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Abstract Tactile sensors (antennae) play an important role in the animal kingdom.
They are also very useful as sensors in robotic scenarios, where vision systems may
fail. Active tactile movements increase the sampling performance. Here we directly
control movements of the antenna of a simulated hexapod using an echo state net-
work (ESN). ESNs can store multiple motor patterns as attractors in a single network
and generate novel patterns by combining and blending already learned patterns us-
ing bifurcation inputs. Index Terms – Active Tactile Sensors, Motor Learning, Neu-
ronal Networks
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1 Introduction

Animals and humans are autonomous mobile systems of prime performance, partly
due to their highly adaptive locomotor behaviour, partly due to their sensory abili-
ties that allow for rapid, parallel object recognition and scene analysis. In animals,
near-range sensing, particularly the active tactile sense is often of great importance:
many insects actively move their antennae (feelers) and use them for orientation, ob-
stacle localisation, pattern recognition and even communication [1]; mammals like
cats or rats use active whisker movements to detect and scan objects in the vicinity
of the body. Active tactile sensors offer some advantages over vision based sensors
[2]: The tactile sense is independent of light conditions, it works at day and night. It
is also independent of the surface properties of objects (colour, texture, reflectivity)
that may be very difficult for vision, radar or ultrasound based systems. Further-
more, the 3d spatial contact position with an object is immediately available due
to the known geometry of the sensor. No computationally expensive stereovision
algorithms are required. A drawback of tactile sensors might be lower information
density about a scanned object and the danger of mechanical damage to both the
sensor and the object. Insect-like tactile sensors have been pioneered by Kaneko
and co-workers, who used either vibration signals [3] or bending forces [4], both
measured at the base of a flexible beam, to determine contact distance. Recently an
actively movable tactile sensor inspired by a stick insect antenna was co-developed
by Fraunhofer IFF Magdeburg [5] and the University of Bielefeld [6] with a single
acceleration sensor located at the tip of the probe. It was shown to be remarkably
sensitive in object material classification. An efficient movement pattern that max-
imises obstacle detection performance while minimising energy consumption for
such an active tactile sensor is a circular movement of the sensor probe [7]. Stick in-
sect antennae perform elliptical exploratory movement patterns relative to the head
until they encounter an obstacle. After the first contact, the movement switches to a
pattern with smaller amplitude and higher cycle frequency [8].

A straightforward way to learn motor patterns is to store them in the dynamics
of recurrent neuronal networks [9]. The network implements a forward model, that
predicts the sensor informations for the next time step [10]. In [9] it is argued, that
this distributed storage of multiple patterns in a single network gives good gener-
alisation compared to local, modular neural network schemes [11][12]. In [13] it
was shown that it is also possible to not only combine already stored motor pat-
terns into new ones, but to establish an implicit functional hierarchy by using leaky
integrator neurons with different time constants in a single network. This network
can then generate and learn sequences over stored motor patterns and combine them
to form new complex behaviours. Tani [9][14][13] uses backpropagation through
time (BBTT, [15]), that is computationally complex and rather biologically implau-
sible. Echo State Networks (ESNs [16]) [17] are a new kind of reccurent neuronal
networks that are very easy and fast to train compared to classic, gradient based
training methods (backpropagation through time [15], real time recurrent learning
[18]). Gradient based learning methods suffer from bifurcations that are often en-
countered during training. Bifurcations apruptly change the dynamic behaviour of
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a network, rendering gradient information invalid [19]. Additionally it was mathe-
matically shown that it is very difficult to learn long term correlations because of
vanishing or exploding gradients [20]. The general idea behind ESNs is to have a
large, fixed random reservoir of recurrently and sparsely connected neurons. Only a
linear readout layer that taps this reservoir needs to be trained. The reservoir trans-
forms usually low-dimensional, but temporally correlated input signals into a rich
feature vector of the reservoir’s internal activation dynamics. This is similiar to a lin-
ear finite impulse response filter or Wiener filter [21], that reads out a tap delay line
with a linear combiner. Here, the delay line acts as a preprocessor that constructs
a sufficiently large state space from the input time series, such that the temporal
dependencies become implicit. Batch training involves collecting the internal states
of the reservoir neurons and applying fast linear regression methods to calculate the
output layer. More biologically plausible online learning methods for ESNs exist,
for example the recursive least squares algorithm [17] or backpropagation decorre-
lation (BPDC [22]). BPDC was successfully applied in a developmental learning
scenario with the humanoid robot ASIMO [23] and for learning an inverse model
of the industrial PA-10 robot arm [24]. Here, we use an ESN to implement a for-
ward model that actively moves the tactile sensor / antenna of a simulated hexapod
walker.

