki (of the ith mode) is 
expressed in terms of the total conductivity factor fλ defined as fλ 
= 1 − ν Σi λm,Pi , where  λm,Pi is the the membrane conductivity 40 

due to Pi pores (i =1; 2) and v is given by Eq. (20).  

Recalling Eq. (29), the total conductivity factor is 

,1 , 2 1λ λ λ= + −f f f   (67) 

Insertion of fλ  , Eq. (67),  into Eq. (66)  yields 

( )2 2
, 0(0)exp ; ( )II

i ii i i j i i jK K b E F K F i jλ= = ≠f  (68) 45 

where the coupling factor is given by: 

( )( ) 2
0,,exp 1 ; ( )i jij iF b E i jλ λλ

 = − + − ≠ f f f  (69) 

describing the electrical coupling (via Em) of the ith mode caused 
by  the mode j. Recalling that fs,Pi (t) as well as E(t) are time- 
dependent, substitution of Eq. (50) into Eq. (29) leads to: 50 

( )0
,

,

( ) ( ) exp ( )

( )
( ) 1 s P i P

i
i i i

i

t t t

t

W f c E c E
t

c Eλ

ν λ  = −f  (70) 

Substitution of Eq. (70) into Eq. (69) yields the time dependence 
of the coupling function, Fij  = Fij (t). In general, Fij (t) varies in 
the range 0 < Fij (t) ≤ 1. 
Since in the kinetic phase (II) , 0.03II

sPif ≈  << (max) 0.21,sf = see 55 

Fig. 7(a), i.e.,  ,[ / (max)] 1,II
P sPi sf f f=   the approximation A ,

II
sPif  

≈ (max) II
s if K⋅ = (max)s i ijf K F applies. Thus the surface 

functions of the two kinetic phases are expressed as: 

, 1 , 1 , 2( ) ( ) ; ( ) 0I I
s P s P s Pf t f t f t= =  (71) 

, 1 , 1 12 , 2 , 2 21( ) ( ) ( ) ; ( ) ( ) ( )II II
s P s P s P s Pf t f t F t f t f t F t= =  (72) 60 

In Eq. (71) and Eq. (72), fs,P1 (t) and fs,P2 (t) are given by Eq. (64) 
and  Eq. (65), respectively. The total surface function in the 
kinetic phase (II) is given by: 

, 1 , 2 , 1 12 , 2 21( ) ( ) ( ) ( ) ( )II II II
s s P s P s P s Pf t f f f t F t f t F t= + = +  (73) 

The single contributions , 1( )II
s Pf t  and , 2 ( )II

s Pf t  are obtained by 65 

fitting Eq. (73) to the function fs(t), calculated as described in 
section 4.4.6, yielding the amplitudes and the characteristic   time 
constants of the electroporation modes, ,Ps if  and τi, respectively. 
The parameters r2 and λ0

P2 are adjustable, too, whereas r1 and 
λ0

P1 are calculated as described in section 4.4.7. In order to 70 

approach high accuracy of the calculations, , 2 ( )II
s Pf t  and r2 are 

optimized by applying an iterative calculation procedure, see 
below section 4.5.3. 
 

4.5.3 Calculation of  , 2 ( )II
s Pf t , ( )solY t  and r2 75 

It is recalled that the total surface area function fs(t) = ∆S(t)/S0 
due to the electropores (calculated as described in section 4.4.6)  
is viewed in terms of two different phases: phase (I) up to t = 
tpeak I, and phase (II) at times t > tpeak I, see Fig. 5. Since in the 
time interval 1 ≤ t/µs ≤ 10 the external field is constant, the 80 

reversal in fs(t) is due to lowering of the local field across the 
lipid membrane. The reversal of fs(t), see Fig. 4, coincides with 
the onset (at t > tpeak I) of the decrease of the vesicle volume 
concomitant with release of vesicular electrolyte through the P2-
pores causing the delayed increase in the contribution ∆Yves. 85 
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Decrease in vesicle volume and increase in ∆Yves, both indicate 
the onset of the formation of the larger P2-electropores. Ion flow 
through the P2-electropores starts to appreciably decrease the 
membrane field and thus total surface area function (due 
electropores). On the other hand, in the time up to 10 µs at 5 

constant E0, after a short capacitive delay, fs(t) = fs
 I(t) starts to 

increase exponentially with time, suggesting that the local field 
apparently remains constant. Consistent with the smaller radius of 
the P1-pores and thus smaller pore conductance, the P1-pores 
dominate the kinetic phase (I). Also, because of lower pore 10 

density, the P1-pores apparently do not appreciably affect the 
membrane conductivity, thus keeping Em approximately constant. 
Therefore, it is justified to apply Eq. (73) and describe the kinetic 
phase (II) in terms of the total surface area function fs

 II (t) = 
, 1 , 2( ) ( )II II

s P s Pf t f t+ , specified as the set: 15 

8
5 5
8

, 1 , 2 2 2
2 , 21

( ) ( )
( ) ( ) ( )

peak

II II
s P s P II

s P

t

t

wf t f t
p t r f t E t dt

βα

+
− −

 
   =     

 

∫  (74) 

2 2
2 , 2( ) ( ) ( )II

peak

sol s P

t
w

t

Y t r f t E t dt
ξ

= ∫  (75) 

Using the boundary condition Ysol(t ≥ 400µs) = Y400µs, Eq. (74) 
and Eq. (75) are solved for  fs

II,P2(t), Ysol(t) and r2 by numerical 
iteration procedures; see the Appendix 3. From the function Ysol(t) 20 

we obtain the conductivity change Yves(t) = ∆Y(t) − Ysol(t), where 
∆Y(t) is the measured (total) relative conductivity change in the 
suspension, see Eq. (43).  
Some representative results are shown in Fig. 6 - Fig. 8. In Fig. 6, 
it is seen that at E0 < 50 kV cm−1, both r1 and r2 are independent 25 

of the field strength. At fields E0 ≥ 50 kV cm−1, the calculated 
mean P2 pore radius is apparently larger. However, at those 
fields, the relaxation of the chemical mode (plus-mode) ∆T +/T0 
does not reach the initial zero value (even 20 min after the 
electric pulse; Fig. 2). On the other hand, the surface area 30 

function fs(t) always decays to zero after termination of the field 
pulse. These features are consistent with the suggestion that, at 
fields E0 ≥ 50 kV cm−1, the very slow after-field relaxations of the 
plus mode reflect pore resealing and loss of membrane, resulting 
in a slightly smaller vesicle. The lost membrane is probably 35 

found in smaller lipid particles like small bicells;43 see also the 
Appendix 3. 
The proposal of a small lost membrane patch of area ∆Sp,lost = 
π rp,lost

2 = 38.48 nm2 for the observed reduction in the vesicle size 
(after high field pulsing) is similar to the large lost membrane 40 

patch of a single giant vesicle.44 Alternatively, however,  the 
(irreversible) electrooptical signal changes, observed in our small 
vesicles (filled with electrolyte) at higher field strength (E > 50 
kV/cm) can also be rationalized by the observed decrease in 
vesicle volume due to release of vesicular electrolyte (across the 45 

P2-pores) resulting in a now wrinkled membrane surrounding the 
smaller electrolyte volume. Because the small loss of area in the 
small vesicle would mean a loss of about 100 lipids, a number too 
small to form very small lipid vesicle, most likely only small 
bicells are formed. 50 

 
Fig. 8 The kinetics at E0 = 36 kV cm−1. (a) The total surface area function 
fs(t) and the calculated surface area functions of the electroporation 
modes, f||

s,P1(t) and f||
s,P2(t) , respectively. Curve fit yields the mean inner 

pore radii r1 = 0.38 nm and r2 = 1.7 nm, and the pore-conductivities (at 55 

E→0) λ0
P1 = 1.5 × 10−6 S m−1 and λ0

P2 = 1.3 × 10−4 S m−1. (b) The mean 
membrane voltage Um(t) = Em(t) ⋅dm (bold curve); the thin trace represents 
the membrane voltage for the case of conductivity factor fλ = 1. (c) The 
conductivity factor fλ(t) and the respective numbers NP =NP1 (t) and NP = 
NP2 (t) of P1 and P2 pores per 104 nm2 surface area, respectively, where the 60 

reference surface area 104 nm2 is approximately the projected pole cap 
area of a vesicle. 

 
The total surface area function fs(t) and the constituent  
contributions fs,P1(t) and fs,P2(t) at E0 = 36 kV cm−1 are shown in 65 

Fig. 8(a). The calculated surface area functions fs,P1(t) and fs,P2(t) 
are used to calculate, applying Eq. (29) and Eq. (70), the 
membrane conductivity function λm(t) = λm,P1(t) + λm,P2(t), see 
Fig. 8(b).  The conductivity factor fλ(t) is calculated by applying 
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Eq. (67) and Eq. (70), see Fig. 8(c). Using Eq. (26)), the 
transmembrane voltage Um(t) = Em(t) ⋅dm is calculated and shown 
in Fig. 8(b). The number NPi(t) of the P1 and P2 pores per 104 
nm2, see Fig. 8 (c), are calculated using Eq. (35). 
 5 

4.5.4 Field dependence of ( )s,P i 0f E and 1/τi (E0) 

The field dependence of the amplitudes , 0( )s Pif E  of the kinetic 
phase Pi  are analysed using Eq. (38), where the conductivity 
factor fλ, i is given by Eq. (70) applied for the case of the (time 
independent) amplitudes  ,s Pif and constant E0. The parameters in 10 

Eq. (38) and Eq. (70) are: , (max),s Pif Aλ0
Pi, Ki(0) and the field 

factor bi related to the mean inner pore radius ri (see Eq. (27)). By 
solving (numerically) the set of equations Eq. (38) and Eq. (70) 
for ,s Pif Aand fλ, i (at given values of the parameters and E0) we 
obtain  the functions , 0( )s Pif E Aand fλ, i (E0) which are used to fit 15 

the corresponding experimental data sets. The field dependence 
of the relaxation rates 1/τi (E0) are analysed applying Eq. (31), 
where fλ, i (E0) is determined by the same parameters as above. 
(P1): The analysis of field dependence of the amplitude ,P1 0( )sf E   
and the rates 1/τ1(E0) obtained by fitting fs(t), see section 4.5.2 20 

yields (see Fig. 7): pore volume VP1 = 18 (± 2) nm3 (r1 = 0.38 nm, 
torus-hole pore model), fictive maximum (at E→∞; fλ = 1) of the 
amplitude ,P1(max)sf = 0.21 (± 0.02), distribution constant (at E 
→ 0) K1(0) = 2.0 (± 0.3) × 10−4,  and the activation volume VP1* 
= 2.00 (± 0.01) × VP1. Recall that the conductivity of the P1-pores 25 

at E → 0 is determined by λ0
P1 = [(λin+λex)/2] exp(−dm /r1).42 The 

result for r1 coincides with that obtained in section 4.4.8.  
(P2): The field dependence of the amplitude ,P2 0( ),sf E A Eq. (38), is 
analysed by fitting the experimental data-set of the conductivity 
changes in the solution Y400µs  (see Fig. 3(c))  by applying  30 

Eq. (75), where fs,P2(t) and E(t) are expressed in terms of Eq. (65)  
and Eq. (2). Explicit integration of Eq. (75) within the limits tpeak I 
and t = ∞,  for the simplest case of high field approximation (E0 
>> 30 kV cm−1) τ2  << τE, and recalling that Ysol(t ≥ 400µs) = 
Y400µs, yields the relationship: 35 

( )( ) 2 2
400 0 0 2 , 2 0( ) 3 ( )µs E s PY E w E r f Eξ τ=  (76) 

where w and ξ are defined in the context of  Eq. (54). Here we 
assume the limit case of ,P1(max)sf A≈ ,P2 (max)sf = 0.21, see 
Fig. 7(a). Therefore, since Y400µs is solely due to P2-pores, the 
fictive maximum in Eq. (38) is approximated by ,P2 (max)sf = 40 

0.21. Application of Eq. (76) and Eq. (38) to the experimental 
quasi-amplitudes Y400µs(E0), Fig. 3(c), yields r2 = 1.7 (± 0.1) nm, 
K2(0) = 0.024 (± 0.004) and λ0

P2 = 1.2 ( ± 0.2) × 10−4 S m−1. The 
so calculated r2 and λ0

P2 coincide with that obtained in sections 
4.5.2 and 4.5.3 (see Fig. 6).         45 

5. Summary and conclusions 
In summary, the analysis of the electrooptical turbidity modes, 
∆T+/T0 and  ∆T−/T0 (Fig. 2), and the conductometrical relaxations 
(Fig. 3) yields first the geometric quantities fs(t) = ∆S(t)/S0  and  
fV (t) = ∆V(t) /V0 and the conductance function Ysol(t) due to 50 

electrolyte release. Remarkably, efflux of vesicular electrolyte 
begins at about the time point t = tpeak I, where the reversal of the 
function fs 

I(t), kinetic phase (I), indicates that the membrane 
electric field Em starts to decrease  (Fig. 5). The reduction of Em is  

 55 

 

Fig. 9 (a) Schematic representation of the transitions between closed (C) 
and porous (P) membrane states. In brief, the pore states P1 and P2 are 
“ohmic conductive”. The P2-pores permit net outflow of ions from the 
high-salt vesicle interior into the medium. The states C1 and C2 refer to 60 

lipid tilt and depression spots, respectively. (b) The torus-hole model of 
the Pi pores. (c) The reaction field El due to the tilted dipoles of the lipid 
head groups determines the dielectric properties of the pore water, see 
App. 8. 

 65 

dominantly caused by the onset of formation of the net-
conductive P2-pores. Although the inner radius of P2-pores (1.7 
nm) is larger than that of the P1 pores (0.38 nm), the P2-pore 
conductivity is also associated with a nonlinear current-voltage 
characteristics. The external field reduces the repulsive energy 70 

barrier for ions in the pore, thus increasing the pore-conductivity 
with increasing external electric field. Thus the membrane field 
Em(t) is modulated, too. 
The nonlinear field strength dependence of the pore-conductivity 
is the rationale for the oscillatory character of both membrane 75 

electroporation and of shape change. When the external electric 
field starts to decrease with time, the conductivity of both the 
electropores P1  and P2 decreases with time, too, leading here to a 
second peak in the surface area function fs(t). Recall, the onset of 
the P2-pores is delayed in time.  80 

These features of oscillatory changes in shape and pore densities 
in non oscillatory external fields are suggestive for potential 
resonance enhancement, for instance, of electro-uptake by, and 
electro-release of bioactive molecules from, electroporated cell 
organelles and cells in low-voltage pulses. 85 
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Glossary 
a   vesicle radius 
dm  membrane thickness 15 

V; S  vesicle volume; projected vesicle surface 
VPi  polarization volume of pore type Pi 
fs (t)        surface area function,  fs = ∆S/S0 
fV (t)        vesicle volume function, fV = ∆V/V0 
fPi    pore fraction of pore type Pi  20 

fλ,i  conductivity factor of pore type Pi  
λm  membrane conductivity  
λm, Pi  membrane conductivity due to Pi pores 
λPi (λ0

Pi) pore conductivity of pore type i (at E → 0) 
Fij  coupling factor between mode i and mode j 25 

p(t) vesicle elongation function (axis ratio) 
Xi   membrane states: C, C1, C2, P1, P2 
[Xi] state (area) density 
[Xi 

o] reference equilibrium state (area) density at E = 0 
δ [Xi] (= xi− ix ), conventional state density deviation from the 30 

amplitude value [ ]iX   
 xi  (= [Xi] − [Xi 

o]), basic state density deviation from [Xi 
o] 

A ix A amplitude value of xi(t) 
A ( )ix t  = A ix Af(t),  time dependent amplitude 
Ni  number of pores of type i (= 1, 2) 35 

[Ni] number (area) density of Ni 
W[x] the Lambert W-function of x 
 
 
 40 

 
 

Appendix 

Appendix 1: Vesicle Elongation at constant 
volume. 45 

The constraint of constant internal volume V0 of an elongated 
vesicle can be expressed in terms of the elongation factor Vp  
according to: V0 = (4π /3)a3 = (4π /3)c3 / 2

Vp , where a is the 
radius of initially spherical vesicle, c is the long axis and Vp   the 
axis ratio of the ellipsoid at constant volume V0.  50 

The relative increase in the projected vesicle surface area, 
required to elongate a spherical vesicle at constant volume, is 
given by: 22 

1 3 22 3

20

arcsin( 1 )
1

2 2 1
VVV

V

p ppS
S p

∆ −−

−

−
= + −

−
 (A1.1) 

where S0 = 4πa2 is the initial surface area of the vesicle and 55 

∆S = S − S0 is the increase in the projected surface area. 
For vesicle elongations in the range 1 ≤ Vp  ≤ 1.8, Eq. (A1.1) is 
approximated by Eq. (40) of the main text. 
 

