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Abstract

In this paper we study the existence problem for KM-arcs in small Desarguesian
planes. We establish a full classification of KMq,t-arcs for q 6 32, up to projective
equivalence. We also construct a KM64,4-arc; as t = 4 was the only value for which
the existence of a KM64,t-arc was unknown, this fully settles the existence problem
for q 6 64.
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1 Introduction and Preliminaries

Definition 1. An incidence structure I is a triple (P ,L, ∗I), where P ,L are sets and
∗I ⊆ P ×L. More often than not, L is a collection of subsets of P (called lines) and ∗ is
the inclusion relation: p ∗I L ⇔ p ∈ L for any p ∈ P , L ∈ L. In such the elements of P
are called points.

Definition 2. The dual of I, denoted by ID, is the incidence structure (L,P , ∗ID) where
the incidence is preserved (i.e. (L, p) ∈ ∗ID ⇔ (p, L) ∈ ∗I). The set L is now the set of
points, and P the set of lines.

The most commonly studied point-line incidence structures are by no doubt PG(2, q)
and AG(2, q). It is well-known that PG(2, q) is isomorphic to PG(2, q)D, while for AG(2, q)
this is not the case: AG(2, q) has q2 points and q2 +q lines (i.e. |P| = q2 and |L| = q2 +q),
whereas AG(2, q)D has q2 + q points and q2 lines (i.e. |P| = q2 + q and |L| = q2).

A large area of research is devoted to studying substructure of PG(2, q) and AG(2, q)
with certain combinatorial properties. One substructure that has gotten a lot of attention
in PG(2, q) is the following one.
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Definition 3. A hyperoval in PG(2, q) is a nonempty set S of points, such that every line
is incident with 0 or 2 of points of S. One readily computes that a hyperoval has q + 2
points.

In this paper, we study a slight relaxation of this definition, to the following concept.

Definition 4 ([7]). A KMq,t-arc in PG(2, q), also known as a (q+ t, t)-arc of type (0, 2, t),
is a set S of q + t points in PG(2, q) for which every projective line ` meets S in either 0,
2 or t points.

The case t = 1 is a degenerate case where S is just any arc. Hence, t > 1 will
almost always be assumed. The case t = q is fully classified; here the only example is the
symmetric difference of two lines. Hence, for most purposes it is sufficient to study the
the case 1 < t < q.

Definition 4 was introduced in [7] and there are several reasons why these structures
are of interest. The first reason is that strong structural properties can be derived from
this combinatorial definition.

Theorem 5 ([7]). KMq,t-arcs of type (0, 2, t) with 1 < t < q can only exist if q is even.
Moreover, t needs to be a divisor of q, i.e. t = 2r with r 6 h.

Theorem 6 ([4]). All t-secants of a KMq,t-arc with t > 2 are concurrent in a point outside
the set, which is called the nucleus.

Hence, every KMq,t-arc S with t > 2 has the following structure:

• there are q/t+ 1 concurrent lines, each containing t points of S;

• all other lines contain 0 or 2 points of S.

It is interesting that such a strong structure follows from a combinatorial definition
based on three intersection possibilities (0, 2 and t). Usually, such strong properties are
only found for sets with two possible intersection numbers. One reason for this - which at
the same time is our second motivation - is that they only have two possible intersection
numbers when embedded in AG(2, q)D.

Proposition 7. A set S in PG(2, q), PG(2, q)D or AG(2, q) is a set of type (0, 2) if and
only if it consists of q + 2 points, no three collinear (i.e. it is a hyperoval).

Proposition 8. A set S in AG(2, q)D is a set of type (0, 2) if and only if, when embedding
AG(2, q)D in PG(2, q), S is either a hyperoval or a KM-arc with the point at infinity as
its nucleus.

Proof. Let S be KM-arc. If t = 2, the statement is trivial. For t > 2, it follows from
Theorem 6 that S is a hyperoval in AG(2, q)D, where the point of concurrency in the
KM-arc is the point at infinity of AG(2, q)D.

