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1. Introduction

Dynamical systems arise in most �elds of physics, as well as in mathematics,
biology [86], economy [81] and essentially in all problems for which a quantitative
description of a time evolution is considered. In many cases the dynamical systems
are nonlinear, to the e�ect that linear combinations of solutions are no solutions
of the system any more. This is a severe restriction and often makes the use
of numerical approaches unavoidable. Closed form solutions are typically only
known (if at all) for special cases, which are in addition often not of any practical
interest.
The problem of nonlinear dynamics is old and for many decades much work

in very di�erent �elds such as mathematics, physics and engineering has been
devoted to it. This was also motivated by the great practical impact of the re-
sults, e.g. for aero/hydrodynamics applications in meteorology, aviation, marine
engineering, architecture, etc. Despite the many successes obtained in these �elds
still no complete understanding of nonlinear dynamical systems is reached. Many
questions are still unanswered today, e.g. it is not known whether the Euler-
equation (describing inviscid �ow) exhibits singularities for �nite times [94, 9].
For numerical approaches, e.g. the possibility of chaotic behaviour is a severe
restriction for the simulation of such systems. The exponential deviation between
two initially close trajectories, indicated by a positive Lyapunov exponent renders
predictive long term simulations practically useless due to unavoidable discreti-
sation and rounding errors. In fact such problems led to the quite late discovery
of deterministic chaos [80]. In many practical applications such as the mixing
of �uids or boundary layer problems, the phenomenon of turbulence is of great
importance, but is yet very di�cult to describe. In practice, even something like
stirring a cup of co�ee is still a challenging task to be simulated properly. The
progress of computer hardware has also lead to a demand for e�cient numerical
procedures for simulating nonlinear dynamical systems.
The analysis starts with the study of models that arise from a microscopi-

cal description. Many physical systems that are described by partial di�erential
equations (PDEs) are in fact derived from much more complicated microscopic
dynamics. The detailed model has in general far too many degrees of freedom to
be treated directly and the details are often even irrelevant for the macroscopic
behaviour. An example for this is an ideal gas. I will consider simpli�ed models of
a reaction di�usion process and surface deposition. The reaction di�usion process
was investigated as analytically solvable model system for fundamental research
on non-equilibrium statistical mechanics [77, 106]. For the surface deposition pro-
cess a modi�ed version of a lattice model [71] for the Kardar-Parisi-Zhang (KPZ)
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1. Introduction

equation [66] is considered. To describe the microscopic dynamics a stochastic
approach is followed, which has some parallels to quantum mechanics. In this ap-
proach the state vectors have a probabilistic interpretation and obey a dynamics
described by the so called master equation. The reason for this ansatz is that
then all systems are inherently linear, as in quantum mechanics. On the other
hand they are also, even in cases where the classical system is �nite-dimensional,
typically in�nite-dimensional. In a way that will be described later the linearity is
achieved by a drastic increase of the phase space dimensionality. High-dimensional
linear descriptions are obtained in a similar way for dynamical systems that are
not linear. In the one-dimensional case density matrix methods allow an analysis
of the long term dynamics despite the large dimensionality of the models. This ap-
proach has been previously pursued by Carlon, Henkel and Schollwöck [27, 28] and
Rodriguez-Laguna [38] for calculating the ground-state of a source-annihilation-
di�usion(SAD) process. I propose the real Schur extension to access also transient
states whose calculation has proven to be problematic in recent investigations [27].
In the second part of this work model systems are studied, which are based on

partial di�erential equations (PDEs). These equations constitute an own topic in
mathematics. In physics most dynamic processes are (or can be) described in the
'language' of PDEs which are basically a cornerstone in quantitative descriptions
of the physical world. They occur in quantum mechanics, e.g. the Schrödinger
equation [33, 103] as well as the Dirac equation [15]. Further examples are the
Einstein-Hilbert equation [84] in general relativity. Also continuummechanics [75],
the hydro/aerodynamics already mentioned above and the electromagnetic �eld
are described by partial di�erential equations. From a PDE it is in general not
possible to reconstruct the microscopic dynamics, even if the equation are derived
from them. Consequently, getting a stochastic description out of a PDE is di�-
cult, if not impossible. Therefore the master equation approach cannot easily be
extended systematically to a model determined by a PDE. It is merely a tool for
modelling the other way around, namely starting from the microscopic description
as exempli�ed in Chapter 8. Thus it is of little use for practical applications. One
important and often the only feasible way to treat partial di�erential equations
is a numerical analysis. This most general approach is followed, thus exclusively
�nite-dimensional systems are treated, which are discretised versions of PDEs.
Discretisation is unavoidable for numerical treatment.
Numerical simulations of nonlinear dynamical systems are a topic of its own

right. One particular di�culty is the high dimensionality often required to obtain
reasonable accurate results. This problem can be mitigated by model reduction
(MR) methods, which aim at �nding a model system that - while describing
some features of the original system su�ciently accurately - has a much smaller
dimensionality [4]. Beside an e�ective reduction, the success and failure of MR-
methods can also contribute to a better understanding of the particular dynamical
system to be investigated. The MR-methods considered here use an orthogonal
projection of the original system's phase space. This is motivated by the fact,
that in this case the reduced system is determined by the original system and a

2



suitably chosen orthonormal basis (ONB) of the original phase space only.
To �nd such an orthonormal basis a newly devised approach is followed. The

new method is also motivated by DMRG, but is based on the proper orthogonal
decomposition (POD) [4], which is a standard MR-method. The proper orthogonal
decomposition uses sample trajectories to calculate a reduced basis. Therefore,
it is necessary to simulate the unreduced system in order to obtain these sample
trajectories. My new approach uses analogies between a DMRG single-particle
algorithm and the POD to calculate the reduced basis without ever simulating the
full system. While the original POD is of order O(N3) in the system size N my
method is principally of order O(N). In this part of the work the generality of the
resulting algorithm is emphasised concerning the model equations to be modelled
as well as the numerical methods for integrating these equations. The new method
is derived in one-dimensional version which is closely related to single-particle
DMRG methods. This algorithm is already quite �exible in the model equations
to be processed. Also the discretisation and numerical solution methods can be
chosen relatively freely. Consequently, several model equations are considered,
ranging from the linear di�usion equation(for pedagogical reasons) to the Burgers
and nonlinear di�usion equation.
The extension to higher dimensions is based on the DMRG algorithm proposed

by Delgado et al. [87]. The resulting method can be described best as a varia-
tional method to calculate a proper orthogonal decomposition. In this work only
the two-dimensional, incompressible Navier-Stokes equation is considered. Vari-
ational methods have already been applied to the steady, two-dimensional Euler
equation [7]. The two-dimensional Navier-Stokes equations shows already a high
complex behaviour and its numerical treatment is nontrivial. On the other hand
much work has already been done on this problem and the restriction to two
dimensions reduces the numerical e�ort signi�cantly. Therefore this example is
well suited to exemplify the new algorithm. However, the method is by no means
restricted to two-dimensional systems. As in the previous case it is also very easy
to alter the basic equations, the discretisation or the numerical solution method.

Outline of the thesis

The thesis can roughly be divided into two parts. In the �rst one some notation
and known methods are presented. In the second part three new methods are
introduced. In Chapter 2 a short summary of some matrix decomposition methods
is given. Also some notations are introduced. An overview on partial di�erential
equations is given in Chapter 3. Numerical approaches to ordinary and partial
di�erential equations are also treated there and the discretisation techniques used
in this work are presented. Due to the high complexity of this �eld only the most
relevant points can be mentioned. This includes the basic terminology and an
outline of those questions that are relevant for the methods developed later on.
Chapter 4 gives an introduction to a stochastic description based on microscopic

dynamics. There the dynamics of the system is characterised by the master equa-
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1. Introduction

tion, which is linear. The linearity is obtained to the cost of a huge increase of
the dimensionality of the phase space. Also model reduction leads to random-
ness within this approach which is in agreement with an interpretation of random
behaviour by missing information.
Chapter 5 addresses dynamical systems and model reduction methods for dy-

namical systems. Concerning dynamical systems only a few conventions and def-
initions are presented, as no explicit use of dynamic system theory is made. The
focus here lies on model reduction methods applied to dynamical systems. In
particular orthogonal projection methods are of interest, which will be used exclu-
sively throughout this work. This includes the proper orthogonal decomposition
(POD) as projection method for nonlinear systems.
The density matrix renormalisation group is motivated and presented in Chap-

ter 6. Here the basic concepts and language are introduced.
The second part of the thesis starts with Chapter 7. There, three new appli-

cations are introduced. First the Schur DMRG approach to the master equation
for microscopic dynamics is exempli�ed. The basic idea there is to consider Schur
vectors which are orthonormal instead of eigenvectors. The second novel method
is the DMRG approach to the proper orthogonal decomposition. It is derived
from standard single particle DMRG methods and allows to study also nonlin-
ear (discretised) PDEs. Finally, a variational POD algorithm is presented. It
has the advantage to be applicable also to higher dimensional problems or more
complicated discretisation schemes. These methods are applied to some appro-
priate model problems in the following three chapters. Each chapter starts with
a short introduction to the particular model, followed by a presentation of the
results. For the real Schur DMRG method the models treated in Chapter 8 are
the source-di�usion-annihilation(SAD) process and a lattice model for surface de-
position related to the Kardar-Parisi-Zhang-equation. In addition to the steady
state long living transitional states are calculated. In Chapter 9 the DMRG POD
method is used to study several one-dimensional systems as the di�usion equation,
the Burgers equation and a Fisher-type equation. The variational POD algorithm
is studied in Chapter 10. As model the 2D incompressible Navier-Stokes equations
are used, which are shortly presented in advance. Chapter 11 summarises the ef-
fectiveness of the di�erent approaches we pursue and discusses further applications
of the methods.
In Appendix A the topic of �nite numerical precision is touched brie�y. A proof

for the su�cient conditions for an optimal reduction in the short and long time
limit is contained in Appendix B for the special case of linear dynamical systems.
Details on the ordering algorithm for real Schur forms is given in Appendix C.
Appendix D �nally summarises some facts from linear algebra.
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2. Linear Matrix Decompositions

This chapter is devoted to a recapitulation of some facts from the �eld of linear
algebra. In particular, some basic decompositions which will become important
in this work are presented here. The details of this decompositions are to some
extent crucial for the argumetation in the following chapters. Further, they can-
not be fully ranked among the canonical physical knowledge. Concerning e.g.
matrix diagonalisation, one would assume the matrix to be Hermitian in most
physical exmples. Additional information on linear algebra and the notation and
conventions in this work can be found in Appendix D.
I give no proof of the statements below, they are only listed to recall and

summarise some important facts. A good treatment of these points including
proofs and also some numerical remarks are given in the book of Golub and Van
Loan [50].

2.1. Diagonalisation of a Matrix

An eigenvector/state v with corresponding eigenvalue µ of a matrix L is de�ned
by

Lv = µv. (2.1)

The eigenvalues are the zeros of the characteristic polynomial χ(x), the determi-
nant (see Sec. 2.6) of L−x11. For a N×N -matrix this is of order N , so maximal N
distinct eigenvalues can exist. Whenever the characteristic polynomial factorises
to linear factors, it is possible to �nd such an eigensystem. Then the eigenvectors
constitute a basis Be in which the matrix L is diagonal, i.e.

L̂ = B†eLBe =

 µ1 0 0

0
. . . 0

0 0 µN

 . (2.2)

The eigenvalues can be ordered arbitrarily. The eigenbasis is orthonormal if L is
normal L†L = LL† [50]. This is in particular true for hermitian matrices H for
which H = H† holds. For hermitian matrices all eigenvalues are real.
Non-symmetric real matrices are in general not diagonalisable in R. Then the

characteristic polynomial still decomposes to linear factors over C. In this case
and if L is non-defective1, a complex diagonalisation of the form of Eq.(2.2) exists.

1For defective matrices only a decomposition to Jordan block [50] form is possible, which will
not be considered here.
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2. Linear Matrix Decompositions

Then the eigenvalues occur in complex conjugated pairs λ = γ + iµ, λ† = γ − iµ.
The eigenvector is v = y + iz. In this case one can obtain an 'almost' diagonal
real decomposition if y and z instead of v and v∗ 2 are used in the decomposition
Eq.(2.2). The decomposed matrix is then block diagonal with 1×1 or 2×2 blocks.
The 2× 2 blocks arise from the complex eigenvalues and have the form(

γ µ
−µ γ

)
. (2.3)

This relation between complex and real arithmetics is also used in the real Schur
decomposition.
For a defective matrix at least one eigenvalue is degenerated, i.e. is a multi-

ple root of the characteristic polynomial. The grade of degeneration is termed
the algebraic multiplicity na. Further, the dimensionality of the corresponding
eigenspace is termed the geometric multiplicity ng. The matrix A is defective in
case of ng < na for some eigenvalue. Then, the range of A ∈ Rn×n is not the full

space Rn. Concerning model reduction one could analyse Â := Q†AQ instead of
A, where Q contains the orthonormal bases of all eigenspaces of A. By construc-
tion Â is non-defective. Thus, also defective matrix �t in the framework of this
thesis. However, we will not encounter such matrices in the following.

2.2. Singular Value Decomposition

More general than the diagonalisation above is the so called singular value decom-
position SVD. For a rectangular matrix A ∈ Rm×n there exist orthogonal matrices
UUU ∈ Rm×m and VVV ∈ Rn×n such that

UUU †AVVV =

 σ1 0
. . .

0 σp

 =: Σ, p = min{m,n}. (2.4)

UUU and VVV can be chosen so that

σ1 ≥ . . . ≥ σp ≥ 0 (2.5)

which will be assumed in the following. The σi are termed singular values of A.
If σr is the smallest nonzero singular value one obtains

Kern(A) = span(vr+1, . . . ,vn), (2.6)

Range(A) = span(u1, . . . ,ur), (2.7)

where ui and vi are the i-th column vectors of UUU and VVV , respectively.

2v∗ denotes here the complex conjugated of v, while v† would be the transposed and complex
conjugated.
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2.3. Orthogonal Projections

One application of the SVD is most relevant for this work.3 Assume to maximise
the following expression

c = max
x∈Rn,y∈Rm

y†Ax

||x||2||y||2
. (2.8)

Representing y and x in the basis U and V respectively as

y =
m∑

i=1

µiu
i, x =

n∑
j=1

νjv
j, (2.9)

leads to

c = max
ν∈Rn,µ∈Rm

µU †UΣV †V ν

||ν||2||µ||2
= max

ν∈Rn,µ∈Rm

µΣν

||ν||2||µ||2
. (2.10)

From Eq.(2.4) and Eq.(2.5) it is now obvious that the correct choice to maximise
c is

µi = δ1i, νi = δ1i leading to c = σ1. (2.11)

Consequently, one obtains

y = u1, x = v1. (2.12)

2.3. Orthogonal Projections

If W ⊂ Rn is a subspace, an orthogonal projection to W is given by P ∈ Rn×n if

Range(P ) = W, (2.13)

P 2 = P, (2.14)

P † = P. (2.15)

Then one has automatically Kern(P ) = Range(11 − P ) = W⊥. Starting with an
orthonormal basis B for W then the projector is P = BB†. While P is unique for
a given W , B is not.

2.4. Gram-Schmidt Orthonormalisation

Consider an arbitrary basis B = {v1, . . . , vN}N of the vector space V . This basis
can be orthonormalised as follows. First, normalise v1:

v1′ =
1

||v1||2
v1. (2.16)

3Although actually it will not be necessary to calculate a SVD explicitely.
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2. Linear Matrix Decompositions

The second basis vector is calculated by subtracting the parallel component of v1

and v2 from v2.

v2′ =
1

||v2 − 〈v1, v2〉 v2||2
(v2 −

〈
v1, v2

〉
v2). (2.17)

This is successively repeated for all column vectors of B. While this algorithm
always works analytically, �nite numerical precision can lead to very inaccurate
results if some vi, vj are nearly parallel. A more stable variant is described in [50].
Note that the Gram-Schmidt orthonormalisation is one way to calculate a QR-
decomposition as described below in Section 2.8.

2.5. The LU Decomposition

A decomposition of a m× n matrix A of the form

A = LU (2.18)

with a lower triangular4 matrix L and an upper triangular matrix U is termed
LU-decomposition. The LU-decomposition exists if the �rst k leading k × k sub-
matrices are nonsingular, with k = min(m,n). For this work the case m = n is
relevant. This decomposition is useful for solving the system of linear equations

Ax = b. (2.19)

This is done in two steps that exploit the structure of U and L.

Ly = b, (2.20)

Ux = y (2.21)

Eq.(2.20) is solved by so called forward elimination:

yi =
1

Lii

bi − (i−1)∑
j=1

Lijyj

 i = 1 : n (2.22)

Eq.(2.21) is solved by back substitution:

x(n−i) =
1

U(n−i)(n−i)

(
y(n−i) −

n∑
j=n−i+1

U(n−i)jxj

)
i = 0 : n− 1 (2.23)

The LU-decomposition can be viewed as a formal description of the Gaussian
elimination. Practical implementations can be found e.g. in [96].

4A lower triangular matrix has vanishing matrix elements above the main diagonal. Likewise,
an upper triangular matrix has no nonzero entries below the main diagonal.
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2.6. Determinant of a Matrix and Characteristic Polynomial

2.5.1. Matrix Inversion by LU Decomposition

The inverse A−1 of a matrix A is de�ned by

A−1A = 11. (2.24)

One possibility to compute A−1 is to use the LU-decomposition and solve
Eq.(2.19) for each colum of A−1, choosing the canonical basis vectors for b.

2.6. Determinant of a Matrix and Characteristic

Polynomial

The determinant of a square n × n matrix A is a map Kn×n → K. It describes
the volume change of a unit hypercube under A. A formal de�nition can be found
in the literature [45]. Most useful for the purposes in this work is its following
property

det(A) = 0 ⇔ A is singular. (2.25)

The characteristic polynomial χ(x) of a square n× n matrix A is de�ned by

χ(x) := det(A− x11). (2.26)

It is a polynomial of degree N , its zeros are the eigenvalues of A which are con-
sidered in the following section.

2.7. Inverse and Pseudo-inverse of a Matrix

A diagonal matrix can be inverted most easily. This is performed by

D−1 =

 λ1 0 0

0
. . . 0

0 0 λn


−1

=

 λ−1
1 0 0

0
. . . 0

0 0 λ−1
n

 (2.27)

This is clearly only possible if det(D) =
∏

i λi 6= 0. For singular matrices Ds a
unique pseudo-inverse D+

s can be calculated by

D+
s :=

 λ̂1 0 0

0
. . . 0

0 0 λ̂n

 (2.28)
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2. Linear Matrix Decompositions

with λ̂i :=

{
1
λi

λi 6= 0

0 else
. This pseudo-inverse satis�es the Moore-Penrose condi-

tions which are itself su�cient to determine D+
s .

DsD
+
s Ds = Ds (2.29)

(DsD
+
s )† = DsD

+
s (2.30)

D+
s DsD

+
s = D+

s (2.31)

(D+
s Ds)

† = D+
s Ds (2.32)

2.8. The QR decomposition

For a m× n matrix A (m > n) the QR-decomposition is given by

A = QR, (2.33)

with an orthonormal m ×m matrix Q and upper triangular m × n matrix R. If
A has full rank and one requires the diagonal elements of R to be positive, the
QR-decomposition is also unique. Several methods can be used to calculate the
QR-decomposition. The Householder approach [50] requires that A has full rank
which is not true for the applications in this work. Another possibility are Givens-
rotations. A rotation Q̃ a�ects in general only a two-dimensional subspace. Here
this is chosen to be a space spanned by two basis vectors. Then only one row
and column of A, e.g. row i and column j, are a�ected. The rotation angle can
be chosen so that (QA)ij = 0. Repeating this for the lower triangular part of
R := Q̃A leads to the desired form. As all Q̃k are rotations and thus orthonormal

also the product Q =
(∏

k Q̃
k
)†

is.

2.9. The Schur decomposition

For a general real matrix it can be shown that the Schur decomposition exists [50].
For A ∈ Rn × Rn there exists an orthogonal Q ∈ Rn × Rn such that

Q†AQ =


R11 R12 · · · R1m

0 R22 · · · R2m

. . . . . .
. . . . . .

0 0 · · · Rmm

 (2.34)

with Rii either 1× 1 real matrices or 2× 2 real matrices with complex conjugated
eigenvalues. The number of blocks is m where m ≤ n holds. Further, the ordering
of the Rii can be arbitrary.
This decomposition always provides a real orthonormal decomposition basis

with the property that the �rst M Schur vectors span A-invariant subspaces,
providedM is chosen so that no 2×2 blocks are broken up. Note, that the spaces
spanned by the Schur vectors are not mutually invariant.

10



2.9. The Schur decomposition

2.9.1. Ordering of the Schur decomposition

It has been stated above, that the Rii can be ordered arbitrarily. One possible
algorithm for such an ordering has been given by Brandts [20]. There, the ordering
is obtained by successive swapping of neighbouring blocks Rii. A description of
the version used by us is given in Appendix C.
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2. Linear Matrix Decompositions
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3. Partial Di�erential Equations

In this chapter I will give a short overview on the topic of partial di�erential
equations. Some basic terminology and background will be given. With regard
to the intention of this thesis I will exemplify some discretisation approaches and
numerical solution techniques. Some references for partial and ordinary di�erential
equations are [48, 36, 115]. For numerical integration, see [65, 26, 74], also [96]
might be helpful. The �nite element method is detailed presented in [32], [73]
provides some numerical issues. The spectral method is presented in [52, 114], the
latter providing a very simple and easy accessible introduction.
Di�erential equations (DEs) are, as indicated by the name, equations that in-

volve di�erential operators. The highest order of derivative that occurs in the
equation determine the order of a DE. In the simplest case only a single inde-
pendent variable occurs. This results in so called ordinary di�erential equations
(ODEs). For ODEs some rigorous mathematical results exist, e.g. the theorem
of Peano or the theorem of Picard and Lindelöf [59]. The �rst states the existence
while the later guarantees existence and uniqueness for the solution of the initial
value problem

d

dt
y = f(y, t), y(t0) = y0 (3.1)

under certain preconditions. The theorem of Peano guarantees existence of a
solution if f(y, t) is continuous. If f(y, t) is further Lipschitz-continuous, i.e. there
exists a constant L so that |f(y, t)−f(y′, t)| ≤ L|y−y′|, existence and uniqueness
are guaranteed by the Picard Lindelöf theorem. In Eq.(3.1) it is already indicated
that the ODE is not su�cient to determine a solution. Here initial conditions have
to be provided additionally, i.e. the value of y0. Beside from ODEs being simple
examples of di�erential equations they typically result also from the discretisation
methods and are thus relevant for the following work.
The focus is set on di�erential equations that contain partial derivatives, i.e.

partial di�erential equations (PDEs). To be distinguished non-trivially from ODEs
at least two independent variables, say x and t have to occur. A simple linear
example would be

α
∂

∂t
φ+ β

∂

∂x
φ = f(x, t), (x, t) ∈ V (3.2)

The equation describes the behaviour of a �eld variable φ(x, t). The solution of
Eq.(3.2) describes the �eld for all points (x, t) ∈ V for some space-time region V .
Analogous to the initial conditions for ODEs, also for PDEs additional information
is necessary to determine a solution. Here initial conditions typically comprise a
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3. Partial Di�erential Equations

function instead of a single value. Also boundary conditions have to be provided.
What data are needed to specify a particular solution is a nontrivial problem
that depends on the problem at hand. Prescribing initial conditions in form of
a function φ(x, t0) = Φ0(x) and boundary conditions for φ on the boundary of
V , i.e. φ(x, t) = g(x, t) ∀t, x ∈ ∂V , is usually necessary and su�cient to specify
a solution. More insight in this problem provides the section on the method of
characteristics, Section. 3.2. However, for nonlinear PDEs no general proof of
existence of solutions exist. Also the methods to obtain a solution depend much
stronger on the equation at hand, as for ODEs. In the following one of many usual
classi�cations for linear PDEs is reproduced.

3.1. Classi�cations

For second order linear PDEs, i.e. PDEs of the form

A
∂2

∂x2
φ+ 2B

∂

∂t

∂

∂x
φ+ C

∂2

∂t2
φ+ D

∂

∂x
φ+ E

∂

∂t
φ+ Fφ+ G = 0 (3.3)

the classi�cation into hyperbolic, parabolic and elliptic PDEs is common.
The classi�cation is determined by the determinant of the matrix M

M =

(
A B
B C

)
. (3.4)

In case of a positive de�nite M, i.e. det(M) = AC−BB > 0, the PDE is called el-
liptic, for a negative de�nite M, i.e. det(M) < 0, hyperbolic. For a parabolic PDE
det(M) = 0.1 A pictorial interpretation of one di�erence between these classes is
as follows. The de�niteness of the matrix M, i.e. the classi�cation, determines
the way how disturbances ('information') are propagated by the equations. This
is relevant e.g. for the method of characteristics, see Section 3.2. For nonlinear
PDEs such a classi�cation is usually not possible. The matrix M will then typi-
cally depend on φ(x, t) and thus, on the type of the equation. Consequently, the
system may act e.g. in some regions of the phase space as hyperbolic but in others
as an elliptic system. As a physical example consider the Navier-Stokes equations

∂v

∂t
= ν∇2v − (v∇)v −∇p, (3.5)

∇v = 0. (3.6)

Where v is the velocity and p the pressure. Here the �uid is assumed to be a
Newtonian �uid, i.e. the shear stress is proportional to the shear velocity. Often
additional thermodynamic quantities have to be coupled to the Navier-Stokes

1This notation is in analogy to the de�nition of a hyperbola, parabola and ellipse from a
general quadratic algebraic equation. The derivatives in Eq.(3.3) just have to be replaced by
corresponding powers of that variable.
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3.2. Method of characteristics

equations. Examples of this type will be considered in Chapter 10. The Navier-
Stokes equations are elliptic for subsonic �ow. For supersonic �ow they become
hyperbolic. Since (macroscopically2) the �ow velocity at a boundary has to vanish,
this generically leads to problems where elliptic and hyperbolic behaviour occurs
in di�erent regions for the same problem. So such classi�cations are naturally
only meaningful in a local sense, i.e. for a linearisation in a given point.

3.2. Method of characteristics

The basic idea of the method of characteristics is to determine so called charac-
teristic lines which have the property that along these lines the PDE reduces to
an ODE. For a �rst order PDE e.g. the characteristic lines can be obtained by
comparing

α
∂

∂t
φ+ β

∂

∂x
φ = F (φ, x, t) (3.7)

and

d

ds
φ(x(s), t(s)) =

dt

ds

∂

∂t
φ+

dx

ds

∂

∂x
φ = F (φ(x(s), t(s)), x(s), t(s)). (3.8)

The characteristic line is determined by dt
ds
and dx

ds
. As mentioned above the treat-

ment of the ODE is much simpler and for integration only one initial value is
required. Due to this fact the characteristic lines also indicate the '�ow of infor-
mation'. This indicates also what boundary conditions are necessary to determine
a solution of the PDE at hand for a particular region V in x × t-space. Gener-
alising the requirement for ODEs, each point (x, t) should lie on a characteristic
line for which an initial condition is given. It should be noted that in general not
all points in V will be reached by characteristic lines. Then still weak solutions
(described later in Section 3.5.3) may exist. Consideration of the information �ow
is also crucial for stable integration schemes.