Appendix 2: Vesicle Elongation at constant 60 

surface area 
When the membrane surface area inclusively the projected area of 
the membrane pores is constant, the volume reduction required to 
elongate the vesicle up to the axis ratio ps is given by the volume 
function: 22 65 

3
22 2

2
20

arcsin 1
1

22 1

S S
S

S

p pV p
V p

∆
−

− −
−

−

 − = + −  − 

 (A2.1) 

For elongations in the range 1 ≤ ps ≤ 1.8, Eq. (A2.1) is 
approximated by Eq. (41) of the main text. 

Appendix 3: Calculation of the system parameters 
The total (relative) surface area function fs (t), due to formation of 70 

electropores, and the relative conductivity change in the 
suspension Ysol(t), due to net release of electrolyte from the 
vesicle interior, are calculated using the approximation 

( ) 400 s400μssolY t Y µ=≥ by solving the set of equations: 

8 55 8
2 2

0

( ) ( ) 1 ( ) ( )
t

s P s
wf t p t r f t E t dt
β

α

    = − −      
∫  (A3.1) 75 

2 2

0

( ) ( ) ( )
t

sol P s
wY t r f t E t dt
ξ

= ∫  (A3.2) 

In Eq. (A3.1) and Eq. (A3.2), 〈rp〉 is the adjustable parameter;  
p(t) is calculated from the turbidity modes ∆T−(t)/T0 and 
∆T+(t)/T0,  and Y400µs is experimentally determined (Fig. 3 of the 
main text). 80 

 
Calculation of fs(t). For a given E0, Eq. (A3.1) and Eq. (A3.2) 
are solved for fs(t) and Ysol(t). The actual fit parameter 〈rp〉 is 
obtained starting with the initial guess of 〈rp〉 = 1 nm and heading 
iteratively to the optimum 〈rp〉optim, for which Ysol(t ≥ 400µs) = 85 

Y400µs (Eq. (A3.2)) is satisfied. If Ysol(t ≥ 400µs) = Y400µs is not 
satisfied, the calculation is repeated by taking another 〈rp〉 value, 
until Ysol(t ≥ 400µs) = Y400µs  holds. The iterative approach for 
solving Eq. (A3.1) starts from an initial guess fs

(0)(t) and 
continues by computing the subsequent function fs

(n)(t)  based on 90 

(the old one)  fs
(n −1)(t): 
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  (A3.3) 

until | fs
(n)(t) −  fs

(n − 1)(t)| ≤ 10−5 applies for any t. At any iteration 
step (n), the approximate solution fs

(n)(t) is constrained by the real 
root values guided by the condition:  5 

5
8

2 ( ) 2

0

( ( ) 1) ( ) ( ) 0P s

t
nwp t r f t E t dt

β

 
 − − ≥  
 

∫  (A3.4) 

If the values of the function fs
(n)(t) are complex numbers, fs

(n)(t) 
refers to a ‘lost membrane patch’. Lost membrane patches have 
been visualized in giant lipid vesicles44, in erythrocyte ghosts,45 
and cells.46 Here, the respective lost fractional area fs, lost = rp,lost

2 / 10 

4a2 is associated with a single fictive membrane pore (patch) of 
radius rp,lost, see Eq. (51) of the main text.  Therefore, if fs

(n)(t) 
becomes a complex number, we consider fs

(n)(t) ≡ fs,lost  and 〈rp〉
 ≡ 

rp,lost.  
As judged from the very small reduction of the size of the vesicle 15 

after pulsing, the increase in curvature due to removing a lipid 
patch of radius rp,lost = 3.5 nm (see Fig. 6) is extremely small. 
Quantitatively, the area of the lost patch is ∆Sp,lost = π rp,lost

2 = 
38.49 nm2, the area of the vesicle membrane is S0 = 4πa2 = 1.02 
×105 nm2 leading to the relative decrease in the vesicle surface 20 

area by  ∆Sp,lost / S0 = 3.78×10-4. This corresponds to an increase 
in the curvature by 0.019 %. Thus, with respect to the membrane 
electroporation, the energy contribution of the curvature change 
is negligibly small. 
The initial guess-function fs

(0)(t) in the iteration (see Eq. (A3.3)) 25 

is deduced by taking a time-independent (averaged) function 〈fs〉 
≡ 〈fs(t)〉 in the integral of Eq. (A3.2). Applying now the 
approximation E(t) = E0⋅exp(− t/τE) with τE = 154 µs, and 
integrating Eq. (A3.2) under the boundary condition 
Ysol(t ≥ 400µs) = Y400µs, we obtain the approximation: 30 

( )400 s( ) 1 exp 2sol EY t Y t τµ  ≈ − −   (A3.5) 

 Substitution of Eq. (A3.5) into fs(t) = α[p(t)−1 − (ξ Ysol(t)/β)5/8]8/5 
(obtained by combining  Eq. (A3.1) with Eq.(A3.2)) leads to the 
first approximation of the surface area function:  

8
5 5
8(0)

400( ) ( ) 1 1 exp( 2 )s s Ef t p t Y tµ
ξ

α τ
β

 
  

= − − − −    
  

 

 (A3.6) 35 

 
Calculation of the specific parameters fs,P2

 II (t), Ysol(t) and r2.  
Using the boundary condition Ysol(t ≥ 400µs) = Y400µs (at given 
E0), Eq. (74) and Eq. (75) of the main text are solved for  fs,P2

II (t), 
Ysol(t) and r2,optim by applying an iterative numerical approach 40 

analogous to that for fs(t) and Yves(t); see Eq. (A3.3). First, 
Eq. (74) is rewritten as: 

8
5 5
8

, 2 2 2
2 , 2 , 1

0

( )
( ) 1 ( ) ( ) ( ) .

II t
s P II II

s P s P
wf t

p t r f t E t dt f t
βα

 
  = − − −      

∫  

  (A3.7) 

By applying now the iteration Eq. (A3.3) to Eq. (A3.7), where r2 45 

is the optimization parameter, Eq. (A3.7) and Eq. (75) of the 
main text are solved for fs,P2

II (t). The actual fit parameter r2 is 
obtained starting with the initial guess of r2 = 1.5 nm and heading 
iteratively to the optimum r2,optim = (1.7 ± 0.2) nm for which 
Ysol(t ≥ 400µs) = Y400µs (Eq. (A3.2)) is satisfied. The initial guess 50 

in the iteration (0)
, 2 ( )II

s Pf t  as well as the surface function , 1( )II
s Pf t  

are obtained by fitting the total surface function fs(t) with Eq. (73) 
of the main text. 

Appendix 4: The θ-average of Em(θ ). 
Spherical vesicle. The polarization free energy of the membrane 55 

pore in an electric field is WP = −1/2⋅VP⋅ε0(εP − εL)Em
2, where VP 

is the pore volume. It is recalled that the stationary induced 
membrane field Em at the polar angle θ is given by Em(θ) = 
(3/2)⋅(a/dm)⋅fλ⋅E0 |cosθ |, Eq. (21) of the main text. Since the polar 
distribution of pores is symmetric with respect to the vesicle 60 

equator, we shall discuss the relative probabilities of the various 
positions in the range 0 ≤ θ ≤ π/2. 
If there is no field (E0 → 0), we have WP = 0 for everyθ, and all 
pore positions on the vesicle surface have the same probability. 
Therefore the probability p(θ)dθ of having a pore at the polar 65 

angle θ between θ and θ + dθ is given by: 

 ( )
2 2

/ 2 2
2

0

2 sin 2 sin sin
4 / 2

2 sin

a d a dd d
a

a d
π

π θ θ π θ θθ θ θ θ
π

π θ θ
= = =

∫
p  (A4.8) 

When a field is present, a weight factor exp(−WP/kBT) must be 
introduced. Thus, the probability is given by:  

( ) 2cos sinBd Ae dθθ θ θ θ=p   (A4.9) 70 

In Eq. (A4.9), the field factor B is related to the external field E0 
as well as to the pore volume VPi of a pore of type i and to the 
conductivity factor fλ,i by: 
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f  (A4.10) 

Since the probability to find a pore within the total range is 
∫ / 2

0
π p(θ)dθ  = 1, the factor A is given by: 

2

1/ 2
cos

0

sinBA e d
π

θ θ θ
−

 
=  

 
∫   (A4.11) 

From Eq. (A4.9) we obtain the cosθ -average: 5 
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e d
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θ θ θ
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θ θ
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∫

∫
 (A4.12) 

Elongated vesicle. For a prolate spheroid, the magnitude of the 
radius vector ρ (θ ) is given by ρ (θ ) = c (p2sin2θ + cos2θ )−1/2. 
The respective surface element is dS = 
ρ [ρ 2+(∂ρ/∂θ )2 ]1/2sinθ dθ. Recalling p = c / b, the average of the 10 

product gp(θ)⋅cosθ, analogous to Eq. (A4.12), is given by: 
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∫
 (A4.13)

where 

( ) ( )
( )

2 22 2 2 2 2 2

22 2 2

sin cos 1 sin cos
( )

sin cos
p

p p
J

p

θ θ θ θ
θ
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Since B is given by Eq.  (A4.10), Eq.  (29) and Eq. (50) of the 15 

main text yield the time independent conductivity factor: 

( )0
, , 0 0 0exp1i s P i Pi i i iW f c E c E c Eλ ν λ = −  f  (A4.15) 

In Eq. (A4.15), fs,P1 varies in the range 0 ≤  fs,P1(t) ≤ 0.03. The 
average 〈fs,P1(t) 〉 = [∫ fs,P1(t)dt] / tpeak I for the range 0 ≤  t ≤ tpeak I is 
〈fs,P1(t) 〉 ≈ 0.012. Since r1 =  0.38 nm and λ0

P1 = [(λin+λex)/2] 20 

⋅exp(−dm /r1), 42 we obtain the function fλ,1(E0), and thus B(E0). 
Substitution in Eq. (A4.13) yields the field dependence of 
〈 gp(θ)⋅cosθ 〉 in the range 0 ≤ E0 / (kV cm−1) ≤ 90, see Fig. A4. 
For E0 > 30 kV cm−1, the approximation 〈 gp(θ)⋅cosθ 〉 ≈ 1 holds 
true with the accuracy ≤ 5%, see Eq. (26) of the main text.  25 

Appendix 5: The field dependence of 1/τ1  
Since Ki = ki / k−i, Eq. (30) of the main text, the equilibrium 
constant K1 (E) of the formation of the P1-pores is given by: 
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The relaxation rate 1/τ1 of the P1-formation is specified as: 30 
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Fig. A4 The average of the product gp(θ )⋅cosθ  covering the region  
0 ≤ θ ≤ π/2 for the elongation ratio p = 1 (spherical vesicle, thin line) and 
p = 1.6 (ellipsoid, bold line) as function of E0. 35 

 
 
Insertion of the low-field approximation fP1 ≈ K1(0) 
⋅exp(b1 fλ,1 

2 E2),  Eq. (38) of the main text, into (A5.2) yields: 

( )
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At E = 0, the relaxation rate is given by 1/τ1(0) = k1(0) /K1(0). 
Substitution yields: 

( )* 2 2
1 1 ,1

1 0 1

1 1 exp
( ) (0)

b b f E
E λτ τ

 = −   (A5.4) 

Appendix 6: Solution of Eq. (61) and  Eq. (62). 
Using the notations y1 ≡ x3 and y2 ≡ x1, the set of equations, 45 

Eq. (61) and Eq. (62), is rewritten in the more convenient matrix 
form: 

1 11 12 1 11 12 1

2 21 22 2 21 22 2

( ) ( ) ( )
( ) ( ) ( )

dy t dt a a y t a a y t
dy t dt a a y t a a y t

       
+ =       
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where 
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 (A6.6) 50 

Solving the characteristic equation of Eq. (A6.5), aij − λδij= 0, 
we obtain 

( )( )2
1, 2

1, 2

1 1 2 4λ
τ

= = Σ ± Σ − Πk k k  (A6.7) 
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k

'

' '
  (A6.8) 55 

For initial conditions (0) 0iy =  and (0) 0iy = , the general 
solution of Eq. (A6.5) is given by: 47 
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j
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In Eq. (A6.9), G(t,λi) is the transfer function expressed as 

0

( , ) exp( ) exp( ) f ( )i i i i

t
G t t dλ λ λ λθ θ θ= − ∫  (A6.10) 

In Eq. (A6.10), the forcing function f(t) = exp(−t/τE
*) is expressed 

by the characteristic time constant τE
* of exponentially decaying 5 

electric field, see Eq. (2) of the main text. In Eq. (A6.9), the 
amplitudes Aij are given by: 47 

( )
1

,
1`

( ) ( 1) ,
n

i q
ij p j i q j q

qp j

A M yλ λ λ
−

+

=≠

  = − − 
  

∑∏  (A6.11) 

where Miq(λj)is the minor of the determinant akl − λj δ klwith 
respect to the i, q – element and qy is the time independent 10 

amplitude. The result for y2 (≡ x1) is: 
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where iµ  A= 2y A(a11 − 1/τi) −A 1 12y a A (i = 1; 2). Since at (higher) 
electric fields, certainly [C1] >> [C], thus K0 = [C1]/[C] >> 1 and 
the approximation k’12 = k12 K0 /(1−K0) ≈ − k12 is justified. 15 

Additionally, the data analysis indicates that K1 >> 1, thus the 
inequality k1 >> k−1 can be used. Hence, a11 = k12 + k21 + k1 ≈ (k12 

+ k21) + (k1 + k−1) = 1/τ1 + 1/τ2. Because 1y A≡  3x A= 0, the 
amplitude terms are 1 2 2/yµ τ= and 2 2 1/ .yµ τ=  Substitution into 
Eq. (A6.12), and recalling that y2(t) ≡ x1(t), yields: 20 
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where 1x AA is the amplitude, 1/τc = k12 + k21 and 1/τ1 = k1 + k−1 are 
intrinsic relaxation times of the first reaction cascade. 

Appendix 7: Membrane curvature. 
The electroporation parameters of large vesicles (a = 10 µm) and 25 

of moderately small vesicles (a = 90 nm) are very similar with 
respect to curvature. The membrane curvature, C = 1/a, is 
classified as small, if the corresponding radius a (of vesicle or 
cell) is much larger than the membrane thickness dm = 5 nm.17-18 
Explicit, if a >> dm , we have dm/a = dm C << 1. For our 30 

moderatelly small vesicles, the inequality dm/a = 0.055 << 1 holds 
true. Hence, we may consider the curvature of these small 
vesicles as small. Therefore, the very curvature effects are 
comparable for small and for large vesicles or cells. 