For the reverse implication, let S be a hyperoval in AG(2, q)D and let p be any affine
point not in S and let L be its line at infinity. Every affine line through p needs at least
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t=2 t=4 t=8 t=16 t=32
q = 4 1 [10]
q = 8 1 [10] 1 [7]
q = 16 2 [5] > 3 [7] 1 [7]
q = 32 6 [9] > 1 [6] > 2 [2] 1 [12]
q = 64 > 4 [3] ? > 1 [7] > 2 [2] 1 [12]

Table 1: Number of projective equivalence classes of KMq,t-arcs in PG(2, q), q 6 64.

one other point of S through it, meaning that the total number of points of S is q + t,
where t > 2 is the number of points of S on L. Since L was arbitrary, and the total
number of points of S is fixed, that means the number t is independent of the choices of
p and L, and every line through the point at infinity has either no points of S on it, or
has exactly t points of S through it. Hence, S is a KM-arc.

While the above is largely a reformulation of Theorem 6, it does highlight better why
these KM-arcs are special and have stronger structural properties than other sets with
three intersection numbers.

The third reason is that they have been shown [1, 12, 11] to be crucial in the structure of
the dual projective plane code, and of LDPC codes derived from certain partial geometries,
where (non)existence of certain KM-arcs is relevant for their dimension and minimum
distance, respectively.

The main challenge regarding these KM-arcs is construction and classification. We
know that nontrivial examples only exist when q = 2h and t = 2r with 1 6 r 6 h, but the
converse is not known. Classification is known only up to q = 8 [7] and existence is known
only by a few (families of) constructions1, which together settle the existence problem for
q 6 32.

• In [7], a KM2h,2r was constructed when h− r|h.

• In [4], a KM2h,2r+1 was constructed when h − r|h. The same paper also provides a
construction for KM2h,2r+m when h− r|h and a KM2h−r,2m exists.

• In [8], a KM32,8 was constructed via random search as part of Limbupasiriporn’s
PhD thesis.

• In [6], the authors describe a clever random search to construct a KM32,4 as a union
of subsets of conics, and succeeded in finding such an example.

• In [12], a KMq,q/4 was constructed for every q. In [2], more (nonequivalent) KMq,q/4

were constructed for q > 16.

The reason the random searches in [6, 8] are so important, is because they show that
for q = 32, all proper divisors t yield KMq,t-arcs. Table 1 lists the number of known

1We only mention constructions which settle at least one new pair (q, t) of parameter compared to
previous publications.
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projective equivalence classes of KMq,t-arcs. Only the most recent paper changing the
bounds on each number is listed.

In Section 2, we will describe our method to obtain a full classification of KMq,t-arcs for
q 6 32, as well as the results. In Section 3 we discuss the new findings, as well as several
observations and pattens. In Section 4, we use one of these patterns to perform a targeted
search that has lead to the construction of a KM64,4-arc, solving the last remaining open
case in Table 1.

2 Classifying the KM-arcs in PG(2, q) for q 6 32

To settle the notation, we recall the concept of associated polynomial from [7].

Theorem 9 ([7]). A set S in PG(2, q) is a KMq,t-arc if and only if it can be written in
the following form:

S = {(1, f(c), c)|c ∈ Fq)} ∪ {(0, 1, wi)|wi ∈ W},

where W = Fq \
{

x+y
f(x)+f(y)

∣∣x, y ∈ Fq ∧ f(x) 6= f(y)
}

, |W | = t and where f a polynomial

with the following properties:

• f reaches every value in Fq either 0 or t times;

• f is monic and has f(0) = 0;

• Fa(z) = f(z)+f(a)
z+a

acts injectively on its set of non-roots in Fq;

• for w ∈ W \ {0}, w−1 + Fa(z) has no roots in Fq \ {a}.

We can now describe KM-arcs by their associated polynomial. Note however that
multiple associated polynomials can describe equivalent KM-arcs. It is also worth re-
marking that the properties of an associated polynomial from 9 look very similar to those
of o-polynomials of hyperovals.

Remark 10. In [7, Theorem 2], the conditions on the second bullet are optional, and in
the original version from [7] also contained f(1) = 0. However, sometimes one can obtain
easier polynomials when not requiring this condition. We will always list the easiest
associated polynomial with f(0) = 0 and 0 ∈ W , where easiest is defined below.

Notation 11. Define a function ϕ : {0, 1, . . . , q − 1} → Fq that represents the lexico-
graphical order of the elements in additive notation:

ϕ(0) = 0, ϕ(1) = 1, ϕ(2) = α, ϕ(3) = α + 1, ϕ(4) = α2, . . . ,

ϕ(q − 1) = αh−1 + αh−2 + · · ·+ α + 1.