In the following this will be exempli�ed with the classi�cation of the previous
section. Hyperbolic PDEs have real characteristics. The wave equation e.g. has
straight lines as characteristics. A single point is therefore in�uenced only by
the points on a cone (and within, since these points in�uence the points on the
cone) in the past (or equivalently in the future). Physically, this re�ects the �nite
propagation speed of disturbances. If one for example considers a rectangular
space time region V = [xa, xe]× [t0, t1], it is necessary to prescribe φ(x, t0), i.e. the
initial conditions, and the boundary conditions φ(xa, t), φ(xb, t).

Parabolic PDEs have one real characteristic. For the typical example, the dif-

2For systems, where the Knudsen number, describing the ratio of mean free path length and
characteristic length scale of the �ow problem is su�ciently high this has to be modi�ed.
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Figure 3.1.: Characteristic lines for hyperbolic and parabolic PDEs.

fusion equation3(see also Section 9.1),

∂

∂t
Φ(x) = d∆Φ(x) x ∈ [0, 1], (3.9)

the characteristics are just constants, i.e. the limit of the previous case with the
slope of the characteristics going to zero (in�nite propagation speed). One point
can therefore in�uence the whole system at all later times. This corresponds to
the hyperbolic case in the limit of in�nite propagation speed. Consequently, the
initial- and boundary conditions have to be provided for the past of the whole
system in order to specify a solution. This can also be seen in Fig. 3.1.
For elliptic PDEs the characteristics are complex and do therefore not have a

straightforward meaning as in the previous cases. A single point can in�uence all
other points. Typically such equations arise in steady state problems. To allow
for a unique solution, the boundary conditions have to be speci�ed on a closed
boundary.

3.3. Linearity

Di�erential operators are linear which follows trivially from the derivation rules
for sums and constant multiplicative factor:

dn

dtn
(µf + νg) = µ

dn

dtn
f + ν

dn

dtn
g, ∀n ∈ N (3.10)

Linear equations will occur in the following mainly as motivation and simple
example where already methods or mathematical proofs exist or additional facts,
as the optimal reduction, are known. In the special linear case the considered
PDEs are typically of the form

∂

∂t
φ(x, t) = Gφ(x, t) (3.11)

3The di�usion equation describes di�usive transport of a scalar �eld Φ, e.g. heat transport, in
a medium. For homogeneous media it is given by Eq.(3.9) with the di�usion constant d.
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3.4. Well posed problems

where G is a linear operator. The operator G is called the generator of the
time evolution. Interpreting one dimension as time most PDE can be brought to
this form. However, for equations with higher order time derivatives, dependent
variables have to be introduced. Further, it will be assumed that G is independent
of t, as this will be always the case later on. Then Eq.(3.11) can be formally
integrated giving for the time evolution operator

U(t) := etG. (3.12)

This scenario can be generalised by allowing G to be dependent on φ. The
resulting equation is a nonlinear PDE and is given by

∂

∂t
φ(x, t) = G(φ(x, t))φ(x, t). (3.13)

The linearisation for a given φ�x is the linear operator G(φ�x).

3.4. Well posed problems

In mathematics the PDE together with initial and boundary conditions is referred
to as a well posed problem if a unique solution exists that depends continuously
on the initial and boundary conditions [48]. For nonlinear PDEs it is however not
always possible to prove the existence of such a solution. In many cases it is further
known that the system can become chaotic. The famous Lorenz model, a standard
example for deterministic chaos e.g. was derived from the three-mode spectral
Galerkin approximation of the Bernard-Reighley �ow [80]. The details will be
described later. For general numerical treatment, one has to rely on discretised
models. Therefore it is necessary to go one step further and discretise the PDE
of interest. In order for the resulting description to have any meaning in giving a
predictive simulation of the systems dynamical behaviour, one has to assume the
problem of interest to be well posed.
Nevertheless, the points mentioned above should also hold for numerical algo-

rithms. For linear systems such conditions are even necessary and su�cient for
convergence of the algorithm due to the Lax theorem [98]. In the nonlinear case
this is not that simple but in the following uniqueness and continuous dependence
on initial and boundary conditions are still presumed for the algorithm. However,
one should still keep in mind that such requirements may be violated in physical
solutions.

3.5. Numerical Treatment

3.5.1. Integration of ODEs

The focus of this thesis is the presentation of new numerical methods for model
reduction of nonlinear dynamical systems. Now a short introduction to numerical
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3. Partial Di�erential Equations

techniques will be given, starting with the solution of ODEs. Only �rst order
ODEs will be considered. Higher order ODEs can be brought to adequate form
by introducing new variables. Again explicit time dependence is excluded and the
following generic ODE is considered

d

dt
y = f(y), y(ts) = y0. (3.14)

To solve Eq.(3.14) one would integrate Eq.(3.14) formally as

y(t) =

∫ t

ts

f(y(t))dt+ y0. (3.15)

A simple method to calculate a numerical approximation to Eq.(3.15) is to dis-
cretise the time interval of interest [ts, te] with equidistant points ti, i = 1 : N of
distance ∆t. Thus ts = t1, ti = ts + (i− 1)∆t and te = ts + (N − 1)∆t.
If one approximates y(t) by a piece-wise constant function ŷ(t), one can evaluate

ŷt = y0 + δt

t−1∑
i=1

f(ŷ)i, (3.16)

see Fig. 3.2. Now the value of ŷ(ti) is completely determined by the previous time
step, giving the following explicit equation

ŷ(ti) = ŷ(ti−1) + ∆tf(ŷ(ti−1)). (3.17)

This method is called Euler forward method or explicit Euler method. The same
integration scheme can be obtained if one expands y(ti) in a Taylor series

y(ti + ∆t) =
m∑

i=0

(∆t)i

i!

dy

dt

∣∣∣∣
y(ti)

+O((∆t)m+1). (3.18)

If only terms up to �rst order in ∆t are considered Eq.(3.17) is reproduced. It
can further be obtained by approximating dy

dt
via �nite di�erences. Finite di�er-

encing makes use of the di�erence quotients that give in the limit of arbitrary �ne
discretisation the derivative. One could write

y(ti + 1)− y(ti)

∆t
= f(y(ti)), (3.19)

which is again equivalent to Eq.(3.17).
To calculate the numerical solution, the summing of Eq.(3.17) is simply repeated

iteratively starting by y(ts) = y0. This is simple, easy to implement and fast, but
not very accurate. This method will be used for some of the toy models. Due to
its limitations it is however not well suited for practical use. In particular it is
not stable for so called sti� problems. A stability condition for the explicit Euler
method is

|1 + λ∆t| ≤ 1, (3.20)
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3.5. Numerical Treatment
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Figure 3.2.: Lower sum approximation of a function f(t)

where λ is the largest absolute eigenvalue of the generator of evolution [50]. This
restriction will become relevant later throughout this work. Although convergence
can be achieved by reducing the time step ∆t, this can require an unacceptable
small ∆t. This is the case for |λ| � 1, the ODE is then termed sti�. The
solution is changing on small time scales, nevertheless these are often changes
along directions in phase space which can be considered irrelevant, see the next
chapter. Now I will present some alternatives to circumvent this problem.
Note, that Eq.(3.19) is not symmetric. Likewise, one could have used the form

y(ti)− y(ti−1)

∆t
= f(y(ti)), (3.21)

the limit ∆t→ 0 is the same. Now the value of y(ti) is implicitly given by

y(ti)−∆tf(y(ti)) = y(ti−1). (3.22)

The integration is now done by solving Eq.(3.22) for each time step. This implicit
Euler method is unconditionally stable, i.e. for all λ. The time integration implies
now the solution of a linear system of equations, while the explicit Euler method
requires only a matrix vector product which is much faster to compute.
The error of the method presented above is of order (∆t)2. This is only one order

of ∆t smaller than the integration terms. Although useful for pedagogical purposes
the methods presented above are not well suited for practical applications. To
increase the accuracy several approaches exist. One possibility is to calculate
additional terms to �t the Taylor expansion Eq.(3.18) to a higher order in ∆t in
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3. Partial Di�erential Equations

a similar manner as above. This ansatz is pursued by Runge-Kutta schemes [96]
which enjoy a certain popularity. The simplest form, the explicit mid-point rule,
calculates �rst a trial step y′ = y(ti) + ∆tf(y(ti)) via the explicit Euler method.

From the mid-point y(ti)+y′

2
an additional explicit Euler step is performed which

yields
y(ti+1) = y(ti) + ∆tf(y′) (3.23)

for the whole time step. The error is of order (∆t)3 and higher order schemes
can be devised in a similar way. Most often used is the explicit fourth-order
Runge-Kutta method with error of order (∆t)5.
An alternative way to increase the accuracy is to use a higher order approx-

imation for the discretised time derivative, i.e. the left hand side of Eq.(3.19)
or Eq.(3.21). This leads to the so called multi-step methods. Such methods are
termed Adams methods after John Couch Adams(1819-1892) and can be explicit
(Adams-Bashforth) or implicit (Adams-Moulton). In Chapter 10 the incompress-
ible 2D Navier-Stokes equations will be considered. There, the general variational
POD algorithm is presented. For the 2D Navier-Stokes equations the friction term
leads to a sti� ODE, while the interesting physics is due to the nonlinear part of
the generator of evolution. The latter can be treated su�ciently by explicit meth-
ods for the problem at hand. Therefore so called operator splitting methods are a
good choice. In particular an ansatz proposed by Karniadakis et al. will be used.
More exactly, it is a version of the third order scheme, given in [67]. Here the term
'order' indicates the number of previous time-steps used to calculate the actual
con�guration. Its advantage is to calculate the contribution from the nonlinear
part of the generator of evolution explicitely. In our example, the Navier-Stokes
equations, this is the Jacobi operator or Jacobian J , in Cartesian coordinates

J (φ, ψ) :=
∂φ

∂x

∂ψ

∂y
− ∂φ

∂y

∂ψ

∂x
. (3.24)

This operator is relevant for the advection term in the Navier-Stokes equations and
contains �rst derivatives of the �eld. However, the linear part of the generator of
evolution, i.e. the Laplace operator ∆ for the Navier-Stokes equations is treated
implicitly by the scheme. The scheme is reproduced brie�y for the �rst three
orders.
The derivative is approximated by

1

∆t

J−1∑
i=0

αi (y(tn+1)− y(tn−i)) =
1

∆t

J−1∑
i=0

αi

∫ tn+1

tn−i

∂y

∂t
dt (3.25)

=
1

∆t

J−1∑
i=0

αi

∫ tn+1

tn−i

f(y)dt. (3.26)

Here the left hand side is the approximation of the time derivative. The coe�cients
are given in Tab. 3.5.1. The right hand side is transformed by inserting already the
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3.5. Numerical Treatment

Coe�cient 1st Order 2nd Order 3rd Order
γ0 1 3/2 11/6
α0 1 2 3
α1 0 -1/2 -3/2
α2 0 0 1/3
β0 1 2 3
β1 0 -1 -3
β2 0 0 1

Table 3.1.: Sti�y stable coe�cients from [67].

ODE of interest, see Eq.(3.14). The last integral can now be split as convenient,
in present case into the linear part f1(·) and the nonlinear part f2(·) of f(·) =
f1(·)+f2(·). In practice, for a scheme of order J �rst the explicit part is evaluated
by

k̂ =
J−1∑
q=0

αqy(tn−q) + ∆t
J−1∑
q=0

βqf2(y(tn−q)). (3.27)

For the complete time step one obtain including the implicit part

y(tn+1) =
1

γ0

(
k̂ + ∆tf1(y(tn+1))

)
, (3.28)

which gives by de�nition of f1(·) a system of linear equations. In Chapter 10 this
is actually solved by the LU-decomposition.

The coe�cients αi, βi are given in Tab. 3.5.1. The coe�cient γ0 is simply
γ0 =

∑J−1
i=0 αi.

3.5.2. Finite di�erencing for PDEs

We have already encountered the idea of �nite di�erencing in the previous sub-
section. Now we come to the basic ideas for performing the spatial discretisation
for a PDE in the x, t domain. To this end, for the space coordinate a grid with
nodes xi is constructed. The spatial discretisation step ∆x is constant in the
following for clarity, although this is no necessity. The two ways to approximate
the �rst derivative shown in Eq.(3.19) and Eq.(3.21) are also possible here and
are commonly known as upwind and downwind derivatives. This nomenclature is
motivated from the use in problems where a preferred direction exist [73]. For a
particular space point they are given by

Dx,d|xi
φ =

φ(xi)− φ(xi−1)

∆x
, Dx,u|xi

φ =
φ(xi+1)− φ(xi)

∆x
. (3.29)

If a Taylor series expansions around xi for the next neighbouring nodes is per-
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3. Partial Di�erential Equations

formed, one obtains

φ(xi+1) = φ(xi) +
∂φ(xi)

∂x
∆x+

∂2φ(xi)

∂x2
∆x2 +O(∆x3) (3.30)

φ(xi−1) = φ(xi)−
∂φ(xi)

∂x
∆x+

∂2φ(xi)

∂x2
∆x2 +O(∆x3) (3.31)

From this it is clear that the two discretisation schemes, the downwind and upwind
derivative, are accurate only to �rst order in ∆x. However, if Eq.(3.31) is sub-
tracted from Eq.(3.30) and this divided by two one gets a second order accurate
approximation of the �rst derivative, i.e. the centred di�erencing scheme

Dx,s|xi
φ =

φ(xi+1)− φ(xi−1)

2∆x
. (3.32)

To approximate the second derivative Eq.(3.31) and Eq.(3.30) are added. After
a rearrangement one obtains

D2
x

∣∣
xi
φ =

φ(xi+1)− 2φ(xi) + φ(xi−1)

∆x2
. (3.33)

From Eq.(3.30) and Eq.(3.31) it is clear that this approximation is again of second
order accuracy in ∆x.

Boundary conditions

If the space domain X has a boundary, e.g. with node x1 the derivative will
depend on the boundary conditions. Some types of boundary conditions can be
included into the derivation operator.
One simple possibility is to assume the topology of a ring in this space direction

which corresponds to periodic boundary conditions. This describes an in�nite but
periodic system. Practically this is implemented by simply identifying the �ctive
node x0 with the existing node xN if N is the dimensionality from discretising X.
If the value at the boundary is prescribed, this is called a Dirichlet boundary condi-
tion.The boundary node will then not be included in the grid, since the calculation
of the corresponding values is trivial. For homogeneous Dirichlet boundary condi-
tions, i.e φ(x0) = 0 the derivatives are calculated as without boundary, the �ctive
node x0 for which the value is prescribed is not on the grid, so contributions are
absent. For the inhomogeneous case additional terms are necessary, which cannot
be included in the derivation operator.
Likewise, the derivative on the boundary can be prescribed. Setting it to zero

results in homogeneous Neumann boundary conditions. The �rst derivative can
still be calculated for all nodes by using the upwind or downwind scheme at the
boundaries. To implement homogeneous Neumann boundary conditions for the
second derivative one can start from the de�nition of the upwind or downwind
derivative, Eq.(3.29). This requires for the �ctive node −φ(x0) = φ(x1) to be

valid. The second derivative for x1 reduces then to −φ(xi)+φ(xi+1)
∆x2 .
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3.5. Numerical Treatment

Matrix notation

The discretisation above leads to a �nite vector φ(xi) which describes the �eld at
each node of the grid. The grid does not have to be one-dimensional. From the
previous section it is known how to calculate derivatives for certain grid nodes.
Obtaining the derivative for a �eld vector φ corresponds in the discrete case as
well as in the original problem to the application of a linear operator. Thus it
can be described by Matrix multiplication for �nite systems. The form of these
matrices is now presented for one-dimensional grids. One bene�t is the possibility
of using standard tools from linear algebra to manipulate and solve the resulting
equations. Assuming an equally spaced grid the downwind, upwind and centred
derivative described above translate to

Dd =


. . .

−1 1
−1 1

−1 1
. . .

 , (3.34)

Du =


. . .

−1 1
−1 1

−1 1
. . .

 , (3.35)

Ds =


. . .

−1 0 1
−1 0 1

−1 0 1
. . .

 . (3.36)

For the second order derivative - the one-dimensional Laplace operator - one ob-
tains

D2
d =


. . .

1 −2 1
1 −2 1

1 −2 1
. . .

 . (3.37)

These matrices have a simple tridiagonal structure, i.e. only the main diagonal
and the next two diagonals are non zero (for Dd,u,s even only two diagonals are
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Figure 3.3.: Two-dimensional grid as tensor product from two one-dimensional
grids.

nonzero). 4 The structure can be exploited to improve the e�ciency of numerical
algorithms. Generalisation to unequal grid spacing is possible but not used in this
work. For complex geometries the �nite element methods below are much more
�exible.
For generalisations to higher-dimensional �nite di�erencing methods tensor prod-

uct spaces are considered. In two dimensions e.g. they are generated by grids with
N1 and N2 nodes as shown in Fig. 3.3. Practically for each coordinate x1 all N2

possible combinations (x1, x2) exist. If one chooses as ordering of the nodes

k := i+N1(j − 1) , i = 1 : N1, j = 1 : N2, (3.38)

the derivation operators for the two-dimensional system can be constructed by
the Kronecker product, e.g.

D2D
x = kron(D1D, 11N2), D2D

y = kron(11N1 , D
1D). (3.39)

The Kronecker product of a m×n matrix A and a α×β matrix B is the mα×nβ
matrix de�ned by

kron(A,B)i+m(ν−1),j+n(µ−1) := AijBνµ i = 1 : m, j = 1 : n, ν = 1 : α, µ = 1 : β.
(3.40)

4Boundary conditions may add additional o�-diagonal contributions.
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3.5. Numerical Treatment

The Laplace operator is always represented by a single matrix. This matrix is
symmetric so that always an ONB of eigenvectors and a real spectrum exists. The
centred �rst order operator is antisymmetric and has a purely imaginary spectrum.

Boundary conditions and Matrix notation

Until now the matrices were only de�ned for regions that do not belong directly to
the boundary of the domain where the PDE (or ODE) has to be solved. For the
existence of a well de�ned solution often boundary conditions have to be speci�ed.5

This is re�ected, for the discrete version, by the fact that without the boundary
terms the number of equations is smaller than the number of lattice sites. For this
work a solution of an equation of the form

A(φ)φ = f(φ), (3.41)

is of interest. Here A is a rectangular matrix, if no boundary conditions are spec-
i�ed. The solution is then not unique. This is resolved by appropriate boundary
conditions. For example, in one dimension and n lattice sites there are only n− 1
up- or downwind derivatives possible. To get n equations, one boundary condi-
tion has to be speci�ed.6 This is done by adding additional lines to A until A is
a square matrix. For the Laplacian, two values cannot be calculated according
to scheme Eq.(3.37). The corresponding lines are used to express two boundary
condition. Of course this is in agreement with standard calculus for di�erential
equations, which requires the same numbers of boundary conditions to fully spec-
ify a solution.

If the value of e.g the function φ or its derivative etc. is prescribed to be
zero at the boundaries this is termed a homogeneous boundary condition. The
generalisation to some value xBC 6= 0 is made by adding a contribution to the right
side of Eq.(3.41), which is the inhomogeneity.

1. Dirichlet conditions: Here the function value is prescribed on the bound-
ary. The case with zero valued function on the boundary is called homo-
geneous. In the �nite di�erence scheme this is expressed by inserting a
canonical basis vector, corresponding to the given boundary site, as addi-
tional line in the matrix. Alternatively, one can exclude the boundary site
from the sites to be calculated (since it is already known) and then set the
corresponding link(s) to this site to zero without changing the diagonal en-
try. In the latter case, the dimensionality of the system is decreased without
loss of information.

5Although existence of a solution will not always be guaranteed thereby.
6Contrary to the term boundary condition this speci�cation has not to be at the boundary,
also more general constraints are possible.
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3. Partial Di�erential Equations

Figure 3.4.: Two-dimensional �nite element grids. From left to right a rectangular
and a triangular regular grid and a irregular triangular grid.

Eq.(3.42) shows the homogeneous Dirichlet conditions for a left boundary
for the upwind di�erencing and the Laplacian

Dd =


1
−1 1

−1 1
. . .

 , D2
d =


−2 1
1 −2 1

1 −2 1
. . .

 . (3.42)

If the left boundary is �xed to a 6= 0, i.e. inhomogeneous Dirichlet condi-
tions, one has to add a corresponding inhomogeneous term, see Eq.(3.43),
to the homogeneous expression.

Dd,inhom = Dd +

 −a
0
...

 , D2
d,inhom = D2

d +

 a
0
...

 (3.43)

2. Neumann conditions: This signi�es boundary conditions in which the
derivative of the function is prescribed at the boundary. The condition can
be incorporated by adding a �nite di�erence term for the appropriate site
as line to the matrix. Inhomogeneous boundary conditions are achieved in
the same way as in the previous case.

Within this framework periodic boundary conditions can also easily be
implemented. To connect the system boundaries at minimal i = 1 and maximal
i = N value of a space index, one simply has to add the contribution A1N and
AN1 according to the desired di�erencing scheme.

3.5.3. Finite Element Methods for PDEs

Finite element methods have been developed in mathematics as well as engineering
sciences since the 1970' years. They provide a very general description for PDEs
and can also be implemented very �exibly for numerical solutions of complex
problems. Basically, the framework allows to obtain a �nite system of ODEs from
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Figure 3.5.: One-dimensional �nite element with linear basis function. Right the
assembled ansatz-functions for a grid with 5 elements.

a given PDE problem. Starting with a general description of the basic idea also
some selected details relevant for this work are introduced.
Consider a PDE of the form

∂

∂t
Φ(x, t) = F (Φ(x, t))Φ(x, t) , x ∈ V , (3.44)

with Φ(x, t = 0) = Φ0(x),
Φ(x, t) = g(x) on ∂VD,

(n̂∇)Φ(x, t) = f(x) on ∂VN .
(3.45)

Here V is a domain in space, ∂V = ∂VN + ∂VD is the boundary, on ∂VD Dirichlet
conditions are applied while ∂VN is subjected to Neumann boundary conditions.
The normal vector to ∂VN is denoted with n̂. For the following the so called weak
solution of Eq.(3.44) is now of interested. The weak solution of Eq.(3.44) is a
solution for〈

fτ ,
∂

∂t
Φ(x, t)− F (Φ(x, t))Φ(x, t)

〉
= 0 ∀ test functions fτ , (3.46)

where the scalar product is the scalar product of the vector space in which Φ lies,
e.g.L2. Typical choices of test functions are from the space of all in�nitely often
continously di�erentiable functions with compact support or Schwartz spaces. A
whole mathematical theory on this topic exists [16]. For most physical problems
Eq.(3.44) and Eq.(3.46) are equivalent with these choices. To obtain a discretisa-
tion now a �nite set of test functions is chosen.
For discrete calculations the solution is also restricted to a �nite (say N) di-

mensional subspace, spanned by the ansatz-functions φi, i = 1 . . . N . The ansatz
for the solution is then

Φ̂(x, t) :=
N∑

i=1

αi(t)φi(x). (3.47)

For classical �nite elements these are typical piecewise linear or low order poly-
nomial functions. An important feature is that the ansatz-functions are de�ned
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3. Partial Di�erential Equations

for so called elements, smaller regions of the physical space with simple geome-
try. The whole physical space is segmented into such elements by a grid. The
complete set of ansatz-functions is give by the ansatz-functions of all elements.
For a single element the ansatz-functions are typically orthonormalised. Since the
elements do not overlap the whole set is then orthonormal. Further, the element-
wise ansatz-functions are chosen such that for convenience the coe�cient αi(t) is
identical to the �eld Φ̂(xi

n, t) for some particular point xi
n, typically a grid node.

The �exibility can be further increased by allowing simple linear transformations
on the element geometry. Also a combination of di�erent elements is possible.
Fig. 3.4 shows some possible �nite element grids. For one-dimensional �nite el-
ements the element functions are de�ned on a �nite interval, e.g. [0, 1]. Linear
element functions, i.e. a piecewise linear ansatz, can be then de�ned as

φelm
1 = 1− x x ∈ [0, 1],
φelm

2 = x x ∈ [0, 1].
(3.48)

On the interval [0, 1] φelm
1 and φelm

2 are orthonormal and the nodes are the points
x = 0 and x = 1. This is depicted in Fig. 3.5 together with the ansatz-function
for a grid with several elements.

Galerkin Methods

An important class of �nite element methods is constituted by Galerkin meth-
ods [32]. Here the same functions are chosen as ansatz-functions as well as test
functions. Then Eq.(3.46) reduces with Eq.(3.47) to a �nite system of equations,
namely

N∑
i=1

(
∂

∂t
αi(t)

∫
V
φiφjdx− αi(t)

∫
V
F

(
N∑

k=1

αk(t)φk

)
φiφjdx

)
= 0 (3.49)

∀j = 1 : N.

The term

MMM ij =

∫
V
φiφjdx (3.50)

is also termed mass matrix. As practical example the di�usion equation

∂

∂t
Φ(x) = d∆Φ(x) x ∈ [0, 1],

is considered. Then F is the Laplace operator ∆. Using integration by parts one
obtains

N∑
i=1

(
MMM ij

∂

∂t
αi(t) + Kijαi(t)

)
= 0 ∀j = 1 : N, (3.51)

with Kij :=

∫
V
∇φi∇φjdx. (3.52)
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Eq.(3.51) is a set of N ODEs which can be solved by the methods presented in
Section 3.5.1 to yield the coe�cient vector α.

If further a one-dimensional system is considered and the ansatz-functions are
chosen to be piecewise linear, one can directly calculate the matrices MMM and K
exemplarily. In particular one gets for φi and ∇φj (compare also with Fig. 3.5)

φi =


x , xi−1 < x < xi

−x , xi < x < xi−1

0 , else.
(3.53)

∇φi =


1 , xi−1 < x < xi

−1 , xi < x < xi+1

0 , else.
(3.54)

Here xi denotes the position of the i-th lattice node. This gives forMMM and K

MMM ij = δij, (3.55)

Kij =


−1 , i = ±j
2 , i = j
0 , else.

(3.56)

The resulting dynamical system is exactly the same as one would obtain by a
�nite di�erencing scheme with the second order accurate Laplace operator from
Eq.(3.37). This is a result of the particular choice of the ansatz-functions. Con-
sidering di�erent ansatz-functions clearly gives a di�erent system of equation.

Implementation of Boundary Conditions

Eq.(3.45) and Eq.(3.45) state the boundary condition for Eq.(3.44) above. Dirich-
let boundary conditions were considered (Eq.(3.45)) as well as von Neumann
boundary conditions (Eq.(3.45)). The boundary of V , i.e. ∂V is split into parts,
where these boundary conditions apply ∂V = ∂VD + ∂VN .

For homogeneous Dirichlet conditions, i.e. g(x) = 0 in Eq.(3.45) one can require
the element ansatz-functions φelm

i to satisfy the condition in the elements that
contain ∂V . Then the same is true for the ansatz-functions φi(x). The element
functions are typically constructed in a way so that just a few contributions have
to be omitted.