Appendix 8: The dielectric constant of pore water 35 

In analogy to the observations of Sansom et. al.,48 who 
investigated the dielectric properties of water within model 
transbilayer pores, the dielectric coefficient ε Pi of water within 

the Pi pores depends on the local field EP,local = Em − El; Em is the 
membrane field (which is related to the external field E by Eq. 40 

(26) of the main text) and El is the field induced by the oriented 
dipoles of the lipid head groups, see Fig. 9(c). For small external 
fields, Em  <<  El , thus EP,local ≈ −  El, and the water molecules are 
nearly oriented antiparallel to the external electric field. In this 
case, the polarization of water molecules is nearly saturated 45 

because of the electric field from the tilted lipids. Thus at “low” 
Em, up to Em ≈ El, the approximation ε P ≈ 8 applies. For the case 
Em ≥ El, the approximation ε P ≈ εW = 78 holds true. If we take the 
mean value of 20 D for the dipole moment of phosphatidyl 
choline head group,49 and assume the tilting angle of the lipid 50 

heads ∆θ = 20° (see Fig. 9(a)), El is calculated numerically by 
solving Poisson’s equation for the three dimensional case of the 
torus-hole pore model (Fig. 9(b)). Additional parameters used for 
the calculation are: the projected membrane surface area of one 
lipid head group is on average 0.65 nm2, εW = 78 and ε P = 8 (at 55 

Em → 0). 48 For P1 and P2 pores of mean inner radius r1 = 0.4 nm 
and r2 = 1.7 nm, respectively, we obtain El,P1 ≈ 300 kV/cm and 
El,P2 ≈ 200 kV/cm. These values are much smaller than the 
induced transmembrane fields Em in our experiment, e.g, Em > 
2700 kV/cm at E > 10 kV/cm. Hence, the inequality Em  ≥ El 60 

holds true and the approximation ε P ≈ εW = 78 is justified; see the 
text below Eq. (24).  
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Part II 
 

Polarization and Aggregation of Polystyrene Latex Particles and S. 

Pombe Yeast Cells in External Electric Fields 
 

Abstract 

In a.c. electric fields, diluted suspensions of S. pombe yeast cells and smaller polystyrene 

latex particles of radius a = 400 nm exhibit various pattern of particle aggregations. In the 

frequency range 3 ≤ f / Hz ≤ 3000, the particular field-induced associations of the latex 

particles around the cells change from accumulation near the pole-caps facing the electrodes 

to accumulation near the equator of the yeast cells. The frequency of transition ranges 

depends on the ionic strength of the suspending medium, conductivity range (10−5 − 10−4 

S m−1). The low frequency behavior is described in terms of ion-flow polarization of the ionic 

double layers associated with the charged particles. The yeast cell interaction with the latex 

particles is rationalized in terms of induced-dipole forces. 

The analysis of the data yields the electro-kinetic parameters of the yeast cells and the latex 

particles in 0.1 mM NaCl solution. The resulting ζ-potentials are: ζp = −76 (± 4) mV for the 

latex particles and ζc = −57 (± 4) mV for the yeast cells. The surface-conductivities Kσ of the 

latex particles and the yeast cells are characterized in terms of the ratio Θ = Kσi / Kσd between 

the surface-conductivity Kσi inside the plane of shear and Kσd that outside the plane of shear 

(diffuse layer). For the latex particles, Θp = 0.56 (± 3). For the yeast cells, Θc = 27 (± 3), i.e. 

ca. 50 times higher. Thus, yeast cells exhibit a very much higher induced dipole moment as 

expected by the classical (diffuse) double layer polarization model, whereas the latex particles 

behave according to the classical model. 

The newly developed flow-polarization model for the yeast cells incorporates the dominant 

polarization contribution of the inner layer (shell) and is analogous to the Schwarz-

polarization model (of no net ion exchange between the larger inner shell and the diffuse outer 

ion layer). The large induced yeast cell polarization structurally resides in the thick polyionic 

glycocalix shell of high fixed charge density and corresponding large counterion 

concentrations. 
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1. Introduction 

Among all cell-manipulation techniques, the membrane electroporation (ME) is widely used 

in Electrochemotherapy and Gene Electrotherapy to deliver macromolecules into cells. ME 

involves rapid changing of the cell membrane structure induced by an external electric field, 
[1], [2] make it porous and permeable, to allow uptake of DNA or RNA. Recently, gene (or drug) 

delivery methods based on small particles used as gene (drug) carriers have shown their 

potential on enhancing the delivery rate. Drug-loaded particles, such as liposomes  micelles 

and polymeric particles also demonstrate a broad variety of useful properties.  

When an electric field is applied to a colloid particle suspension, the particles in the 

suspension become polarized, acquiring an induced dipole moment (i.d.m.) directed parallel 

to the applied electric field. As a result, the particles attract each other in the direction of the 

i.d.m. to form pearl chains in the suspension. The association of biological cells in external 

electric field has been used to produce cell electro-fusion [3] by electroporation.[1] On the other 

hand, in suspensions with two different types of particles there is not always pearl chain 

formation parallel to the field lines. For instance, mixture of polystyrene and silica particles 

suspended in low conductive medium can develop structures near planar electrodes which 

changes morphology within the frequency range 1 Hz - 10 kHz.[4] Diluted mixtures of charged 

rod-like particles suspended in a ‘sea’ of smaller spherical particles having similar charge 

density, show ‘anomalous’ induced electric birefringence in the same (low) frequency range.[5] 

In mixtures of particles of two types, in a given frequency range of the applied field, the 

induced dipole moment of one of the type of the suspended particles may differs in sign from 

the other, leading to lateral (transverse to the field lines) separation and lateral chaining of the 

particles.[4], [6] Although the induced particle interaction and its sign change with frequency 

has been discussed in depth, less attention has been paid to the magnitude of the induced 

dipole. It is found that the induced particle dipole can be obtained, for instance, by electro-

optical or (and) by dielectric spectroscopy. Electro-optical methods have been traditionally 

applied aiming at quantifying the polarizability of rod-like particles and DNA fragments from 

changes in the field induced orientation of the colloids.[9]-[11] Dielectric spectroscopy is 

probably the most useful technique to quantify the induced dipole moment of spherical 

colloids in very low a.c. electric fields.[12], [15]-[21] Both, the dielectric spectroscopy and electro-

optics are particularly useful in the case of monodisperse particle solutions, but have serious 
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limitations when  mixtures of particles of different types lead to complex dielectric dispersion 

and relaxation curves. 

Therefore, here an optical microscope video-recording system is used to observe the dynamics 

of the peculiar field induced aggregation behaviour of polystyrene latex particles and yeast 

cells. The changes in the aggregates as a function of frequency were analysed by simulation 

techniques. The main electro-kinetic parameters of the latex particles and the yeast cells (ζ-

potential and surface conductivity) are used as adjustable parameters. Applying different 

theoretical models of electric double layer (EDL) polarization, starting with the standard 

(diffuse) EDL-polarization model, the optimum values of the parameters have been obtained. 

 

2. Materials and methods   

The samples are of suspensions volume fraction fV,latex = Vlatex /Vtotal = 0.01 of polystyrene 

latex particles and ∼0.002 volume fraction fV,yeast = 0.002 of S. pombe yeast cells suspended in 

weak NaCl solution, varied in the concentration range 10−5 - 10−3 M. The polystyrene latex 

stock suspensions (Estapor microspheres, ECS 080) were washed 4 times by repeated 

centrifugation. After each centrifugation the supernatant was discarded and the particles 

resuspended in the bidistilled water. A final centrifugation/decantation in 0.1 - 10 mM NaCl 

was used to prepare the particles for experimentation. The culture of Schizosaccharomyces 

pombe (S. pombe) 972h− was propagated in YED (yeast extract 1%, glucose 2%) in 

Erlenmeyer flasks at 250 rpm and 24°C. The cells were killed by autoclaving at 120°C, 

washed 4 times in doubly-distilled water followed by final washing with NaCl solution of 

desired concentrations. The so prepared particle (cell) dispersions were mixed to become 

suspensions with a given ionic strengths of the medium. 

The sample cell, as illustrated in Fig. 1, was made of two microscope glass slides separated at 

a distance of about 200 µm by spacers prepared from micro cover glasses (thickness 170-250 

µm). The electrodes are made of two platinum wires (150 µm diameter) spaced 5 mm apart. 

Homemade amplifier, capable of delivering voltages of up to 400 V in the range from d.c. to 

1 MHz, supplied an alternating voltage across the electrodes. The construction of the sample 

cell allows flow as in a open type electrophoretic chamber. 
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Fig. 1 Schematic illustrations of the sample cell prepared (a) and the time evolution of the electro-
osmotic flow velocity profile (b) from switching on of an external d.c. electric field E (at t0 - left) to 
fully developed flow (right). The dashed line (OP) indicates the observation plane. Diagrams not to 
scale. (h ≈ 200 µm; d = 5 mm; l ≈ 10 mm) 
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Fig. 2 Optical images of aggregates formed by accumulation of polystyrene latex particles around S. pombe 
yeast cells under action of electric field at different frequencies: f = 4 Hz (a), f = 30 Hz (b), and f = 3 kHz 
(c). The particles, radius ap = 400 nm, can be seen as dark ‘cloud’-like bands around the cells - the prolate 
ellipsoid in the middle of the dark ‘clouds’. Suspending medium: 10−4 M NaCl.  The external electric field, 
E = E0 cos(2π⋅f⋅t) with amplitude E0 = (10 − 60) × 103  V m−1 is applied in the horizontal direction.  
 

 

3. Experimental results 

Fig. 2 shows typical responses of the yeast cells / polystyrene latex particles mixture in the 

frequency range 3 ≤ f / Hz ≤ 3000 of the external a.c. electric field. The yeast cells can be seen 

in the middle of the clouds of particles as a prolate ellipsoid of revolution. In the frequency 

range 3 ≤ f / Hz ≤ 3000, the biological cells remain oriented with its longest axis parallel to 

the external field lines whereas the particles change its position depending on the frequency. 

At frequency below 100 Hz the particles accumulate on the ‘pole-capes’ (the ends of the field-

oriented prolate cell body). At frequency above 500 Hz the particles tend to accumulate on the 

‘equator’ of the prolate S. pombe yeast cell. In the latter configuration the particles cover the 

cells and therefore they remain under the plane of observation (Fig. 2(c)). In addition to the 

optical microscopy observations, electrooptical turbidity relaxation spectroscopy has been 

used (unpublished results) to analyse the orientation of the S. pombe yeast cells at different 

salt concentrations in suspension without and with particles. 
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Fig. 3 Diagrammatic representation of the patterns formed by accumulation of polystyrene latex 
particles (black dots) around S. pombe yeast cell (the prolate ellipsoids) under action of an a.c. electric 
field. The position of the particles depends on both, the ionic strength I of the suspending medium 
(NaCl) and the frequency f of the applied field. Diagrams not to scale. 
 The circle-arrows on the right-hand side of the pictures denote rotational symmetry (if any exists). 
 

 

The transition ‘pole-caps’ - ‘equator’ accumulation depends on the frequency and the 

conductivity of the solvent. Schematic representation of this dependence is given in Fig. 3. In 

the frequency range f = 1 Hz - 700 kHz, the yeast cells orientate with its longest axis parallel 

to the external field lines. The parallel orientation is not affected by the presence of the 

smaller latex particles. When the frequency exceeds 700 kHz, the yeast cells orient 

perpendicular to the field lines. The orientation modes can be consistently analysed in terms 
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of the Maxwell-Wagner (MW) polarization of yeast cell.[7], [8] However, in the kHz range the 

yeast cell membrane appears non conductive and completely polarized. In this state, the yeast 

cell can be treated as a pure dielelectric particle. In this case, according to MW polarization, 

the induced dipole moment of the yeast cell should not change sign at different medium 

conductivities and frequencies. It is the electric double layer (EDL) polarization that depends 

on the ionic strength of the solution. Therefore, the EDL-polarization of the biological cells 

(particles) should be taken into account by the quantification of the low-frequency aggregates.  

 

 

4. Theory and analysis 

4.1 Polarization mechanisms 

When biological cells are manipulated by externally applied electric fields, weak electrolytes 

as a dispersion medium are preferred (minimizing Joule heating). Comonly, the calculation of 

the induced trans-membrane voltage (or the induced dipole moment of a biological cell) refers 

to the Maxwell–Wagner (MW) polarization mechanism. [13], [14] The  MW analysis operates 

with the different conductivities or (for dielectric system) the different  dielectric 

permittivities of the membrane/medium interfaces. In these approaches, usually the  charges 

of various membrane components as the glycocalyx layer and the hydrophilic head groups of 

the lipid molecules are treated separately.[22], [23] The MW theoretical treatment is based on the 

assumption, that the conductivity of the electrolyte solution close to the cell surface has the 

same value as far away from the cell. In general this assumption is satisfied for cells in 

aqueous electrolytes under physiological conditions, but it is not fulfilled for cells of net 

surface charge suspended in a low conductive medium. As known for (charged) colloid 

particles, charged membrane surfaces attract oppositely charged ions forming a layer of 

counter ions. So, the higher ion density near the cell surface results in a much higher surface 

layer conductance than that of the bulk electrolyte. Thus, the fixed membrane charges 

contribute indirectly to the surface conductivity of the suspended cell and additionally modify 

the electric filed distribution around the cell body. 

O’Konsky[24] first introduced a constant (integral) linear surface-conductivity Kσ (in utin S), 

defined via a two-dimensional Ohm’s law for the (linear) surface current density (in A m−1)  

jσ = KσE where E is the tangential component of the field. The surface-conductivity Kσ is an 

excess quantity which can be derived as the difference between the total conductivity of a 
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disperse system and the same in the absence of double layer. Kσ is a frequency-independent 

quantity which refers to ions flowing from one side of the spherical surface to the other. For a 

charged particle suspended in electrolyte solution with bulk conductivity Ke (S m−1), EDL-

polarization is finite only if 2Kσ/a > Ke, where a is the radius of the particle. The outer surface 

of the conducting shell represents a boundary surface for the ionic Maxwell-Wagner 

polarization. The surface-conductivity Kσ of spherical particle with radius a is treated as a part 

of the total conductivity of the particle Kp
total = Kp + 2Kσ/a, where Kp is the conductivity of the 

particle.[24]  A dielectric particle is qualified by Kp = 0 and the total particle conductivity is 

solely proportional to the surface conductivity Kp
total = 2Kσ/a. 

In Fig. 4, the role of surface-conductivity for the induction of the dipole moment of the 

S. pombe yeast cells is illustrated (Maxwell-Wagner-O’Konsky (MWO) model). The shape of 

the yeast cell is approximated by prolate ellipsoid. The external field is applied along the 

longest axis of the cell. The electric potential distribution is calculated by solving the 

continuity equation for the two-dimensional case, ∇⋅(K ∇ϕ) = 0, where the conductivity K is a 

known scalar field K = K(x, y) and the electric potential ϕ = ϕ(x, y) is the solution of the 

Laplace equation (also scalar field). The conductivity K(x, y) is taken to be constant in each of 

the four regions: bulk electrolyte, double layer shell, cell membrane and the cell core, 

respectively. The external field intensity, which is given by E0 = −∇ϕ (x→∞, y→∞), is a 

known parameter. The integration is performed numerically using self-written source code 

(Matlab, finite element method). It can be seen that for a typical surface-conductivity of Kσ = 

2 × 10−9 S, the induced transmembrane voltage Um = Em/dm is double-reduced compared to the 

case without surface conductivity. The induced MW-dipole moment of the cell is opposite to 

the external field vector E0 (counts negative for cell without surface conductance and no 

surface charges), Fig. 4(a). Counterion polarization leads to positive induced moment 

(counterion polarization of charged surface), Fig. 4(b). 

The O’Konsky model disallows ion exchange between the conductive surface layer and the 

bulk electrolyte solution. For suspensions of charged spherical dielectric particles of radius a, 

the O’Konski theory provides expressions for the measured dielectric permittivity εr.(ω) and 

the relaxation time τ, which are formally equivalent to those of  the Maxwell-Wagner (MW) 

polarization.  In the Maxwell-Wagner-O’Konsky (MWO) model the core conductivity of the 

particles Kp is replaced by (Kp + 2Kσ/a). O’Konski describes εr(ω) near the characteristic 

frequency of MW, but offers no satisfactory interpretation for the high values of the static 
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permmitivity εr.(0), and the relaxation time τ found in suspensions at frequencies below 

several kHz.[12] Later, Schwarz[15] attributed the low-frequency relaxation to EDL-polarization 

of entirely “bound” counterions (no net ion exchange with the bulk solution), i.e. , the charge 

conservation conditions contains no normal net flows (see Fig. 5(a)). 