2 Simulations

A basic, discrete-time, sigmoid-unit ESN was implemented in C++ using the ex-
pression template matrix library Eigen2. The state update equations used are:

y(n) = Woutx(n)
x(n+1) = tanh(Wresx(n)+Winu(n+1)+Wbacky(n)+ν(n)) (1)

where u, x and y are the activations of the input, reservoir and output neurons,
respectively. ν(n) adds a small amount of uniformly distributed noise to the acti-
vation values of the reservoir neurons. This tend to stabilize solutions especially in
models using output feedback for cyclic attractor learning [25]. Win, Wres, Wout

and Wback are the input, reservoir, output and backprojection weight matrices. All
matrices are sparse and randomly initialised and stay fixed, except for Wout . The
weights of the linear output layer are learned using offline batch training. During
training, the network is driven with the input and teacher data and internal reser-
voir activations are collected (state harvesting). The teacher data is forced into the
network via the backprojection weights (teacher forcing). After collecting internal
states for all training data, The output weights are directly calculated using ridge
regression. Ridge regression uses the Wiener-Hopf solution Wout = R−1P and adds
a regularization term (Tikhonov regularization):

Wout = (R+α
2I)−1P (2)
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where α is a small number, I is the identity matrix, R = S′S is the correlation
matrix of the reservoir states and P = S′D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to more stable solutions and smaller
output weights, compared to ESN training using the Moore-Penrose pseudoinverse.

Fig. 1 Dynamic behaviour of an ESN with a single input trained on a circular (input value = 1)
and figure-eight pattern (input = 0). a) After 200 time-steps, the input value is switched from one
to zero. The network smoothly changes its behaviour to the figure-eight pattern. b) 2d trajectories
of the network output. c) Colour coded internal activations of the reservoir neurons. Lines indicate
individual neuroids, columns indicate time.

Table 1 ESN structure parameters. 200 reservoir neurons, 2 inputs and 2 outputs used. Direct input
to output connections and bias inputs were not used. Sparseness is the fraction of connections with
non-zero weigths. Synaptic weights were randomly initialised in the range [-strength strength].
α = 0.01, ν = 0.001.

from to Sparseness Strength

Input Reservoir 1.0 0.6
Reservoir Reservoir 0.1 0.4
Output Reservoir 1.0 0.8

Dynamic Behaviour. The input-, reservoir- and backprojection weight matrices
were sparsely initialised with uniformly distributed random values. See table 1 for
the network parameters used. In a first simulation, a simple ESN with one input,
two outputs, no bias inputs and no input-to-output connections was trained on the
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circle (input value = 1) and figure-eight pattern (input value = 0) (see table 3). Fig.
1 shows the dynamic behaviour of this network. Abruptly switching the input from
one to zero smoothly moves the network from the circular pattern attractor state to
the figure-eight pattern. In Fig. 2 the input parameter space is explored within the
range -1.0 to 1.2. Interestingly, an input value of -1 evokes the same circular pattern
as for an input value of one. This symmetric effect is mentioned in [19]. Increasing
the input value further causes gradual morphing from a circular to an elliptical and
later to the figure-eight pattern. Increasing the input above 1 or below -1 drives the
network into a fixpoint attractor state.