Inhomogeneous Dirichlet conditions can be considered in a similar manner.
Then an additional function φD is introduced, which satis�es the inhomogeneous
Dirichlet conditions φD(x, t) = g(x) on ∂VD. In the interior of V φD can be
arbitrary. The new ansatz for the solution is then

Φ̂(x, t) := φD(x) +
N∑

i=1

αi(t)φi(x). (3.57)
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Neumann conditions can typically be treated using integration by parts. This is
exempli�ed for the Poisson equation with homogeneous von Neumann boundary
conditions

∆Φ(x) = F (x) x ∈ V ,
with (n̂∇)Φ(x) = 0 on ∂V . (3.58)

The Galerkin method together with the ansatz Eq.(3.47) results in

N∑
i=1

αi

∫
V
(∆φi)φjdx−

∫
V
φjdx = 0 ∀j = 1 : N. (3.59)

Application of Green's formula to Eq.(3.59) leads to

N∑
i=1

αi

∫
∂V

((n̂∇)φi)φjds−
N∑

i=1

αi

∫
V
∇φi∇φjdx−

∫
V
φjdx = 0 (3.60)

∀j = 1 : N.

Including the boundary condition Eq.(3.58) this reduces to

N∑
i=1

αi

∫
V
∇φi∇φjdx +

∫
V
φjdx = 0 ∀j = 1 : N, (3.61)

where the homogeneous von Neumann boundary conditions are included implic-
itly. Inhomogeneous von Neumann boundary conditions as from Eq.(3.45) can
be accounted for by an additional term

∫
∂V f(x)φjdx in Eq.(3.60). Due to the

straightforward application of von Neumann boundary conditions for this type of
problems these are also termed natural boundary conditions. In a similar spirit the
Dirichlet boundary conditions above are termed essential boundary conditions.

3.5.4. Spectral Methods

Spectral methods can provide very accurate results or allow for reduced numerical
e�ort for given accuracy. One reason for this is that discrete derivatives can be
evaluated with higher precision since information from the whole space domain is
used to calculate the derivative in one point. Further, di�erential operator have a
very simple structure in Fourier space which can be exploited. The Fast Fourier
Transform (FFT) allows an e�cient application of these techniques.
Analogue to the Fourier transform of integrable functions a discrete function

Φ(ti), with equidistant ti ∈ [0, 2π], i = 1 : N , de�ned as ti = i2π
N+1

, can be
decomposed by the Discrete Fourier Transform (DFT)

Φ̃(k) :=
1√
N

N∑
j=1

e−iktjΦ(tj), k = −N
2

+ 1, . . . ,
N

2
. (3.62)
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Figure 3.6.: Periodic sinc function for N=10.

The inverse discrete Fourier transform is given by

Φ(tj) :=
1√
N

N/2∑
k=−N/2+1

eiktj Φ̃(k), j = 1, . . . , N. (3.63)

According to Eq.(3.63) the highest frequency mode (given by a sawtooth pattern)
would have a nonzero derivative at the grid points. To mend this Eq.(3.63) is
symmetrised according to the highest frequency to

Φ(tj) :=
1√
N

N/2∑′

k=−N/2

eiktj Φ̃(k) j = 1, . . . , N, (3.64)

where the prime indicates to multiply the �rst and last summand by 1
2
.

The discrete Fourier transform is in fact a unitary basis transform.

Boundary conditions

The basis functions for the discrete Fourier transform are the Fourier modes
Fk(ti) = 1√

N
e−ikti . These can be extended to the complete real axis and are

2π-periodic for all k ∈ N. Consequently, each discrete Φ(ti) can be extended to a
2π-periodic function Φ(t) on R. Φ(t) is termed the band limited interpolant. Thus
the functions are treated e�ectively as 2π-periodic. For derivatives one obtains
therefore straightforward periodic boundary conditions.
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3. Partial Di�erential Equations

Derivation

The derivative can simply be calculated by transforming to Fourier space, where
derivation reduces to a multiplication, and transforming back.

d

dt
Φ(t)

∣∣∣∣
tj

=
1√
N

N/2∑′

k=−N/2

ikeiktiΦ̃(k) j = 1, . . . , N (3.65)

The use of the Fast Fourier Transform has contributed to make this approach
attractive for e�cient and accurate calculations. The number of multiplications
required by the FFT is only O(N lnN) compared to ON2 for general matrix
multiplication. However, no use is made of the FFT in this work. A practically
oriented description is given in [96].
For the following considerations obtaining an explicit matrix notation for the

derivation operator D as in the sections before is of interest. To this end one
simply has to calculate the derivative of the (orthonormal) basis vectors. These
constitute the column vectors of the desired matrix representation D. Here the
canonical basis 11ij = δij is chosen.
The transformed basis vectors are simply the Fourier modes Fk(t). Transforming

back yields for the approximant

δj(t) =
1

N

N/2∑′

k=−N/2

eik(t−tj) (3.66)

=
1

N

(
1

2

∑N/2−1

k=−N/2
eik(t−tj) +

1

2

∑N/2

k=−N/2+1
eik(t−tj)

)
(3.67)

=
1

N
cos

(
t− tj

2

)∑N/2−1/2

k=−N/2+1/2
eik(t−tj) (3.68)

=
1

N
cos

(
t− tj

2

)
ei(−N/2+1/2)(t−tj) − ei(N/2+1/2)(t−tj)

1− ei(t−tj)
(3.69)

=
1

N
cos

(
t− tj

2

)
e−i(N/2)(t−tj) − ei(N/2)(t−tj)

e−i(t−tj)/2 − ei(t−tj)/2
(3.70)

=
1

N
cos

(
t− tj

2

) sin
(

N(t−tj)

2

)
sin
(

t−tj
2

) . (3.71)

The function

SN :=
sin
(

Nt
2

)
N tan

(
t
2

) , (3.72)

is also termed periodic sinc function. It is presented in Fig. 3.6. On the grid points
it reproduces the canonical basis vector, but shows additional oscillations due to
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3.5. Numerical Treatment

the �nite bandwidth of the DFT. For the derivative in the grid points for the �rst
canonical basis vector one obtains

d

dt
SN(t)

∣∣∣∣
tj

:=

{
0, j mod N = 0

(−1)j 1
2
cot(jπ/N), j mod N 6= 0.

(3.73)

All other columns of DS can be calculated by simply translating the index j. Thus
the derivation matrix for the spectral method DS is a Töplitz matrix, determined
by the �rst column. Higher derivatives can be calculated in a similar manner.
Only the second derivative D2

S will be used in addition. It is also a Töplitz matrix
with �rst column

d2

dt2
SN(t)

∣∣∣∣
tj

:=

{
−N2

12
− 1

6
, j mod N = 0

− (−1)j

2 sin2(jπ/N)
, j mod N 6= 0.

(3.74)

As in the methods before the �rst derivation operator DS is antisymmetric and the
second derivation operator D2

S is symmetric. Beside other simpli�cations that are
possible due to the special structure of a Töplitz matrix also the matrix product
can be calculated within O(N lnN) multiplications.
Note that the derivation operators are now dense matrices. In the spectral

method the maximally available information on the discrete function is used to
determine the derivative in one point. Due to this fact spectral methods provide a
high accuracy for smooth functions. Unfortunately, they cannot easily applied to
problems with more complex geometry. Also the choice of boundary conditions is
restricted. For non-periodic geometries extensions as e.g. Tschebyschev7 methods
exist but no use of them is made in the following.

7In literature some alternative translations exist as Tschebyschow, Tschebysche�, Tschebyche�,
Tschebyschew or Chebychev
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4. Master Equation Description

Modelling physical (or other) systems by microscopic or pseudo-microscopic mod-
els can have various reasons. First, it is not always possible to �nd closed form
equations. It can be easier to construct microscopic rules from the knowledge of
a system. Closed form equations also usually have a limited validity range. The
Navier-Stokes equations e.g. cannot describe the �ow on a molecular level. Ther-
mal �uctuations are not included and transport coe�cients have to be derived
from experiments etc. [57]. With the advance of computer technology simula-
tions of highly complex systems (also regarding their constituents), e.g. from
biology have become possible. There, microscopic or pseudo-microscopic models
can reproduce the behaviour of such systems [104]. It is often only necessary
to capture some relevant properties to �nd a useful model of a complex system.
The gas-liquid phase transition e.g. can already be observed in a system of hard
spheres. Polymers can be simulated by random walks or chains of spheres [39, 108].
Complex biological systems like membranes can be studied by strongly simpli�ed
bilipid molecules [105]. Some relevant behaviour of protein folding and molecular
recognition can be studied on discrete lattice systems with a simple nearest neigh-
bour interaction [18, 11]. Even continuous systems like the Navier-Stokes �ow can
be modelled by pseudo microscopic or mesoscopic models as dissipative particle
dynamics, or by lattice Boltzmann methods [109].

In this chapter an ansatz is presented which does not deal with PDEs directly.
As stated above many PDEs arise from systems with a microscopic dynamics
which is far to complicated to be treated explicitely. The microscopic details are
also often irrelevant for the macroscopic variables of interest. One example are the
Navier-Stokes equations, which describe the behaviour of a �uid or gas consisting
of a huge number of molecules. One litre of air at standard atmosphere conditions
at sea level contains e.g. approx. 2.54697 · 1022 = lNaPs

R∗Ts
molecules 1.

However, the progress in Density Matrix Renormalisation Group (DMRG) tech-
niques has made the treatment of systems with an extremely high number of de-
grees of freedom possible, at least in the spatially one dimensional case. Now a
stochastic description of microscopic models will be introduced that includes also
models for which the generator of evolution depends on the state of the system.
Such a model can be considered to be nonlinear. Chapter 8 includes an explicit
example of a lattice model for a reaction di�usion process and a KPZ-type partial
di�erential equation.

1 Avogadro number Na = 6.022169·1023 1

mol , gas constant R∗ = 8.31432 J
molK [63, 64] Standard

atmosphere conditions at sea level: Ps = 1013.25hPa, Ts = 288.15◦K.
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4. Master Equation Description

Dimensionality versus Linearity

Considering a system on a one-dimensional lattice with N sites and one scalar
variable on each site, the phase space would classically be N -dimensional. As
explained in the previous chapters the generator of evolution depends on the state
of the system in the nonlinear case. An alternative is to treat every point in phase
space as a degree of freedom of its own. The system becomes then automatically
in�nite-dimensional if continuous values are permitted at the grid nodes. This is
due to the fact that already a one-dimensional �nite interval contains an uncount-
ably in�nte set of numbers. For discrete valued sites, e.g. two possible states (spin
up/spin down), the system stays �nite dimensional. This is the case for cellular
automata (CA). In the high-dimensional description the dynamics can simply be
determined by transition rates. The generator of evolution in this space can be
written down once for all (excluding explicit time dependence) and is thus linear.
It is called master operator M and contains the rates for all possible transitions
between two states. It is in general not symmetric.
The master operator acts on a high-dimensional space, which is spanned by all

possible microscopic states. This space is mN -dimensional, with m the number
of states per site. In this vector space state vectors Ψ can be de�ned. The
components of the state vector describe the probability to �nd the system in the
corresponding microscopic state. If a microscopic con�guration is denoted with
|i〉 and the probability for this con�guration with p(|i〉) this gives

Ψi = p(|i〉). (4.1)

Following this probabilistic interpretation, physical relevant states have to be
normalised. The natural normalisation would be∑

i

Ψi = 1, (4.2)

instead of a L2-norm of 1 as in quantum mechanics. Note, that while the descrip-
tion is probabilistic also deterministic behaviour can be included in this framework.
This approach has some similarities with quantum mechanics. Considering

a single classical particle on an one-dimensional grid, its phase space is two-
dimensional. If the grid has N nodes, the quantum mechanical system has a
2N -dimensional real phase space. Now superpositions of di�erent classical states
are allowed. While the classical equations of motion can be nonlinear, the quan-
tum mechanical description by the Schrödinger equation is always linear. However,
unlike quantum mechanics the master equation ansatz deals with probabilities di-
rectly instead of probability amplitudes. Consequently, no interference e�ects can
occur.
More quantitatively, a system with �nite phase space V , i.e. the phase space

is a �nite set V = {|i〉}i=1:N is compared with the corresponding master equation
approach.
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Direct description Master equation approach
System state ψ(t) = |i〉 for some i = 1 : N Ψ(t) = (p(|1〉), . . . , p(|N〉))
Time evolution Updating rule depending on ψ Master operator M
Interpretation Single realisation of ensemble Probability distribution

for all physical states

Stochasticity from Missing Information

In the description above also deterministic processes can be included. Then the
rates in the master equation are either±1 or 0 depending on whether the transition
occurs under the dynamics or not. Even in such a case a reduction as described
in Chapter 5 in general always leads to a probabilistic model. This is due to
the fact that a simple structure of a matrix is not necessarily preserved under a
projection. This is a practical example for creation of randomness through missing
information. In a more general sense randomness in every day's life is often due
to missing information and this is one basic motivation for stochastic models.

Time Evolution

The stochastic description explained above makes sense for continuous as well as
discrete time evolution. For continuous time the dynamics is given by the master
equation

∂

∂t
Ψ = MΨ. (4.3)

A discrete version could be obtained by the explicit Euler method, Eq.(3.17).
For the evolution only the previous time step (which would be in�nitesimal in
the continuous case) is relevant. This is also true for the microscopic processes
considered here. The stochastic process they describe is thus termed to be a
Markov process. The formal solution to the dynamic equation Eq.(4.3) is given
by

Ψ(t) = e−(t−t0)MΨ(t = t0). (4.4)

This is a linear equation, so it is convenient to consider it in the eigenvector rep-
resentation2. Since M is non-hermitian the eigenvalues can be complex. As the
matrix representation of M is real valued, the complex eigenvalues are always
accompanied by their complex conjugate. Further, M is in general not normal,
therefore the eigenvectors need not to be orthogonal. The evolution is then simply
an exponential decay of all modes with life time 1

<λ
with λ being the eigenvalue.

The imaginary part results in an oscillation within the subspace spanned by the
complex conjugated eigenvector pair. It is obvious that for relevant physical sys-
tems the condition <λ ≤ 0 must hold to prevent unbounded increase of ||Ψ(t)||.
The problem of complex eigenvectors can be circumvented by �nding a real basis

2Even if M would be defective this poses no problem. The orthogonal complement of all
eigenspaces is then simply not a�ected by the dynamics, which is thus a trivial case.
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4. Master Equation Description

for each subspace spanned by a complex conjugated pair of eigenvalues/states,
which is always possible.

4.1. Constructing the Master Operator

In all models considered in this work the dynamics is de�ned by processes that
a�ect only a single site or two nearest neighbour sites locally. Not adjacent sites
cannot a�ect each other in one time step. The interactions are thus local. To
de�ne the master operator explicitely it is convenient to use single site creation
a† and destruction a operators. They are de�ned as

a =

(
0 1
0 0

)
, a† =

(
0 0
1 0

)
. (4.5)

Within this representation

(
1
0

)
denotes an empty site, while an occupied site is

represented by

(
0
1

)
. Together with the occupation operator n and the vacancy

operator v

n = a†a =

(
0 0
0 1

)
, v = aa† =

(
1 0
0 0

)
, (4.6)

they constitute a basis for R2×2. All single site operators can be constructed as
linear combinations of a, a†, n and v. Two site operators are constructed similarly
from products of single site operators.

Source and Sink Operator

The source and the sink operators are examples for single site operators. Their
e�ect is to bring the site from an empty to an occupied state (source) or vice
versa. The source operator is de�ned by

S = a† − v =

(
−1 0
1 0

)
. (4.7)

The sink operator is given by

S+ = a− n =

(
0 1
0 −1

)
. (4.8)

Note that each colum sums up to zero. With this as constraint S and S+ are the
only possible single site operators.
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4.1. Constructing the Master Operator

Di�usion Operator

The di�usion operator is a two site operator. The left di�usion and right di�usion
operators are de�ned asDl, Dr. Applied to two adjacent sites it brings one site (the
right for Dl) from an occupied to an empty state, while simultaneously bringing
the left site (for Dl) from an empty to an occupied state. This leads e�ectively
to a transport to the left. For the right di�usion operator the sides are reversed.
More explicitely this can be written as

Dl = aia
†
j − nivj, Dr = a†iaj − vinj. (4.9)

Again the columns add up to zero.

Annihilation Operator

Pair annihilation is a strongly simpli�ed model for a reaction of two particles. The
corresponding two site operator is de�ned by

A = aiaj − vivj. (4.10)

4.1.1. Probability Conservation and Steady State

All operators3 described above have the property that the columns sum up to zero.
This is equivalent to probability conservation and is necessary for any physically
relevant description. A matrix with this property is also called a stochastic matrix.
Note that there is typically no particle conservation (interpreting the state

(
0
1

)
as

particle).
As the master operator M is in general represented by a non-symmetric, non-

hermitian matrix, di�erent left and right eigenstates to an eigenvalue generally
exist. For stochastic matrices one left eigenstate is trivially always known from
the probability conservation property. Writing this constraint explicitely for the
master operator one gets

0 =
∑

i

Mi,j = 〈s|M with 〈s|i = 1. (4.11)

Here 〈s|, also called summation state, is always a left eigenstate of M to the
eigenvalue 0. Therefore always a steady state exist.
While the existence of the steady state is alway guaranteed by construction,

this steady state can be degenerated. In such cases the initial conditions decide
which steady state is reached so they can in�uence the system for all later times.
In statistical mechanics the concept of ergodicity is relevant [14, 119, 120]. It
states basically whether the probability to reach any state in �nite time from an
arbitrary state by the dynamics is strictly positive. It plays an important role to

3Apart from a, a†, v and n which do not describe physical processes.
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4. Master Equation Description

justify the description of complex microscopic dynamics by stochastic models. In
the ergodic case the steady state is unique [106, 77], which identi�es all systems
with degenerated steady state as non-ergodic.
An even stronger condition than stationarity as for the steady state is the so

called detailed balance. If the probability for a state |i〉 is Pi, then the detailed
balance condition is

MijPj = MjiPi. (4.12)

This states simply that the probability to be in state j and jump to state i is
equal to the probability to be in state i and jump to state j. While for a steady
state only

∑
j MijPj = 0 is required, in general Eq.(4.12) is not satis�ed [68].
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5. Dynamical Systems and Model

Reduction

Though this be madness, yet there's method in't.

Hamlet, William Shakespeare

The aim of this work is to devise and present algorithms which allow to calculate
e�ective models for large dynamical systems. In the literature this approach is
counted to the �eld of model reduction [4]. I will consider �nite-dimensional
systems exclusively. These are either obtained from microscopical descriptions of
lattice models directly or from discretised partial di�erential equations.

5.1. Problem Setup

Dynamical systems arise wherever time dependent processes have to be described.
They can be based on heuristic descriptions or on complex theories. They can also
be derived from empirical data. A description on a high level is given by PDEs
which typically arise from e.g. physical theories. However, it is also possible to
derive models directly from the microscopical behaviour of a system.

In case of a PDE description, a system of ODEs is obtained by discretisation of
the spatial coordinates, as described above in Chapter 3. The dimensionality N of
the system of ODEs can be principally chosen arbitrarily large but it is practically
limited by the ability to process the resulting system. The discretisation also leads
in general to a discretisation error. Typically, the discretisation error decreases
with increasing dimensionality of the ODE system and vanishes in the in�nite
limit. The system of ODEs are given in the following form

d

dt
φ(t) = G(φ(t), t)φ(t) + F(t). (5.1)

Here φ is a N -dimensional vector, representing the internal degrees of freedom.
F is an external forcing, but in the following this term will be zero. This reduces
Eq.(5.1) to a homogeneous ODE. G is the generator of evolution and has the form
of a N×N matrix. Nevertheless G can be dependent on both φ(t) and t explicitely.
Throughout this work the explicit t-dependence will always be excluded. In the
literature the case in which the time dependence of the right hand side of Eq.(5.1)
is only due to φ(t) directly is also termed to be the autonomous case [61]. Often
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Figure 5.1.: Phase space diagram of a saddle point λ1 < 0 < λ2 and a stable node
λ2 ≤ λ1 ≤ 0. The horizontal direction is the eigenspace corresponding
to λ1. For an unstable node only the arrows in the right sketch have
to be reversed.

only �nite powers of the variable φ occurs. Thus Eq.(5.1) can be described by
some tensors of increasing order, e.g. up to third order as

d

dt
φ = LijΦj +QijkΦjΦk +KijklΦjΦkΦl, (5.2)

where the contributions L, Q and K represent the linear, the quadratic and the
cubic part, respectively.

In dynamical systems theory not the whole state of the system is considered
further to be accessible but only some observables de�ned by linear maps [4]

y = Cφ(t) +DF (t). (5.3)

This description is very appropriate in control theory [4] for existing dynamical
systems. In contrast, each component of φ is assumed to be assessable in this work
for simpli�cation. Only in Chapter 8 some selected observables are presented in-
stead of the system state itself which is very high-dimensional and of poor intuitive
comprehensibility.
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Figure 5.2.: Phase space diagram for the special case of a stable node with
λ2 < λ1 = 0. The horizontal direction is the eigenspace corresponding
to λ1.

Figure 5.3.: Phase space diagrams, left : For a so called sink for a complex con-
jugated pair of eigenvalues. The real part is negative <λ < 0. A
positive real part is unphysical. Right : Phase space diagram for a
purely imaginary pair of eigenvalues.
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Linear Systems

Homogeneous linear systems are encountered in Chapter 8 extensively and also
later as trivial test problems. There Eq.(5.1) reduces to

d

dt
φ(t) = Gφ(t), (5.4)

which can be integrated formally. The solution is [61]

φ(t) = etGφ(t = 0). (5.5)

Depending on the eigenvalues λi of G some scenarios are possible. Since the
eigenspaces decouple, it is su�cient to consider, e.g. two-dimensional subspaces.
One possibility is the occurrence of real eigenvalues. Depending on the sign of λi

the dynamics in the corresponding eigenspaces is stable λi ≤ 0 or unstable λi > 0.
In phase space this gives rise to a node (stable), saddle or unstable node, as
depicted in Fig. 5.1. A saddle point is obtained for λ1 < 0 < λ2. The exponential
growth is unphysical1 and no systems with such properties occur in this work.
It is nevertheless a trivial example for sensitivity to initial conditions in linear
systems. The same holds for an unstable node de�ned by 0 < λ2, 0 ≥ λ1. The
stable node with λ2 ≤ λ1 ≤ 0 is the generic case for the problems at hand. Fig. 5.1
presents the case for λ2 6= λ1. The Figure suggests also that the eigenspace with
largest eigenvalue is more relevant. Trajectories approach this subspace before
approaching the origin. The special case of λ2 = λ1 is also termed focus and
has rotational symmetry around the origin. Situations in which the kernel of the
generator of evolution is non-trivial will occur in this work. Then some eigenvalues
are zero and along the corresponding eigenspaces no dynamics occurs. This is
the only case for which the initial conditions determine the long time solution
signi�cantly and those eigenvectors must not being projected out.
In general complex conjugated pairs of eigenvalues can (and will) occur. For

the stability again only the real part of the eigenvalues is relevant. Fig. 5.3 (left)
shows a so called sink with negative real part. The trajectories oscillate in the
corresponding two-dimensional invariant subspace and converge in the origin. The
convergence is the faster the smaller (more negative) the real part of the eigenvalue
is. A special case is again a zero real part, shown in Fig. 5.3 (right). Then the
trajectories are ellipses around the origin. As in the case of a zero eigenvalue
the initial conditions in�uence the system state to all later times signi�cantly.
Also the corresponding sub-space has to be included in any meaningful reduction.
Thus it can be stated that - concerning model reduction - only the real part of
an eigenvalue determines the relevance of its invariant sub-space. From Fig. 5.3it
is also evident that pairs of eigenvectors for complex conjugated eigenvalues must
not be separated by a reduction, i.e. either projecting out both or none.

1For linear systems the exponential increase of some mode is not restricted to a certain region
in phase space, which can occur in nonlinear systems. An exponential increase, indicated by
a strictly positive real part of an eigenvalue, always leads to a divergence of the solution, i.e.
also the norm of the solution diverges. This is considered to be unphysical.
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5.2. Model Reduction

Figure 5.4.: Relation between several formulations

Time Discrete Systems

The following considerations will be restricted to systems with discrete time. The
discretisation of the system of ODEs is also described in Chapter 3, compare e.g.
Eq.(3.25). This leads to a set of di�erence equations:

φt =
∑

i

(αiφt−i + βiG(φt−i)φt−i) (5.6)

The index i is usual positive i ≥ 0. Then the evolution is termed causal. Typically
only a few coe�cients are nonzero, in this work at maximum three in the multi
step method in Chapter 10. In Eq.(5.6) t ∈ N denotes a discrete time index and
the αi, βi determine the ODE integration scheme to be used, see Tab. 3.5.1. As
indicated in Eq.(5.6) the generator of evolution G(φt−i) depends itself on φ, thus
the dynamics can be nonlinear.

5.2. Model Reduction

The are many possible motivations to determine a reduced model for a dynam-
ical system. One reason is certainly to reduce computational e�ort or memory
requirement. Whether this can be achieved is also implementation or problem
dependent. Further the reduced model can be possibly analysed directly. The
modes calculated by the proper orthogonal decomposition, e.g. can give a de-
scriptive picture of the relevant processes during the time evolution. A study of
certain 'modes' to analyse data is also of interest in very di�erent �elds as medical
image processing [76].
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5.2.1. Choice of error functional

In the previous Section 5.1 it has been considered how dynamical systems can
be modelled and solved, see Chapter 3. For practical applications such models
can be highly complex, see [4] for an overview. Model reduction can provide
simpli�ed descriptions which still reproduce the behaviour of the original system.
To measure the quality of a reduction some error functional has to be speci�ed.
Then the reduction is chosen to minimise this error. As stated above, the values
of the �elds at the nodes are of interest. A natural choice for the error would then
be the L2-error

E2(t) = ||Φ(t)−BΦ̂(t)||2. (5.7)

Here Φ̂ is the reduced �eld which is de�ned on the smaller reduced phase space.
To calculate the error Φ̂ needs to be embedded into the original phase space. This
is denoted by BΦ̂. Later this will be indeed a matrix-vector product, but for now
this notation has to be understood as a bit more general. The error de�ned in
Eq.(5.7) is not the only meaningful choice. The derivative of the �eld or other
observables are possibly poorly reproduced by requiring E2(t) to be minimal. In
practical applications often only a few observables as lift and drag coe�cients
and some other momenta in aerodynamics or stress and displacement at some
particular points in structural mechanics calculations have to be determined with
good accuracy. Then also alternative approaches are useful [83].

5.2.2. Reduced Model

The reduced model should have a signi�cantly lower complexity as the original
system. Typically the complexity of the reduced model is prescribed by the avail-
able computer power and storage. Ideally, also the dynamics of a nonlinear system
should lead to an invariant manifold in phase space. Trajectories approach such
a manifold (typically exponentially fast) and are bound to it for all later times.
In the linear case these manifolds are the tensor products of eigenspaces. The
eigenspaces can be treated independently. The relevant criteria whether a sub-
space should be projected out or is relevant for a reduction have been considered
above. For nonlinear systems on the other hand the invariant manifolds are in
general no subspaces. Even whether such manifolds exist is not clear a priori. This
complicates the description, since a suitable parametrisation has to be found. In
practice even a very low-dimensional manifold can lead to a signi�cant amount of
complexity.