When choosing an associated polynomial to represent the KM-arc, we will always pick
the one with smallest degree (and in case of equal degree, the lexicographically smallest
one w.r.t. ϕ) among all possible associated polynomials.
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Remark 12. In the case t = 2, the definition of associated polynomial is slightly different
from the classical definition for hyperovals (the difference is a term +z), because of a
slightly different coordinate system.

Now, we will discuss all cases that need to be considered. Some cases have already
been dealt with.

Proposition 13. A KMq,q-arc is always projectively equivalent to

S = {(0, 1, x)|x ∈ Fq} ∪ {(1, 0, x)|x ∈ Fq},

which has associated polynomial f(z) = 0.

The group
〈
x 7→

(
1 0 0
0 1 0
0 0 α

)
x, x 7→

(
1 0 0
0 1 0
0 αh−1 1

)
x, x 7→

(
1 0 0
0 1 0

αh−1 0 1

)
x
〉

acts transitively on

the set of KM-arcs found in [12] (as they are cosets of hyperplanes), resulting in the
following proposition.

Proposition 14 ([12]). A KMq,q/2 is always projectively equivalent to

S =
{

(0, 1, ϕ(i))
∣∣∣0 6 i <

q

2

}
∪
{

(1, 0, ϕ(i))
∣∣∣0 6 i <

q

2

}
∪
{

(1, 1, ϕ(i))
∣∣∣q
2
6 i < q

}
.

Corollary 15. There is one projective equivalence class of KMq,q/2-arcs in PG(2, q):

• f(z) = Tr(z) = zq/2 + zq/4 + · · ·+ z4 + z2 + z.

Proposition 16 ([10]). There is one projective equivalence class of KMq,2-arcs for q 6 8:

• f(z) = z2 + z.

Proposition 17 ([5]). There are two projective equivalence classes of KM16,2-arcs in
PG(2, 16):

• f(z) = z2 + z,

• f(z) = z12 + z10 + α3z8 + z6 + α8z4 + α13z2 + z.

Here, α is a primitive element of F16 with α4 + α + 1 = 0.

Proposition 18 ([9]). There are six projective equivalence classes of KM32,2-arcs in
PG(2, 32):

• f(z) = z2 + z,

• f(z) = z4 + z,

• f(z) = z6 + z,

• f(z) = z26 + z16 + z6 + z,

• f(z) = z28 + z10 + z8 + z,
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• f(z) = z28 +z26 +α18z22 +α3z20 +α18z18 +α14z16 +α23z14 +α6z12 +α16z10 +α26z8 +
α23z6 + α4z4 + α24z2 + α13z.

Here, α is a primitive element of F32 with α5 + α2 + 1 = 0.

For planes of order up to 32, the remaining cases to classify are hence (q, t) ∈
{(16, 4), (32, 4), (32, 8)}. Since the classification will be computational, one needs to fix
the primitive polynomials of the fields for the coordinates to make sense. For F16 we pick
X4 +X + 1 as primitive polynomial, for F32 we pick X5 +X2 + 1.

We will now outline the algorithm used for our classification result. First we fix the
nucleus N = (0, 0, 1). Let LN be the set of lines through N . Consider the set P(LN) q

t
+1

of all subsets of LN of size q
t

+ 1. Now, we will partition this set into orbits under the
PΓL(3, q)N , the stabilizer of N in the collineation group of PG(2, q). To make this com-
putationally feasible, we used a breadth-first backtracking search to find a representative
for each PΓL(3, q)N -orbit of subsets of P(LN) of size 1, 2, 3, . . . , q

t
+ 1 in that order, where

each size is obtained by considering all possibilities to extend the previous size, and only
keeping a unique canonical representative per orbit.

We denote by LN the set of representatives obtained, i.e. a set of sets of q
t

+ 1 lines.
Since N must be a fixed point of every collineation in the automorphism group of any KM-
arc, different elements S1, S2 ∈ LN represent different orbits under PΓL(3, q)N , and hence
a KM-arc having S1 as its set of t-secants (with t > 2) is always projectively inequivalent
to a KM-arc having S2 as its set of t-secants. Hence, this splits the problem in disjoint
subproblems.