Fig. 2 Shifting the dynamics of the network by gradually changing the input value from -1 to 1.2.
Because of symmetry effects [19], the circular pattern reappears with input value -1. Increasing
the input to the network causes a slow morphing between the two learned patterns, allowing to
generate new patterns that were not explicitly trained. The network keeps stable with no chaotic
regions until it converges to a fixpoint at input value 1.2.

Training Success. In a second simulation, the training success and the transi-
tion behaviour between two patterns after switching the input values was analysed.
Instead of a single input, this time 2 binary encoded inputs were used. The first
pattern was learned with an input vector

(
1 0

)
and the second with

(
0 1

)
. This

avoids symmetry effects as shown in simulation 1 and reduces the training error.
ESN parameters used are shown in table 1. The training error was defined as the
smallest Euclidean Distance between the training pattern and a time-shifted ver-
sion of the network output (±200 time-steps). The selected time-shift corresponded
to the largest cross-correlation coefficient. The error of a single network was aver-
aged over n=50 runs. Input patterns were presented in random order and all network
activations were randomly intialized in a range of±0.4 before each run. N=500 net-
works were trained, resulting in a median error of 0.029 (0.6% deviation relative to
the circle pattern radius of 0.5). 60% of the trained networks had an error below 1%.
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Table 2 ESN structure parameters. 300 reservoir neurons, 4 inputs and 2 outputs were used in the
multiple pattern storage task. α = 0.001, ν = 0.001

from to Sparseness Strength

Input Reservoir 1.0 0.8
Reservoir Reservoir 0.1 0.2
Output Reservoir 1.0 1.2

Transition Smoothness. After switching between patterns, the network might
become unstable and show chaotic behavior. Relating to the Minimum Jerk Theory
[26], the smoothness of the movement after the switch can be quantified as a func-
tion of jerk, which is the time derivative of acceleration. The jerk was calculated for
100 timesteps after the switch. The mean jerk for 500 networks averaging over 50
runs for each net was 0.024 with a standard deviation of 0.003. This is just slightly
larger than the averaged jerk of both training patterns (0.0196). The transition be-
haviour was sufficiently stable for all 500 networks, the maximum jerk found was
0.038. For comparison, mean jerk of purely random, untrained networks was 41.6
with a SD of 40.713.

Learning Capacity. A larger ESN was trained with four different patterns, see
table 3. ESN parameters used are shown in table 2. Fig. 3 shows that it is possible to
store multiple motor patterns distributed in a single network. Nonetheless it requires
manual parameter fine-tuning to get stable attractors that are close to the training
data.

Table 3 Training patterns used for the ESN experiments.

Pattern Parameters

Circle 0.5
(

sin(0.2n) cos(0.2n)
)

Eight 0.5
(

sin(0.4n) sin(0.2n)
)

Rectangle 0.5
(
tanh(2 sin(0.2n)) tanh(2cos(0.2n))

)
Star 0.2

(
atanh(0.98 sin(0.2n)) atanh(0.98cos(0.2n))

)

Motor Control. Stick insects continuously move their antennae during walking
using a wide, exploratory movement pattern. If the antennaes detect obstacles, the
antennal movements immediatly change to a sampling pattern [8]. This switching
behaviour was modeled using an ESN and a simulated hexapod walker with an-
tennae. The simulation was implemented in C++ using the Open Dynamics Engine
(ODE). The joints of the antenna were steered using a p-controller and constraint-
based angular velocity control (hinge joint angular motor in ODE). Due to the dy-
namic nature of the system and the p-controller, actual joint angles always lag some
frames behind the desired values and have a slightly smaller amplitude. The network
thus has to learn to predict new motor commands based on the proprioreceptive in-
put from the antennal joints. In a first step, training data was created by sinusoidal
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Fig. 3 An ESN with 4 binary inputs, two outputs and 300 reservoir neurons was trained to store
multiple patterns. a) shows the 4 patterns used as training data (for parameters see table 3. b) shows
the network dynamics. in the generation phase, the network was started with random network
activations and simulated for 4000 time steps. the input value changed every 1000 time steps.