5.2.3. Linear Projection

This is arguably the simplest ansatz. Already the discretisation of a PDE itself
is a reduction of this type. The reduced phase space is a subspace of the original
phase space. It is completely determined by a basis for the reduced phase space
and the complexity of the reduction is determined by the dimensionalityM of the
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reduced phase space. For convenience and also to avoid unnecessary numerical
inaccuracy an orthonormal basis B should be chosen with B†B = BB† = 11. The
projection operator to the reduced phase space is then P = BB†. The reduced
dynamics is given by

Pφt =
∑

i

(αiPφt−i + βiG(Pφt−i)Pφt−i) . (5.8)

Practically the dynamics of theM -dimensional reduced model is considered. This
work is restricted to systems which have a polynomial dependence on the �eld φ
so that Eq.(5.2) holds and the generator of evolution G is given by the tensors L,
Q and K. Their transformation properties are known so that one can introduce
the reduced entities

Φ̂ = B†Φ, (5.9)

L̂ = B†LB, (5.10)

Q̂i,j,k =
∑
a,b,c

B†i,aQa,b,cBb,jBc,k, (5.11)

K̂i,j,k,l =
∑

a,b,c,d

B†i,aKa,b,c,dBb,jBc,kBd,l. (5.12)

The reduced model dynamics can be written as

∂tΦ̂ = L̂ijΦ̂j + Q̂ijkΦ̂jΦ̂k + K̂ijklΦ̂jΦ̂kΦ̂l. (5.13)

Note, that the simple structure of the operators (band-diagonal or Töplitz matrix,
etc.) is now in general lost. For the time dependent error one obtains

E(t) = Φ(t)−BΦ̂(t) = (11− P )Φ(t). (5.14)

The L2-error is also time dependent and given by

||E(t)||2 = ||(11− P )Φ(t)||2. (5.15)

5.2.4. Nonlinear Reductions

Nonlinear reductions cannot be described as uniformly as linear methods. This
approach will not be pursued in the following. The e�ciency of this approach
depends on how the invariant manifold is parametrised. Gorban e.g. proposed a
numerical description by so called invariant grids [51]. Also the complexity of the
invariant manifold depends on the system at hand.
A further problem is to �nd a projection to this manifold. Starting at an

arbitrary point of phase space, it is not clear which the corresponding start point
for the reduced description is.
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An other approach starts from a linear reduction and tries to improve it by
introducing contributions from the irrelevant subspaces as function of the relevant
degrees of freedom [82]. This is an application of the so called slaving principle [54].
Summarising, the nonlinear methods depends much stronger on the particu-

lar problem as the linear approach. In particular the complexity of the reduced
system cannot be controlled very systematically. This work is restricted to lin-
ear projections. Thus the minimal dimensionality of the reduced model of given
accuracy is sacri�ced for a simple description of this model.

5.2.5. Optimal Model Reduction for Linear Dynamics

In case of a linear generator of evolution the optimal linear orthogonal projection
(in the L2 sense) can be determined directly. For optimality the L2-error of full
and reduced dynamics is required to be minimal. This means, Bopt is chosen so
that

〈E(t)〉t =
〈
||Φ(t)−BoptB

†
optΦ(t)||2

〉
t
=
!
minimal. (5.16)

Since the error in Eq.(5.15) is time dependent, the time averaged error is consid-
ered as indicated by 〈·〉t. At least for su�ciently long times the arguments from
Appendix B hold. There it is shown that the range of the projector should contain
the eigenstates corresponding to the lowest (absolute real part) eigenvalues and
it should be invariant under G. For symmetric matrixes this is a well de�ned
problem for which many algorithms exist [96, 53, 47, 99].
Also for general matrices these eigenstates exist but they can be complex for

non-symmetric G.2 They can even be non-orthonormal if G is not normal i.e.
G†G 6= GG†. This situation will be encountered in Section 8. The most straight-
forward approach would be choosing the relevant eigenvectors of G as column
vectors of B. However, this is suboptimal. For numerical reasons one should
always choose B orthonormal which is always possible. The requirements above
only concern the spectrum of the reduced generator of evolution A := B†GB. To
meet the above requirements, only the following form with an orthonormal basis
BF is needed

B†FGBF =

(
A C
0 D

)
. (5.17)

Here the �rst columns of BF constitute B. The spectra of A and D constitute
the spectrum of G and A = B†GB. An optimal reduction is then obtained if the
spectra of A and D contain the appropriate eigenvalues of G. The o�-diagonal
contribution C is irrelevant for the reduced model. The subspace spanned by the
columns of B is still G-invariant. Of course, the subspace spanned by the rest of
BF is not G-invariant which in turn is not necessary.

2G is assumed to be non-defective. In case of a defective G the eigenvectors do not span
the whole space. Thus the orthogonal complement of the eigenspaces is not a�ected by the
dynamics and has to be treated as a zero eigenvalue eigenspace.
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Here we recall that any real matrix A can be orthonormally transformed to a
quasi upper triangular matrix S with 1 × 1 or 2 × 2 blocks on the diagonal and
zero below this diagonal.

Q†AQ =


R11 R12 · · · R1m

0 R22 · · · R2m

. . . . . .
. . . . . .

0 0 · · · Rmm

 (5.18)

The 2× 2 blocks arise form pairs of complex conjugated eigenvalues and can only
occur for non-symmetric matrices. Non-normality is indicated by a nonzero upper
diagonal part. If one denotes the block diagonal part of A with D this means

A†A = AA† ⇔ A−D = 0. (5.19)

In the non-normal case one can either choose a non-orthonormal basis for which
A becomes block diagonal, or alternatively an orthonormal basis O where the
upper triangular part of O†AO is non-zero. Provided no 2×2 blocks are cut apart
Eq.(5.18) has the form of Eq.(5.17) for several possible segmentations. Now it
becomes obvious that ordering the Schur form Eq.(5.18) leads to a nested sequence
of invariant subspaces which all provide an optimal approximation with a given
complexity. More quantitatively

Vi := span(v1, . . . , vi) , i = 1, . . . ,m (5.20)

Vi ⊂ Vj , for i < j (5.21)

Vi A-invariant , ∀i = 1, . . . ,m. (5.22)

The vi are either single Schur vectors or pairs of Schur vectors, m is the number
of diagonal Blocks in A.

5.2.6. Optimising Model Reduction for Nonlinear Dynamics

For the more general nonlinear systems as de�ned by equation 3.13 the choice of
the projected subspace is a priori not clear. Since G(Φ(x, t)) is not constant any
more, the decomposition into invariant subspaces also depends on Φ(x, t).

Linearisation

As long as only the neighbourhood of a phase space point Φ�x is of interest, e.g. an
equilibrium point, the linearisation in that point, i.e. G(Φ�x) can be investigated.
This linearised system

∂

∂t
φ(x, t) = G(Φ�x)φ(x, t) (5.23)

can be treated as described before. It should be assured that the solution stays
close to Φ�x, otherwise the error can increase uncontrollably.
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Minimisation Approach

The minimisation approach has been proposed by Degenhard et al. [37]. Here the
Frobenius norm of the error operator Eq.(5.8) is minimised for some ansatz state v.
Starting by P = 11 the next projection operator is given by P = 11−vv†. Iteratively
more and more states are calculated and thus the dimensionality of the model
reduced. The minimisation is carried out numerically by a sequential quadratic
programming method [49]. The numerical scheme was provided by a commercial
software library [92]. The ansatz is plagued by various problems. First all ansatz
states are normalised. As stated above the columns of B and consequently those
of 11−B should be orthonormal. Such a restriction on the other hand during the
minimisation of the error leads to ignoring almost the whole phase space. Further
the parameters were chosen in such a way that the in�uence of the nonlinearity was
negligible. The KPZ-equation was studied which is known to become unstable by
�nite di�erencing schemes [34]. The computational e�ort for the minimisation was
astronomical (1 hour on a SUN-SPARK Ultra 10 workstation for N=16) compared
to a proper orthogonal decomposition (POD) (simulation of some trajectories plus
diagonalisation of a symmetric N × N matrix, see Section 5.2.7 below). Further
for the POD optimality (in some sense) can be proven, as is exempli�ed in the
following.

5.2.7. Proper Orthogonal Decomposition

In order to �nd an optimal linear projection for nonlinear systems one certainly has
to incorporate information from the nonlinearity, i.e. fromG(Φ(x, t)) for the whole
phase space. Systematically this is done by the proper orthogonal decomposition
(POD). The proper orthogonal decomposition is a linear projection method which
is widely used in model reduction. An extensive literature on this topic exists.
Some examples are [79, 107, 12, 100, 91]. A short explanation of POD together
with the method of snapshots is also given in [23]. One of the advantages of this
method is the possibility to incorporate information from the nonlinear dynamics
to obtain a linear reduction. In practice the basic idea is to generate sample
trajectories by simulating the dynamical system of interest.
From the dynamic equations Eq.(5.1), one can de�ne a time average, if a set of

trajectories is speci�ed. Formally this could comprise even all possible trajectories.
The time average of some observable A is

〈A〉T :=
1

n

n∑
k=1

∫
A(Φk(x, t))dt, (5.24)

where n is the number of sample trajectories and Φk are the state vectors for the
k-th trajectory. A common optimality condition [107, 4] is requiring the average
least square truncation error being minimal. Although this is not the only sensible
choice, see Section 5.2.1, this condition is used, i.e.

ε :=
〈
||Φ(x, t)− PΦ(x, t)||22

〉
T

=
!

minimal. (5.25)
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Here P is the projection operator de�ned by the reduced orthonormal basis B as

P := BB†. (5.26)

Instead of minimising the error ε which is the time average of

〈Φ− PΦ,Φ− PΦ〉 = ||Φ||22 − 2 〈Φ, PΦ〉+ ||PΦ||22, (5.27)

one can maximise the time average of 〈Φ, PΦ〉, i.e. the average projection onto
Φ. The brackets denote the scalar product. Therefore one has to maximise the
functional

maximal =
!

〈
N∑

i=1

Φ(xi, t)
N∑

j=1

PijΦ(xj, t)

〉
T

(5.28)

=
N∑

i=1

N∑
j=1

〈Φ(xi, t)Φ(xj, t)〉T Pij =: c (5.29)

Here the so called spatial correlation matrix C de�ned by Cij = 〈Φ(xi, t)Φ(xj, t)〉T
which is a discrete version of the spatial correlation function. It is symmetric and
positive semi-de�nite. After calculating the eigenbasis {φi}i=1:N for C one gets

c =
N∑

i=1

N∑
j=1

N∑
k=1

N∑
α=1

φi
kBiαλkB

†
αjφ

j
k, (5.30)

where φi
k denotes the k-th component of the i-th eigenvector of C. Since B and

the φi are orthonormal and the λi are positive, Eq.(5.30) is maximised if the
eigenvectors φi for the largest eigenvalues of C are chosen as columns of B.
With this method an optimal basis B can be obtained. However, it is necessary

to calculate the correlation matrix C. This is done by simulating the system and
evaluating Eq.(5.24) numerically. The system dynamics is then characterised by
an ensemble of snap-shots. Accumulating the data in a matrix Dij = Φ(xj, ti)
the time-averaging and calculation of the correlation matrix could be written as

C =
1

Nt

D†D, (5.31)

where the number of time steps is Nt. If several trajectories are considered also
an averaging over these di�erent trajectories has to be performed. Decomposing
D via the SVD gives orthogonal U and V and a diagonal Σ with D = UΣV †. The
eigenbasis of C is V as is obvious from D†D = V ΣU †UΣV † = V Σ2V †. In some
cases the number of time steps Nt is much smaller than the spatial dimensionality
N . Then it is easier to calculate the eigenbasis of DD† which is U . The matrix V
can be obtained via U †D = ΣV . Since Σ is diagonal one only has to normalise the
columns of ΣV to get V which is the eigenbasis of D†D and consequently also of
the correlation matrix C = 1

Nt
D†D. In the literature this is also known as method

of snapshots [107].
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6. Density Matrix

Renormalisation Group

Du muÿt verstehn!

Aus Eins mach Zehn,

Und Zwei laÿ gehn,

Und Drei mach gleich,

So bist du reich.

Verlier die Vier!

Aus Fünf und Sechs,

So sagt die Hex,

Mach Sieben und Acht,

So ist's vollbracht:

Und Neun ist Eins,

Und Zehn ist keins.

Das ist das Hexen-Einmaleins!

Faust I, Johann Wolfgang von Goethe

This section aims to give a very brief overview to density matrix renormalisation
group methods. Doing so it is di�cult to present the basic ideas without confusing
the reader with merely technical details. As DMRG provides numerical techniques,
some technicalities are inevitable. However, in many points freedom of choice for
a particular scheme exists. One should not confuse what are (to some extent)
arbitrary details with what are the essentials of DMRG.

The density matrix renormalisation group (DMRG) was �rst proposed by Steven
R. White in 1991 [122], see e.g. [55] for a review. The aim was an extension of
the renormalisation group theory which has been applied successfully to describe
the critical behaviour of spin lattice systems by Wilson [125, 126, 13]. One of
the simplest examples of such systems, the Ising model with nearest neighbour
interaction [22, 13], is described by the following Hamiltonian

H = −J
∑
<ij>

σiσj −K
∑

i

σi. (6.1)

Figure 6.1.: Three block-spin renormalisation steps for a part of a one-dimensional
spin lattice.
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6. Density Matrix Renormalisation Group

Figure 6.2.: The 2D-Ising model with 200×200 spins and periodic boundary condi-
tions below (left) around (centre) and above the critical temperature.
The sample con�gurations were obtained a standard Monte-Carlo-
method with 1000 · 2002 updating steps.

The σi are the spin variable on the lattice site i, being either σi = 1, i.e. up
or down σi = −1. An external �eld is represented by K while J is the nearest
neighbour interaction energy. The renormalisation of the model is performed by
combining several spins to a block which is then represented by a single e�ective
spin. For the lattice of the e�ective spins the model parameters have to be adjusted
to represent the same system. This process is termed renormalisation and is also
of importance in high energy physics [101, 128, 121, 111]. The new e�ective model
describes the system on a lager scale. For the Ising model this process is drafted
in Fig. 6.1. The renormalisation group transform should have the properties of an
semi group, i.e.

Rik = RijRjk, (6.2)

explaining the term renormalisation group. The success of this approach was in
the description of critical properties. One characterisation of critical behaviour is
the divergence of the typical length scale within a system. In case of the Ising
model this is the divergence of the typical domain size of aligned spins. This is
visualised by a typical con�guration of the 2D-Ising model below, at and above
the critical temperature, as shown in Fig 6.2. Since the renormalisation group
transform acts as a 'zooming out' the system at the critical point is invariant
under the renormalisation group transform. Consequently a critical point is a
�x-point of the renormalisation group transform. The renormalisation group can
therefore give information on the critical coupling Jc at which a phase transition
occurs.
Despite these successes of the renormalisation group method this Ansatz fails at

amazingly simple systems. One example problem is the one-dimensional quantum
mechanical particle in a box. The system is described by the Schrödinger equation
(setting ~ = 1 and m = 1

2
)

i
∂

∂t
ψ(x, t) = ∆ψ(x, t) = Hφ(x, t) , x ∈ [0, 1] (6.3)

with Dirichlet boundary conditions (representing impenetrable walls). The energy
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0 1 x

(x)

Figure 6.3.: Ground state of the particle in a box (broad maximum) and ground
states of the subblocks (narrow maxima).

eigenstates, i.e. the eigenstates of H = ∆ are the Fourier modes ψk(x) = eikx

satisfying the eigenvalue equation

Ekψk = ∆ψk. (6.4)

For a �nite box size the eigenvalues of the Laplace operator ∆ are discrete. The
Fourier modes ψk(x) are mutually orthogonal. Expanding Eq.(6.3) in the Fourier
modes results in∑

k

ψk(x)i
∂

∂t
αk(t) =

∑
k

Ekαk(t)ψk(x) , x ∈ [0, 1]. (6.5)

Thus one easily obtains the time dependence of the coe�cients αk(t) = e−iEkt.
The ground state, i.e. the state with lowest energy Ek and the low lying spectrum
is often of special interest. This is due to the fact that a small perturbation of the
Hamiltonian H = H0 +H1 can lead e�ectively to additional transitions between
di�erent eigenstates of H. The eigenstates of H are not the eigenstates of H0

but the system given by H0 is usually much easier to describe and also a good
approximation to H. The transitions could be introduced by the environment of
the system de�ned by H0. The transitions often lead to stationary distribution
e.g. to a Boltzmann distribution

P (Ek) ∝ e
− Ek

kBT , (6.6)
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Figure 6.4.: Assembly of the superblock Hamiltonian.

where T is the temperature of the system. The Boltzmann constant kB de�nes
the relation of energy and temperature units, for SI-units it is kB = 1.3806508 ·
10−23 J

K
[33], in theoretical descriptions one usually sets kB = 1. From Eq.(6.6) it

is obvious that the low lying spectrum is most relevant for the low temperature
behaviour. In the limit T → 0 the ground-state is even the only occupied state.
In the following, the states of interest will be denoted as 'target states'. In the
following this will be the ground state.

In analogy to the block-spin approach one can construct a larger system from
identical sub-systems. However, the state constructed from the ground-states
of the sub systems is in general no low energy state for the complete system. In
Fig. 6.3 the situation is pictured for the particle in a box showing the ground state
of the whole system as well as for the two subblocks. The mismatch accountable
for the failure of the renormalisation group approach is obvious. It is also clear that
the problem is caused by the inappropriate boundary conditions for the two blocks.
Their mutual interaction has been neglected. DMRG removes this constraint
and includes this interaction. The above models are local, i.e. each site is only
a�ected by its nearest neighbours. In such cases DMRG is most e�cient. The
basic ingredient for including block interactions is the superblock concept which
will be explained in the following. For numerical treatment, a discretised version
of Eq.(6.4) has to be considered. The corresponding techniques are described in
Section 3.5, �nite di�erencing is used.
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Figure 6.5.: The Russian doll scheme for the superblock. Above the e�ective sites
described by the superblock, below the actual degrees of freedom,
contained in the superblock. The open circles do not describe single
sites.

Initialisation:

Insert new sites

M

Truncation
Diagonalisation/POD

Effective degrees of freedom

Truncation
Diagonalisation/POD
Effective degrees of freedom

Effective degrees of freedomM 1 1 M

M M

11

1 1

M

M

Represented degrees of freedom

Represented degrees of freedom

N/2 − 1 1 N/2 − 1

M + 1 M + 1

11

1 1

M

1 Represented degrees of freedom

Figure 6.6.: Graphical illustration of the DMRG initialisation (or warmup)
scheme.
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6.1. In�nite System Method

The in�nite1 system method increases the e�ective size of a system successively.
The numerical size, determining the size of the vectors and matrices used in the
calculation is thereby kept constant. This is achieved by �rst splitting the system
in (typically) two blocks. For each block, the block Hamiltonian Hb and the
interaction terms T with its environment are known. Then two additional sites are
introduced. They are described by the full systems equations, i.e. Eq.(6.4). The
system composed of the two blocks and the additional sites is the superblock. It is
still small enough to be treated with conventional methods. The actual assembly
of the superblock Hamiltonian (here the discrete Laplace operator) from these
data is sketched in Fig. 6.4 for single particle systems. For many body problems
the construction involves Kronecker products, but apart from some technicalities
the superblock Hamiltonian Hb can be obtained in both cases. For the problem
at hand now a diagonalisation of the superblock Hamiltonian H̃ is performed.
Now e.g. the ground state is of interest, although other choices are possible. The
ground state is then the target state. As in the renormalisation group method
above each block is now combined together with its adjacent site to a new block.
If the superblock is in the target state ψt these new blocks are typically not in
a pure state, but described by density matrices [44]. Denoting the inner-block
degrees of freedom by α and those of the superblock excluding the block by β, the
block density matrix ρ is de�ned as

ρ(α, α′) =
∑
ββ′

ψt(α, β)ψt(α
′, β′). (6.7)

This matrix is always symmetric and positive semide�nite. The eigenvalues de-
scribe the probability to �nd the block in the referring eigenstate of ρ.2 From this
interpretation it is obvious that one should use the most probable normalised den-
sity matrix eigenstates as columns for the truncation matrix. More quantitatively
it can be proven that this choice satis�es an error minimisation criterion [123]
similar to the one used in section 5. Generalising to nt target states a natural
choice for the density matrix to be diagonalised would be

ρ =
1

nt

nt∑
i=1

ρi, (6.8)

where the ρi are the density matrices for the i-th target state. If the blocks
initially had contained m degrees of freedom, the m most probable eigenstates
of ρ are selected to form columnwise the block truncation matrix R. From this
one can construct an e�ective block which contains still m degrees of freedom but
describes a by one site larger block. The e�ective block Hamiltonian H̃b is given

1This notation can be found e.g. at [123]
2The target states have to be normalised. Then also Tr(ρ) :=

∑
i ρii = 1 holds.
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1 1

1 1

this way as:
Proceed in

N/2−1N/2−1

N/2 N/2−2
Inserting

Figure 6.7.: Graphical illustration of the DMRG iteration (or sweeping) scheme.

by
H̃b = R†HbR. (6.9)

Likewise, the e�ective interactions T̃ are determined by

T̃ = R†T. (6.10)

If one is interested in reconstructing the eigenstates instead of just calculating the
eigenvalues the reduction matrices R have to be stored as well.
Repeating this procedure leads to a superblock with describes the full system in

a Russian doll like scheme, see Fig. 6.5. After a su�cient high number of iterations
the e�ective size of the superblock is eventually large enough to neglect �nite size
e�ects. Typically this method is the start of DMRG algorithms where it is used
to get a �rst approximation. A pictorially description of the scheme is given in
Fig. 6.6. After several steps, the superblocks describe a large system in which
�nite size e�ects become less important.

6.2. Finite System Iteration

While the in�nite system method provides a description of increasingly large ef-
fective systems one is often interested to get an accurate model for a system of
given �nite size. Further it should be possible to control the deviation from the
correct, also �nite description, in a systematical way. This aim is achieved by
�nite system iterations, in literature also termed �nite system sweeps.
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In contrast to the in�nite system method, the �nite system iterations improve
already calculated subblocks. This data is usually generated by the in�nite system
method as indicated before. Again the growth procedure for a subblock is used,
increasing the e�ective block size while keeping the numerical block size constant.
However, the e�ective as well as the numerical size of the superblock is kept
constant. This is achieved by applying the subblock growth to only one side of
the superblock. The subblock on the other side is replaced by a pre-calculated
block with smaller e�ective size. In this way the active region of the superblock
is moved through the physical system. Since the inserted sites are always derived
from the correct dynamics information is added to adjust the blocks for the �nite
system. DMRG can be interpreted as a variational method [88, 95] and yields
usually results with a high numerical accuracy. These concepts will be applied to
non-hermitian systems where numerics are much more demanding. For nonlinear
problems even no rigorous results exist in this context.

6.3. Reconstruction of States

DMRG algorithms can be formulated as implicit methods. It is not necessary
to store the truncation matrices. The part of the spectrum of interest can still
be calculated if only the e�ective block operators and links are known. The
truncation matrices are only required for the reconstruction of the state of the
full system. Once a superblock state is given, the expansion to a corresponding
full system state is performed by successively multiplying parts of the state vector
with the truncation matrices which are rectangular. This is sketched on basis of
the subblocks in Fig. 6.8. There the situation for subblocks of equal e�ective size is
shown, although more general partitions can occur. The whole reconstruction from
a M -dimensional superblock state to a N -dimensional full system state can also
be described as a matrix multiplication with a N ×M matrix having orthonormal
columns. For large systems this can be quite ine�cient.
It is also possible to revert this process and embed a full system state into the

superblock system. Then of course information is lost and a whole subspace of
the full phase space leads to the same e�ective superblock state. This embedding
will be required for the DMRG-POD methods in section 10 and 10.

6.4. Single Particle vs. Many Particle DMRG

Single Particle Systems

In quantum mechanics one choice for the phase space of a single particle could be
e.g. L2([−1.0, 1.0]) depending on the system at hand, boundary conditions, etc.
More generally consider the vector space V , which can be in�nite-dimensional,
but for numerical considerations V has to be �nite-dimensional. The dynamics of
the system is determined by a Hermitian linear operator H, i.e. the Hamiltonian
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Figure 6.8.: Relation of a superblock state (below) with the corresponding full
system state (above) via the truncation matrices. The truncation
matrices only act on the particular subblocks. This examples shows
the situation for subblocks of equal e�ective size.
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via the Schrödinger equation Eq.(6.3). Discretising the system e.g. by �nite
di�erencing to a N -dimensional system each lattice site represents a single degree
of freedom. If the system is decomposed into subblocks the phase space of the full
system is the direct sum of the phase spaces of the subblocks. This means that if
Wi, i = 1, 2 are the phase spaces of two subblocks constituting the system with
bases Bi, one has W1∩W2 = ∅ and the whole phase space is spanned by (B1, B2).
Consequently, the number of degrees of freedom is proportional to the number of
lattice sites within a system.

Due to the property described above, the density matrix e.g.for the �rst m sites
of a larger block of n sites depends non-trivially only upon the �rst m entries
of a target vector. If one has nt target vectors the relevant data is contained in
the m × nt matrix Dt consisting of these �rst m entries of the nt target vectors.
The density matrix ρ would be proportional to DtDt†. Due to this special form
only nt eigenvalues can be non zero since Dt can be maximally of rank nt.The
eigenvectors corresponding to these nonzero eigenvalues all lie in the range of Dt,
which is spanned by the columns ofDt. Instead of diagonalising the density matrix
ρ one can likewise orthonormalise Dt thus also obtaining an orthonormal basis for
the relevant subspace.

An operator de�ned for a subblock can be extended to the full system simply
by de�ning the additional matrix elements to be δij. The superblock operator e.g.
can be directly obtained via the insertion scheme already sketched above.

Many Body Systems

For many particle systems the phase space is still a - possibly in�nite-dimensional -
vector space V . The system will be described on the basis of single particle states.
But in contrast to the single particle problem now also an entanglement between
the particles can occur. Given two single particle states ψ1, ψ2, an entangled state
would be e.g. Ψ = 1√

2
(ψ1

1ψ
2
2 + ψ1

2ψ
2
1). Here ψ

j
i denotes the j-th particle to be in

the i-th state. The state Ψ is already of a product form which is used in the Hartree
and Hartree-Fock Ansatz. Since particles are usually indistinguishable physical
states have to be either symmetric (Bosons) or antisymmetric (Fermions) under
exchange of two particles.3 The latter case can be described by the so called Slater
determinant, which is the determinant of the matrix where the (i, j)-th entry is
the i-th single particle state of the j-th particle. The de�nition of the determinant
guarantees the desired properties. However, these methods will not be detailed
further, but the structure of the phase space composed of two subblocks W1, W2

is relevant for us. In contrast to the single particle systems this phase space is
now the tensor product V = W1 ⊗W2. If {bij}j=1:N is the basis of Wi the whole
phase space V is spanned by {b1i b1j}i,j=1:N which is thus N2-dimensional.