Now, for any given such line set L ∈ LN , let SL = ∅ and pick an arbitrary line L ∈ L
(computationally, it is wise to pick one with the smallest orbit size under PΓL(3, q)L,
but that is not mandatory). Now consider the set TL of all PΓLL,L-inequivalent t-sets on
L. For each T ∈ TL we use a backtracking-based constraint solver to find the possible
placings of the remaining q points on the lines of L, such that the KM-arc properties
are satisfied. In the vast majority of the cases this solver only requires milliseconds to
determine that there will be no solutions for this T . When a solution S is found, it is
tested explicitly for projective equivalence with every element in SL, and if no equivalent
element is found, S is added to SL.

Then, at the end,

U :=
⋃
L∈M

SL

is the set of all KMq,t-arcs up to projective equivalence.
For q = 16, nothing surprising was found. The three projective equivalence classes

of KM16,4-arcs found in [7] are the only existing classes of KM16,4-arcs, which could be
expected given that no new constructions had been found despite the very small order of
the plane.

Result 19. There are exactly 3 projective equivalence classes of KM16,4-arcs. One repre-
sentative of each class is given below (where α4 = α + 1).
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• f(z) = z8 + z4 + αz2 + α7z, its automorphism group has order 32 and partitions its
points in orbits of sizes 16, 4 (the four points correspond to one t-secant).

• f(z) = z12 + z10 + z6 + αz4 + z2 + αz, its automorphism group has order 64 and
partitions its points in orbits of sizes 16, 4 (the four points correspond to one t-
secant).

• f(z) = z8 + z2, its automorphism group has order 3840 and acts transitively on its
points.

Here, α is a primitive element of F16 with α4 + α + 1 = 0.

For q = 32, t = 8 the search found one class of translation arcs (the first one below)
and two classes of non-translation arcs. All three can be constructed from [2, Theorem
4.6].

Result 20. There are exactly 3 projective equivalence classes of KM32,8-arcs. One repre-
sentative of each class is given below.

• f(z) = z16 + z8 + α11z4 + α16z2 + α13z, its automorphism group has order 128 and
partitions its points in orbits of sizes 32, 4, 4 (the 4 + 4 points correspond to one
t-secant).

• f(z) = z24 + z20 + α18z18 + α2z12 + α18z10 + αz8 + α23z6 + α6z4 + α18z2 + α7z, its
automorphism group has order 160 and acts transitively on its points.

• f(z) = z24 + z20 + α18z18 + z16 + α2z12 + α18z10 + α11z8 + α23z6 + α2z4 + α28z, its
automorphism group has order 32 and partitions its points in five orbits size 8 (one
for each t-secant).

Here, α is a primitive element of F32 with α5 + α2 + 1 = 0.

For q = 32, t = 4 the search did find new results results. Despite t = 4 being the
case that has been the hardest to find examples for (only one example known for q = 32,
constructed by random search, and no examples known for q = 64), we found no less
than eight projective equivalence classes of KM32,4-arcs, and none of them are translation
KM-arcs.

Result 21. There are exactly 8 projective equivalence classes of KM32,4-arcs. One repre-
sentative of each class is given below (where α5 = α2 + 1).

• f(z) = z24+z20+α18z18+α5z16+α2z12+α18z10+α18z8+α23z6+α5z4+α22z2+α26z, its
automorphism group has order 16 and partitions its points in orbits of sizes 16, 16, 4
(corresponding to two sets of four t-secants and one set of one t-secant).

• f(z) = z26 +z22 +α18z20 +α8z18 +α13z16 +α28z14 +α12z12 +α17z10 +α20z8 +α19z6 +
α21z4 + α11z2 + α21z, its automorphism group has order 2 and partitions its points
in sixteen orbits of size 2 and four orbits of size 1 (all on the same t-secant).
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• f(z) = z24+z20+α18z18+α2z12+α18z10+α19z8+α23z6+α27z4+α18z2+z, its auto-
morphism group has order 8 and partitions its points in orbits of sizes 8, 8, 8, 4, 4, 2, 2.

• f(z) = z28 + z26 + z22 + α18z20 + α17z18 + αz16 + α20z14 + α3z12 + α9z10 + α26z8 +
α2z6 + α6z4 + α10z2 + α29z, its automorphism group has order 2 and partitions its
points in sixteen orbits of size 2 and four orbits of size 1 (all on the same t-secant).

• f(z) = z28 + z26 + z22 + αz20 + α18z18 + α25z16 + z14 + α23z12 + α12z10 + α29z8 +
α20z6 + α7z4 + αz2 + α6z, its automorphism group has order 4 and partitions its
points in seven orbits of size 4 and four orbits of size 2.