 

 

 

 
 
 
 
Fig. 4 The electric potential distribution around a yeast cell in uniform electric field (x-direction) in 
case of (a) uncharged membrane surface (Maxwell-Wagner polarization) and (b) charged membrane 
surface (Maxwell-Wagner-O’Konski model). The equipotential curves (vertical lines of the grid) and 
electric field lines (-horizontal) are calculated numerically by solving the Laplace’s equation in two 
dimensional case with parameters: Electric field intensity E0 = 180 V cm−1; external medium 
conductivity Ke = 14 × 10−4 S m−1 (≈10−4 M NaCl); cell interior conductivity Ki = 1 S m−1; dielectric 
constants of the outer and inner cell medium εe = εin = 78, and that of the cell-membrane εm = 2; 
surface-conductivity of the cell Kσ = 2.4 × 10−9 S. The sloping dotted lines in the bottom of the figures 
show the potential profile ϕ(x) in the electrolyte solution without cell. The bold line in the same 
figures is the potential ϕ (x) in the presence of the yeast cell. The vertical drops in the potential profile 
ϕ(x) around the pole caps of the yeast cell (solid curves at the bottom of the figures) correspond 
potential drop across the membrane.  
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Fig. 5 Schematic representation of the polarization models discussed: (a) The Schwarz model - no 
counterion exchange between the bulk and the double layer; (b) The diffuse double layer polarization 
model (classical model) - ion exchange between the double layer and the bulk is allowed; (c) The here 
proposed polyionic glycocalyx polarization model that describes the polarization of the yeast cells:  
the bound ions (cyrcles) can move laterally but no net exchange with the diffuse ions. 
The arrows on the particle surface denote the amplitude of the surface current IS. Thin double layer is 
considered (κa >> 1). The spherical dielectric particle is negatively charged. The time evolution of the 
polarization (under d.c. field) is shown in two steps: (I) τγ < t < τα and (II) t > τα, where τγ = (κ−1)2 / D is 
the high-frequency γ-relaxation (or MWO-relaxation) time and τα = a2 / 2D is the low-frequency α-
relaxation time, with D being the diffusion coefficient of the ions. Diagrams not to scale. 
 
 
 
 
The tightly bound double layer in the Schwarz model was later abandoned in favour of Gouy-

Chapman type models, dealing principally with the diffuse double layer. The characteristic 

thickness of the diffuse double layer is the Debye screening length κ −1, where κ  is the Debye 

– Hückel parameter given by: 
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where I = (1/2)⋅Σi zi
2ci is the ionic strength of the electrolyte solution; zi

 is the charge number 

(with singn) and ci /M is the molar concentration. In the light of the Gouy-Chapman model, in 

the presence of an applied electric field, the governing equations that have to be considered 

are the Poisson and Boltzmann equations for the potential and ion distribution, respectively, 

the ion conservation equations together with the Nernst-Plank equation for the ion fluxes, and 

in certain cases the Navier-Stokes  equation for the fluid flow. These coupled nonlinear 

electrokinetic equations do not have analytical solutions. However, the equations can be 

linearized provided the applied electric field strength is not too high compared to the field of 

the fixed surface charges. Analytical solutions for particles with large κa (thin double layer 

approximation) in symmetrical electrolytes have been derived by number of authors.[18]-[20] 

More general numerical solutions are also available.[21]  

The polarization of a spherical dielectric particle, in principal, is completely determined by 

the surface-conductivity Kσ, the particle size and the ionic composition of the suspending 

electrolyte. The latter two are known from the experiment under consideration. The surface-

conductivity Kσ is accounted for through the dimensionless Dukhin number Du,[25] which is 

given by the surface-to-bulk conductivity ratio: Du ≡ Kσ/ aKe. Although, in principle, Du can 

range from 0 to +∞, in practice Du is of the order of 10−2 - 102 (for very low Du surface 

conduction can be ignored). For further analysis, it is convenient to distinguished between the 

surface-conductivity Kσd of the outer (diffuse) double layer and Kσi of the inner (Stern) double 

layer, using the relationship Kσ = Kσd + Kσi. Kσd consist of two parts: a migration contribution 

(movement of charges in respect to the liquid) and convective contribution (electro-osmotic 

liquid flow). Since Kσd can be expressed by the ζ-potential (through Bikerman’s equation), Du 

(and thus the induced dipole moment of a particle) is expressed by ζ and the ratio Θ  = 

Kσi /Kσd as a two parameter function Du(ζ, Θ ). Hence, the interaction energy Upc between a 

latex particle (p) and a S. pombe cell (c) is completely determined by Du(ζp, Θp) and 

Du(ζc, Θc), respectively. For simplicity, the elongated body of the S. pombe cell is 

approximated by a sphere with effective radius of ac
eff ≈ 3 μm, where ac

eff  = (ac × bc
2)1/3, ac 

and bc being the polar and equatorial radii of the cell.  
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4.2 Dipole coefficient 

Considering the case of a sphere with radius a embedded in an electroneutral electrolyte 

solution under the influence of a uniform, parallel external field E directed along the positive 

x-axis, the electric potential distribution ϕe(r) at any point r outside the electric double layer 

of the sphere located at the origin (r ≥ a + κ −1) is given by solution of the Laplace’s 

equation in the far field (beyond the double layer) as: 

3

e 2cos cosp
aE r C E
r

ϕ θ θ= − + ,       (2) 

where r is the radial distance to the observation point, θ is angle between the field direction 

and the radius-vector r. The first term in Eq. (2) is the potential of the homogeneous external 

electric field. The second term is the potential due to the induced dipole of the spherical 

particle characterized by the dimensionless dipole coefficient Cp (also known as the Clausius - 

Mossotti factor). Eq. (2) may also be formulated in terms of the induced dipole moment: [25]

  

2
0 e

coscos ind
e

pEr
r

θ
ϕ θ

πε ε4
= − + ,       (3) 

where pind = 4πε0εe ⋅a3 ⋅Cp⋅E is the induced dipole moment of the spherical particle and εe is 

the dielectric constant of the electrolyte solution. 

 

4.3 Frequency dependence of the dipole coefficient 

If the external field is harmonic function of time, E(t) = E0⋅cos(ωt), it is convenient to 

represent the time dependence of the field as E*(t) = E0⋅exp(iωt), where ω is the angular 

frequency and the asterisk denotes a complex quantity. For a simple (linear) medium, the 

charge density, polarization and other descriptive parameters will also be sinusoidal, but not 

necessary in phase with the field. The full electric response of the particle can be 

characterized by the complex particle conductivity Kp
* = Kp + iωε0εp, where ε0 is the vacuum 

permittivity, Kp is the conductivity and εp is the dielectric constant of the particle. The 

corresponding complex permittivity εp
* is given by εp

* = Kp
* / iω. 

Consequently, the induced dipole moment is not in phase with the field. Therefore, the dipole 

coefficient Cp of the particle (see Eq. (2)) is expressed by the complex quantity Cp
* = 
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Cp’ + iCp′′, where Cp′  and Cp′′  are the real and the imaginary parts, respectively. For 

spherical dielectric particle and biological cell, the dipole coefficients are given by  

( ) ( )* * 11
1p p p

p

C C C
i

α γ
γω ω

ωτ
∆

 
= + −  + 

       (4) 

and 

( ) ( )* * 1 11 1
1 1c c c c

c c

C C C C
i i

α β γ
β γω ω

ωτ ωτ
∆ ∆

   
= + − + −   + +   

,    (5) 

respectively (see Appendix 1). Hereafter, we shall use the subscript p and c denoting latex 

particle and yeast cell, respectively. In Eq. (4) and Eq. (5), the superscripts α, β, and γ  denote 

the characteristic relaxation modes, here specified after Schwan’s definition for the three 

relaxations observed in the dielectric dispersion spectrum of suspension of cells.[8] The 

amplitudes ∆C and the relaxation times τ of the corresponding β and γ modes, which depend 

on the electric properties of the particle/medium as well as on the surface-conductivity Kσ of 

the particles (cells), are expressed in Appendix 1. 

Fig. 6 shows the theoretical dipole coefficient of the polystyrene latex particles and S. pombe 

cells as function of frequency for different values of Du, Eq. (4) and Eq. (5). 

 

The γ - relaxation corresponds to the MW-relaxation (particle without surface conduction) 

and MWO-relaxation (surface conductive particle). Both, MW and MWO relaxations have 

characteristic relaxation times of the same order of magnitude. The MW dispersion occurs 

when the dispersed phases in contact have different conductivities and dielectric permittivities. 

If the ratio between these two quantities differs from the medium and the particle, i.e., if 

(εe / Ke) ≠ (εp / Kp), a formation of free ionic charges near the surface occurs. The finite time 

needed for this formation is of the order of O(εe/Ke), which characterizes the time required for 

the screening of charge or electric field perturbations. The same order of magnitude 

corresponds to the time of ion diffusion through a distance lD, equal to the Debye length, 

O(lD
2

 /D), where lD
2 = 1/κ2 = Dεe / Ke, see Eq. (1). The γ-relaxation of the latex particles can 

be seen in Fig. 6 (b) at a frequency of about f = 106 Hz. 
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Fig. 6 The theoretical real C ’(2πf) (a) and the imaginary C’’(2πf) (b) parts of the dipolar coefficient 
C*(2πf) = C ’(2πf) + iC’’(2πf) of S. pombe yeast cell  and polystyrene latex particle at different Du 
numbers (Du = Kσ / aKe) as a function of the frequency f of the applied electric field calculated. (c) 
and (d): The real parts εr’ of the dielectric constant εr

* = εr’ + iεr’’ of suspension of the yeast cells ((c)-
left) and the latex particles ((c)-right), both at volume fraction fV = 0.01, as a function of the 
frequency. εr’(ω) is calculated using the Maxwell’s mixing formula εr

* = εe
*⋅(1+3fV C*), where εe

* is 
the complex dielectric permittivity of the suspending electrolyte. C*(ω) is calculated using the 
classical (diffuse counterion cloud) polarization model, Eq. (6) and Eq. (12). The system parameters 
are: effective radius of the yeast cells ac

eff  = 3 µm; membrane thickness dm= 5 × 10−9 m; cell-interior 
conductivity Ki = 1 S m−1; membrane conductivity Km = 0; dielectric constants of the outer and inner 
cell medium εe = εin = 78 and εm = 2 for the membrane; particle  radius ap = 400 nm; particle dielectric 
constant εp = 2; particle conductivity Kp = 0; ion diffusion coefficient D + ≈ D −  ≡ D = 2 × 10−9 m2 s−1 
and medium conductivity Ke = 20 × 10−4  S m-1 . 
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The β -relaxation, usually found in the MHz range, is caused by the dielectric membrane 

properties of the cell. As can be seen by comparing Eq. (4) and Eq. (5), there is no β-

relaxation in case of homogeneous dielectric particle. The β-relaxation (cell-model) is based 

on MW-polarization (or MWO in case of surface conduction) of the cell-membrane, whereas 

the γ-relaxation corresponds MW-polarization of the cell-core. For S. pombe yeast cells, the 

β- and γ -relaxation frequencies are fα ≈ 2 × 105 Hz and fβ ≈108 Hz, respectively (see Fig. 6 ). 

The γ-relaxation of the yeast cells appears at higher frequency as that of the latex particles 

because the cell-core is high conductive (Ki = 1 S m−1), whereas the conductivity of the 

particles is Kp = 0. In the case of nonconductive cell-core the γ-relaxation frequency is the 

same as that of the particles. 

 

The α -relaxation. As mentioned above, in the kilohertz frequency range there is another 

high-amplitude dielectric dispersion caused by the polarization of the counterion layer of the 

suspended (charged) colloid particles. Analytical solutions for particles with large κa (thin 

double layer approximation) in symmetrical electrolytes have been derived by number of 

authors.[18]-[20] Here we use the analytical solution deduced by Lyklema, [25] with neglected 

contribution of the convection to the flow (particle radius much larger than the Debye 

screening length, κa >> 1). The dipolar coefficient has a frequency dependence that does not 

correspond to a single time constant relaxation (being substantially broader): [26] 

( ) ( )
* 1 3

2 2 2 1
DuC

Du
α ω

Γ
= − +

+ +
       (6) 
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e
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2
a
D

ατ =         (9) 

In Eq. (9), D is the diffusion coefficient of the ions in the solution. It is assumed that the 

diffusion coefficients of the positive and negative ions are approximately equal, D+ ≈ D− = D. 
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4.4 Surface-conductivity  

The dipole coefficient of a spherical (charged) dielectric particle is completely determined by 

the surface-conductivity Kσ, particle radius a and the Debye - Hückel parameterκ. The latter 

two parameters are known from the experiment under consideration. The surface conductivity 

Kσ has contributions owing to the diffuse-layer charge outside the plane of shear, Kσd, and to 

the charge in the inner layer Kσi: [25] 

d iK K Kσ σ σ= +         (10) 

Accordingly, 

d i
d i

e e

K KDu Du Du
a K a K

σ σ

= + = +        (11) 

The Kσd contribution is also called the Bikerman surface conductivity after Bikerman, who 

found a simple equation for Kσd. In that case Dud is expressed as: 

d
d
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e

2 31 cosh 1
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K M zeDu
aK a z k T

σ ς
κ

   = = + −   
    

       (12) 

In Eq. (12), the parameter M indicates the relative contribution of electro-osmosis to the 

surface conductivity. For symmetrical electrolytes, M is given by: 
2

0 e2
3

Bk TM
D e

ε ε
η

 =  
 

          (13) 

 
Substitution of Eq. (12) into Eq. (11) yields: 

( )2

2 31 cosh 1 1
2 B

M zeDu
a z k T

Θ
κ

ζ   = + − +   
    

,       (14) 

where Θ = Kσi /Kσd. 

If we assume, as the experimental data suggest (see below), that the inner (Stern) double layer 

obeys a Schwarz-like polarization, that is, the surface conductivity of the inner layer is 

frequency dependent, we may substitute Kσi in Eq. (14) by: 

i
i i
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iK K

i

α
σ σ

α

ωτ
ωτ

≡
+

        (15) 
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Eq. (15) is essentially the surface-conductivity term in the Schwarz theory, with τα i being the 

characteristic relaxation time of the inner double layer. Substitution yields: 

i

2 i

2 31 cosh 1 1
2 1B

M ze iDu
a z k T i

α

α

ωτ
Θ

κ ωτ
ζ     ≡ + − +      +     

     (16) 

In general, it is expected that the relaxation time of the inner counterion layer is larger than 

that of the diffuse layer, τα i > τα d. Here, for simplicity of calculation, we assume τ α i ≈ τ α d 

= a2 / 2D. 

4.5 Induced dipole moment 

The induced dipole moment of a spherical particle (or a biological cell) of radius a, pind
*, is 

expressed by the dipole coefficient C* as: 

( ) ( )* 3 * * * *
0 e4 ( ) ( ) ( )indp Du a C Du E Du Eω, π ε ε ω, ω α ω, ω= ⋅ ⋅ = ⋅     (17) 

where α* = α*(ω, Du) denotes the electric polarizability of the particle. In Eq. (17), Du = 

Du( ζ, Θ ) depends on two parameters: the electrokinetic potential ς  and the ratio Θ. 

 

 

4.6 Simulation model 

4.6.1 Simulation model specifics 

The dynamics of the interaction between the latex particles and the yeast cells is simulated by 

two-dimensional model system of N identical particles and one yeast cell. The simulation is 

based on the analytical expressions for the particle-particle and particle-cell interaction 

energies. The model considers induced dipole-induced dipole interaction between particle i 

and j (i, j = 1…N; i≠ j ), as well as, between particle i and yeast cell c, see Fig. 8. The 

interaction energy depends on the induced dipole moments of the particles and the cells, pi
*
ind 

and pc
*
ind, respectively, which in turn are determined by the dipole coefficients of Cp

* and Cc
*. 