Obtaining full system operators from operators de�ned on subblocks now in-
volves the Kronecker product. Given the splitting above an operator A1 de�ned

3I.e. exchanging two particles only leads to an additional factor of +1 or −1, respectively.
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6.4. Single Particle vs. Many Particle DMRG

on W1 can be extended to V simply by kron(A1, 11N), where 11N is the identity on
W2. The construction scheme is thus also very clear.
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7. Proposed Methods

In the following Chapter I introduce the methods that were devised during the
work on this thesis. Consequently the current Chapter can be viewed as the most
important part of the thesis. The new methods are presented in a separate Chap-
ter to outline them from already existing approaches. In particular the new work
comprises the Schur variant of the non-symmetric many-body DMRG, the proper
orthogonal decomposition DMRG (POD-DMRG) and the variational proper or-
thogonal decomposition. The corresponding applications are presented in the next
three Chapters. There, also the models that will be studied are introduced. They
serve as a sort of testing ground for the methods. These models have merely
exemplary character, as the new methods can also be applied to other problems.1

7.1. Real Schur DMRG

The aim of this algorithm is to �nd a few ordered Schur vectors for a dynam-
ical system determined by a master equation, see Eq.(4.3), with non-hermitian
master operator M. The master operator is extremely high-dimensional due to
the particular stochastic approach, see Chapter 4. For one-dimensional systems
DMRG methods are known to be e�ective in calculating a small set of target
vectors even for systems with a high-dimensional phase space. The target vectors
are usually some of the eigenvectors, but di�erent choices are also possible, e.g.
in �nite temperature DMRG [25, 85].
Calculations for non-symmetric matrices are often much more complicated and

numerically demanding than for symmetric matrices [50]. This is especially true
for very large systems. While DMRG has already been applied to calculate the
steady state for such systems the calculations of transient states have led to prob-
lems [27]. Reasons are the spurious emergence of non-vanishing imaginary parts
due to �nite numerical precision and the non-orthogonality of the eigenstates.
For a systematical model reduction, which is the physical idea behind these [27,

38] calculations, the Schur vectors of a real ordered Schur decomposition are much
better suited. Therefore I propose a many-body DMRG method that uses these
Schur vectors as target vectors. To this end the calculation and ordering of a real
Schur decomposition and a management of the target vectors considering their
occurrence in pairs for complex conjugated eigenvalues are necessary.

1 All algorithms were programmed in C++ using public accessible libraries and tools. The
classes for vectors and matrices were provided by Javier Rodríguez Laguna [99] unless the
gsl implementations were used.
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7.1.1. Technical Implementation

The physical system is a one-dimensional chain of N lattice sites each containing
n degrees of freedom, see Chapter 4. This means that each site can assume
n di�erent states and the number of di�erent states for the complete system is
nN . Consequently the phase space is also of dimension nN for the master equation
approach.2 The master operatorM acts on this space, so in matrix representation
this would result in a nN ×nN matrix which can be considered only for very small
systems. Thus the master operator is given in terms of single site operators.
Technically this is implemented by a formated string which describes the action of
M upon a state. A parser has been programmed to interpret this format.3 Only
nearest neigbour sites give rise to interaction terms, but due to the stochastic
descripion the master operator has no simple band structure.

For the blocks a class was de�ned containing all relevant block informations.
Further, a superblock class was de�ned to administrate the assembly of a su-
perblock from blocks. The superblock scheme with two additional sites in each
initialisation/iteration step was chosen. Denoting the number of sites within a
subblock with m the superblock has dimensionality

nm · n · n · nm = n2m+2. (7.1)

Initialising the �rst pair of subblocks from scratch with information on the full
master operator the initialisation of the other blocks is done in a standard warm-up
scheme. The necessary calculation steps are divided into appropriate functions.

The calculation of the target states is done by �rst constructing the explicit
matrix representation of the superblock operator. Then a real ordered Schur
decomposition is performed by a gsl routine [53, 47]. The ordering of the Schur
form is done in the way described in Appendix C. The number of target states
is ns. Due to numerical inaccuracies it is possible that this choice separates a
conjugated pair of eigenvectors. To avoid this the number of target states kept is
adaptive either ns or ns + 1.

The truncation of a block is performed by calculating the reduced density matri-
ces ρi for each target state and forming an average density matrices ρ = 1

n̂s

∑n̂s

i=1 ρ
i

where n̂s = ns or n̂s = ns + 1. Diagonalisation of ρ gives the desired truncation
matrix as in standard DMRG methods.

For the iteration or sweeps basically the same actions are necessary. The trun-
cation matrices are stored, since we are interested in a reconstruction of the full
system state. Principally it is possible to extract expectation values of observables
via the summation state which is the left eigenstate to the eigenvalue zero. How-
ever, this state is not kept and expectation values of observables are evaluated in
the canonical way.

2Considering the normalisation condition
∑

i Ψi = 1 for a state vector Ψ this reduces to a
phase space of dimension nN − 1.

3This procedure was proposed by Javier Rodríguez Laguna [99, 38].
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After the initialisation and the desired number of sweeps the ns target states
are reconstructed.

7.2. Proper Orthogonal Decomposition DMRG

The calculation of a proper orthogonal decomposition inevitably requires the sim-
ulation of the complete system at hand. For linear systems the optimal modes
are known from analytical considerations. These modes can also be calculated by
single particle DMRG methods for one-dimensional systems.

The aim of this ansatz is to circumvent the necessity for a simulation of the
complete system for calculating a POD. This is achieved by applying a blocking
scheme similar to DMRG. Physically a blocking should make sense as adjacent
regions in a spatially one-dimensional system can only interact at their interfaces.
With the new approach the POD for a general4 nonlinear system can be calculated.
Considering also the reduction in computational e�ort due to the reduced size of
the correlation matrix which has to be diagonalised, the advantage of the method
is even more signi�cant although other methods as the method of snapshots, see
Section 5.2.7, can reduce this bene�t.

As model systems the di�usion equation (for pedagogical reasons), the Burgers
equation and a nonlinear di�usion equation were chosen. The numerical simula-
tion of this systems is comparatively simple and requires no involved algorithms.
Also the system size was chosen relatively low since large systems had not led to
qualitative di�erent results. The application of the POD-DMRG method to these
model systems is presented in Chapter 9.

7.2.1. Technical Implementation

Due to the close analogy of the new method to the single particle DMRG, which
is also the simplest of the DMRG applications, the algorithm is explained on this
footing. Three modi�cations are necessary to obtain the POD-DMRG method
from single particle standard DMRG presented in Chapter 6. The required mod-
i�cations are:

First, instead of a diagonalisation of the superblock operator, a POD on the su-
perblock system has to be performed. This is composed of �rst, a simulation
of the superblock system, as de�ned in Eq.(5.13). Then the superblock cor-
relation matrix from the generated data has to be diagonalised. This gives
an orthonormal set of vectors which are the target vectors in the context of
DMRG.

4In fact the nonlinear terms are restricted to a �nite power of the state variables. This is a
problem for nonlinearities e.g. of the form of ln(Φ). For most physical relevant systems this
is e�ectively no restriction.
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Second, to each subblock there exists not only a linear sub-block operator but
also higher order operators, given by third and higher order tensors, see
Eq.s(5.9,5.10,5.11,5.12). These have to be updated in a similar way.

Third, for the POD the initial states for the sample trajectories are a crucial
point. The initial states are de�ned for the full system. They have to be
projected onto the superblock system which requires all truncation matrices
explicitely.

Concerning the �rst point, this is no great di�erence, since the POD (simulation
and diagonalisation of the correlation matrix) returns also an orthonormal set of
'relevant' states (POD modes) that serve as target states, as described above.
Beside the linear operator (L in Eq.(5.2)) which is assembled identically as the

superblock operator in single particle DMRG, the higher order operators have to
be assembled as well. This is principally possible, but complex. Here a simple
trick is used. For all models systems it is su�cient to know the component-wise
squaring operator Ωi,j,k := δijδik. (And in some cases the derivative operator
which is linear and is also assembled like the superblock Laplace operator.) Ω is
purely diagonal, so no links have to be stored and assembled. The reduction with
a truncation matrix R is straightforward:

Ω̂i,j,k =
∑
a,b,c

Ri,aΩa,b,cRb,jRc,k. (7.2)

From this the higher order tensors can be calculated directly, e.g. for the Burgers
equation ([24], for more details, see section 9.)

∂

∂t
Φ = d∆Φ + ν(Φ∇)Φ, (7.3)

one obtains the following quadratic terms

Q̂Burgers,i,j,k := ν
∑

l

δijδljD̂x,N,l,k

= ν
∑

l

Ω̂j,i,lD̂x,N,l,k. (7.4)

This the one-dimensional analogon to the convective derivative, see Section 9.2
for details. For fourth and higher order operators this procedure is a bit memory
consuming. E.g. for calculating Φ3 it is more e�cient to calculate �rst Φtmp :=

Φ̂2 = ΩΦΦ and then Φ̂3 = Φ̂2Φ̂ = ΩΦtmpΦ. Note, that only nonlinearities of a
�nite power of the state variables can be treated in this way which is fully su�cient
for most problems.
The third point may be a small disadvantage, since the projection operators

have all to be stored, which is not necessary in DMRG if only the energy values
are of interest. However, here as well as in DMRG it is possible to expand a

68



7.3. General Variational Method for Proper Orthogonal Decomposition

superblock state to a state of the original system as well as project down a system
state to the superblock if all truncation matrices are stored. The down-projection
of the N -dimensional state is in particular done by iteratively contracting the
m + 1 outermost sites of e.g. Φ with the corresponding block truncation matrix
R. Apart from the memory requirement this is simply a book keeping problem.
It should be noted that only m+1 most relevant states from the POD are used

as target states. Thus only m+ 1 relevant states of the superblock are optimised
although it represents 2m+2 degrees of freedom. This has to be considered when
comparing the results in Chapter 9. However, the POD-DMRG is nevertheless
faster than the full POD, see Section 9.4.
To summarise: Apart from the POD itself, which is a standard technique, no

fundamental changes have to be implemented to get a POD-DMRG method from
the simple toy model DMRG. The assembly of linear operators has to be performed
in any case, only the new method requires several operators. The assembly of the
Ω operator is even simpler, since all links vanish. The reconstruction of full system
states is also possible in DMRG. In contrast to standard DMRG it is mandatory
for the method presented here in order to evaluate the correct initial conditions.

7.3. General Variational Method for Proper

Orthogonal Decomposition

The POD-DMRG method of the previous section is restricted to spatially one-
dimensional systems by construction. For physical applications this is a severe
restriction. This problem is typical for DMRG applications and no complete
solution to it is known until now. However, some approaches to higher spatial
dimensions exist for quantum mechanics [87]. I extend the POD-DMRG method
in a similar way to higher-dimensional systems. The resulting ansatz is best
described as variational PODmethod. It is also very general and even conceptually
simple. For the numbers of spatial dimensions no principial limit exists and also
an application to higher order �nite element methods should be possible.
Since calculations on higher-dimensional systems and their evaluation are much

more demanding I choose a relatively simple model system, the two-dimensional,
incompressible Navier-Stokes equations. The physics of this model is still far from
being trivial and also numerical it is the most complicated system studied in this
thesis. The results are presented in Chapter 10.

7.3.1. Technical Implementation

For the N -dimensional phase space a reduced basis of dimension M is searched
for by a variational method. First, an ansatz basis B0 is chosen. Principally,
this could be a random but orthonormal basis. This is ine�cient but works e.g.
for the di�usion equation. For the Navier-Stokes equations instabilities arise, so
one would start typically with Fourier modes providing a low wavenumber. The
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Figure 7.1.: Illustration of one low wavenumber Fourier mode and a set of delta
states that make up one particular choice of Bnew. The delta states
are not shown normalised here.
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Figure 7.2.: Scheme for choosing the inserted basis Bnew. For the real space
method a.) choosing delta functions, one for each grid node in the
current patch. For the spectral variant in Fourier space b.). Since
then B0 is initialised with the lowest wave number vectors, starting
with an adjacent patch is necessary.
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Figure 7.3.: Flow chart diagram for a single step in the variational method. An
iteration step consists of several sub steps, until the inserted Bnew

together span the whole phase space. Here the reduced entities are
- exemplarily for the Navier Stokes equations - the reduced Laplace
operator ∆̃, the reduced Jacobi operator Ĵ and the reduced initial
condition ω̃0. The choice of these reduced entities has to be adapted
to the equation of interest, if necessary.

ansatz basis B0 is then extended by a test basis Bnew, which should be linearly
independent of B0. In the work of Delgado et al. [87] delta states for a particular
'patch' region in the physical space are chosen but this is not mandatory. As an
example a set of delta states together with a Fourier mode is represented in Fig. 7.1
graphically. The resulting basis B0 ′ := [B0, Bnew] has size N × (M +Mpatch) and
full range. Via an orthonormalisation procedure, e.g. Gram-Schmidt [50], the
N × (M + Mpatch) orthonormal matrix B0 ′′ is obtained. The e�ective system is
now determined by B0 ′′ via Eq.(5.9) - Eq.(5.12). For the following iterarations
the construction of the corresponding matrices Bi ′, Bi ′′ (for the i-th iteration) is
similar. As described in Section 5.2.7 an orthonormal POD basis of the e�ective
system B̃POD is obtained. This in turn is used to calculate the new, improved
ansatz basis

Bi+1 = Bi ′′†B̃POD. (7.5)

The basic step described above is now repeated with di�erent choices for Bnew.
In the case when Bnew is composed of delta states one typically moves the 'patch'
through the physical space. This is also done in [87] and is depicted in Fig. 7.2a.
A single iteration step is completed when the full system has been covered by
the patch, or more generally, when all used matrices Bnew (from all steps of the
iteration) span the whole phase space. To improve the reduction several iterations
can be performed. In Fig. 7.3 a �ow chart of the above proposed method is
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presented.

7.3.2. Spectral variant

The choice of delta states for Bnew in the method above results in a local inhomo-
geneous description of the �eld evolution. This is in particular problematic for the
study of the incompressible Navier Stokes equations as it enforces the occurrence
of instabilities. A smoother approximation is obtained if one chooses Bnew to be
composed of Fourier modes instead. The `patching' occurs then in Fourier space,
see Fig. 7.2b. Since Bi and Bnew are required to be linearly independent, one has
to choose the �rst initialisation accordingly.
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8. Microscopic Models

In this chapter I apply the Schur DMRG method, presented in Section 7.1, to some
simple one-dimensional models that are described by a microscopic dynamics.
Technically these are modelled via the master equation as described in Chapter 4.
The focus here is set on a systematic treatment of in principle nonlinear models.
By the conversion to a high-dimensional linear model one can rely on the known
results for such systems and need not to treat the nonlinearity approximatively.
All models in this section are stochastic already by construction.
For the study of stochastic non-equilibrium systems DMRG has been previously

employed [28, 38, 27]. There the focus was on the steady state. The calculation
of the long living transient states have proved to be a numerically demanding
task. In the following the sorted Schur vectors will be calculated, which give also
a description for the long time transient behaviour, but are more appropriate for
a description as explained in Chapter 5.

8.1. Reaction Di�usion System

This model has been studied previously e.g. by [1, 27, 38] and is also termed the
pair annihilation process. This model can also be found in [106], Section 9.5. In the
literature it has been used as a simple example for a non-equilibrium process. The
physical space is a one-dimensional lattice, whose sites are either free characterised
by 0 or occupied 1. The dynamics is determined by three processes

Annihilation

11 → 00 with rate Ka for nearest neighbours, (8.1)

Di�usion

10 ↔ 01 with rate Kd for nearest neighbours, (8.2)

Source term

0 → 1 with rate Ks. (8.3)

The source process occurs only at the �rst site. This results in a system where
particles are inserted at one boundary of the spatial domain, can di�use around
and can annihilate pairwise. Under this special conditions the model was inves-
tigated e.g. in [38]. Although a mean �eld approximation for the time evolution
of the average density is given in [106] the model has no direct correspondence
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Figure 8.1.: Rescaled average occupation number for various lattice sizes in the
steady state of the reaction di�usion system. The state was nor-
malised according to Eq.(4.2), i.e.

∑
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Figure 8.2.: Rescaled nearest neighbour density correlation for various lattice sizes
in the steady state of the reaction di�usion system. The state was
normalised according to Eq.(4.2), i.e.

∑
Ψi = 1.
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Figure 8.3.: Rescaled average occupation number for various lattice sizes in the
�rst transient state of the reaction di�usion system. The state was
normalised according to Eq.(4.2), i.e.
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Figure 8.4.: Rescaled nearest neighbour density correlation for various lattice sizes
in the �rst transient state of the reaction di�usion system. The state
was normalised according to Eq.(4.2), i.e.

∑
Ψi = 1.
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Figure 8.5.: Rescaled average occupation number for various lattice sizes in the
second transient state of the reaction di�usion system. The state was
normalised according to Eq.(4.2), i.e.
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Figure 8.6.: Rescaled nearest neighbour density correlation for various lattice sizes
in the second transient state of the reaction di�usion system. The
state was normalised according to Eq.(4.2), i.e.

∑
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Figure 8.7.: Rescaled average occupation number for the reaction di�usion system
and the 6-site lattice in the �rst eigenstates. Solid lines: Results from
the Schur-DMRG method, dashed lines: POD modes. The curves
for the steady state lie on top of each other. Note that the transient
states can be interpreted as corrections to the steady state. Therefore
negative values are permitted.

to a PDE. By mapping the model onto a quantum chain analytical results were
obtained in [1].
Without the source term the system tends to an empty lattice for large times for

all initial conditions [27]. It is known that for low spatial dimensions the di�usion
is e�cient for mixing [1].

8.1.1. Numerical Results

The �rst three Schur vectors are calculated for the parameters Ks = 1, Ka = 1
and Kd = 1. To visualise the results, the average density pro�le and the nearest
neighbour density correlation are evaluated.

Normalisation of the Results

For the reaction di�usion model the normalisation condition∑
i

Ψi = 1, (8.4)

is adopted for all states Ψ. This choice accounts for the probabilistic interpretation
of the state vector Ψ. The transient states can be considered as corrections to the
steady state so that these states can have negative components. In principle then
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also the norm
∑

i Ψi can be zero. However, this feature is not present in the calcu-
lations on the reaction di�usion model so one can use the normalisation Eq.(8.4).
Nevertheless the situation

∑
i Ψi = 0 will be encountered in later sections.

Average Density Pro�le

The density pro�les for lattice sizes from 6 to 18 for the steady state are shown
in Fig 8.1. The corresponding phase spaces were 64 to 262144-dimensional. The
pro�le shows fast decrease near the source site, due to the annihilation and a long
tail. The pro�les also show signs for numerical inaccuracies. For the system of
size 6 (with m = 4) the Schur-DMRG procedure is equivalent to a direct real
Schur decomposition. The same data for the �rst transient state is presented in
Fig. 8.3. Note that while the Schur vectors are orthogonal, the density pro�les
for di�erent states are not. Comparing Fig. 8.1 and Fig. 8.3 one sees that the
long time corrections are most important for the region which has a low average
occupation. The second transient state gives a very similar correction to the
density, although all Schur vectors are mutually orthogonal. For larger system
sizes also the correction to the steady state are smaller. The correct eigenstates
are derived from the Schur vectors by diagonalising the e�ective master operator
M as

B†MBV = VM, (8.5)

where B contains the Schur vectors and V is a matrix with normalised columns.
The entries for one column of V are the expansion coe�cients for the eigenstates
in the Schur vectors. The resulting density pro�les are shown in Fig. 8.7.
To evaluate the results a direct simulation of the model has been performed.

In order to calculate an average density, an ensemble of 2000 random (uniformly
distributed) initialised states were evolved under the stochastic time evolution
for 106 time steps. For the resulting time dependent density pro�le a proper
orthogonal decomposition was performed. The results are shown in Fig. 8.7 as
dashed lines. The agreement for the steady state is excellent. For the transient
states this is clearly not the case. This is due to the fact, that the density pro�les
of the Schur vectors as well as of the eigenvectors are not orthogonal. On the
other hand, the POD-modes are by construction orthonormal. The density pro�le
further does not contain all information on the stochastic process. Therefore the
failure of this comparison does not question the Schur DMRG results.

Nearest Neighbour Density Correlation

The nearest neighbour density correlation ci is de�ned by

ci =< nini+1 > − < ni >< ni+1 > , i = 1 : N − 1. (8.6)

This function has been evaluated for lattice sizes from 6 to 18. For the steady state
one observes a negative correlation for all positions, see Fig. 8.2. The absolute
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Figure 8.8.: Dynamics for the deposition model in the surface step picture.

value decreases rapidly with increasing distance to the source site. This is in
analogy to the decrease in the average density. Annihilation should lead to a
negative correlation. For lower average density the in�uence of the annihilation
process also decreases. The corresponding results are shown in Fig. 8.4 for the
�rst transient state. Again the correlations are negative and the behaviour of the
absolute value is very similar to the average density. For the second transient
state the nearest neighbour density correlation becomes positive for intermediate
distances from the source site. At least for the N = 6 lattice this is unlikely
due to numerical inaccuracies since here the Schur DMRG method is equivalent
to a direct Schur decomposition. At the boundary without source the nearest
neighbour density correlation becomes negative with comparatively large absolute
value. This is also in agreement with the average density. In all cases the absolute
value of the correlation decreases with increasing lattice size. The e�ect is small
directly at the source site and increases with the distance.

8.2. Surface Deposition Model

Continuous Equation

The Kardar Parisi Zhang (KPZ) equation is one possible model for surface growth [66].
In [71] a generalisation of the form

∂

∂t
h(x, t) = d∆h(x, t)− ν|∇h(x, t)|β + ξ(x, t) (8.7)

was considered. Here h(x, t) is the surface pro�le, d is the di�usion constant and
ν determines the strength of the nonlinear term. The last term ξ(x, t) is a Gaus-
sian noise with zero mean and variance

√
< ξ2 >. The original KPZ equation is
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Figure 8.9.: Illustration of one particular state of the deposition model, together
with the updating step. Below the same picture for the steady state.
More exactly the steady state is a superposition of the pictured stated
and its updated version.

recovered for β = 2. For
√
< ξ2 > → 0 one obtains the deterministic version.

Note that Eq.(8.7) is invariant under translations. The case β = 1 will be con-
sidered which is also discussed in [71]. There, periodic boundary conditions were
applied. Free boundary conditions are employed in the following. For long times
Eq.(8.7) leads to a steady growth and the surface pro�le becomes �at (on average
for the stochastic version). Discretisations of the KPZ-equations show numerical
instabilities [34] that are not present in the continuous description which can be
mapped onto the di�usion equation by the Hopf-Cole transformation [56] and can
be solved exactly.

Microscopic Model

The microscopic models described here are also derived in [71]. The connection to
the continuous model is merely qualitative. This is no limitation since in practice
microscopic models can be much more realistic than continuous models.

σ-Model

To derive the model for the master equation approach, the space is discretised.
Instead of the height pro�le hi itself the surface steps

σi := hi − hi−1, (8.8)
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8.2. Surface Deposition Model

are considered. Further, the steps are restricted to σi = 0,±1. The dynamics is
de�ned as follows. Particle can adsorb only at the corners of an existing surface
step. This gives for the surface height the following updating rule

hi(t+ 1) = max(hi−1(t), hi(t), hi+1(t)). (8.9)

Within this model the surface heights are integer numbers which allows principally
for an in�nite number of possible values for each lattice site. This is signi�cantly
reduced by considering the surface steps from Eq.(8.8). Their dynamics is given
by the simple rules

− 10 → 0− 1 with rate K, (8.10)

01 → 10 with rate K, (8.11)

−11 → 00 with rate K, (8.12)

i.e. the single site state 1 denotes a particle which can di�use to the left, while the
state −1 describes its anti-particle which can di�use to the right. These processes
are depicted in Fig. 8.8. Also annihilation is possible, while 0 is the neutral, empty
state.

η-Model

In [71] the relation of this model to an even simpler system was proposed. There
each lattice site can assume only two states either a step up, ηi = 1, or a step
down, ηi = −1. Particles can adsorb on this surface only at local minima, i.e. for
two neighbouring sites which have the con�guration ηiηi+1 = (1− 1) a transition
to (−11) occurs with rate K. The corresponding microscopic rule is

1− 1 → −11 with rate K. (8.13)

A graphical illustration is given in Fig. 8.9. This model is fully equivalent to the
deposition model above and will be used in the following. The relation between
the surface steps σi and the new variables ηi is

σi = ηi + ηi+1 − 1. (8.14)

Thus each surface step σ is de�ned by a nearest neighbour pair of the variables
η. A system with N lattice sites in the η-model is equivalent to a system with
N − 1 lattice site in the σ-model. The big advantage of the η-model is that the
dimensionality of the phase space is 2N , instead of 3N−1 for the equivalent σ-model.
In [71] the deterministic model with rate K = 1 and a model with random

updating was considered. The description with a master equation is signi�cantly
more general and keeps track of the whole ensemble of all possible pathways. This
lattice model can also be interpreted di�erently, e.g. as describing a lattice gas, by
interpreting the state 1 as a gas-particle and the state −1 with a vacancy. Con-
sidering periodic boundary conditions, the model has some trivial steady states,
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8. Microscopic Models

e.g. the �lled or empty states do not change under this dynamics. The boundary
conditions are chosen as follows. In the lattice gas picture the microscopic rule
Eq.(8.13) describes the hopping of a gas-particle to the right with rateK. It would
be obvious to add a source term at the left and a sink term at the right boundary
of the lattice. This gives the two additional boundary terms

− 1(· · · ) → 1(· · · ) with rate Kr (8.15)

(· · · )1 → (· · · )− 1 with rate Kr. (8.16)

In the deposition picture for η this corresponds to an adsorption on the interface
of the system and the continuing surface. It is not known whether this is actually
a local minimum, in general it will be not. Therefore an additional rate Kr was
introduced. Since one has no information from outside of the system it would be
reasonable to assume equal probability for a minimum localised at the interface
leading for Kr to

Kr =
K

2
. (8.17)

The master operator for the η-model can be constructed as in the previous
section and contains only the terms for di�usion to the right together with the
boundary terms

M = K
∑
<ij>

DR
ij +KrS1 +KrS†N , (8.18)

with the right di�usion operator DR

DR
ij := aia

†
j − nivi. (8.19)

Here use of the notations and operators from Section 4 is made.
If Eq.(8.17) is satis�ed, the steady state is the state with equal probability for

each microscopic state. In Chapter 4 it was already shown that this state is always
a left eigenstate of every stochastic matrix. For the deposition model it is also a
right eigenstate to the same eigenvalue 0 althoughM is not normal. This is due to
the fact that also the sum of the entries for each row ofM is zero. Thus the same
argument as for the summation state in Chapter 4 holds for the left eigenstate
of M† which is a right eigenstate of M. More quantitatively this is exempli�ed
for the two site system. The source and annihilation operators according to the
deposition model for η are

S1 + S+
2 = kron(S, 112) + kron(112,S) =


−1 1 0 0
0 −2 0 0
1 0 0 1
0 1 0 −1

 . (8.20)

Thus the sums of the rows of S1 + S+
2 are (0,−2, 2, 0). The di�usion operator D1

is

D1 =


0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0

 . (8.21)
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8.2. Surface Deposition Model

The master operator M in the two site case is KD1 + Kr(S1 + S+
2 ). One easily

sees that all row sums vanish exactly in the case Kr = K
2
which is adopted to

obtain free boundary conditions.
Since the probability for a step up is equal to a probability for a step down at

all lattice sites in the steady state, the expectation value for the surface steps is
constant zero. This agrees with the deterministic continuous KPZ-equation whose
solutions also tend to a �at surface for long times.
Further at least for small systems (N=6) the steady state is not degenerated.

As it is known that the longest living transient states have low spatial frequency
and increasing N leads to including small scale phenomena, one can argue that
the non degeneracy of the steady state also holds for large N .