• f(z) = z28 + z26 + z22 +α11z20 +α19z18 +α8z16 + z14 +α11z12 +α19z10 +α23z8 + z6 +
α22z4 + α24z2 + α3z, its automorphism group has order 2 and partitions its points
in sixteen orbits of size 2 and four orbits of size 1 (all on the same t-secant).

• f(z) = z24 + z20 + α18z18 + α2z12 + α18z10 + α11z8 + α23z6 + α2z4 + α18z2 + α6z, its
automorphism group has order 24 and partitions its points in orbits of sizes 24, 6, 6.

• f(z) = z24+z20+α18z18+z16+α2z12+α18z10+α25z8+α23z6+α17z4+α19z, its auto-
morphism group has order 8 and partitions its points in orbits of sizes 8, 8, 8, 4, 4, 2, 2.

Here, α is a primitive element of F32 with α5 + α2 + 1 = 0.

3 Observations

Remark 22. It is remarkable that while (for the same value of q) examples for smaller
t are remarkably harder to construct, the number of examples is definitely not smaller.
The examples indeed get less symmetrical, but their number increases.

Remark 23. In [12], the author observes that all t-secants in his example stem from (affine)
linear sets, and expresses belief that this could hold in general. In the coordinates used
in Section 2, that means if we partition the arc in q

t
+ 1 sets of size t based on which

t-secant they belong to, and replace each point by its last coordinate (since the first two
coordinates are identical for all points in the partition class), each class is now a coset of
an additive subgroup of Fq. We verified this property and now confirm that this holds for
all KMq,t-arcs with q 6 32.

Unfortunately, we did not manage to find a similar pattern in the coordinates of the
secant lines. A criterion (even conjectured) that would eliminate a large portion of the
possible sets of t-secants, or a pattern that all of the sets of t-secants fulfill, would be
extremely helpful in constructing larger new KM-arcs.

Remark 24. In [2], the authors observe the property that the KMq,q/4-arcs they studied,
had the following property. Label the t-secants of S as L0, L1, L2, L3, L4. Then for any
such labeling,

S1 := {〈p, p′〉 ∩ L0|p ∈ S ∩ L1, p
′ ∈ S ∩ L2} = {〈p, p′〉 ∩ L0|p ∈ S ∩ L3, p

′ ∈ S ∩ L4},
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S2 := {〈p, p′〉 ∩ L0|p ∈ S ∩ L1, p
′ ∈ S ∩ L3} = {〈p, p′〉 ∩ L0|p ∈ S ∩ L2, p

′ ∈ S ∩ L4},
S3 := {〈p, p′〉 ∩ L0|p ∈ S ∩ L1, p

′ ∈ S ∩ L4} = {〈p, p′〉 ∩ L0|p ∈ S ∩ L2, p
′ ∈ S ∩ L3}

are well defined (the equality holds), and either

|S1| = |S2| = |S3| = q/2, |S1 ∩ S2| = |S1 ∩ S3| = |S2 ∩ S3| = q/4, |S1 ∩ S2 ∩ S3| = 0

in which case they say L0 has Property II, or

|S1| = |S2| = |S3| = q/4, |S1 ∩ S2| = |S1 ∩ S3| = |S2 ∩ S3| = 0

in which case they say L0 has Property I. Our search found the following.

• For the first class in (16, 4) and the first class in (32, 8), the line 〈(0, 0, 1), (0, 1, 0)〉
has Property I, while the remaining four t-secants have Property II.

• For the second and third class in (32, 8) and for the second class in (16, 4), all
t-secants have Property II.

• For the third class in (16, 4), all t-secants have property I.

Moreover, we discovered that a stronger result holds. Remark 22 states that the non-
nucleus points on each line have a natural correspondence to the additive group (Fq,+)
by the last coordinate of the points. In this group, it turns out that for all KM16,4-arcs
and all KM32,8-arcs, the subsets corresponding to

• S1, S2, S3 (for t-secants L of type I)

• S1 ∩ S2, S1 ∩ S3, S2 ∩ S3 (for t-secants L of type II)

are exactly the three cosets of the additive subgroup corresponding to S ∩ L0. Food for
thought.