modulation of the antennal joints and simultaneously recording actual joint angles
in the simulation, see Fig. 4. An ESN was then trained on the collected data and put
into the loop (identical network parameters as in the initial experiment, see table 1).
If the left antenna encountered contacts with obstacles, the input values to the ESN
were switched, causing a transition from a wide, exploratory movement pattern to
the figure-eight pattern. After some decay time, the inputs were switched back. Fig.
5 shows a behaviour sequence of an hexapod walker with an ESN-controlled left
antenna. Obstacle contact causes a pre-programmed obstacle avoidance reflex by
turning the insect away from the object.

Fig. 4 An ESN was trained to generate a circular and a figure eight pattern with the tip of the left
antenna. Inputs to the net are the current joint angles and the pattern selection inputs; outputs are
the target joint angles for the p-controller steering the joints of the active tactile sensor.

3 Discussion and Outlook

First basic experiments with ESNs have shown that they can be used for direct motor
control of simple articulated limbs. The ESN implements a forward model that pre-
dicts sensory and motor commands for the next time step. It is also possible to gen-
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Fig. 5 Sequence of images showing antennal behaviour before, during and after contacts with an
obstacle. From left to right: a) first contact of the left antenna with the obstacle. The antenna
still performs a circluar, exploratory movement. b) the contact information causes a switch in
behaviour from the circular to the figure-eight pattern. c) Second and third contact: the hexa-
pod walker starts to turn away from the obstacle. d) The figure-eight pattern continues for a
while until the contact information decays. e-f) After that, the behaviour switches back to the ex-
ploratory circular movement. A video can be downloaded at: http://www.andre-krause.
net/publications/hcrs09_s1.avi

Fig. 6 A proposed architecture for learning and generation of complex movements. Hierarchically
coupled ESNs are controlled using a hierarchical self organizing map, that implements basic action
concepts. Image: c©Webots [27]

erate new, not explicitly trained patterns by shifting the network dynamics through
additional bifurcation inputs. This was already demonstrated by [9] via parametric
bias inputs for a variant of Elman type networks. If exploited properly, this dynamic
feature of ESN networks makes it possible to generate and interpolate numerous
motor patterns from a few, well choosen basic motor patterns. ESNs can also store
multiple motor patterns in a single network, although it is important to fine-tune all
network parameters to succeed. Pretraining of the reservoir using Intrinsic Plasticity

http://www.andre-krause.net/publications/hcrs09_s1.avi
http://www.andre-krause.net/publications/hcrs09_s1.avi
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[28] can help to make the training process more robust. ESN parameters could also
be automatically fine-tuned in a reinforcement scenario using new, very fast and
powerful black box optimisation algorithms [29] [30]. ESNs seem to be suitable
for a planned hierarchical architecture for learning and control of long, complex
movement sequences, as illustrated in Fig. 6. ESNs scale well to a high number of
training patterns and motor outputs [31]. A more complex simulation - for example
of a humanoid robot - might reveal possible limitations of direct, attractor-based
motor pattern learning. The future goal is to couple two or more ESNs hierarchi-
cally or even embed an implicit hierarchy into a single network using neurons with
random time constants similiar to [13]. On top of that, a hierarchical self-organizing
map (HSOM) can implement cognitive structures of basic action concepts [32] [33]
and provide input and reference values to the ESNs. The HSOM can integrate per-
ceptual features of the environment, proprioceptive sensory data of the robot body
and higher level commands (intention, affordance) to select a proper motor pro-
gram. Cluster structures learned in the HSOM might then be compared to cognitive
structures that can be measured in human long term memory using a psychological
method called SDA-M [32].
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