8.2.1. Numerical Results

The Schur DMRG algorithm has been applied to the deposition model described
above, using the η-representation. As the actual phase space vectors are high-
dimensional and not intuitively accessible some observables are considered in the
analysis. In particular have the expectation value of the surface step variable σx

and the correlation function

G(x) := 〈σ0σx〉 (8.22)

have been evaluated.
For very small systems the Schur decomposition can be performed exactly. Here

the system with N = 6 is treated in this way. Choosing m = 4 for the number of
retained degrees of freedom in each subblock, the superblock master operator is
identical to the full master operator.
Systems of the size N = 6 to N = 16 were considered. The corresponding phase

spaces are of dimension 64 to 65536. The degrees of freedom denoted by m were
referred to directly, since also values of m were used which do not correspond to
a particular physical sub-system, i.e. m does not have to be a power of two.

Normalisation of the Results

The entries of a state vector Ψ have a probabilistic interpretation in that each
entry gives the probability to �nd the system in the corresponding microscopic
state. Thus the correct normalisation would be∑

i

Ψi = 1. (8.23)

By construction the entries of the steady state vector are all positive (or zero).
The transient states are Schur vectors and as such orthonormal. However, their
physical interpretation is to be a correction to the steady state vector for long but
�nite times. Therefore they can have negative entries and typically their average∑

i Ψ
trans
i is even zero. The magnitude of the transient states depends only on
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Figure 8.10.: Expectation value for the surface step variable σ for the steady state.

the initial conditions, but the analysis only considers the temporal decay of the
modes. For comparison one has to choose an appropriate normalisation for the
transient states.

To do so a normalisation factor is chosen c so that
∑

i σi = 1 for the �rst
transient state. This is meaningful since it is known that for this state the average
surface step size is always positive. This is not true for the second transient mode.
Therefore c is chosen so that

∑
i |σi| = 1.

Average Surface Step Size

As discussed above the average surface step size for the steady state is zero at all
lattice sites. The numerical results for the steady state are shown in Fig. 8.10.
The deviations are exclusively due to numerical inaccuracies and not due to �nite
size e�ects 1, since the steady state has zero average surface step size for all values
of N . By increasing m these inaccuracies can be reduced. Also increasing the
number of sweeps has a positive e�ect, but if m is chosen too small this cannot
be compensated. The calculations took some seconds up to a few hours. More
extensive calculations were not carried out, since also the working memory was a
limiting factor. Beside e�ciency issues the algorithm can further be improved, e.g.
by using full pivoting in solving the Sylvester equation or the QR-decomposition
in the Schur ordering. These 'canned' routines were used if possible to avoid errors
and get results relatively quickly. The results presented here can only provide a
qualitative study in any case, due to the oversimpli�ed models.

1This is merely an analogy for a �nite size e�ect since increasing lattice size does not directly
correspond to a more detailed description of an ideally in�nite system. However it should be
clear what is meant with the term in this context.
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Figure 8.11.: Expectation value for the correlation function 〈σ0σx〉 of the surface
step variable σ for the steady state.
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Figure 8.12.: Expectation value for the surface step variable σ for the �rst transient
state. The normalisation is chosen so that

∫
σxdx = 1.
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Figure 8.13.: Expectation value for the correlation function 〈σ0σx〉 of the surface
step variable σ for the �rst transient state. The normalisation is
chosen so that

∫
σxdx = 1.
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Figure 8.14.: Expectation value for the surface step variable σ for the second tran-
sient state. The normalisation is chosen so that

∫
|σx|dx = 1.
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Figure 8.15.: Expectation value for the correlation function 〈σ0σx〉 of the surface
step variable σ for the second transient state. The normalisation is
chosen so that

∫
|σx|dx = 1.

The �rst excited state is a symmetric parabola like function. This is reproduced
by all calculations qualitatively, although also here signi�cant noise is present. For
increasing N the average surface step size seems to tend to zero at the boundaries.
This could be attributed to a �nite size e�ect. Although the data are noisy this
interpretation is further supported by the results presented below in Section 8.2.2.
The third excited state is antisymmetric under re�ection of the spatial coordi-

nate. Again one observes signi�cant noise, and also here the states tend to zero at
the boundaries for large N . This is also supported by the results in Section 8.2.2.

Correlation of Surface Steps

The correlation function of the surface steps is de�ned by

G(x) := 〈σ0σx〉 . (8.24)

Some scaling arguments were given in [66] for the in�nite system and β = 1. They
obtain for large correlation length L := 2t and t

G(x, t) :=
1

π
√

2tx
f(x/L), (8.25)

The function f is given by

f(y) =

{
1

1+y
y ≤ 1,

0 else.
(8.26)

The normalisation constant for the states in this analysis are the same as above.
For the steady state a vanishing correlation is obtained for more than two sites
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away from the origin, see Fig 8.11. There the correlation decays linearly. The
inaccuracies are acceptable and Fig. 8.11 supports the interpretation of the nonzero
part as �nite size e�ects. A zero correlation for t → ∞ is also predicted by
Eq.(8.25). For the �rst transient state the correlation shown in Fig 8.13 is larger
over long distances. Near the origin the inaccuracies are signi�cant and allow
no de�nite statement. However, the shape of the correlation decay is di�erent
from those proposed by Eq.(8.11) in particular for the exact N = 6 system. The
correlation decreases even towards the origin for the second excited state, see
Fig 8.13, which is not in agreement with Eq.(8.11). The inaccuracies are even
higher so it cannot be con�rmed that this is due to �nite size e�ects.

8.2.2. POD results

Stochastic Simulation

As for the reaction di�usion model the master equation can also be simulated
directly. Then the surface pro�le h(x, t) and consequently the surface steps σx(t)
underly a stochastic time evolution. The transition rates for this evolution are
determined by the master operator. In this way sample trajectories can be con-
structed. On this basis of course also a proper orthogonal decomposition is possi-
ble. This has been evaluated and the resulting �rst three POD modes are shown
in Fig. 8.16. It can be stated that there is a qualitative agreement of the data.
All modes tend to zero at the boundaries which is not present in the calculations
above, but for increasing N there is a tendency for this e�ect. One reason for
the qualitative agreement here is that for the deposition model the height pro�le
determines the surface steps completely and all information is available for the
POD.

Simulation of the KPZ Equation

Simulating Eq.(8.7) for β = 1 directly and performing a POD gives the modes
presented in Figs. 8.17. As stated above the relation of Eq.(8.7) to the microscopic
models is merely quantitative. It is not known a priori how to relate the param-
eters in Eq.(8.7) to those of the deposition model. Therefore just the qualitative
behaviour can be compared. The nonlinear coe�cient ν has been varied, as for
the dynamics only the ratio of d to ν is relevant upon a rescaling. The simulations
were carried out using a spectral method and explicit Euler integration. The im-
pact of the nonlinear constant ν on the POD models is small. The excited modes
look like the real and imaginary part of the lowest Fourier mode. Considering that
in this case the subspaces spanned by these mode are identical the in�uence of ν
is more or less nonexistent. Comparing the results from this section with those
from the microscopic model one could assume homogeneous Dirichlet boundary
conditions were applied. However this is not true. The explicit simulation of the
master equation allows for a direct visualisation of the surface pro�le evolution.
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Figure 8.16.: Expectation value for the surface step variable obtained from an
explicit simulation of the deposition model and a proper orthogonal
decomposition.

These visualisations show the violation of homogeneous Dirichlet boundary con-
ditions. Graphical illustrations of the stochastic surface pro�le evolution are not
presented here, since they provide no deeper insight to the problem.
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Figure 8.17.: POD modes for a direct simulation of Eq.(8.7). 106 time steps were
carried out for each of 10 di�erent initialisations on a 16 site grid.
The initial conditions were chosen uniformly between 0 and 1. The
nonlinear constant ν was varied. The other parameters were d =
0.05, ∆t = 0.01 and

√
< ξ2 > = 0.01.
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Decomposition DMRG

In the following I apply the proper orthogonal decomposition DMRG, introduced
in Section 7.2, to three one-dimensional model equations, namely the di�usion
equation, the Burgers equation [24] and an nonlinear di�usion equation [17]. For
all applications a �nite di�erencing scheme of second order accuracy, homogeneous
Neumann conditions at the boundaries and the explicit Euler method are chosen
for the calculations. The details on this methods are given in Chapter 3 before.
The boundary conditions as well as the time integration method can be chosen
- more or less - arbitrarily. However, higher order �nite elements in the spatial
discretisation lead to additional interactions between single dofs, i.e. a form of
non-locality, and do thereby complicate the problem. For the reduced system
size always four dofs were retained. This is mainly for convenience and easy
comparison. The success of the method does not depend strongly on this choice.

As explained above, the quality of a reduction is measured by the L2-error, see
Eq.(5.15). It has the same units as the �elds Φ which are not further speci�ed.
The time units are also arbitrary.

The error calculations in the following are performed in a separate program
which gets the optimised bases from the various methods as input. Thus the
simulation time do not have to coincide with the length of the POD simulations.
Further, the random seed for statistical initial conditions was modi�ed for calcu-
lation of the POD and for calculation of the error unless otherwise stated.

9.1. The Linear Di�usion Equation

The di�usion equation describes di�usive transport of a scalar �eld, e.g. heat
transport, in a medium. For homogeneous media it is given by

∂

∂t
Φ(x, t) = d∆Φ(x, t) x ∈ [0, 1] (9.1)

with the di�usion constant d. Homogeneous Neumann conditions are assumed for
x = 0 and x = 1, the spatial discretisation step size is ∆x = 1

N
. The explicit Euler

method gives for the discrete time evolution with time step size ht the following
discrete equation

Φ̃(x̃, tn+1) = Φ̃(x̃, tn) + dht∆N Φ̃( ˜x, tn) (9.2)
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Figure 9.1.: Reduced di�usion equation L2-error E(t) for the analytical reduction
(Fourier Modes) the full POD and DMRG POD after initialisation
and several iterations, statistical initial condition, N=40, ht = 0.001
and d = 0.05. The error is expressed in units of Φ, for the time axis
arbitrary units are employed. Note that for clarity not all data points
are shown as symbols.

where Φ̃ and x̃ are N -dimensional vectors, indicated by ·̃. Thus the linear part L
in Eq.(5.2) is given by

L = dht∆N . (9.3)

Thus the only nonzero contribution according to Eq.(5.2) is L ≡ ∆N . The eigen-
states of L are the sine/cosine or Fourier modes whose contributions decay over
time with characteristic life-time inversely proportional to the frequency/energy.
Standard DMRG can be viewed as an approximate diagonalisation method for
an linear operator. Therefore it is very e�ective to �nd the optimal reduction
determined by the eigenstates, see Appendix B, in the linear case. In contrast to
the diagonalisation, POD as well as our method depends on the initial conditions
for the sample trajectories over which the averaging is carried out. Both POD
approaches cannot exploit the linearity of the evolution equation. This a�ects
the quality of the results for linear problems compared to diagonalisation-based
methods. Nevertheless, restriction to a few sample trajectories can also be an
advantage, since sometimes the interest lies on a certain region in phase space.
However, for the di�usion equation normally distributed initial conditions are cho-
sen, i.e. the �eld Φ0(xi) is normally distributed. This is then also true for the
Fourier modes. By this choice e�ectively the whole phase space will be sampled
for a high enough number of realizations. This is also due to the invariance of
Eq.(9.1) under multiplication with a constant factor. For the POD it is important
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Figure 9.2.: Reduced di�usion equation L2-error E(t), identical statistical initiali-
sation. The error is expressed in units of Φ, for the time axis arbitrary
units are employed. Note that for clarity not all data points are shown
as symbols.

to integrate over su�ciently long times. For short times the state moves in the
direction of the highest frequency modes which are decaying most rapidly. Thus
POD would give the wrong relevant modes.

The POD is in fact not a very appropriate tool to reduce the whole phase space
of the di�usion equation. In Fig. 9.1 the error of the reduced �elds Φ̂ is plotted in
dependence of time. There the time step was dt = 10−3 and the di�usion constant
d = 0.05. The spatial resolution was 40 lattice sites within the interval [0, 1]. In
each POD step as well as for the error calculation the ensemble average has been
evaluated considering 50 realizations of the initial conditions. From this result one
can state several things. First, all POD-based methods show a remaining error in
the long time limit. Second, the initialisation steps of DMRG POD gives already
reasonable results. An improvement due to the iteration is present, too. Third,
the new algorithm is able to compute the optimal reduction with even higher
accuracy than the full POD. The last point is only paradox on the �rst glance.
The inaccuracy of the full POD is in this case in�uenced by the statistical initial
conditions, in order to sample the full phase space. Within the algorithm, much
more initial conditions are taken into account as the superblock POD is performed
repeatedly. This leads to a better statistics. In Fig. 9.2 the same results are shown
but using always the same initialisation for calculating all PODs (but of course
not for the error calculation). It is clear that in this case, the new method has no
advantage over the full POD anymore. On the other hand, the results from the
proposed algorithm are not worse than that from the full system POD, which is

93



9. Proper Orthogonal Decomposition DMRG

0 20 40 60 80 100
10

−3

10
−2

10
−1

Time t

S
pa

tia
lly

 A
ve

ra
ge

d 
L2 −

E
rr

or

 

 

Initialisation
1.Iteration
Full POD
Fourier Modes

Figure 9.3.: Reduced Burgers equation L2-error E(t), deterministic initial condi-
tion, N=40, ht = 0.02, d = 0.01 and ν = 0.1. The error is expressed
in units of Φ, for the time axis arbitrary units are employed. Note
that for clarity not all data points are shown as symbols.

not clear a priori.

9.2. The Burgers Equation

As one nonlinear example the Burgers equation [24] is considered. It describes a
di�usive as well as a convective transport of a scalar �eld Φ and is given by

∂

∂t
Φ = d∆Φ + ν(Φ∇)Φ. (9.4)

This equation is similar to the linear di�usion equation Eq.(9.1) but with an ad-
ditional term ν(Φ∇)Φ, describing the convection. This term is quadratic in the
�eld Φ and can be discretised in the form of Q in Eq.(5.2). For one space dimen-
sion, the ∇ operator is simply the spatial derivative. This has been discretised by
the centred di�erencing scheme from Eq.(3.32). The term (Φ∇) is also known as
convective derivative. In 1D the discretisation is given by multiplying the rows of
Dx,N with the components of Φ̃:

(Φ∇)N,i,j = Φ̃iDx,N,i,j, (9.5)

here i, j indicate the component of the matrix/vector. Choosing

Qi,j,k := νDx,N,j,kδij (9.6)
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Figure 9.4.: Reduced Burgers equation L2-error E(t), deterministic initial condi-
tion, N=100, ht = 0.005, d = 0.01 and ν = 0.1. The inset shows the
begin of the error evolution enlarged. The error is expressed in units
of Φ, for the time axis arbitrary units are employed. Note that for
clarity not all data points are shown as symbols.

gives a discretisation of the convection term, as de�ned in Eq.(9.5)∑
j,k

Qi,j,kΦ̃jΦ̃k = ν
∑
j,k

Dx,N,j,kδijΦ̃jΦ̃k

= ν
∑

k

Φ̃iDx,N,i,kΦ̃k = ν (Φ∇)N Φ̃. (9.7)

To begin with, deterministic initial condition for the calculation of all PODs
are chosen. In particular these are of the form

Φ(t = 0, xi) = e−50(xi−1)2 xi = 0 . . . 1. (9.8)

Fig. 9.3 and 9.4 show the results for the L2-error of the evolution. Here two
spatial resolutions, i.e. N = 40 and N = 100 nodes were used. The results are
very similar. In contrast to the previous calculations the simulation runs for the
error calculation are longer than the POD runs. The vertical line indicates the
time interval of the POD runs. Here one has to state that the Fourier mode
reduction is not optimal, which is not surprising as a nonlinear system and a very
particular region of phase space were considered. Further, one sees that the error
curves show a very pronounced minimum after which the approximation seemingly
breaks down. The corresponding time point lies well after the POD time-span.
These minima correspond to the fact that after the passing of the wavefront the
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Initialisation Fourier-modesIteration

Full System Full POD

Figure 9.5.: Examples for the �eld evolution, Burgers equation, deterministic ini-
tial condition, N = 40, ht = 0.02, d = 0.01 and ν = 0.1.

pro�le becomes �at. The approximations do not reproduce the average value
accurately, but show a spurious drift. The passing of the reduced (�at) states by
the original (�at) state creates the minima in Fig. 9.3. To get some qualitative
insight also the time evolution of the �eld for deterministic initial conditions,
N = 40, ht = 0.02, d = 0.01 and ν = 0.1 is exemplarily shown in Fig. 9.5 for the
complete system and the reduced dynamics determined by a full POD, Fourier
modes, the POD-DMRG initialisation step and one iteration step. All reduced
systems show artifacts, although they are less pronounced for the POD-DMRG
results.
It is remarkable that the proposed method yields better results than the POD

within the POD time, even for the initialisation. Here it should be recalled that
the POD is optimal only for reconstructing the states used in the calculation. As
stated above, the reconstruction of the dynamics that created these states, is a
di�erent thing as can be directly seen from the results.
The analysis of the Burgers equation is continued by considering statistical

initial conditions. In contrast to the calculations for the di�usion equation there
are only three randomly sampled parameters in the initial condition. It is given
by a peak of various height H, widthW and position X. In particular it is de�ned
by the following equation

Φ(t = 0, xi) = He−50W (xi−X)2 . (9.9)

Here, H and W are normally distributed whereas X is uniformly distributed.
The results are shown in Fig. 9.6. For all methods the error reaches a plateau

very quickly. The performance of the full system POD is slightly better than that
of the DMRG POD. However, the errors from the new approach are of the same
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Figure 9.6.: Reduced Burgers equation L2-error E(t), statistical initial condition,
N=20, ht = 0.01, d = 0.05 and ν = 0.1. The error is expressed in
units of Φ, for the time axis arbitrary units are employed. Note that
for clarity not all data points are shown as symbols.

order as from the full POD and one magnitude better than that of the Fourier-
mode based reduction. Also the iteration brings an improvement which reaches
saturation already after the �rst step.

For deterministic initial conditions the evolution of the error is not monotonic
in contrast to the case of statistical initial conditions. This is due to the fact
that deterministic initial conditions can be considered more e�ectively by the
POD. The statistical initial conditions were drawn from a three-dimensional, see
Eq.(9.9) or two-dimensional, see Eq.(9.16), subspace which is reproduced poorly by
a reduction to a four-dimensional space, which has to consider the time evolution
also.

9.3. Nonlinear Di�usion

Here a di�usion equation with a nonlinearity that resembles the action-potential
part of the one-dimensional FitzHugh-Nagumo(FN) [46, 127] equation is consid-
ered. In particular the dynamics is de�ned by

∂

∂t
Φ = ∆Φ− Φ(1− Φ)(a− Φ) (9.10)

where a is a constant. Eq.(9.10) has stable equilibria at Φ ≡ 0 and Φ ≡ 1 and an
instable equilibrium at Φ ≡ a.
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Figure 9.7.: Reduced nonlinear di�usion equation L2-error E(t), statistical initial
condition, N=30, ht = 0.03, d = 0.01 and a = 0.5. The error is
expressed in units of Φ, for the time axis arbitrary units are employed.
Note that for clarity not all data points are shown as symbols.
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Figure 9.8.: Computing time for various system sizes and approaches, obtained
by the reduced Burgers equation, statistical initial condition, N=40,
ht = 0.005, d = 0.01 and ν = 0.1.
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9.4. Computational Load

The nonlinear term is cubic in the �eld. It can be rewritten as

− Φ(1− Φ)(a− Φ) = −Φ3 + (1 + a)Φ2 − aΦ. (9.11)

Here the powers of Φ are de�ned component wise. The cubic part −Φ3, e.g. is
discretised by

Ki,j,k,l = −δijδikδil, (9.12)

since ∑
j,k,l

(−δijδikδil) Φ̃jΦ̃kΦ̃l = −Φ̃i
3
. (9.13)

Similarly, the quadratic part becomes

Qi,j,k = (1 + a) δijδik, (9.14)

and the linear part together with the contribution from the di�usive term is

Li,j = dht∆N,i,j − aδij. (9.15)

As initial conditions a front with uniformly distributed position X and normally
distributed height H was chosen:

Φ(t = 0, xi) =
H

2
tanh((xi −X)10). (9.16)

Under this conditions all methods were able to reproduce well the dynamics,
see Fig. 9.7. Surprisingly the full POD method gave poorer results than even the
Fourier-mode based reduction. This is to a lower extent also true for the initialisa-
tion run of the DMRG POD. The iteration lead to an improvement although the
second iteration gave similar results as the initialisation. Further iterations again
increase the accuracy, so no general statement can be made. By applying the iter-
ation procedure repeatedly a decay in the quality of the result was observed after
a fast saturation. This can be likely attributed to the accumulation of numerical
errors.

9.4. Computational Load

For all calculation steps, e.g. diagonalisation, Gram-Schmidt orthonormalisation
etc., standard algorithms were applied [50, 96]. The focus was more on a concise
assessment of the new algorithm instead of an optimal solution of the toy problems.
For the diagonalisation of the covariance matrix, e.g. �rst a Householder-tri-
diagonalisation was performed [50], which is an O(N3) algorithm. The calculation
of the POD, either for the complete system or for the superblock system was
performed with the same routine. This comprised the simulation as well as the
diagonalisation.
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full system POD DMRG POD
O(N3) + S(N) NNiO(M) + S(M)

Table 9.1.: Naive estimation of the computational load, full system size N , su-
perblock size M , number of iterations Ni.

For a POD the simulation of the system in the time-span of interest is addition-
ally necessary. Within the proposed approach the simulation and diagonalisation
is performed only on the superblock system. A comparison of the results from
Fig. 9.3 and 9.4 suggests, that the necessary number of iterations (sweeps) does
not depend on the full system size N . If one denotes the superblock size with
M and the number of iterations with Ni a naive estimation of the computational
load is given in Table 9.4.
For a more quantitative analysis the time necessary to perform a full POD

comprised of simulation and diagonalisation was measured. Then the same was
done for the initialisation of the DMRG POD algorithm including all simulation
and diagonalisation steps until the superblock system described the full system of
dimensionality N , compare Fig. 6.6, and a �rst reduced basis had been calculated.
Also the computing time for one further iteration step was measured in the same
way as for the initialisation. The computing time is constant for all iteration steps
so further data was extrapolated. The underlying equation was the deterministic
initialised Burgers equation although the choice for an equation a�ects the com-
putational load only marginally. As parameters were chosen ht = 0.005, d = 0.01
and ν = 0.1. Fig. 9.8 shows a logarithmic plot of the results. The DMRG POD
approach shows a lower amount of computing time for the initialisation step. For
higher system size this holds also for the iterations. Generally the scaling with N
is favourable. Note, that here only the DMRG method should be assessed. For
this purpose public assessable standard algorithms are su�cient, although much
more e�ective methods could be possible. All calculations were performed on an
Intel Dual Core machine, using a single CPU.
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10. General Variational Method

for Proper Orthogonal

Decomposition

Big whirls have little whirls,

which feed on their velocity.

Little whirls have lesser whirls,

and so on to viscosity.

When little whirls meet little whirls,

they show a strong a�ection;

elope, or form a bigger whirl,

and so on by advection.

L.R. Richardson (1925), R. R. Trieling

(1999)1

In the previous chapter the results for the POD-DMRG approach were pre-
sented. Although the assessable models are too restricted for practical use the
results were good enough to encourage further progress. An algorithm to avoid
restriction to (quasi) one-dimensional systems has been presented already in Sec-
tion 7.3. I will now apply this algorithm to a problem which is nontrivial but
well-investigated, namely the �ow of a two-dimensional incompressible �uid.

10.1. Flow Problems

A �uid or gas at standard conditions (see Section 4) consists of a huge number of
molecules that obey some equations of motions. Due to the number of molecules
of order 1023 it is practically impossible to solve these equations. Further this
knowledge is mostly even of no interest. Nevertheless, a systematic derivation of
e�ective equations is far from trivial. A possible approach is to start at a mi-
croscopic model and use statistical methods to obtain a macroscopic description.
A prominent example is the Boltzmann equation which determines the molecu-
lar velocity distribution functions [29, 57, 19]. Therefore it describes the �uid
at a level which is more detailed than a pure macroscopic level. On the other

1 The rhyme of L.R. Richardson is based on a version of De Morgan (1872): Great �eas
have little �eas upon their backs to bite 'em,// And little �eas have lesser �eas, and so ad
in�nitum.// And the great �eas themselves, in turn, have greater �eas to go on;// While
these again have greater still, and greater still, and so on (from A budget of Paradoxes,
London:Longmans, Green, p.377). This itself is paraphrased from J.Swift: So, naturalists
observe, a �ea// Has smaller �eas that on him prey;// And these have smaller still to bite
'em;// And so proceed ad in�nitum.
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hand it does not describe individual particles and relies on the applicability of
statistical models for the microscopic details which can also include thermal �uc-
tuations [42]. This ansatz is thus also termed mesoscopic. From the molecular
velocity distribution functions all macroscopic variables can be calculated. Due
to the complexity of the Boltzmann equation numerical methods are usually nec-
essary to �nd a solution. In this �eld much progress has been made by lattice
Boltzmann methods [109, 31, 110]. It is also possible to derive e�ective equations
for macroscopic variables. Via the Chapman-Enskog expansion it is e.g. possi-
ble to derive the Euler equation [102] or the Navier Stokes equations [57]. The
Boltzmann equation is more general and gives also information on transport co-
e�cients, as e.g. the di�usion coe�cient, that occur as empiric parameter in the
Navier Stokes equation.