In the low-frequency range (f < 10 kHz), Cp
* and Cc

* are given by Eq. (6). Since the size of 

the latex particles and the yeast cells, as well as, the conductivity Ke of the suspending 

medium are known, the dipole coefficients are solely functions of the frequency:  

( ) ( )* * * *( ) , , ; ( ) , ,p p p p c c c cC C C Cω ω Θ ω ω Θζ ζ= =      (18) 
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In Eq. (18), the zeta potential ζp(c) and the surface conductivity ratio Θ p(c) of the particles (p) 

and the cells (c) are unknown parameters. By taking the value of Θp = 0.56 deduced by 

Lyklema and Minor,[27] the parameters that completely determine the potential energy of 

interaction, and thus the forces acting on the particles (cells) are: ζp, ζc and Θc. Finally, by 

integration of the equations of motion (see below), we obtain the pathways of the latex 

particles and the yeast cell: 
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       (19) 

In Eq. (19), the parameter ζwall is the electrokinetic potential of the glass walls of the 

measuring chamber (see Fig. 1). ζwall  is a measure for the electroosmotic- (e.o.) flow of the 

electrolyte solution between the glass slides. It should be noted that the velocity profile of the 

e.o.-flow is frequency dependent in the middle of the measuring chamber (in the frequency 

range under consideration), but it is not in the regions near the glass walls (observation plane), 

see Fig. 1. The observations show that the e.o.-flow has the same direction as the external 

field (negatively charged glass-walls), which is opposite to the electrophoretic motion of the 

latex particles and the yeast cells (ζp and ζc are negative). At frequencies at which the 

electrophoretic displacement is small (f > 10 Hz), the trajectories can be calculated using 

mean-time averaged forces, so that the relative position ric between a latex particle i and yeast 

cell c depends on four parameters (ω is known from the experiment under consideration): 

( ) at 2 Hz( ) , , ;ic ic p c ct t π,  ω, Θ ω 10r r ζ ζ >=      (20) 

Hence, the three equations in Eq. (19) together with Eq. (20) completely determine the 

parameters ζwall, ζp , ζc and Θc, provided that at three different frequencies, say ω1, ω2 and ω3 

the positions ric, rc and ri are known. As Fig. 2 shows, the configurations of particles around 

the yeast cells at f = ω/2π = 3 Hz; f = 30 Hz; and f = 3 kHz are well distinguishable, giving a 

good reference for the simulations. An additional experimental information that results from 

the experimental data is the half-time t1/2
freq which characterizes the time that the particles 

require to reach stable configuration around the cells by any stepwise change of the frequency 

(f = 3 Hz → 30 Hz → 3 kHz and vice versa). Thus, by varying the optimization parameters ζp , 
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ζc and Θc, and comparing the simulated particles/cell configurations with the observations, we 

obtain the optimum values that fit the experiment, see Fig. 9 – Fig. 12. 

 

 

                

 
 
 
 
Fig. 7 Identification of symbols used in the derivation of the equations of motion of the polystyrene 
latex spheres (i,  j) and a S. pombe yeast cell (c ) in a uniform electric field E = E0 cos(ωt). 
 

 

4.6.2  Dielectrophoretic potential energy of interaction 

If the external electric field is uniform and parallel, the force acting on each particle is due 

only the influence of the inhomogeneous electric field created by the neighboring particle. 

Because the force acting on a dielectric particle in inhomogeneous electric field is also called 

dielectrophoretic force, here we shall use the superscript “diel“ notating a potential (or an 

force) of this kind. 

The instantaneous interaction energy between two dissimilar particles A and B located at the 

origin of coordinates and at position r, respectively, is given by: 
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( ) ( )* *Re Re ( )diel
AB B AU p E r= − ⋅        (21) 

In Eq. (21), pB
* is the induced dipole moment of particle B, and EA

*(r) is the field created by 

the induced dipole pA
* of particle A, expressed as: 

( ) 2
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rπ ε ε

p r r p
E r

⋅ −
=        (22) 

Further, we only consider mutual polarization of first order, i.e., when considering the field 

EA created by particle A, instead of using the net dipole moment pA of particle A induced by 

its total local field E*
loc = E* + E*

B, where E* denotes the external field, we only use the 

leading term in its dipole: 

* * *
, ,A B A Bαp E=         (23) 

In Eq. (23), α* denotes the polarizability of the colloid particle. Substituting Eq. (22) and 

Eq. (23) into Eq. (21), and considering a uniform electric field oscillating it the x-direction 

E* = E0.exp(iωt).ex, where ex is the unit vector, we obtain for the instantaneous interaction 

energy between particle A and B the expression: 
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πε ε
−

= −      (24) 

In Eq. (24), r is the distance between particle centres and θ  is the angle between the radius 

vector r and the unit vector ex.  

The interaction energy, Eq. (24), is a product of simple harmonic functions of the time and we 

can evaluate the time average,[28] which in our yields: 
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= −        (25) 

In Eq. (25), *α  denotes the complex conjugate of the complex polarizability α*. 

Consequently, the interaction energy can be expressed by the dipole coefficients C* of the 

colloid particles by: 

, , ,
* 3 *

0 e4A B A B A Ba Cα π ε ε= ,       (26) 

where aA and aB are the particle radii. 
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Applying Eq. (24) and Eq. (25) to the model system of N latex particles, each having radius ap 

and dipole coefficient Cp
*, the instantaneous interaction energy between latex particles i and j, 

placed at positions ri and rj, respectively, yields: 
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In Eqs. (27) and (28), rij = rj−ri is the center-to-center distance between the latex particles, 

Cp = [Cp’ 2 + Cp’’ 2 ]1/2 is the magnitude and ψp = arctan[Cp’’ / Cp’] is the phase of the particle 

dipole coefficient Cp
* = Cp exp(iψp). 

Accordingly, the interaction energy between latex particle i and the yeast cell c placed at 

positions ri and rc, respectively, is given by: 

( ) ( )
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0 e 0 3

3cos 1
( ) 4 cos cos icdiel

ic c p c p p
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cU t a a C C E t t
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ic c p c p
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c pU a a C C E
r
θ

π ε ε ψ ψ
−

= − −eff     (30) 

In Eqs. (29) and (30), ric = rc − riis the center-to-center distance, Cc is the magnitude, ψc is 

the phase of the dipole coefficient of the yeast cell and ac
eff denotes the effective cell radius 

calculated by ac
eff  = (ac × bc

2)1/3, with ac and bc being the polar and equatorial radii of the cell 

body (prolate spheroid oriented parallel to the applied field, see Fig. 7). 

Eq. (30) shows that the interaction can be attractive or repulsive depending on the sign of two 

factors:[6] an electrical factor cos(ψc −ψp), that accounts for the phase difference of the 

induced dipole moments and a geometrical factor (3cos2θ −1)/r, that considers the relative 

positions of the interacting particles. For identical colloid particles (or cells) the factor 

cos(ψc −ψp) is positive at any ω (because ψc ≡ ψp) and the particles move to positions at 

which the geometrical factor is positive, that is θ = 0°, leading to formation of chains along 

the field lines. 
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An example for dipolophoretic interaction of three particles of same kind is given in Fig. 8, 

where the trajectories are calculated by solving the equations of motion (see below). Same 

configuration of chain formation applies for particles of different kind (as the latex particles 

and the yeast cells) if the electrical factor positive: the particles aggregate on the cell-poles 

facing the external field. However, at frequencies where the electrical factor is negative, the 

geometrical factor tends also to become negative (in order to minimize the energy), giving a 

minimum at θ = 90°. The latter configuration corresponds to aggregation of latex particles on 

the equators of the yeast cells. The two characteristic configurations for latex particles and 

yeast cells are shown schematically in Fig. 14(a).   

 

                  
 
Fig. 8 Calculated pathways of three identical particles (or biological cells) of radius a obeying induced 
dipole – induced dipole interaction in uniform alternating electric field, E = E0 cos(ωt). 
In this particular case of initial configuration, the time that the system requires to build up the doublet 
AB is 2 2

AB e 06500t E Cη ε ε0=  s, where C = C(ω) = [Cp’ 2(ω) + Cp’’ 2(ω)]1/2 is the magnitude of the 

complex dipole coefficient of the particles C *(ω). The time for building up the triplet ABC is tABC ≈ 
47 × tAB. Trajectories calculated by integration of the mean-time average equations of motion for three 
spheres, Eq. (A5.1). In this example only hard-core repulsive force is considered, see Appendix 5. 
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4.6.3 Electrostatic energy of interaction 

When a polystyrene particle approaches an identical neighboring particle so that the electrical 

double layers of the charged particles begin to overlap the result is usually a repulsive force, 

which tends to oppose further approach. If the particle approaches yeast cell which has a 

surface electrostatic potential of the same sign it experiences repulsion too. The magnitude of 

the repulsion force can be calculated from the repulsive potential energy rep
ijU between the 

charged surfaces of particle i and j, respectively. rep
ijU  can be determined either by the electric 

surface potentials or by the surface electric charge of the surfaces. We shall use the first case, 

the constant surface potential approach, which is the basis of the DLVO theory of colloid 

stability. In this chase it is assumed that the surface potentials remain constant during 

approach. For particles of radii ai and aj, in the case of thin double layer (κ a >> 1),  rep
ijU is 

given by: [30] 
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2
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ij i j ij
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e r
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,       (31) 
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In Eq. (31) and Eq. (32), Hij is the distance of close-approach, rij is the distance between 

particle centers,  z is the charge number of the electrolyte dissociated in the solution, κ is the 

Debye-Hückel parameter given by Eq. (1) and ϕ0i represents the surface potential of particle i. 

 

4.6.4 Forces between the latex particles and the yeast cells 

The mean dielectrophoretic force. The force between particles i and j, as well as, between 

particle i and yeast cell c, can be calculated by taking the negative gradient of the potential 

energies of interaction, Eq. (28) and Eq. (30). The corresponding mean forces (time 

independent) may be expressed in dimensionless forms as: 
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where 
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2
0 0 0

ˆ / ; 6 /pt t t t a Fπη= =        (37) 

In Eqs. (33) - (37), erij and eθij are the radial and the tangential unit vectors with respect to rij, 

respectively (see Fig. 7). The superscript “ ∧ ” denotes dimensionless variables. The natural 

time unit t0, Eq. (37), allows for a convenient transformation to dimensionless differential 

equations (see below). Consequently, by taking the negative gradients of Eq. (27) and 

Eq. (29) we obtain the time-dependent (dimensionless) forces fij = fij(t) and fic = fic(t) 

expressed in the Appendix 2 by Eq. (A2.1) and Eq. (A2.2), respectively. 

 

Hydrodynamic force. The spherical latex particles and the yeast cells are subject to 

hydrodynamic drag force due to their motion through the liquid phase. As initial 

approximation, the hydrodynamic resistance is given by the Stoke’s law: F = − 6πaη.(dr /dt). 

The dimensionless drag forces (f = F/F0) acting on a particle i and a cell c are given by: 

ˆ ˆ
;ˆ ˆ

hyd hydi c c
i c

p

d a d
d t a d t

r rf f
 

= − = −   
 

eff

       (38) 

The repulsive electrostatic forces between particle i and particle j, as well as, between particle 

i and cell c, fij and fic, respectivelly, are calculated by taking the negative gradient of Uij
rep and 

Uic
rep, Eq. (31) and Eq. (32). For simplicity of the calculations, the surface potentials are 

approximated by ϕ0p ≈ ζp  (for the ith particle) and ϕ0c ≈ ζc  (for the yeast cells). Applying the 

inequality (ai aj /rij
2) << (κ ai aj /rij) valid for κ a > 10 and (r /a) > 2, yields the dimensionless 

(f = F/F0) forces: 
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In Eq. (39) and Eq. (40), the dimensionless factors A( ˆ
pζ ) and B( ˆ

pζ , ĉζ ) are function of the 

scaled ζ-potentials ( ) ( )
ˆ

Bp c p ce k Tζ ζ= . The expressions for A( ˆ
pζ ) and B( ˆ

pζ , ĉζ ) are given by 

Eq. (A3.1) of the Appendix 3. In Eq. (40), 0
î cr  is the particle-cell (center-to-center) distance at 

particle contact, that is, when the particle i contacts the yeast cell (i.e., at Hic = 0, see Eq. (31)). 

The scaled center-to-center distance 0
î cr  is expressed in the Appendix 3.  

 

Electrophoretic force. Considering electrophoretic motion of a spherical colloid particle with 

radius a in a liquid phase under action of an external (vector) field E, the electrophoretic 

(scalar) mobility µ is defined by vel = µ.E, where vel is the particle electrophoretic velocity. 

In order to include the electrophoretic motion of the latex particles and the yeast cells in the 

equations of motion, we introduce an effective driving force Fel (electrophoretic force) such 

that, in competition with the Stoke’s frictional force (F = 6πaηv) to result in motion with 

same velocity as the electrophoretic velocity vel, that is, Fel = 6πaη vel. Note that this force is 

not the actual electrostatic driving force. The actual forces involved, such as for instance, the 

electrostatic force (exerted on the fixed surface charge) and the polarization force (retardation 

by the induced polarization field of the counterions), are all included by the derivation of the 

electrophoretic mobility as function of the electrokinetic potential µ = µ (ζ), and so they are 

all accounted for trough the electrophoretic velocity vel. Here we apply the expression for 

µ  deduced by O’Brien and Hunter,[29] Eq. (A4.1) of the Appendix 4. Fig. 10(b) shows the 

mobility µ as a function of ζ  for the latex particles and the S. pombe yeast cells. Including the 

electroosmotic liquid flow near the glass wall of the measuring chamber, we obtain 

Fel = 6πaη(vel+vw
eo), where vw

eo is the electro-osmotic velocity of the solution near the glass 

walls, see Fig. 1(b). The electro-osmotic velocity of the bulk electrolyte is related to the 

electrostatic potential at the slipping plane of the glass surface ζwall via vw
eo = − (ε0εeζwall /η)E. 

Hence, for electric field alternating in the x-direction E = E0⋅cos(ωt)ex, the dimensionless 

electrophoretic forces (fel = Fel/F0) are given by: 
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In Eq. (41) and Eq. (42), ˆ
wall wall Be k Tζ ζ=  is the dimensionless electrokinetic potential of the 

measuring glass slit-chamber, see Fig. 1. The dimensionless electrophoretic mobility 

( ) ( ) ( )ˆˆ ˆ ( )p c p c p cµ µ ς=  of the particles (cells), expressed by the dimensionless potential ( )ˆp cς , is 

given by Eq. (A4.1) of the Appendix 4.    

 

4.6.5 Equations of motion 

The motion of N identical latex particles, each having mass mp and position ri, and one yeast 

cell with mass mc placed at rc, is governed by Newton’s equation of motion. Using the scale 

factors introduced by Eqs. (35), (36) and (37), we obtain the dimensionless set of equations: 
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where 
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p c
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p

m F
aπ η

Γ =         (44) 

The last terms on the right-hand side of Eq. (43) represent the hydrodynamic drag forces (see 

Eq. (38)). For particle (cell) radius of ap (ac
eff ) = 0.4 µm (3 µm), assuming particle (cell) 

density of same order as water, the mass of a particle and a cell are mp ≈ O(10−16) kg  and mc ≈ 

O(10−14) kg, respectively. For η ≈ 10 × 10−4 Pa s and E0 = (1 … 5) × 104 V m−1, the 

acceleration terms are Γp ∼O(10−5) and Γc  ∼O(10−2), which are small compared to the 

corresponding velocity terms and can be safely neglected. Thus, the equations of motion, 

Eq. (43), transform to: 
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Eq. (45) is the set of equations to be solved for the dimensionless trajectories ˆˆ ˆ ( )i i t=r r  and 

ˆˆ ˆ ( )c c t=r r . At higher frequency, where the electrophoretic displacement for a half-period of 

the alternating electric field is small, Eq. (45) is approximated by: 

 
( ) ( )

, 1...

ˆ
ˆ

ˆ
;ˆ

diel diel rep repi
i j ic i j ic

j i j i

diel repc c
c j c j

j jp

i j N

d
dt

a d
a dt

r f f f f

r f f

≠ ≠

=

= + + +

= +

∑ ∑

∑ ∑
eff

       (46) 

 

6. Results and discussion 
 
The polarization of the latex particle and the yeast cells in the low-frequency range 0 ≤ f / kHz 

≤ 10 is dominated by the polarization of the counterion atmosphere of the charged particles. 