10.1.1. Navier Stokes Equations and 2D Flows

The Navier Stokes equations constitute a general framework for the description
of the macroscopic variables of a �uid and have thus great practical importance.
They are also assumed to describe adequately the phenomenon of turbulence since
the average vortex frequency and the Kolmogorov length, i.e. the scale at which
friction dominates, are signi�cantly higher than the molecular scales of collision
frequency and mean free path length. Up to the present day turbulence is not
understood completely. In order to study coherent structures that emerge in tur-
bulent �ow also the proper orthogonal decomposition was employed [107]. For
numerical analyses turbulence is often included by some e�ective models since the
resolution of the numerical description is always limited [43]. For the description
of turbulence statistical approaches had been proposed [118, 112]. One problem
there is the closure problem. In order to calculate correlations, higher order corre-
lations have to be known [72]. To resolve this usually some assumptions are made
at some point [60, 124, 113]. Numerical analyses were performed with the advances
of computer technology. First incompressible two-dimensional �ows were consid-
ered, e.g. [70, 78]. Finite di�erencing schemes that consider some symmetries of
the equations were proposed by Arakawa [5], later spectral methods [52] became
popular. It should be noted that two-dimensional turbulence di�ers signi�cantly
from its three-dimensional counterpart. In two-dimensional �ows e.g. the e�ect
of vortex stretching is absent. In three dimensions, if a vortex is stretched, the
rotating �uid is moved to the vortex line. Conservation of angular momentum
leads to an increase of angular velocity. In two dimensions the vorticity is always
perpendicular to the plane of motion so that it can be described by a quasi scalar.
Due to this property energy is transported from smaller scales to larger scales.
This is e�ectively an example for self-organisation [58, 117]. Among other e�ects,
vortex dipoles show a behaviour qualitatively similar to elementary particles [116].
Of fundamental importance for the self-organisation is the process of merging of
two vortices with equal sign. This has been studied e.g. in [90]. Two-dimensional
�ows can be observed e.g. in strati�ed �uids. One important example is the at-
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mosphere [41].2 There also additional forces due to the rotating frame of reference
as the Coriolis force have to be considered [62, 97]. Also variational methods
have been applied to the two-dimensional Euler-�ow for steady state problems [7].
The unforced, incompressible viscous 2D Navier Stokes equation will be used as a
testing ground for the method.
To recapitulate, the Navier Stokes equations read

ρ
∂v

∂t
= µ∇2v − ρ(v∇)v −∇p, (10.1)

∂ρ

∂t
+∇ (ρv) = 0. (10.2)

Here ρ is the density and µ the dynamic �uid viscosity. The �rst term in Eq.(10.1)
describing the viscosity and can be interpreted as a 'di�usion of momentum' while
the second term in Eq.(10.1) is the convective derivative which conserves energy.
For incompressible �ow ρ is constant and Eq.(10.2) reduces to

∇v = 0. (10.3)

The Navier Stokes equations can be rescaled to compare �ows on di�erent length
L0 and velocity scales v0. Using the rescaled variables v̂ = v

v0
, p̂ = p

v2
0ρ

this results

in

v0
v0

L0

∂v̂
∂t̂

= v0µ
L2

0ρ
∇̂2v̂ − v2

0

L0
(v̂∇̂)v̂ − v2

0ρ

L0ρ
∇̂p̂

⇔ ∂v̂
∂t̂

= µ
v0L0ρ

∇̂2v̂ − (v̂∇̂)v̂ − ∇̂p̂. (10.4)

Note that each spatial derivative produces a factor 1
L0

and the time derivative a

factor v0

L0
. The factor Re := v0L0ρ

µ
is known as Reynolds number. It describes the

ratio of inertial forces to viscous forces and will be a relevant parameter in the
present studies. In the following the ·̂ will be omitted and the notation ν := 1

Re
will be used.
The fundamental theorem of vector calculus3, states that under some general

conditions4 any vector �eld can be expressed as a sum of a irrotational (curl-free)
and a divergence-free vector �eld [6, 2]. Further, any divergence-free vector �eld
v can be written as the curl of an other vector �eld ωωω as

v = ∇×ωωω. (10.5)

Here ωωω is a vector potential. In case of the incompressible Navier Stokes equations
the irrotational component vanishes due to the continuity equation, Eq.(10.2)/(10.3).
Then Eq.(10.5) determines the vorticity ωωω. Dissipation is only due to the �rst

2Of the earth or more general of planets.
3Also known as Helmholtz's theorem.
4In a weak formulation, the vector �eld is only required to be de�ned on a bounded, simply-
connected domain which boundary has to be Lipschitz-continuous.
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term on the right hand side of Eq.(10.1). In incompressible, inviscid �ows the
vorticity ω = ||ωωω||2 and the kinetic energy E = ||1

2
v2||2 are conserved [69]. In

two-dimensional �ows also the enstrophy V = 1
2
ωωω2 is conserved [69].

Taking the curl and noting that the vorticity ωωω is orthogonal to the plane onto
which v is restricted one gets the vorticity-stream function formulation:

∂ω

∂t
= ν∇2ω − ∂ω

∂x

∂ψ

∂y
+
∂ω

∂y

∂ψ

∂x
, (10.6)

where ω is the pseudo-scalar vorticity, i.e. the modulus of the vorticity ωωω and
ψ the stream function. The vorticity and the stream function are related via the
Poisson equation

∇2ψ = −ω. (10.7)

Periodic boundary conditions in both spatial dimensions were used in the fol-
lowing. The spatial discretisation is done by a spectral method [52], see also
Section 3.5.4, i.e. a �nite set of Fourier modes serve as ansatz-functions for the
discretised solution. The time integration is performed by a third order sti�y
stable operator splitting method as proposed in [67].

10.2. Model Problem

To compare the reduction methods the process of the merging of two adjacent
vortices is used as example. For the non-viscous case this process has been studied
e.g. in [90]. The initial conditions used in the following are a superposition of two
equal signed vortices, each given by

ω±(x, y) = 1
2
ς0

(
1− tanh

√(
x− 1

2

)2
+
(
y ± dh − 1

2

)2)
,

x, y ∈ [0, 1], (10.8)

where ς0 denotes the initial maximal vortex intensity which is always set ς0 = 1
and 2dh the initial distance of the vortex centres which is always dh = 0.15. Thus
the initial condition is ω0 := ω(t0, x, y) = ω+(x, y) + ω−(x, y). This is also an
example for deterministic initial conditions.
In the case of the incompressible �ow the ordinary di�erential equation (ODE)

system resulting from the spatial discretisation of Eq.(10.6) and Eq.(10.7) can be
written as

∂

∂t
ω̂i = ∆i,jω̂j + Ji,j,kω̂jψ̂k (10.9)

∆i,jψ̂j = ω̂i. (10.10)

Here ·̂ denotes discrete variables and use of Einsteins sum convention is made. If
the basis B is already determined, the equations for the reduced dynamics have
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the same form but with the e�ective operators and initial conditions

∆̃i,j := Bαi∆αβBβj (10.11)

J̃i,j,k := BαiJαβγBβjBγk (10.12)

ω̃0i := Bαiω0α (10.13)

10.3. Numerical Integration

Finite resolution tends to lead to an instability of the numerical solution schemes
for the Navier-Stokes equations. In [90] this is mitigated by an arti�cial hyper-
viscosity term. A spectral discretisation and a third order operator-splitting
scheme as proposed in [67] is used. The accuracy of all reduction methods has
shown to decrease signi�cantly for larger Reynolds numbers. Therefore these
studies are restricted to comparatively low Reynolds numbers of Re ≤ 800. The
integration schemes themselves are described in the previous sections.

10.4. Numerical Results

The �ow described above was analysed for lattice sizes of typically 48 × 48 and
up to 72 × 72. This resolution is considerably low for studies of such types of
problems. Nevertheless the small system size makes the calculations fast and
�exible and also mitigates the need to optimise the e�ciency of the algorithms
considered here. This also reduces possible error sources.

Note, that always the spectral variant of the variational POD algorithm was
used, unless otherwise stated explicitely. This was done by reason of the higher
stability of the spectral variant.

Snapshots of the Flow

To give a qualitative idea of the merging process a series of snapshots of the
vorticity �eld for Reynolds number Re = 400 were included. For lower values of
Re the in�uence of friction increases, leading to a faster decrease of the vorticity
and a 'less interesting' dynamics. Fig. 10.1 and Fig. 10.2 show the time evolution
of the vorticity in three-dimensional plots, contour plots and the corresponding
velocity �eld. During the simulation both vortices merge after encircling each
other for about 2

3
rotations leaving a large vortex with some additional structure.

In the following the absolute or L2-error of the reduced and full simulation is
considered. Although this is an appropriate measurefor the quality of a reduction,
the L2-norm of the full solution is also relevant as it allows for a comparison with
the L2-error. For this reason the L2-norm of the full solution is shown in Fig. 10.3
for Reynolds numbers from Re = 100 to Re = 800.
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Figure 10.1.: Vorticity for the 48×48 system at Re = 400 after 1, 100, 200,300, 400
and 500 time steps as three-dimensional plot (left column), as con-
tour plot (middle column) and the corresponding vector �eld (right
column).
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Figure 10.2.: Vorticity for the 48× 48 system at Re = 400 after 600, 700 and 800
time steps as three-dimensional plot (left column), as contour plot
(middle column) and the corresponding vector �eld (right column).
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Figure 10.3.: L2-norm of the full solution for several values of the Reynolds num-
ber.

107



10. General Variational Method for Proper Orthogonal Decomposition

10.4.1. Comparing the Accuracy

E�ect of the Reynolds Number

To analyse the accuracy the L2-error of the di�erence between the reduced �eld
and the �eld using all degrees of freedom is calculated, as in the previous section.
Doing the same for a basis of POD modes or Fourier modes one has a direct
measure to compare these methods. Fig. 10.4 shows the results for a 48 × 48
lattice, a time step of ∆t = 0.25 and a Reynolds number range from 100 to 800.
For the variational algorithm the number of retained states M as well as the
number of trial states Mpatch was M = 6, Mpatch = 6. The simulation time was
so long that a �nal state with a single broad vortex was reached, compare also
Fig. 10.1 and Fig. 10.2.

A decrease in performance is observed for increasing Reynolds number for all
methods. For the Fourier mode reduction this is most systematical. For low
Reynolds number the Fourier mode reduction is also superior to the other methods.
The full POD reduction gives very similar performance for Reynolds numbers Re
≥ 400.

The variational POD shows a slight advantage for Reynolds numbers of ap-
proximately Re = 200 to Re = 400. Up to Reynolds numbers of Re = 600 it is
comparable with the full POD.

The Fourier modes show a very large error for small times. There, most of
the non-di�usive dynamics happens. The initial conditions are also very localised
and therfore only poorly reproduced by a few Fourier modes. For long times the
vorticity has a very broad maximum which is well reproduced by the low frequency
Fourier modes. As in the previous chapter for the POD-DMRG method one �nds
the variational POD even superior to the full POD in a narrow Reynolds number
domain. One remarkable feature of these results is the relative poor performance
of both POD methods compared to the simple Fourier mode reduction. this is due
to the fact that for the investigated �ow the long time behaviour is dominated by
a broad maximum. This state is also reached by the merging of two vortices much
broader than in the correct initial conditions. The Fourier mode reduced dynamics
describes qualitatively such a process and neglects �ne details. On the other hand,
the considerations of detail of the transient states in both POD reductions leads
to a poorer performance in reconstructing the long time behaviour.

E�ects of the Sweeps

The aim of the sweeps is to increase the accuracy of the reduced model. The
corresponding error calculations are shown in Fig. 10.5. It can be stated that the
desired result is obtained only for the Reynolds number Re = 400 which lies also
in the domain where the variational POD performs best. In the other cases the
sweeps may even decrease the accuracy. This is clearly undesirable, however the
source of this behaviour is yet unknown.
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Figure 10.4.: L2-error for Re = 100 to Re = 800 , three iteration runs, ∆t = 0.25,
ν = 0.5, M = 6, Mpatch = 6 and 800 time steps. Fourier mode
reduction (top), full POD reduction (middle) and variational POD
reduction (bottom).

109



10. General Variational Method for Proper Orthogonal Decomposition

0 100 200 300 400 500 600 700 800
10

−2

10
−1

10
0

10
1

Re=200

Time steps

L
2 −

E
rr

or

 

 

Variational POD 1 Iteration
Variational POD 2 Iteration
Variational POD 3 Iteration
POD
Fourier modes

0 100 200 300 400 500 600 700 800
10

−2

10
−1

10
0

10
1

Re=600

Time steps

L
2 −

E
rr

or

 

 

Variational POD 1 Iteration
Variational POD 2 Iteration
Variational POD 3 Iteration
POD
Fourier modes

0 100 200 300 400 500 600 700 800
10

−2

10
−1

10
0

10
1

Re=400

Time steps

L
2 −

E
rr

or

 

 

Variational POD 1 Iteration
Variational POD 2 Iteration
Variational POD 3 Iteration
POD
Fourier modes

0 100 200 300 400 500 600 700 800
10

−2

10
−1

10
0

10
1

Re=800

Time steps

L
2 −

E
rr

or

 

 

Variational POD 1 Iteration
Variational POD 2 Iteration
Variational POD 3 Iteration
POD
Fourier modes

Figure 10.5.: The L2-error for the 48× 48-dimensional system with Re = 200 (left
top), Re = 400 (right top), Re = 600 (left bottom) and Re = 800
(right bottom). The time step size was ht = 0.25 and the number of
retained and trial states M = Mpatch = 6.
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Figure 10.6.: L2-error for Re = 150, comparing M = 6, Mpatch = 6, M = 8,
Mpatch = 8 and M = 12, Mpatch = 12 for the numbers of retained
and trial states. Three iteration runs with the spectral variant of
the variational POD method were used. ht = 0.25, ν = 0.5 and 3200
time steps.

E�ects of Di�erent Numbers of Retained States

The number of retained states M determines the dimensionality of the reduced
system and a�ects therefore the accuracy of the reduced model directly. The
number of trial statesMpatch was chosen equal toM . To compare the performance
of the di�erent modes the system was simulated using M × M = M2 modes.
The L2-error to the full simulation was calculated. The result for the Reynolds
number Re = 150 is shown in Fig. 10.6. Only a marginal reduction of the error
was observed for increasing M for the full POD method. This would be expected
if already a few POD modes are su�cient to describe the dynamics e�ciently.
However, the performance of the Fourier mode basis is for signi�cant time spans
superior to that of the POD modes. For the Fourier mode reduction itself one
observes a very systematic increase of the accuracy with M . Therfore one can
conclude that the Fourier modes of the lowest 12 × 12 wave numbers5 are all
relevant for the dynamics. Especially the initial conditions are very localised so
that many Fourier modes are necessary for a good approximation. The variational
POD modes show a tendency to a poorer performance than the full POD results.
This occurs approximately in the time domain in which the POD results are
also superior to the Fourier mode reduction. Further a decrease of accuracy was
observed when increasing M from M = 6 to M = 8. This is surprising and
currently no complete explanation is available. The choice ofM andMpatch a�ects

5As the spatial domain, the corresponding Fourier space is two-dimensional.
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Figure 10.7.: Comparison of the L2-error for a 48× 48 and a 72× 72 spatial grid.
The numbers of retained and trial states are M = 6, Mpatch = 6, the
Reynolds number Re = 400 and the number of time steps ht = 0.25.
A single iteration run with 800 time steps were performed.

directly the calculation of the modes for the variational POD method in contrast
to the Fourier or full POD modes. Additional modes in the variational POD
method can then in principle contribute to numerical artifacts instead of increasing
the quality of the approximation. However, the expected increase of accuracy is
observed when increasing M further to M = 12.

E�ect of the Spatial Resolution

The resolution of the lattice clearly determines the accuracy of the unreduced
system in describing the partial di�erential equation of interest. To assess the
impact of this parameter on the quality of the reduction calculations on the usual
48× 48 grid and on a 72× 72 grid were performed. Both lattice sizes are integer
multiples of 6 × 6 and in both cases M = 6, Mpatch = 6 was chosen. By this
choice the reduced systems have in all cases the same dimensionality. The other
parameters were set exemplarily to Re = 400, ht = 0.25 and the number of time
steps to 800. A single iteration run was performed. The results are shown in
Fig. 10.7. The e�ect of increasing the lattice resolution on the Fourier mode and
the POD mode reduction is very small. In case of the Fourier modes this is on
the one hand due to the fact that the same Fourier modes (albeit with a higher
resolution) were used. On the other hand the higher resolution does not lead to
a qualitative di�erent behaviour of the unreduced system. Thus one can assume
that the resolution is high enough to give a good approximation to the continuous
description. This assumption is supported by the very small increase of accuracy
for the POD reduction. The results for the variational POD method are also
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Figure 10.8.: Comparison of the realspace method with the spectral variant of the
variational POD method. The L2-error for the 48× 48-dimensional
system with Re = 400 (left top), Re = 500 (right top), Re = 600
(left bottom) and Re = 800 (right bottom) is presented. The time
step size was ht = 0.25 and the number of retained and trial states
M = Mpatch = 6.

similar, but the maximal error is higher for the increased resolution. For later
times after time step 298 the calculations for the lower resolution yield a higher
error. Qualitatively, it seems as an additional hump in the error pro�le for the
low resolution is absent in the high resolution result. The mechanisms leading to
these di�erences are not directly accessible. Nevertheless the reason for the larger
dependence on the spatial resolution for the variational POD method compared
to a Fourier or POD mode reduction is the di�erence in the choice for the trial
states. As stated before, the patches have the same size in both calculations.
Consequently, are smaller fraction of the set of all Fourier modes are sampled in
each iteration step for a higher spatial resolution. Summarising, one can state
that although a small dependence on the spatial resolution for the variational
POD method exists the results are still comparable.

Variational POD versus the Spectral Variant

Comparing the performance of both versions of the variational POD one observes
that the realspace variant is superior for Re = 400 but leads to higher errors than
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Figure 10.9.: Relative error for Re=400, M = 6, Mpatch = 6, three iteration runs
using the spectral variant of the variational POD method. ht = 0.25
and ν = 0.5.

the other method for higher Reynolds numbers. For Re = 500 still the maximum
error is smaller as for the other approaches. The reason for this behaviour is not
yet clear. For Re = 200 the realspace algorithm even did not converge. Thus the
spectral version of the variational POD reduction seems to be preferable to the
realspace variant. The spectral variant is also successful in a broader Reynolds
number domain, see Fig. 10.4.

Evaluation of the Relative Error

While the L2-error is certainly a relevant quality measure, also the relative error

Erel(t) :=
|| (11− P ) Φ(t)||2

||Φ(t)||2
, (10.14)

can be of interest. For this reason Erel(t) was calculated exemplarily for the
Reynolds number Re = 400. The other parameters were M = 6, Mpatch = 6,
ht = 0.25 and ν = 0.5. The results are presented in Fig. 10.9. Apart from a short
time at the beginning of the evolution, the relative error for the Fourier mode
reduction is lower than for the other approaches. Also the maximal relative error
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is smaller for the Fourier mode reduction than for the POD approaches and the
Fourier mode reduction shows the smallest variation of the relative error. For later
times after time step 153 the variational POD reduction yields a lower error than
the full POD reduction. In this time domain the alignment of the errors for the
di�erent methods is most counter-intuitive. However, until now the reason for this
behaviour is unknown. Also the maximal relative error is lower for the variational
POD reduction compared to the full POD reduction. At the beginning of the
time evolution the results for the variational POD reduction show the strongest
increase. The peak in the error for the Fourier mode reduction at t = 0 is absent
considering the relative error.

Visualisation of the POD and V-POD Modes

The POD modes themselves can visualise some qualitative aspects of the �ow.
Therefore the most relevant modes for the full POD and the variational POD are
shown in Fig. 10.10, Fig. 10.11, Fig. 10.12 and Fig. 10.13. For the �rst example
with Re = 200 one sees a qualitative agreement with the POD method although
the variational POD modes seem to be degraded in some sense. The second
example show the results of the realspace method for Re = 400 which was clearly
superior to the full POD. Subjectively these modes seem to be more inaccurate
than the POD modes. From this one can state that the quality of the reduced
basis is not intuitively accessible from the modes themselves.

Visualisation of the Error Evolution

The error for a reduced model is time dependent. This time evolution di�ers for
the di�erent reduction methods. To give some insight in the qualitative behaviour
of the L2-error the time evolution of the error is presented exemplarily in snapshots
for the Reynolds number Re = 400 in Fig. 10.14. The error for the variational
POD method is less smooth and less symmetric as for the full POD method.
Beside this feature both POD methods yield similar results. In particular for the
initial conditions the error is very small. In contrast to this the initial error for
the Fourier mode reduction is extremely high. Due to the time evolution the error
decreases signi�cantly for the Fourier mode reduction below a level of the POD
methods. Further the error is less localised for the Fourier mode reduction than
for the POD methods.
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Figure 10.10.: First �ve POD modes for Re = 200, M = 8, Mpatch = 8, three
iteration runs using the spectral variant of the variational POD
method with ht = 0.25, ν = 0.5 and 3200 time steps. Variational
POD modes (left column) versus full POD modes (right column).
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Figure 10.11.: POD modes 4 and 5 for Re = 200, M = 8, Mpatch = 8, three
iteration runs using the spectral variant of the variational POD
method with ht = 0.25, ν = 0.5 and 3200 time steps. Variational
POD modes (left column) versus full POD modes (right column).
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Figure 10.12.: First �ve POD modes for Re = 400, M = 6, Mpatch = 6, three
iteration runs using the real space variant of the variational POD
method with ht = 0.25, ν = 0.5 and 800 time steps. Variational
POD modes (left column) versus full POD modes (right column).
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Figure 10.13.: POD modes 4 and 5 for Re = 400, M = 6, Mpatch = 6, three
iteration runs using the real space variant of the variational POD
method with ht = 0.25, ν = 0.5 and 800 time steps. Variational
POD modes (left column) versus full POD modes (right column).
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Figure 10.14.: Error for the 48 × 48 system at Re = 400 after 1, 200, 400, 600
and 800 time steps for the spectral variant of the variational POD
method (left column), the full POD reduction (middle column) and
the Fourier mode reduction (right row). Three iterations with ∆t =
0.25, M = 6, Mpatch = 6.
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11. Conclusions

In this work I have pursued several approaches to apply the concepts of density
matrix renormalisation to nonlinear dynamical systems. The aim in all appli-
cations was to �nd a 'small', reduced model system with low-dimensional phase
space, to describe the 'relevant' dynamics of the complete system in an e�cient
way. The reduced models considered here were exclusively obtained via a linear
projection of the original system. The relevance of a subspace was determined by
an error norm based on the L2-norm.
The examples for the nonlinear dynamical systems range from stochastic mod-

els based on microscopic processes in Chapter 8 to nonlinear partial di�erential
equations in Chapter 9 and 3. While the �rst problem type requires a DMRG
approach related to many body DMRG in the formulation at hand, the latter
two are treated by schemes based on single particle DMRG. In the following the
results of each method are assessed separately.

11.1. Schur DMRG

The stochastic models in the master equation formulation, presented in Chap-
ter 4 were the starting point for this thesis. This approach to dynamical systems,
de�ned essentially by cellular automat rules, is accepted and results in this �eld
exist [77, 106]. DMRG is one way to deal with the high-dimensionality of the
resulting master operator. The systems that are assessable with this method are
one-dimensional (or quasi one-dimensional). Therefore this ansatz is more or less
restricted to fundamental research. The change to Schur vectors instead of eigen-
vectors, solves some problems e.g. the spurious emergence of nonzero imaginary
parts also for real eigenvalues and inaccuracies due to non-orthonormality. Once
the number of retained states is chosen su�ciently high, the calculation is stable
under the sweeping steps. A higher number of target states also requires a higher
number of retained states. Since the use of �nite precision arithmetics is unavoid-
able also the Schur DMRG su�ers from numerical inaccuracies. However, it is still
possible to obtain meaningful results also for the transient states. It is certainly
possible to increase the e�ciency and accuracy of the existing algorithm. The
real Schur decomposition was performed using the Gnu scienti�c library, where it
was recently added as a new feature. Improvement of the implementations in the
future are likely. Also the QR-decomposition in the Schur ordering was performed
without pivoting, an aspect that can decrease the accuracy. As a new approach
has been proposed also the implementation might not be optimal until now.
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11. Conclusions

Pros • The method allows to asses the steady state and also the long time
behaviour of CA-based 'nonlinear' dynamical systems.

• It completely avoids the problem of complex arithmetics and provides
an orthonormal basis for the relevant subspace which is well de�ned.

Cons • The systems which can be considered are very simpli�ed, nevertheless
they can contain nontrivial physics and their study might give answers
to physical questions. Whether DMRG is the right ansatz to study such
systems is not clear. For the solution of practical physical problems that
arise in technical applications it seems not to be suitable.

Future Prospects

The Schur DMRG method provides a working approach to non-hermitian systems.
Due to the restriction to one-dimensional systems the future of this ansatz depends
on whether physical relevant questions on systems of this class arise. A description
of PDEs within this framework, proposed by J.Rodriguez-Laguna1, seems to be
problematic.

11.2. POD DMRG

The POD DMRG algorithm is a crossover of two comparatively remote �elds of
numerical analysis. One advantage is that it is very general. The new approach
also makes practically no assumption on the equations that de�ne the dynamics.
In this work a demonstration of the applicability has been given for this new al-
gorithm to systems described by (1+1)-dimensional nonlinear partial di�erential
equations, namely the Burgers equation and a nonlinear di�usion equation of Fis-
cher type. It is possible to calculate an approximate POD without ever simulating
the full system. The method has been tested for linear systems where its perfor-
mance was even higher than the full system POD results but considerable worse
than the optimal reduction. Several nonlinear systems have been considered. For
the Burgers equation the results of the full POD and the new algorithm were
comparable and both signi�cantly better than a Fourier-mode based reduction.
Summarising one can state that the POD-DMRG method yields good results at a
reduced computational e�ort compared to the full POD which is a commonly ac-
cepted approach. As for the Schur DMRG method the class of assessable systems
is very restricted which limits the practical use of the method.

Pros • The algorithm can be applied to a very general class of systems.

• It is also faster than standard POD without reducing the quality of the
result.

1private communications
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• The method is iterative, the progress can be monitored during the
calculation.

Cons • Again the restriction to one-dimensional systems limits the practical
use signi�cantly.

• Reduced operators are not sparse. This increases the memory con-
sumption.

Future Prospects

Practical applications of the POD-DMRG approach are limited by the restriction
to spatially one-dimensional systems. However, there might be some niches where
the use of POD-DMRG is advantageous. Nevertheless the main intention for this
ansatz was to test the feasibility of a spatial blocking.

11.3. Variational POD

Encouraged from the results of the POD-DMRG algorithm I have tried to extend
the approach to higher-dimensional systems. As model system the 2D-Navier-
Stokes equations have been chosen. These are numerically more demanding and
describe a more realistic system. The algorithm itself is a variational form of the
proper orthogonal decomposition. One important point is that it can be applied
also to higher-dimensional systems without signi�cant modi�cations. A more
physical, three-dimensional system, e.g. the 3D-Navier-Stokes equations, has not
been considered because then a signi�cant amount of time and work would have
been necessary to simulate this model and analyse the results. With our means
it is nevertheless only possible to evaluate the situation for a particular problem.
Success for one problem does not guarantee success for a di�erent system. However
it demonstrates the viability of the approach in principle.
The performance of the variational POD was found to be comparable to the

full POD. The real space variant has showed an unexplained divergence for low
Reynolds numbers Re ≤ 200. For a narrow Reynolds number range the realspace
as well as the spectral variant of the variational POD exhibit a performance clearly
superior to the full POD and the Fourier mode reduction. Generally, the perfor-
mance of all POD methods were in many cases inferior to the much simpler Fourier
mode reduction. This is a hint that the 2D-Navier-Stokes equations with the con-
sidered initial conditions are not an optimal system for a reduction approach. As
expected, the spectral variant has shown a higher numerical stability as the re-
alspace variant of the variational POD. Nevertheless, in some cases the accuracy of
the realspace variant was even higher than that of the spectral variant. In contrast
to Chapter 9 no data on the computational load for the variational POD method
was given and compared to the full POD. This has a simple reason. The new
approach requires the explicit storing and processing of dense (but comparatively
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small) matrices and tensors. Calculating a full POD with the same algorithms
(for simulating the system e.g.) would be very ine�cient and would result in an
unrealistic high load for the full POD. If e�ciency is an issue, the full POD and
the variational POD have very di�erent requirements. Since the variational POD
is new method, comparison of the computational load would depend too much on
the actual implementation, rather than on the methods themselves.

Pros • The variational POD can also be applied to a very general class of
systems.

• In addition higher-dimensional systems can be analysed. This includes
also �nite element descriptions.

• Also the variational POD is iterative so that the progress can be mon-
itored during the calculation.

Cons • Reduced operators are not sparse. This increases the memory con-
sumption.

• The e�ciency of the implementation needs to be increased.

Future Prospects

From all three new methods, the variational POD is most suited for further studies.
Due to its generality and simple construction it is likely to �nd some applications.
It could also be useful for the understanding of nonlinear PDEs. Extensions of the
methods are possible, e.g. the use of �nite element methods or, for �ow problems,
an application to Lattice-Boltzmann methods. A more �exible handling of the
degrees of freedom, e.g. would be useful and could also give some insights in the
underlying processes. Due to the large class of accessible systems, a systematic
study, where the approach is employed most pro�tably has to be performed.
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Appendix A.