In order to quantify the main electro-kinetic characteristics of the yeast cells and the latex 

particles, the dynamics of the shape of the particles/cells aggregates were simulated in the 

two-dimensional case and compared with the experiment. Figure 9 shows an example of the 

simulation. The initial configuration was comprised of 40 identical latex particles randomly 

positioned around a cell (first placed on a square lattice and then randomly slightly dispersed), 

see Fig. 9(a). The starting configuration is the initial positions at t = 0 when the field is 

instantaneously applied. At that time, the system begins to evolve according to equations 

Eq. (46) and the latex particles reach an equilibrium configuration after time-interval 

characterized by the half-time t1/2
on, see Fig. 9(b). After that, the frequency was changed 

stepwise and the system equilibrates to a new configuration characterized by t1/2
freq. The 

equations of motion are solved numerically using self-written source code (Matlab 

environment, Runge-Kutta method). The Brownian forces are on the order of kT / ap. In the 

field range of interest here, 100 ≤ E0/(V cm−1) ≤ 600, the inequality F0 >> kT/ap holds, 

therefore the effect of Brownian motion can be safely neglected. Our computer simulation 

program also kept track of the trajectories and the velocities of the particles. 
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Fig.9 Simulated configurations 
of polystyrene latex particles 
and S. pombe yeast cell 
suspended in 10−4 M NaCl 
solution at different 
frequencies of the applied 
electric field: (a) initial 
configuration (E0 = 0), (b) f = 
30 Hz and (c) f = 3 kHz. The 
classical model (diffuse 
counterion cloud) polarization 
of the yeast cell fails to predict 
the shape and the half-times of 
the aggregates, whereas the 
new polarization model of 
polarization of the cell-
glycocalyx agrees with the 
experiment, see Fig.11 and 
Fig. 12.  
The values of the fixed 
parameters are: Θp = 0.56; ac

eff 
= 3 µm; ap = 400 nm. Field 
intensity range of the 
simulations: 100 ≤ E0 /(V 
cm−1) ≤ 600. The obtained 
values of the optimisation 
parameters are: ζp = −76 (± 4) 
mV, ζc = −57 (± 4) mV, ζwall = 
−51 (± 4) mV and Θc = 27 
(± 3). 
The results are coupled to the 
simulations at f = 3 Hz, see 
Fig. 10. 
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Fig. 10 The comparison of the experimental observation and the theoretical simulation of the 
particles/cell aggregates (a) in the two half-periods of the applied a.c. electric field (E0 = 600 V/cm; f = 
3 Hz) yields, via the electrophoretic mobility µ(ζ) (b), the electrokinetic  potentials of the polystyrene-
latex particles and the yeast cells, ζp and ζc,  respectively. The results are related to the simulation at 
f = 30 Hz and f = 3 kHz, see Fig. 9. Same parameters as Fig. 9. Rest experimental conditions: η = 
8.9 × 10−4 kg m−1 s−1; T= 298 K. 
 



 
59 
 

 

 

              
 
Fig. 11 (a) Comparison between the theoretical (continuous curves) and the experimentally obtained 
(symbols) frequency dependences of the real dipole coefficients of the latex particles and the yeast 
cells, C’pα(ω)  and C’cα(ω), respectively, at I = 160 µM. The classical model of diffuse counterion-cloud 
polarization applied for polystyrene particles (ο) agrees the experimental observation, but it fails to 
predict the polarization of the yeast cells (•). The new model of Schwarz-like polarization of the cell-
glycocalyx (dashed curve) rationalizes the experiment. 
             (b) The magnitude of the α-polarization of the yeast cells, here described in terms of the dipole 
coefficient difference ∆C’c

α = C’c
αH − C’c

αL, as a function of the ionic strength I of the suspending 
medium. The superscripts H and L denote the high- (104 Hz) and the low- (0 Hz) frequency limits of 
the dipole coefficient Cα *(ω), respectively.  The standard model (continuous curve) disagrees with the 
experimental data (•), whereas the new glycocalyx-shell polarization model (dashed curve) rationalizes 
the experiment. The theoretical curves are calculated using Eq. (6) - Eq. (9). Surface conductivity of 
the yeast cells: Kσ = 3 × 10−9 S. The rest parameters are the same as in Figure 9. 
 



 
60 
 

   

 
 
Fig. 12 The time evolution of the shape of the particles/cell aggregates by changing frequency from f = 
30 Hz to f = 3 kHz (at constant E0). The shape changes of the the aggregates with time are analyzed in 

terms of the (normalized) shape-factor ( )tΦ  defined as ( )tΦ = [Φhl(t) − Φhl(0)] /Φhl(t∞), where Φhl = 
Φh /Φl is the shape-factor of the Fourier transform (b) of the optical microscope images (a). (c) The 
comparison of the experimental data (•) (E0 = 600 V/cm) with the theoretical simulation (continuous 
curves). The classical model of diffuse counterion-cloud polarization (continuous curve) fails to 
predict the experimental half-time t1/2

freq of the particles rearrangement, whereas the new glycocalyx-
shell polarization model (dashed curve) rationalizes the experimental data.  
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First, the simulation was carried out using the classical (diffuse counterion-cloud) polarization 

model for the latex particles and the yeast cells. In this case, the dipole coefficients of the 

latex particles and the yeast cells, Cp
* and Cc

*, respectively, are expressed by Eq. (6) and 

Eq. (14). The corresponding ζ-potentials are related to the electrophoretic mobilities µp(ζp) 

and µc(ζc), Eq. (A4.1) in the Appendix 4. By varying the optimization parameters (ζp , ζc, ζwall 

and Θc) in the simulation and comparing the simulated particles/cell configurations with the 

experiment (see Fig. 9 - Fig. 12) we obtain the optimum values which fit the experimental 

data: ζp = −76 (± 4) mV, ζc = −57 (± 4) mV, ζwall = −51 (± 4) mV and Θc = 27 (± 3). The 

corresponding total (static) surface conductivity of the yeast cells (in the medium conductivity 

range 15 ≤ Ke /(S m−1) ≤ 25 is Kσ
c = 3.0 (±0.3) nS. Since Θc = Kσi / Kσd = 27, the inequality 

Kσi >> Kσd holds, and the approximation Kσ
c = Kσi + Kσd ≈ Kσi applies. Since Kσ = ui σi ≈ 

ui ⋅(−σ0), and considering ion-mobility ui = uL, where ui is the ion-mobility in the inner region 

of the double layer and uL = 8×10−8 m2 V−1 s−1 is that in the bulk, we obtain the surface charge 

density of the yeast cells σ0,cell = − 4 (±0.2) µC cm−2. 

The main result of the simulations is that the classical model of diffuse counterion-

cloud polarization applied for the polystyrene particles agrees the experimental data, however 

it fails to predict the polarization of the yeast cells, see Fig. 9 – Fig. 12. This discrepancy can 

be seen, for instance, by changing the frequency of the applied field from f = 30 Hz to f = 3 

kHz, resulting in shape change of the particles-cell aggregates (‘pole-capes’ - ‘equator’ 

transition). The experimental half-times of this transition t1/2
freq are approximately one order 

of magnitude shorter than that predicted by the classical model, see Fig. 12. This discrepancy 

cannot be rationalized by varying the optimization parameters alone. For example, an increase 

in the ζp -value of the latex particles leads in the simulation to higher induced dipole moment 

which decreases t1/2
freq to the proper value. However, the shape of the aggregates differs from 

that of the experiment: a higher particle dipole moment increases the interaction between the 

particles, resulting in long chains of particles on the pole-capes of the yeast cells instead of a 

clouds-like arrangement (as the experiment shows). Similarly, an increase in the ζc -value (or 

Θc) of the yeast cells also will decrease t1/2
freq to the proper value. However, in this case we 

cannot explain the observed ‘pole capes’ – ‘equator’ transition, since the real dipole 

coefficient of the yeast cells Cc’(ω) does not change sign with frequency. This can be seen in 

Fig. 6(a): at Du(ζc,Θc)  = 0.6 the dipole coefficient Cc’ changes sign (at f = 100 Hz), whereas 
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at higher Du(ζc,Θc) = 2 it is positive in the entire low-frequency range (1 Hz - 4 kHz). Recall 

that, the parameters ζp and ζc are additionally related to experimental data via the 

electrophoretic displacement (f  ≤ 10 Hz, see Fig. 10). 

The above examples show that the discrepancy between simulation and experiment cannot be 

rationalized in the frame of the classical (diffuse counterion-cloud) polarization model. 

 

               

               
Fig. 13. The interaction potential energy profile between S. pombe yeast cell (effective radius ac

eff
  = 3 

µm; the prolate ellipsoidal cross section in the middle) and polystyrene latex particle (radius ap = 
400 nm),  Eq. (30). The uniform electric field E = E0⋅cos(2πf⋅t) is applied in the x-direction; (a) f = 3 
Hz and (b)  f  = 3 kHz (b) according to Eq. (30). Same parameters as Fig. 9. By the assumption of 
retarded counterion exchange between the inner and the outer double layer (lateral redistribution is 
possible) we consider that the electrical surface properties of the yeast cells differ from that of the 
latex particles. Hence, the reason for such a difference should be sought in the glycocalyx layer of the 
biological cell.  



 
63 
 

If we assume that the polarization of the S. pombe yeast cells is governed by the new 

(Schwarz –like) polarization mechanism, the magnitude and the phase of the i.d.m. 

rationalizes the characteristic half-times of the aggregates and the sign change with frequency, 

as seen in Fig. 11(a) and Fig. 12. In the Schwarz’s polarization model there is no (or retarded) 

ion exchange between the inner and the outer (diffuse) regions of the counterion-cloud layer. 

This restriction results in a phase shift between current and field in the inner part of the double 

layer. That is, the inner surface conductivity is frequency dependent and can be described 

(analogous to the Schwarz’s model) by a complex surface conductivity given by Eq. (15). In 

Eq. (15), for simplicity of the calculations, we have chosen the relaxation time τα i of the inner 

layer equal to that of the diffuse layer: τ α i ≈ τ α d = a2 / 2D. In general, because the ion 

mobility in the diffuse layer exceeds that in the inner part, it is expected that τ α i >τ α d. 

The influence of the plyionic glycocalyx charges on the potential distribution is theoretically 

investigated by Schnitzer,[31] who considered both cases: uniform and non-uniform (fixed) 

charge distribution in the glycocalyx layer. Experimental data reported in the literature 

suggest a non-uniformly charge distribution in the polyionic glycocalyx. Anionic glycolipids 

significantly alter lipophilic ion adsorption.[32], [33] This effect was greater for anionic site(s) in 

gangliosides being located several Å from the lipid membrane surface. X-ray diffraction [34] 

and electrokinetic studies of gangliosides embedded in bilayer membrane show that the sialic 

acid is located 10 Å from the lipid surface in a planar distribution.[31] 

We suggest that the fixed charged groups in the cell glycocalyx shell are responsible 

for the Schwarz-like polarization of the S. pombe yeast cells at frequencies below 10 kHz. The 

electric potential profile of the proposed model is shown schematically in Fig. 13(b). Since 

the positive couterions, being electrostatically attracted by the fixed negative charges in the 

glycocalyx shell, are hindered to move normal to the surface but can move laterally. In 

external field this electro-kinetic behaviour of the couterions provides condition for Schwarz-

like polarization. As consequence, the induced dipole moment of the yeast cells is much 

higher than that expected from the standard (diffuse double layer) polarization. There are (at 

least) two implications of the proposed model which could the model be correct:   

(i) An additional dielectric dispersion of the suspension of cells εr
’(ω) characterized by 

an additional α-relaxation frequency ωα, whereby the static dielectric permittivity of the 

suspension εr
’(0) will be higher than that predicted by the classical (diffuse) counterion model. 

If the characteristic relaxation time of the inner (glycocalyx) layer exceeds that of the diffuse 

layer, τα i >τα d, the relaxation frequency ωα is lower than that of the diffuse double layer, ωα i 
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< ωα d, which may provide means of distinguishing between the both polarizations. In case 

τα i ≈τα d it would be difficult to distinguish the additional polarization direct from the εr
’(ω) 

dispersion curves. However, if the biological cells are elongated rod-like particles, the 

additional relaxation may be distinguished by means of electro-optical measurements of the 

electro-orientation of the colloid particles. Our electro-optical observations (see Part III) on 

orientation of E. coli cells in the low frequency range of f = 1 Hz -1 kHz (reverse polarity a.c. 

field) show that at frequencies f < 100 Hz (far below the relaxation frequency of the diffuse 

double layer which is about 10 kHz) the degree of orientation of the cells obeys peculiar low-

frequency modulation that is usually attributed in the literature to permanent dipole 

orientational mechanism. Since the latter assumption is not realistic for biological cells, and 

because the diffuse double layer polarization cannot explain the observations, we suggest that 

the polarization of the cell-glycocalyx is responsible for anomalous electric field induced 

orientation. Our estimations show that, indeed, the new model of frequency dependent surface 

conductivity of the inner (polyionic glycocalyx) layer (Schwarz-like model, Eqs. (14) - (15)) 

is consistent with the experimental observations (see Part III of this thesis).       

(ii) A second probable implication of the new model of glycocalyx-polarization is that 

the static dielectric permittivity of suspension of biological cells εr
’(0) would lowers with 

increasing the field strength because at higher external fields the fixed glycocalix charges 

could not hold anymore the counterions, alloying efflux of ions normal to the surface. This 

would diminish the Schwarz-like polarization, consequently εr(0). The latter effect could be 

measured, for instance, by dielectric spectroscopy. Since that effect may come into view at 

very high fields where membrane electroporation occurs, it could be detected as a change in 

the electroporation efficiency of the cells. Our experiments on electroporation of S. pombe 

cells (see Part III of this thesis) show that the electroporation efficiencies at E = 1 kV cm−1 

and E = 1.5 kV cm−1 have different frequency dependencies, indicating that the dispersion the 

induced trans-membrane voltage Um(ω) (which is the driving force for electroporation) 

depends on the field strength. At E = 1.5 kV cm−1 the Um(ω) dispersion is similar to that 

predicted by the classical (diffuse) double layer polarization, whereas at fields of E = 1 kV 

cm−1 the dispersion is similar to that of the here proposed polyionic glycocalyx polarization 

(see Part III).  

In view of these experimental evidences we may well conclude that the basic concept 

of the glycocalyx polarization at low frequencies should be correct.  
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Fig. 14. Schematic representation of the results: 
(a) The (low-) frequency dependence of field induced assembly between the polystyrene latex particles 
and the S. pombe yeast cells is caused by the change in the induced dipole moment of the cell. 
(b) The suggested charge distribution in the cell glycocalyx layer (left) provides conditions for 
Schwarz-like polarization of the inner counterion layer, whereas the surface charge distribution on the 
particle surface (right) resides in diffuse-double layer polarization. 
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Conclusions 
 
The aggregation of the polystyrene latex particles and the S. pombe yeast cells in a.c. electric 

field show characteristic patterns formed by accumulation of particles on the cell “pole-capes” 

facing the external field. Depending on the frequency of the applied field and the ionic 

strength of the solving medium, the particles accumulate either on the “equator” of the yeast 

cells or on the “pole-capes” of the yeast cells. The simulation indicates a Schwarz-like 

polarization of the polyionic glycocalyx of the yeast cells. Two implications of the model 

measurable in suspensions of biological cells at frequencies below 1 kHz should that the 

model be correct: 

i) An additional dielectric dispersion with lower relaxation frequency and 

higher amplitude than that of the classical (diffuse) double layer polarization 

- could be measured either by dielectric spectroscopy or by electro-

orientational electrooptic methods (if the biological cells are elongated);  

ii) Lowering of the induced dipole moment of the cells with increasing field 

strength - measurable either by dielectric spectroscopy or by membrane 

electroporation. 

The existence of frequency dependent aggregation of particles either on ‘pole-capes’ or on the 

‘equator’ of biological cells, which depend on the conductivity of the suspending medium, 

might also have important and significant applications in the area of electroporative 

nanoparticle-based gene/drug delivery.  
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Appendix  

Appendix 1: The dipole coefficient dispersion  
 
The dipole coefficient C* of a spherical particle of radius a is determined by the conductivity 

of the sphere and that of the suspending medium as follow: 

For a particle with radius a, conductivity Kp and dielectric constant εp suspended in an 

electrolyte solution with conductivity Ke and dielectric constant εe, the (complex) dipole 

coefficient is given by: 

* *
p e*
* *

p e2
K K

C
K K

−
=

+
       (A1.1) 

where 

*
e e 0 eK K iωε ε= +        (A1.2) 

*
p p 0 pK K iωε ε= +        (A1.3) 

For a particle with surface conductivity Kσ, the total particle conductivity Kp
* in Eq. (A1.1) 

is replaced by:[24]  

( )* *
p p2 /K K a Kσ≡ +        (A1.4) 

where Kp
* is given by Eq. (A1.3). In this case Eq. (A1.1) can be rewritten in Debye type 

relaxation form as:  

* 11
1

L
p p p

p

C C C
i

γ γ γ
γωτ

+ ∆
 

= −  + 
      (A1.5) 

In Eq. (A1.5),  ∆Cp
γ  = Cp

 γ H − Cp
 γ L, where Cp

 γ H and Cp
 γ L are the low- and the high-

frequency limits of  Cp
*γ (ω), given by:  

 

( )
( )

p e

p e

2 /

2 / 2
L

p

K K a K
C

K K a K

σ
γ

σ

+ −
=

+ +
      (A1.6) 

p e

p e2
H

pC γ ε ε
ε ε

−
=

+
       (A1.7) 
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The characteristic time of the γ-relaxation is given by: 

( )
0 p 0 e

p e

2
2 / 2p K K a K

γ
σ

ε ε ε ε
τ

+
=

+ +
      (A1.8) 

The subscripts p and c are used to denote the latex particles and the yeast cells, respectively. 

 

For yeast cell with surface conductivity Kσ, cell-membrane and cell-inner conductivities 

(dielectric constants), Km (εm) and  Ki (εi), respectively, the dipole coefficient can be 

calculated by substituting the total particle conductivity Kp
* in Eq. (A1.1) by: 

( )* *eq
p p2 /K K a Kσ≡ +       (A1.9) 

where Kp
*eq is the conductivity of an “equivalent”-particle, i.e., a homogeneous particle with 

same complex conductivity as the cell Kp
*eq = Kcell

*, which is given by:  

( )
( )

* * * *
m i m i*eq *

p m * * * *
m i m i

2 2

2

K K K K
K K

K K K K

ν −

ν −

+ −
=

+ +
      (A1.10) 

where 
3

m m
m1 1 3 ;d d d a

a a
ν 

 = − ≅ − 
 

      (A1.11) 

*
m m 0 mK K iωε ε= +        (A1.12) 

*
i i 0 iK K iωε ε= +        (A1.13) 

(dm is the thickness of the cell membrane) The subscripts ‘m’ and ‘i’ denote cell-membrane 

and cell-inner (cell-core), respectively. 

In case of nonconductive membrane Km = 0 and the dipole coefficient of the cell, Eq. (A1.1), 

can be rewritten in Debye-type relaxation form: 

( )* 1 11 1
1 1

L
c c c c

c c

C C C C
i i

β β γ
β γω

ωτ ωτ
+ ∆ + ∆

   
= − −   + +   

   (A1.14) 

In Eq. (A1.14), ∆Cc
β = Cc

 β H − Cc
β L and ∆Cc

γ = Cc
 γ H − Cc

γ L, where Cp
 β H , Cp

 β L Cp
 γ H and  

Cp
 γ L are given by:  
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where 

( )
( )

m i m ieq
p m

m i m i

2 2

2

ε ε ν ε − ε
ε ε

ε ε ν ε − ε

+ −
=

+ +
      (A1.18) 

In Eq. (A1.14), the characteristic times τc
β  and τc

γ  are given by: 

( )
0 i 0 e

i e

2
2 2 /c K K K a

γ
σ

ε ε ε ε
τ

+
=

+ +
      (A1.19) 

( )0 m
i e

1 1
2 2c

m

a
d K K a K

β
σ

τ ε ε
 
 = +
 + 

      (A1.20) 

If the membrane is thin compared to the cell radius (dm << a), Eq. (A1.19) can be 

approximated by: 

i e

i e2cCγ Η ε ε
ε ε

−
≈

+
       (A1.21) 

As mentioned in the main text, in the kilohertz frequency range there is another (low-

frequency) dielectric dispersion caused by the polarization of the electric double layer of the 

suspended colloid particles, which is here specified as α-dispersion, C*α = C*α (ω). Thus the 

total dispersion (α, β and γ dispersions) of the dipole coefficient of a latex particle (p) and a 

yeast cell (c) can be expressed as: 



 
70 
 

 ( ) ( )* * 11
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∆
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( ) ( )* * 1 11 1
1 1c c c cell

c c

C C C C
i i

α γ
β γ

βω ω
ωτ ωτ

∆ ∆
   

= + − + −   + +   
   (A1.23) 

where C*α (ω) is given by Eq. (6) of the main text. 

 

Appendix 2: The time-dependent dielectrophoretic forces 

The field induced dielectrophoretic force between particle i and j, as well as, between particle 

i and cell c, is deduced by taking the negative gradient of the (time-dependent) 

dielectrophoretic energy of interaction, Eq. (27) and Eq. (29), yielding the (dimensionless) 

expressions: 

( ) ( ) ( )
2 2

2
4

ˆˆcos
2 3cos 1 sin 2

ˆ
p pdiel

ij ij ij
ij

ij ij

C t
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ω ψ
θ θrf e eθ
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a r
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f

e eθ

+ + 
= ×  

 
 − + 

eff

  (A2.2) 

where 0ˆ tω ω= . ω and t0 are the angular frequency of the electric field and the natural time-

unit (Eq. (37)of the main text), respectively. The dimensionless forces and distances are 

scaled to F0 and ap, respectivelly, i.e., f = F / F0 and ˆ / pr r a= , where F0 is given by Eq. (35) 

of the main text. 

 

Appendix 3: The repulsive force factors 

The factors ( )ˆ
pA ζ  and ( )ˆ ˆ,p cB ζ ζ  in the expressions for the particle−particle and 

particle−cell repulsive forces, Eq. (39) and Eq. (40) of the main text, are given by:  
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=

    (A3.1) 

The electrokinetic potentials ζp and  ζc  in Eq. (A3.1) are taken as an approximation for the 

surface potentials ϕ0, i.e., ϕ0p ≈ ζp for the ith latex particle and ϕ0c ≈ ζc  for the yeast cell.  

The scaled center-to-center distance 0
î cr  in Eq. (40) of the text is approximated by: 

 

2 20
0 2 2ˆ 1 cos sinic c c

ic ic ic
p p p

r a br
a a a

θ θ
   

= ≅ + +      
   

      (A3.2) 

Recall that 0
î cr  is the (scaled) center-to-center distance at particle contract, that is, when the 

particle i contacts the yeast cell c. The cell is approximated as prolate spheroid of revolution, 

having polar and equatorial radii ac and bc, respectively. θic is the angle between ric and ex 

(see Fig. 7). 

 

Appendix 4: The electrophoretic mobilities. 

The electrophoretic mobility of a spherical latex particle p, or yeast cell (c), can be expressed 

by the corresponding particle (cell) ζ-potential, ( )ˆˆ ˆµ = µ ζ , using the connection deduced by 

O’Brien and Hunter,[29] which can be expressed in dimensionless form as: 

( ),
( ) ( ) ( ) ( ) ( )
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In Eqs. (A4.1) - (A4.3), ( )
ˆ

p cζ  is the scaled electrokinetic potential and ap,(c) the particle (cell) 

radius. The effective radius of the S. pombe yeast cells is calculated as ac
eff  = (ac × bc

2)1/3, 

where ac and bc are the polar and equatorial radii , respectively. Recall that the shape of the 

yeast cell is approximated by prolate spheroid of revolution oriented parallel to the applied 

field, see Fig. 7. 

 

Appendix 5: Three identical particles in uniform electric field. 

In the example given in Fig. 8, the trajectories ri(t) of the three identical spheres of radius a 

are calculated by integrating the equations of motion applied for time-averaged forces: 

 

( ) ( )
( , 1 ... 3)

ˆ
;ˆ

del repi
i j i j

j i j i
i j

d
dt
r f f

≠ ≠

== +∑ ∑       (A5.4) 

 

where the scaled dielectrophoretic force diel
ijf   is expressed by Eq. (33) of the main text. 

In this example, only a hard-core repulsive force is considered: 
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Part III  
 
 

Electroorientation and electroporation of E. coli bacteria and 

S. pombe yeast cells in external a.c. electric fields 

 

 
 

Abstract 

 

The new (Schwarz-like) flow-polarization model of the polyionic glycocalyx shell of the yeast 

cells is used to describe the electro-orientation and electroporation of E. coli and S. pombe 

cells, respectively, induced by low-frequency (f ≤ 3kHz) a.c. electric fields (reverse polarity 

square-wave).  

The orientation of the E. coli cells in the low-field intensity range E = 20 … 150 V cm−1, 

measured by static 90°-light scattering, shows a peculiar modulation at frequencies f ≤ 10 Hz 

which is not consistent with the classical (diffuse) double layer polarization model, but agrees 

with new (Schwarz-like) flow-polarization (proposed in Part II). 

The electroporation efficiency of S. pombe yeast cells shows a frequency dependence in the 

same frequency range f = 3Hz … 3 kHz. At field intensity amplitude E = 1 kV cm−1, the 

profile of the dispersion curve correlates with the new flow-polarization model of the 

polyionic glycocalyx shell. At E = 1.5 kV cm−1, the dispersion curve can be described by the 

classical (diffuse) double layer polarization model.  

Thus, both the low-frequency data of the electro-orientation of the E. coli cells and the 

electroporation of the S. pombe yeast cells are consistent with the higher ionic flow-

polarization residing in the particular ionic structure of the cell-glycocalyx. 
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1. Electroorientation of E. coli cells in the frequency range 0 – 2 kHz 

1.1 Materials and methods 

The principal setup of the electro-optical light-scattering detection system is shown in Fig. 1. 

The apparatus for electro-optical observations is the “field-jump” relaxation spectrometer 

described in Part (I) of this thesis. For the purposes of this investigation, the high-voltage 

cable discharge technique was not used, and the low-intensity (up to 160 V/cm) long durative 

(several seconds) electric fields were supplied using a function waveform generator and an 

(home-made) amplifier capable of delivering voltages of up to 200 V in the range from d.c. up 

to 1MHz. The temperature variations due to the applied fields were < 3°C in all cases.  

E. coli XL-1-blue strain was used: recA1, end A1, gyrA96, rhi-1, hsd R-17, supE44, 

relA1, lac[F’ pro AB, lacIq Z M15, Tn10(tet)r]. E. coli strain was grown in LB (Lutria Bertani) 

medium-yeast extract, 0.5%; bactotriptone, 1% from Difco and 1% NaCl. Single colony of E. 

coli was grown overnight to mid-log phase at a specific optical density OD600 nm = 0.4. The E. 

coli cells are elongated rod-like particles of length 2 µm and axial ratio of 3. 

 

 
Fig. 1.1 Principal scheme of the electro-optical light scattering measurements.  
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1.2. Results and discussion 

 Fig. 1.2(a) shows a typical electro-optical response of E.coli cells induced by square-wave 

low-frequency (up to 1 kHz) electric field with constant amplitude. In the first second of the 

field onset the frequency is f = 1 kHz followed by a “d.c.” frequency of f = 1 Hz and  f =  6 Hz. 

The amplitude of the electro-optical effect reflects changes in the degree of orientation of the 

cells. It can be seen that, with lowering frequency the amplitude of the electro-optical effect 

decreases. When the electric field changes polarity, the electro-optical response peaks to the 

higher level (since the electric field jump is described by harmonics of higher frequencies) 

and relaxes again to the lower d.c.-amplitude. The electro-optical response is measured by 90° 

(static) light scattering, see Fig. 1.2(a). Similar modulations in the electro-optical responses is 

observed by measuring the turbidity dichroism (0° static light scattering, see the scheme in 

Fig. 1.1), indicating that the modulation of the scattered light reflects changes in the degree of 

orientation of the E. coli cells.  

It should be noted that, the shape of the modulation of the electro-optical responses in 

the low-frequency range 1 Hz ≤ f ≤ 1 kHz is usually attributed to electro-orientation due to 

permanent dipole moment of the elongated particles. The linear-like field dependence of the 

electro-optical effect (Fig. 1.2(b)) is also misinterpreted as being due to permanent dipole. 

Here we show that the new polarization mechanism proposed in Part (II) (polarization of the 

cell-glycocalyx in the light of the Schwarz’s model) may rationalize the experimental 

observations without the need of the unrealistic (especially for biological cells) permanent 

dipole explanation.  

 In order to describe the electro-orientation of the E. coli cells one needs to estimate the 

driving force for the orientation, that is, the potential energy U of interaction of the E. coli 

particle with the externally applied electric field. The potential energy of interaction depends 

on the induced dipole of the particle, which is governed by the electric double layer (EDL) 

polarization of the cells. The analytical expressions for the induced dipole moment due to the 

EDL polarization given in the literature (as that for instance used in Part II of this thesis) 

consider spherical particle with thin electric double layer, κa >> 1. The expressions are 

usually calculated by solving the frequency dependent electro-diffusion equations. Since these 

equations written in spheroidal coordinates do not separate, [1] no theoretical results exist for 

the low-frequency induced dipole moment of spheroidal particle.  

 



 
79 
 

      

 
 

 

Fig. 1.2 (a) The electric field induced changes in the intensity of the (90°) scattered light (λ = 465 nm) 
of suspension of E. coli cells (108 cells/ml suspended in week NaCl solution with conductivity of Ke ≈ 
7 × 10−4 S m−1, pH ≈ 6) and the field dependence the electrooptical effect (b) measured at frequency f 
= 0 Hz (•) and f = 1 kHz (∎). The intensity of the electric field in (a) is E = 110 V/cm (reverse pulse 
field with frequency f = 1 kHz, f = 1 Hz and f = 6 Hz). 
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In order to sidestep this problem by estimating the dielectric properties of suspensions of 

spheroid colloid particles, Grosse at al. [1] used another method which relates the dielectric 

properties of the suspension to the energy stored in the system. They deduced expressions for 

the dipole coefficient of prolate ellipsoidal particle oriented parallel (||) and perpendicular (⊥) 

to the direction of the externally applied electric field in the low (0) and high (∞) frequency 

limits of the α-dispersion, C0
II(⊥) and C∞

II(⊥), respectively. They also give expressions for the 

(weighted average) characteristic time of the α-dispersion of the suspended particles in the 

two cases of orientation, τII and τ⊥ , respectively. The expressions for C0
II(⊥), C∞

II(⊥) and τII(⊥) 

are here summarized in the Appendix. With these expressions we can calculate the frequency 

dependence of the dipole coefficient C*(ω) using a simple Debye-type dispersion (single time 

constant relaxation) by:   

* 0 1( ) ( )
1

C C C C
i

ω
ωτ   



∞ ∞
⊥ ⊥ ⊥ ⊥

⊥

= + −
+

       (1) 

where C0
II(⊥), C∞

II(⊥) and τII(⊥) depend on the surface conductivity Kσ (see Appendix).  