Finite Numerical Precision

The mathematical descriptions of the models discussed in this work involve �elds
or vector spaces over �elds. Typically the �eld is R or C which are in�nite (even
uncountable) sets. For a numerical treatment only a �nite description is possible.
In contemporary computers these descriptions are based on a binary representa-
tion, i.e. a �nite sequence of binary digits as (b1, . . . , bN), bi = 0/1. Depending on
the purpose some formats are common.

Fixed-Point Representation

Integer numbers are usually represented by the format int. This is an example for
a �xed-point representation. The number is given in this representation simply
by an expansion as

(b1, . . . , bN) → K = (−1)bN

N−1∑
i=1

bi2
i. (A.1)

On the machines used in this work N = 32 bit are used for an int, although
this can di�er for other systems. Some modi�cations are common as short, long,
unsigned integer, di�ering in the number of bits or whether an bit is used for
the sign. According to Eq.(A.1) integer numbers from −232 + 1 to 232 − 1 can be
represented. As long as this range is not left, arithmetics for int are exact. Clearly
operations as e.g. division has to be rede�ned.

Floating-Point Representation

Real numbers are usually treated in a di�erent way. Commonly used are �oating
point representations. This is given by a sign bit sss and two integers (see above)
M , eee so that the actual real number to be stored is given by

sssMBeee−E. (A.2)

Here M is called the mantissa and eee the exponent. The additional numbers B,
the basis (typically B = 2) and E the exponent bias, are machine dependent and
are not stored explicitely. The representation Eq.(A.2) is not unique. Decreasing
the exponent and shifting the bit pattern of M to the left does not change the
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�oat double
B 2 2

Number of base-B digits in M 24 53
ln εM

lnB -23 -52
ln ε−M
lnB -24 -53

Number of bits in the exponent 8 11
Smallest power of B consistent

with requiring no leading zeros in M -126 -1022
Smallest power of B that causes over�ow 128 1024

εM 1.19209e-07 2.22045e-16
ε−M 5.96046e-08 1.11022e-16

Smallest usable �oating value 1.17549e-38 2.22507e-308
Largest usable �oating value 3.40282e+38 1.79769e+308

Table A.1.: Floating number representation on the Intel machine. The rounding
was compliant with IEEE standard [3].

represented number. Usually one chooses M and eee so that M is shifted to the
left maximally (this is termed to be the normalised representation). Then the bit
pattern of M always starts with a 1 which need not to be stored explicitely giving
an extra signi�cant bit.

Unlike integer numbers, real numbers are not represented exactly. Further the
arithmetics is not exact, even if the processed numbers have been represented
exactly. The machine precision εM is the smallest number which can be added
to 1.0 still yielding a result 6= 1.0. An alternative de�nition, denoted here by
ε−M , is the smallest number which can be subtracted to 1.0 still yielding a result
≤ 1.0. We use the format double which was initially developed from so called single
precision (usually 32 bit) to achieve greater accuracy. It is a 64 bit representation
and the machine precision for double-varibles was εM = 2.22045e − 16 1 on our
machines2. Due to the advances in hardware technology this standard has more
or less replaced the single precision format. The value of εM depends on the
number of bits available for M . The smallest and largest number representable
depends on the number of bits available for eee. To summarise, in most cases
the �nite precision operations yield the correct results with some small round-
o� error. Some operations can lead to completely di�erent results. An example
is the subtraction of two almost equal numbers. The result is de�ned by the
few bits di�ering, resulting in a low accuracy. Also adding up a large number of
summands can lead to problems. Once the ratio of sum and summand has reached
approximately εM the result is not a�ected by the summing up any more.

1This value was obtained by the routine machar from the numerical recipes [96]. A complete
list is given in Table A.1.

2The calculations were actually performed on a Dell Intel Dual Core and a Extensa 2900Lmi
notebook with Pentium M processor.
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Stability

While the rounding errors cannot be avoided completely also some methods can
magnify errors and lead to completely wrong results. One example is the explicit
Euler method which becomes unstable for large integration steps. If the stability
criterion Eq.(3.20) is violated but still valid for the lower part of the spectrum
of the generator of evolution, the integration is formally still correct provided the
solution does not contain contributions from the problematic eigenvectors. For
the Laplace operator this is even reasonable for smooth solutions. However, in
practice �nite accuracy always produces such contributions. Thus the calculation
is incorrect although with arbitrary accuracy the method would yield the correct
result.
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Appendix B.

Optimal Reduction of Linear

Systems

For completeness, we assess in the following the error of the reduced evolution for
the linear case. For the optimal reduction we require a minimal L2-error for the
reduced �eld with respect to the unreduced evolution. The full time evolution in
the N dimensional phase space is generated by L as

Φ(t) = e(t−t0)LΦ(t0). (B.1)

The explicit Euler algorithm approximates this by

Φ(t) ≈ (11 + ∆tL) Φ(t0). (B.2)

We assume that all eigenvalues of L are negative or zero. A positive eigenvalue
would lead to an unbounded exponential growth in Eq.(B.1) which is unphysical.
Considering only linear projections the reduction is de�ned by the operator P
which is the orthogonal projection to the relevant subspace Range(P ). P can be
constructed from an orthonormal basis (ONB) of this space. Equivalently, it can
be de�ned via the ONB (namely C) of Kern(P ) so that P = 11− CC†.
The reduced time evolution becomes

Φ̂(t) = e(t−t0)PLPPΦ(t0) = e(t−t0)L̂Φ̂(t0), (B.3)

since after each (in�nitesimal) time step the components within the irrelevant
subspace, i.e. Kern(P ) are projected out. For a general P the eigenvectors of L̂
are not the same as for L, but known eigenvectors of L̂ are always the column
vectors of C.

B.1. Long Time Optimised Projection

If we assume that the eigenvalues of L are ≤ 0, for long times t � 1 the time
evolution operators etL̂, etL become the projectors onto the kernels of L or L̂,
respectively. In the eigenbasis ψeig

i it is simply

ψeig
i etLψeig

j = δije
tλi . (B.4)
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The product of the reduced evolution operator etPLP and P converges for long
times to the projector onto Kern(PLP ) ∩ Range(P ). More explicitly this is

lim
t→∞

etL = 11|Kern(L) , (B.5)

lim
t→∞

etPLP = 11|Kern(PLP ) . (B.6)

This gives for the error

E∞ = lim
t→∞

EΦ(t) = 11|Kern(PLP ) P − 11|Kern(L) . (B.7)

In the long time limit we can obtain a zero error for all initial conditions if we
have

Kern(PLP ) ∩ Range(P ) ≡ Kern(L). (B.8)

This is achieved by requiring

Kern(L) ⊂ Range(P ), (B.9)

and Range(P ) L-invariant, (B.10)

as we show now.
Consider a φ ∈ Range(P ). Then Pφ = φ and due to the L-invariance of

Range(P ) it is Lφ ∈ Range(P ) resulting in PLPφ = PLφ = Lφ. This gives for
P with Range(P ) being L-invariant

Kern(PLP ) ∩ Range(P ) = Kern(L) ∩ Range(P ). (B.11)

Eq.(B.8) can be retrieved from Eq.(B.11) just by requiring condition (B.9). Thus,
in the long time limit Eq.(B.7) becomes identically zero.

B.2. Short Time Optimised Projection

For short times we consider here the reduction from a N -dimensional to a (N−1)-
dimensional system.For further reductions the results can be applied by iteration.
The projector P becomes then Pij = 11ij − cicj where c is the removed state. In
order to minimise the error for the short time evolution measured by the L2-norm
we have to minimise

Es(t) = ||etLφ− ePLPPφ||2 (B.12)

≈ || (11 + tL− P − PLP )φ||2 = ||Eφ||2.

Here, we have already used an expansion in powers of t and truncated after the
�rst order terms.
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B.2. Short Time Optimised Projection

Since we have no information on φ, we minimise Eq.(B.12) by using the Frobe-
nius norm | · |F of the error operator E. The Frobenius norm is consistent with
the L2-norm [50], i.e.

||Ax||2 ≤ |A|F ||x||2 ∀A ∈ Rn×n, x ∈ Rn. (B.13)

By inserting P = 11− C we get for the error operator

E = 11− P + t(L− (11− C)L(11− C))

= C + t(L− L+ LC + CL− CLC)

= C + t(LC + CL− CLC). (B.14)

We assume L to be symmetric, i.e. Lij = Lji. Thus L has an orthonormal eigen-
basis {ϕiα}α=1...N where the columns are the eigenvectors of L. The eigenvalues
are λα and the matrix elements of the error operator E are decomposed in this
basis as

Eij =
∑
αβ

ϕαiEαβϕβi

= Cij + t
∑

n

(
LinCnj + CinLnj −

∑
m

CinLnmCmj

)
(B.15)

with

Cij =
∑
αβ

ϕαicαcβϕβj, (B.16)∑
mn

CinLnmCmj =
∑

αβnm

ϕαicαcnLnmcmcδϕβj, (B.17)∑
n

LinCnj =
∑
αβn

ϕαnLincαcβϕβj, (B.18)∑
n

CinLnj =
∑
αβn

ϕαicαcβLnjϕβn. (B.19)

We use the orthogonality of the ϕα, i.e.∑
i

ϕαiϕβi = δαβ =
∑

i

ϕiαϕiβ, (B.20)

and the de�nition of the eigenvalues λα∑
j

Lijϕjα = λαϕiα. (B.21)

In the eigenbasis the removed degree of freedom c can be written as c̃ with com-
ponents

c̃i =
∑

α

ϕαicα , cβ =
∑
iα

ϕαiϕβicα =
∑

i

ϕβic̃i. (B.22)
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The average of L in the removed state c, is

〈L〉c :=
∑
nm

cnLnmcm =
∑

nmij

ϕnic̃iLnmϕmj c̃j

=
∑
nij

ϕnic̃iλjϕnj c̃j =
∑
i

c̃2iλi.

The matrix elements from Eq.s(B.16-B.19) become

Cij = c̃ic̃j, (B.23)∑
mn

CinLnmCmj = c̃i 〈L〉c c̃j, (B.24)∑
n

LinCnj =
∑
αn

ϕαiLαncnc̃j

=
∑

n

λiϕnicnc̃j

= λic̃ic̃j, (B.25)∑
n

CinLnj =
∑

n

c̃icnλjϕnj

= c̃ic̃jλj. (B.26)

Thus for the matrix elements of the error operator we obtain

Eij = c̃ic̃j (1 + t (λi + λj − 〈L〉c)) . (B.27)

We minimise the Frobenius norm of E given by

|E|F =
∑
ij

|Eij|2 =
∑
ij

c̃2i c̃
2
j (1 + t (λi + λj − 〈L〉c))

2 (B.28)

for a normalised c, i.e.

1 = ||c||22 =
∑

i

c2i =
∑

i

c̃2i . (B.29)

Since E is a linear operator it follows that ||Ex||2 = ||x||2||Ex̂||2 with x = x̂||x||2.
Without any restriction to ||x||2 the zero vector would always minimise ||Ex||2.
Furthermore, each lower boundK for ||x||2 will lead to the same x̂ with ||x̂||2 = K.
This is not true for the general nonlinear case as in [37].
Incorporating this condition |E|F reduces to

|E|2F = 1 + 2t 〈L〉c + 2t 〈L〉c − 2t 〈L〉c + t2 〈L〉2c
+ 2t2 〈L〉2c − 2t2 〈L〉2c + t2 〈L〉2c − 2t2 〈L〉2c + t2 〈L〉2c
= 1 + 2t 〈L〉c + t2 〈L〉2c = (1 + t 〈L〉c)

2

⇒ |E|F = |1 + t 〈L〉c| . (B.30)

Consequently, in order to minimise |E|F we have to minimise 〈L〉c.
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The minimisation itself is performed using Lagrangian multipliers for the con-
straint Eq.(B.29). The necessary condition for a minimum is

0 =
∂

∂c̃k

(
〈L〉c + η

(
1− ||c||22

))
=

∂

∂c̃k

∑
i

(
c̃2iλi + η

(
1− c̃2i

))
(B.31)

= 2c̃k (λk − η) .

This is true if either c̃k = 0 or η = λk. The last equation can only be true for a
single value of λk. We denote the nonzero component as c̃k′ 6= 0 and c̃k = δkk′ c̃k′ .
From equation B.29 it follows further that c̃k = δkk′ .
Inserting this in Eq.(B.30) we obtain

|E|F =

∣∣∣∣∣1 + t
∑

k

c̃2kλk

∣∣∣∣∣ = |1 + tλk′| . (B.32)

For small t, i.e. t < |λi|−1 ∀i, this is clearly minimal if we choose λk′ to be the
smallest eigenvalue.
Further iterations, e.g. n times, of selecting the irrelevant states remove suc-

cessively the eigenstates corresponding to the n lowest eigenvalues. This is due to
the fact that the spaces Kern(C) ≡ Range(P ) and Range(C) ≡ Kern(P ) are by
construction L-invariant. This also makes the iteration unambiguous, a feature
that is in general not present for nonlinear problems.
Note also that since λi ≤ 0 the reduced states always belong to Range(L) as

long as any remaining eigenvalue, i.e. an eigenvalue of Pn−1LPn−1 is nonzero.
Here, Pn−1 results from the previous reduction step. In this case the error always
vanishes for long times.
Summarising, the optimal short time projection leads to results that are not

only consistent with the long time accuracy requirements, but even include them.
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Appendix C.

Ordering of the Schur

Decomposition

In the master equation approach in chapter 4 and 8 we make use of the ordered
real Schur decomposition. For implementation we have chosen a public assessable
algorithm for a real Schur decomposition. This is part of the currently (August
2007) latest release of the Gnu scienti�c library (gsl), i.e. release 1.9 [53, 47].
This algorithm does not perform a sorting of the diagonal blocks in the resulting
Schur Matrix. To perform this we have used a modi�ed version of the algorithm
of Brandts [20]. Some previous work on this problem includes [8, 30, 89, 40].

As explained above the real Schur form S has a block structure. This structure
has to be respected during the sorting. As we already start from a Schur decompo-
sition we have access to all eigenvalues of S. From this information a list of block
exchanges is determined. In the original algorithm this is implemented in form of
the so called bubble sort algorithm. The bubble sort algorithm is a comparison
based sorting algorithm. It was used to calculate an a priori list of swaps of adja-
cent blocks. Although bubble sort is simple, it is not very e�cient and requires in
the worst case O(N2) steps. Also exchanging only neighbouring blocks, instead
of exchanging directly the blocks at original and �nal position, leads to a signi�-
cant amount of extra computational e�ort and additional numerical inaccuracies.
Therefore we use the direct exchange.

For our purposes also no complete sorting is necessary. We are interested only
in m target states. Thus we only have to �nd the m most relevant blocks and
exchange them with the leading blocks. As mentioned above the exchange is done
directly. For our purposes also the so called partial Schur decomposition [20],
computing only the Schur vectors of interest, i.e. the target vectors, could be
used. Since by now the real Schur decomposition is included in tested packages
as the gsl, we have made no use of the partial Schur decomposition.

In the original algorithm the sorting of the complex eigenvalues was determined
by the distance to a complex target value (or its complex conjugated, whatever is
lower). In contrast, the sorting criterion for our purposes is the real part of the
eigenvalue.

The basic component of the sorting algorithms is the exchange of two diago-
nal blocks which we will describe now. Exchanging two blocks a�ects only the
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Figure C.1.: The rows and columns relevant for an exchange of two diagonal
blocks, here as example for two 2 × 2 blocks. The blocks do not
have to be of same size.

columns and rows of S that intersect the particular blocks as indicated in Fig. C.1.
Therefore we can consider an e�ective matrix A composed of the blocks itself and
their interactions, i.e. all entries of S that are indicated by circles in Fig. C.1. As
S is of real Schur form this is also true for A, i.e.

A =

(
A11 A12

0 A22

)
. (C.1)

The two diagonal blocks are p×p and q×q matrices, p, q = 1, 2, respectively. The
diagonal blocks do not have to be of equal size. We assume that A11 and A22 have
no common eigenvalues, which makes also sense in our context. First we have to
solve the Sylvester equation for the p× q matrix X,

A11X −XA22 = A12. (C.2)

Then we employ the QR-decomposition to �nd an orthonormal p+q×p+q matrix
Q and an invertible matrix R which satis�es

Q†
(
−X
11q

)
=

(
R
0

)
. (C.3)

With the orthonormal matrix Q we can now represent A in the desired form, i.e.

A =

(
A22 Ã12

0 A11

)
. (C.4)

The QR decomposition was calculated by standard gsl-routines. For numerical
stability some of the issues in [20] were considered. First, the 2 × 2 diagonal
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blocks were kept in standardised form, i.e.(
γ µ
−µ γ

)
. (C.5)

The solution of the Sylvester equation was also done by standard gsl-routines with
partial pivoting. In [20] complete pivoting was used. The rescaling of the right
hand side of Eq.(C.2) from [20] was kept.
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Appendix D.

Mathematical Addenda

Linear algebra is the ideal framework to describe and manipulate �nite-dimensional
systems, as are exclusively considered in this work. In this Appendix some basic
facts from the �eld of linear algebra are reproduced. This serves to determine the
notation and conventions, as well as to recall some mathematical relations. Beside
from providing the language, linear algebra contains a set of powerful tools that
are also employed to obtain the reduction in the various approaches pursued in
this thesis.

Again, no proofs of the statements below are given. If necessary these can be
found in [45, 50].

D.1. Basic notation

D.1.1. Fields

Let K be a set together with two binary operations, addition and multiplication

+ : K ×K → K, (a, b) 7→ a+ b, (D.1)

· : K ×K → K, (a, b) 7→ a · b. (D.2)
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For a �eld the followings axioms hold:

Closure under + and · :
a, b ∈ K ⇒ a+ b ∈ K ∧ ab := a · b ∈ K, (D.3)

Associativity of + :

a+ (b+ c) = (a+ b) + c ∀a, b, c ∈ K, (D.4)

Associativity of · :
a · (b · c) = (a · b) · c ∀a, b, c ∈ K, (D.5)

Commutativity of + :

a+ b = b+ a ∀a, b ∈ K, (D.6)

Commutativity of · :
a · b = b · a ∀a, b ∈ K, (D.7)

Distributivity of · over + :

a · (b+ c) = (a · b) + (a · c) ∀a, b, c ∈ K, (D.8)

Existence of an additive neutral element :

∃ 0 ∈ K, with a+ 0 = a ∀ a ∈ K, (D.9)

Existence of an additive inverse element :

∀ a ∈ K ∃ − a ∈ K, with a+ (−a) = 0, (D.10)

Existence of a multiplicative neutral element :

∃ 1 ∈ K, with a · 1 = a ∀ a ∈ K, (D.11)

Existence of a multiplicative inverse element :

∀ a ∈ K\0 ∃ a−1 ∈ K, with a · (a−1) = 0. (D.12)

This is an abstract concept. For our purposes we will always consider the real or
complex numbers, R and C respectively.

D.1.2. Vectors

D.2. Vector Space Axioms

A basic concept in linear algebra is that of a vector space. A vector space V over a
�eld K, see Section D.1.1, is a set together with two binary operations, the vector
addition

V × V → V : v + w = u ∈ V ∀v, w ∈ V (D.13)

and the scalar multiplication

K × V → V : λv = u ∈ V ∀λ ∈ K, v ∈ V. (D.14)
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D.2. Vector Space Axioms

The vector space is closed under these operations which satisfy the following
axioms:

Associativity :

u+ (v + w) = (u+ v) + w ∀u, v, w ∈ V, (D.15)

Commutativity :

v + w = w + v ∀v, w ∈ V, (D.16)

Additive neutral element :

∃ 0 ∈ V, with v + 0 = v ∀ v ∈ V, (D.17)

Additive inverse element :

∀ v ∈ V ∃ − v ∈ V, with v + (−v) = 0, (D.18)

Distributivity of scalar multiplication over vector addition :

λ(v + w) = λv + λw ∀ λ ∈ K, v ∈ V, (D.19)

Distributivity of scalar multiplication over �eld addition :

(λ+ µ)v = λv + µv ∀ λ, µ ∈ K, v ∈ V, (D.20)

Compatibility of scalar multiplication with �eld multiplication :

λ(µv) = (λµ)v ∀ λ, µ ∈ K, v ∈ V, (D.21)

Neutral element for scalar multiplication :

∃ 1 ∈ K with 1v = v. (D.22)

We will treat only a special type of vector spaces, in particular only real or complex
vector spaces. The vectors themselves are always �nite tuples of numbers, i.e.

V = RN or V = CN

V 3 v = (v1, . . . , vN) . (D.23)

The dimensionality of such a vector space is then N . In many cases1 bold fonts
are used to represent vectors, its components are typically denoted by indices.

D.2.1. Scalar product, Norm

A scalar product is a mapping of V × V → K, 〈u, v〉 = α. For real vector spaces
it is symmetric, i.e. 〈u, v〉 = 〈v, u〉 and linear in both variables.
The p-norm of a vector v is de�ned by

||v||p :=
1

N
p

√√√√ N∑
i=1

|vi|p. (D.24)

Most relevant is the 2-norm or Euclidean norm describing the geometric length of
a vector. It is also invariant under orthogonal or unitary transforms which is not
true for general p. Also the 1-norm will be of interest later.

1But not exclusively, the particular nature of a variable will become clear within the context.

141



Appendix D. Mathematical Addenda

D.2.2. Basis

For a vector space of dimensionality N there exists always a set of N vectors
{v1, . . . , vN} that span the vector space, i.e. every vector u ∈ V can be written as
linear combination

u =
N∑

i=1

αiv
i. (D.25)

It is required that no vi can be written as linear combination of the other vj,
j 6= i, i.e. the set is mutual linearly independent. The set {v1, . . . , vN} =: B is
then termed a basis. The coe�cients αi are unambiguous and can be interpreted
as components of a vector, the representation of u in the basis B. The choice
of B is ambiguous. For practical purposes orthonormal bases are convenient, i.e.
〈vi, vj〉 = δij. Each basis can be brought to this form, e.g. by the Gram-Schmidt
procedure. Interpreting B columnwise as a matrix, this matrix is orthogonal, i.e.
B†B = BB† = 11, in the notation described below.
The canonical basis is given by 11ij = δij.

D.2.3. Subspaces

In a vector space V of dimension N a subspace W of dimension M ≤ N can be
de�ned by selecting M linearly independent vectors wi that span W , i.e.

W =

{
M∑
i=1

νiwi, νi ∈ K

}
=: span(w1, . . . , wM). (D.26)

The orthogonal complement W⊥ is de�ned by

W⊥ := {v ∈ V | < v,w >= 0, ∀w ∈ W} . (D.27)

It is also a subspace and if B is an orthonormal basis for V so that the �rst M
columns of B constitute an ONB of W , then the columns M + 1 to N of B form
an ONB of W⊥. This construction is always possible.
W is a vector space of its own and embedded into V .

D.2.4. Linear Transformations, Matrixes

A linear transformation L between two vector spaces V,W is a mapping V → W
with obeys the superposition principle

L(λv + µu) = λLv + µLu ∈ W ∀λ, µ ∈ K, v, u ∈ V. (D.28)

This property makes linear systems much more simple to treat than nonlinear
systems. It is clear however, that nonlinearity is the generic case. For �nite-
dimensional vector spaces every linear transformation can be expressed by a ma-
trix. A linear transformation and its corresponding matrix will be used synony-
mously. The column vectors of L are the image vectors of the canonical basis vec-
tors under L. The identity is represented by the identity or unit matrix 11ij = δij.
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D.2. Vector Space Axioms

Application of a linear transformation to a vector v corresponds to multiplying
L with v. Successive linear transformation L1 ◦ L2 are described by the matrix
product L1L2 de�ned by

(L1L2)ij =
∑

α

L1,iαL2,αj (D.29)

Some matrices with special structures are of practical relevance. Computational
or storage demands for many calculations can be reduced by exploiting these struc-
tures. This includes e.g. sparse matrices as diagonal or band diagonal matrices or
triangular matrices. Matrices in which almost all entries are nonzero are termed
dense.
The adjungated matrix A† for a matrix A is de�ned by

A†ij := (Aji)
†, (D.30)

where ·† also indicates the complex conjugated of a number.
A matrix A is called orthogonal or orthonormal if the column vectors are mutual

orthonormal. This property is extended to complex matrices by the concept of
unitarity. Formal both properties are de�ned by

A†A = 11. (D.31)

Note, that in complex arithmetics ·† denotes the adjungated, complex conjugated
matrix. This terminology extends to the linear transformation de�ned by A.
Orthogonal transformation are generalisations of rotations.
A hermitian matrix satis�es

A† = A. (D.32)

Real hermitian matrix are symmetric. A matrix is termed normal if it satis�es

A†A = AA†. (D.33)

Orthogonal, unitary and hermitian matrices are always normal.

Range, Kernel and Rank

The range of a matrix or linear transformation A : V → W is de�ned by

Range(A) = {x ∈ V |Ax 6= 0} . (D.34)

From the linearity of A it follows that Range(A) is a subspace of V . Its dimension
is the rank of A. The Kernel of A is de�ned by

Kern(A) = {x ∈ V |Ax = 0} . (D.35)

It is also a subspace of V and the orthogonal complement of Range(A). The
dimension of the Kernel is termed nullity. Consequently rank-nullity theorem [45],
i.e. rank(A)+nullity(A) = N holds, where N is the dimension of V . A N × N
matrix A with rank(A) < N is termed singular.
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D.2.5. Tensors

A tensor can be roughly considered as a generalisation of the concept of scalar,
vector and matrix. It is an object which is de�ned by its transformation properties
under basis changes2. A tensor has a order k de�ning the number of components or
indices. For a vector space of dimension N a tensor of order k has Nk components
and k indices. A zero order tensor is a scalar with is invariant under basis changes.
A vector is a tensor of order 1 transforming according to Eq.(D.36) as

ûi = B†iαuα. (D.36)

Higher order tensor transform as

M̂i,j,... = Mαβ...BαiBβj · · · . (D.37)

By introducing the transpose of a matrix A†ij := Aji this is written for second
order tensors

M̂ = B†MB. (D.38)

In complex arithmetics the hermitian conjugate of C is denoted with C†. This is
the transpose, complex conjugate of C. The complex conjugated is denoted by
C∗ := <C − i=C.
Tensors can also be considered as multi-linear transformations, e.g. T : V1×. . .×

Vk → W for a tensor T of order k. The Tensor is invariant under basis changes, but
the corresponding representation transforms as indicated above. This is in analogy
to the distinction between a linear transform and the corresponding matrix.
The tensor product [21] is a binary operation on two vectors v, w. This can be

used e.g. for the construction of two-dimensional grids or two-dimensional discrete
derivation operators as in Section 3.5.2.3 A tensor product can also be de�ned for
vector spaces, e.g. V , W . One way to construct a vector from the product space
V ⊗W is via the Kronecker product

kron(v, w)i+N(ν−1) := viwν i = 1 : N1ν = 1 : N2, (D.39)

where N1 and N2 are the dimensions of V and W , respectively. The dimesion of
the product space is consequently the product of the dimensions of the original
vectorspaces. The Kronecker product can be extended to higher order tensors, as
matrices, see Eq.(3.40).

2For practical use it is often not necessary to distinguish between a tensor and the corresponding
representation

3And more general also higher-dimensional discrete descriptions based on the one-dimensional
discretisation.
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