As mentioned in Part II, the α-dispersion (EDL polarization) has a frequency dependence that 

does not correspond to a single time constant relaxation, being substantially broader. By 

applying Eq. (1) for the case of equal semi-axes (by taking a = b) and comparing the resulting 

C*(ω) with that given in the literature for spherical particle (and making some rationalizations) 

we found that the broader frequency dispersion of the dipole coefficient can be expressed by: 
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i i

Χ ωτ
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Χ ωτ ωτ
 

   

  

⊥ ⊥∞ ∞
⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

+
= + −

+ +
      (2) 

where τ||(⊥) is the single (weighted average) relaxation time of  Eq. (1). The factor X||,⊥ (given 

in the Appendix) depends on the same parameters as Eq. (1): the surface conductivity Kσ and 

the shape of the particle (determined by the length of the semi-axes a and b). If  X||,⊥= 0 Eq. (2) 

transforms to Eq. (1). In general, both Eq. (1) and Eq. (2) apply, since the low- and high- 

frequency values of the dipole coefficient, C0
II(⊥) and C∞

II(⊥), respectively, are the same for 

both equations.  It is only the shape of the frequency α-dispersion that is different, being 

substantially broader by using Eq. (2). In the calculation bellow we used the latter equation. 
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Fig. 1.3. Optical microscope images of the E. coli cells suspended in low conductive medium (NaCl 
solution, Ke ≈ 7 × 10−4 S m−1, pH ≈ 6) exposed to electric field with intensity E = 10 V/cm and 
frequency f = 1 Hz (square-wave field). The field is applied in the horizontal direction. The images 
are taken at t ≈ 0.05 s (a), 0.25 s (b) and 0.4 s (c) after a reverse in the field direction. The image of 
the marked (with circle) E. coli cell is contoured in black for better contrast. The black squares at the 
top of the figures are Fourier images of the pictures, indicating the orientation of the E. coli cells.   
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Fig. 1.4 The average electrophoretic mobility of E. coli cells measured in the direction of the electric 
field E (square-wave reverse polarity field; E = 10 V/cm, f = 1 Hz) at two conductivities of the 
suspending medium: Ke = 8 × 10−4 S m−1 (∎) and Ke = 5 × 10−2 S m−1 (•). From the average 
electrophoretic mobility µe = 3 × 10−8 m2 V−1 s−1 (at Ke = 8 × 10−4 S m−1 is), by applying the 
theoretical model for the electrophoretic motion of a cylinder, we obtain the electro-kinetic potential 
ς = − 40 mV, which is used to estimate the induced dipole moment of the E. coli cells (see Fig. 1.3). 
 

 
 

In Eq. (1) and Eq. (2), the unknown parameter is the surface conductivity Kσ of the particle.  

Kσ has contributions owing to the diffuse-layer charge outside the plane of shear, Kσd, and to 

the charge in the inner layer Kσi, Kσ = Kσd + Kσi (see Eq. (10) of Part II). Applying the 

equations for the surface conductivity of the classical (diffuse) double layer (Eq. 12 of Part II) 

together with the new model of frequency dependent surface conductivity (Eq. (14) of Part II), 

we obtain the expressions for the surface conductivity Kσ in the case of the moth models :  
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( )e 2
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   = + − +   
    

       (3) 

for the classical (diffuse) double layer polarization, and  

i

e 2 i

2 31 cosh 1 1
2 1B

M ze iK K
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α
σ

α

ζ ωτ Θ
κ ωτ

     = + − +      +     
     (4) 

for the new (Schwarz-like) model of the polyionic glycocalyx polarization. 

In Eq. (3) and Eq. (4), Ke is the conductivity of the suspending medium, κ is Debye - Hückel 

parameter given by Eq. (1) of Part II, and M is the relative contribution of electro-osmosis to 

the surface conductivity. For symmetrical electrolytes M is given by Eq. (13) of Part II. 

According to the classical model (Eq. (3)), the surface conductivity Kσ is frequency 

independent, whereas in the new (Schwarz-like) model Kσ is frequency dependent with 

characteristic time ταi, see Eq. (4).  In both cases, the magnitude of the surface conductivity 

Kσ is determined by two parameters: the electro-kinetic potential ζ (obtained experimentally, 

see Fig. 1.4) and the ratio Θ = Kσi / Kσd between the surface conductivity Kσi of the inner 

counterion layer and Kσd of the diffuse layer (outside the plane of share). Since in our case ζ = 

− 40 mV (see Fig. 1.4), the parameter that remains unknown is Θ. 

In Eq. (4), the parameter τII
i is the characteristic relaxation time of a cell oriented parallel to 

the field. Recall that the ‘transverse’ relaxation time τ⊥
i is expressed by τII

i via the relationship 

τ⊥
i = (b/a) × τII

i, where a and b are the semi- major and the minor axes of the E.coli cell, 

respectively.   

The induced dipole moment of an E. coli cell is calculated using the polarizability α*(ω) = 

3ε0εeVcell⋅C*(ω) of the cell, where Vcell and C*(ω) are the volume and the dipole coefficient of 

the cell, respectively. Since in our experiment the electric field E(t) is defined function of the 

time, and since the dipole coefficient is expressed as an frequency-domain function C(iω) (by 

Eq. (1) or Eq. (2)), the induced dipole moment (in the time-domain) is given by: 

 

[ ]{ } { } [ ]{ }
{ }

1 1 1
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( ) ( ) ( ) ( ) ( )

( ) ( )
indp t i E t i E t

i E t

α ω α ω

α ω
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−
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    (5) 
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where  and  −1 are the Laplace and the inverse Laplace transforms, respectively, and f∗g 

being the convolution integral of functions f(t) and g(t). Substituting α (iω) = 3ε0εeVcell⋅C(iω) 

into  Eq. (5) yields:  

{ }( )1
0 e

0

( ) 3 ( ) ( )
t

ind cellp t V C i t E dε ε ω θ θ θ−= ⋅ − ⋅ ⋅∫       (6) 

Applying now the (Debye-) approximation for C(iω) given by Eq. (1) we obtained the 

induced dipole of the particles in the case of parallel (pII
ind) and perpendicular (p⊥

ind) 

orientation in respect to the field: 
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   (7) 

In our calculations we have used the exact expression for C(iω) given by Eq. (2), whereby 

 −1{ C(iω)} is calculated numerically. 

The potential energy is calculated by: 

( ) ( ) ( ), ,
indU t p t E t⊥ ⊥= ⋅

 

       (8) 

The difference between the parallel and perpendicular particle orientation is given by: 

( ) ( ) ( ) ( ) ( ) ( )ind indU t U t U t p t p t E t⊥ ⊥ ∆ = − = − ⋅  

     (9) 

Thus, by varying the optimization parameters Θ and (for the case of the new, glycocalyx 

polarization model) τII
i, and comparing the magnitude of the modulation in ∆U(t) with that of  

the measured [IE(t) − I0]/ I0 electro-optical effect,  we obtain the approximate values Θ = 

Kσi / Kσd ≈ 12 and τII
i ≈ 10−2 s. The results are shown in Fig. 1.5,  Fig. 1.6 and Fig. 1.7. The 

modulation in the electro-optical effect of E. coli cells cannot be rationalized in the view of 

the classical model of diffuse double layer polarization, whereas the new model of Schwarz-

like polarization of the cell-glycocalyx agrees with the experiment.  

It should be noted that the classical model predicts small modulation in ∆U(t) too, however   

the magnitude and the relaxation time of this modulation are very small. For example, even at 

(unrealistic) Θ-values of Θ > 200, the modulation magnitude is less than 5% of the maximum 

amplitude, whereas that of the measured electro-optical effect is about 30%. Also the 
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relaxation time of the (classical model) modulation is much smaller (τII
i ≈ 10−4 s) than that of 

the experimental data (τII
i < 10−2 s). Additionally, the time dependence of the electrophoretic 

mobility shows a peak-like modulation (see Fig. 1.4), indicating frequency dispersion below 

100 Hz which cannot be explained in the view of the classical (diffuse) double layer 

polarization. For this frequency dependence of the electrophoretic mobility more elaborated 

models, including the new (Schwarz-like) polyionic glycocalyx polarization, are needed. 

 

         

       
 
Fig. 1.5. The relative real (a) and imaginary (b) parts of the induced dipole moment of E. coli 
cell as function of frequency according to the classical model of diffuse double layer 
polarization (bold curves) and the new (Schwarz-like) polarization (dashed curves). The 
conductivity of the suspending medium is Ke = 8 × 10−4 S m (dielectric constant εe = 78, ion 
diffusion coefficient D = 2 × 10−9 m2 s−1). The dielectric constant of the cell membrane is εm 
= 2 ant the membrane conductivity Km = 0. The E. coli cell is approximated by prolate 
ellipsoid with semi-major and semi-minor axes a = 1 µm and b = 0.4 ×µm, respectively. The 
ratio Θ = 12 and the electrokinetic potential is ς = − 40 mV (for both, the classical and the 
Schwarz-like polarization model). Characteristic relaxation times τII

i = 3 µs and τ⊥
i = 
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(b/a) × τII
i. 

 

 
                   Classical model 
 

 
 

                        New model 
 

 

  
 

 
 
 
 
 
Fig. 1.6 The induced dipole moment difference ∆pind = pII − p⊥ , (a), and the potential energy 
difference ∆U = UII − U⊥ , (b), of an E. coli cell as functions of time according the classical 
model of diffuse counterion polarization (left) and the new model of polyionic glycocalyx 
polarization (right). The electric field is applied at t = 0.1 s. The electric field trace (amplitude E, 
frequency f = 5 Hz) is shown at the bottom of the figures. Same parameters as Fig. 1.4 and Fig. 
1.5. 
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Fig. 1.7 Comparison between the electro-optical effect of suspension of  E. coli cells (a) and the 
calculated potential energy difference ∆U = UII − U⊥ according to the classical (diffuse) counter-ion 
polarization (b) and the new (Schwarz-like) polarization of the polyionic glycocalyx shell (c). Here, 
the characteristic relaxation times of the inner (glycocalyx) double layer polarization are τII

i = 10−2 s 
and τ⊥

i = (b/a) × τII
i. All other parameters as Fig. 1.4 and Fig. 1.5. The classical model of diffuse 

double layer polarization (b) cannot rationalize the modulation of the scattered light at low 
frequencies, whereas the proposed new model of Schwarz-like polarization of the cell glycocalyx (c) 
agrees with the experiment. 
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Conclusions 

The polarization and orientation of E. coli cells in externally applied electric field is not 

consistent with the classical model of diffuse double layer polarization, but agrees with new 

model of Schwarz-like polarization of the polyionic glycocalyx of the E. coli cells, indicating 

that the new (proposed in Part II) is correct.  

 

 

Appendix: Dipole coefficient of prolate ellipsoidal particle 

The dipole coefficient C*
II, ⊥(ω), Eq. (2), of prolate ellipsoidal particle oriented parallel (||) and 

perpendicular (⊥) to the direction of the externally applied electric field is expressed by its 

low (0) and high (∞) frequency dispersion limits C0
II(⊥) and C∞

II(⊥), respectively, as well as, by 

the (weighted average) characteristic times for the two cases of orientation, τII and τ⊥ , 

respectively.[1]  The expressions are given in the Appendix 1 and the Appendix 2. 

Appendix 1: Prolate spheroid parallel to the applied field 
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where Ke is the conductivity of the suspending electrolyte, a is the half the distance between 

the poles, b is the half the diameter of the equator and pK


  is the conductivity of the particle 

together with its double layer, which is given by: 
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where 

2 2h a b= −         (A.5) 
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In Eq. (A.4),  Kσ is the surface conductivity, a and b are the semi-axes of the prolate ellipsoid 

of revolution (a>b). The rest parameters in the Eqs. (A.1) - (A.3) are:  
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Appendix 2: Prolate spheroid perpendicular to the applied field  
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2. Electroporation of S. pombe cells in the frequency range 10 Hz – 3kHz. 

(field strengths range: 1 ≤  E / (kV cm−1) ≤ 1.5) 

 

2.1 Materials and methods  

The S. pombe yeast cells are suspended in a weak electrolyte solution of  10−5-10−3 M NaCl   

(volume fraction of the cells ≈ 0.01). The culture of Schizosaccharomyces pombe (S. pombe) 

972h− was propagated in YED (yeast extract 1%, glucose 2%) in Erlenmeyer flasks at 250 

rpm and 24°C. The cells were washed 4 times in doubly-distilled water followed by final 

washing with NaCl solution of desired concentrations. The so prepared cell dispersions were 

mixed to become suspensions with a given ionic strengths of the medium. 

The electroporation procedure is explained schematically in Fig. 2.1. The 

electroporation efficiency was measured by cellular uptake of propidium iodide (PI), a 

membrane impermeant fluorescent probe for nucleic acids (total concentration in the 

suspension of 4 µM). Amplifier, capable of delivering voltages of up to 200 V in the 

frequency range 0≤ ν / kHz ≤ 10, supplied an square-wave (reverse-pulse) a.c. electric field 

(duration tE = 4 s and amplitudes E  = (10 − 15) × 104 V m−1) across the electroporation 

chamber (BioRad ). 
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Fig. 2.1 The procedure scheme of the electroporation experiment  

 

2.2 Results and discussion 

 

The frequency dependence of the transmembrane voltage Um(ω) is calculated using the 

expressions of Grosse and Schwan [1] deduced for the case of diffuse double layer polarization 

of a spherical cell. For the case of the new (Schwarz-like) polarization of the cell-glycocalyx, 

the frequency independent surface conductivity Kσ i is replaced (as in Part II) by the 

Schwarz’s frequency dependent surface conductivity: Kσ = Kσ d ⋅[1 + iωτα i (1+ iωτα i)−1 Θ], 

where τα i is the characteristic relaxation time of the inner (polyionic glycocalyx) shell and Kσd 

is the conductivity of the diffuse double layer, see Eq. (12) of Part II. 

 

Counting 
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Fig. 2.2 (a) The efficiency of the electroporation of S. pombe cells as function of the conductivity of 
the suspending medium (NaCl, Ke = 5, 20 and 70 µS/cm), the frequency of the electric field (reverse 
a.c. field) and the field strength. (b) The theoretical prediction for the potential difference across the 
cell membrane as function of frequency and the conductivity of the suspending medium according to 
the classical (diffuse) double layer polarization model (bold curves) and the new (Schwarz-like) 
polarization model (thin curves). The cell is approximated as a prolate ellipsoid of revolution with 
semi-axes of a = 5 × 10−6 m and b = 2.5 × 10−6 m, capacitance of the membrane per unit area Cm = 
3 × 10−2 F m2, ‘inner’ to ‘diffuse’ surface conductivity ratio Θ = Kσi / Kσd  = 27 (obtained in Part II), 
electrokinetic potential ς = −56 mV (at 5 µS/cm). Rest parameters: conductivity of the cell core Ki = 
10−2 S m−1 with  dielectric constant εi = 80 and that of the cell membrane εm = 2. 
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 Using the values Kσd = 10−10 S and Θ = Kσ i / Kσ d = 27 obtained in Part II, and membrane 

capacitance per unit area Cm = 3 × 10−2 F m2, we calculate the transmembrane voltage as 

function of frequency Um(ω). The calculations are performed for both polarization models: the 

classical (diffuse) EDL-model and the proposed in Part II new (polyionic glycocalyx shell) 

polarization model. The results are given in Fig. 2.2(b), where the electroporation efficiency 

curves (Fig. 2.2(a)) are compared with the theoretical transmembrane voltage Um(ω) 

(Fig. 2.2(b)). Since Um is the driving force for the electroporation, we may use the theoretical 

Um(ω) dispersion curves as a reference and by comparing the frequency dependencies of the 

electroporation efficiency with Um(ω), to prove whether the glycocalyx-polarisation model is 

correct. 

 

2.3 Conclusions 

The electroporation efficiency of S. pombe yeast cells shows frequency dependence within the 

frequency range f = 3Hz … 3 kHz. The profile of the dispersion curves changes with the field 

strength: at field intensity amplitude E = 1 kV cm−1 it correlates with the new (Schwarz-like) 

flow-polarization of the polyionic glycocalyx shell of the yeast cells, whereas at E = 1.5 

kV cm−1 it shows dispersion similar to that expected from the classical (diffuse) double layer 

polarization model. The change in the shape of the dispersion curves with increasing field 

strength indicates that the proposed new model of flow-polarization of the polyionic 

glycocalyx shell of the biological cells is correct. 
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