Remark 25. When we consider the subgroup of the automorphism group which stabilizes
every single t-secant, all KMq,t-arcs with q 6 32 yield an elementary abelian 2-group, i.e.
C2 × C2 × · · · × C2. The action of this group within each t-secant is closely linked to the
linearity property above, but is not a requirement for it: even for the KM32,4-arcs with
automorphism group order 2 the linearity property still holds, despite the absence of a
subgroup of order 4 to act on the points within each t-secant.

Remark 26. Let f(z)−
∑q−1

i=0 aiz
i be the associated polynomial of a KM-arc. Let ν(i) be the

number of 1s in the base 2 representation of the integer i. Denote by fk(z) =
∑

i∈Ik aiz
i,

with Ik = {i ∈ {0, 1, . . . , q − 1}|ν(i) = k}. Clearly, f(z) = f1(z) + f2(z) + · · · + fh(z),
where q = 2h (as f(0) = 0, we have f0(z) = 0).

Then, [7, Proposition 6.3] states that a KM-arc with associated polynomial f is a
translation KM-arc if and only if f = f1 (i.e. it is a linearized polynomial). Non-translation
KM-arcs with t = q/4, as well as some KM32,4 arcs with relatively large automorphism
group, have f = f1 + f2. Hence, the limited data we have suggests that it may be
interesting to study KM-arcs with f = f1 +f2, as we may be able to find such a KMq,t-arc
for any q, t with t a proper divisor of q = 2h.
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Remark 27. The first example for (16, 4) and (32, 4) share a peculiar property. The set of
values obtained by the associated polynomial f is respectively {ϕ(i)|i ∈ {0, . . . , 3}} and
{ϕ(i)|i ∈ {0, . . . , 7}}. This is the key observation for the construction in Section 4.

4 Construction of a KM64,4-arc

Since we have no clear requirements on which line sets L can yield KM-arcs (or equiva-
lently, what sets can be the image of the associated polynomial of a KM-arc), and since
iterating over all possible

(
65
17

)
line sets of size 17 through the nucleus is not feasible on

today’s computer hardware (even up to isomorphism), a full classification is not possible
for q = 64 with our techniques. However, in this section we will present a partial search,
solving the last open case in Table 1.

We applied the following simplifications of the search, to allow the search to finish
within a reasonable time. We only look for KM-arcs which satisfy the linearity con-
straint. This reduces the search space within each lines from

(
q
t

)
to roughly

(
q

log2(t)+1

)
sets. Moreover, we will not look at all projectively inequivalent sets of secants, but we
will only look at one specific set L of lines through the nucleus, which we select based on
the following observation.

Notation 28. For any x ∈ Fq, we denote by L(x) the line 〈(0, 0, 1), (1, x, 0)〉.

Remark 29. For t = 4 and q 6 32, the line set

{L(ϕ(i))|i ∈ {0, . . . , q
4
− 1}} ∪ {〈(0, 0, 1), (0, 1, 0)〉}

always yields a KM-arc.

Unfortunately, this pattern does not seem to extend: there is no KM64,4-arc with these
properties. However, we can slightly weaken the pattern as follows.

Remark 30. For every q 6 32 there is a subgroup A of (Fq,+), of size q/4, for which the
line set {L(a)|a ∈ A} ∪ {〈(0, 0, 1), (0, 1, 0)〉} yields a KMq,4-arc.

Since there are only 4 such line sets up to projective equivalence in PG(2, 64), it is
computationally feasible to try them all, and one of these sets effectively lead to a new
KM-arc. We obtained the following result.

Result 31. The polynomial f(z) = z48 + z34 + z20 + z16 + z6 + z4 + z is an associated
polynomial of a KM64,4-arc, whose automorphism group has order 192 and partitions its
points in orbits of sizes 32, 32, 4.

This result, combined with the results from Section 3, yields the updated results in
Table 2.

The set A in this case is

A = {0, α0, α9, α18, α27, α36, α45, α54, α21, α42, α11, α22, α44, α25, α50, α37}.

Its α-powers consist of two arithmetic progressions (one with common difference 9 and
one with common difference 21); and one geometric progression (with common ratio 2).
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t=2 t=4 t=8 t=16 t=32
q = 4 1 [10]
q = 8 1 [10] 1 [7]
q = 16 2 [5] 3 1 [7]
q = 32 6 [9] 8 3 1 [12]
q = 64 > 4 [3] > 1 > 1 [7] > 2 [2] 1 [12]

Table 2: Number of projective equivalence classes of KMq,t-arcs in PG(2, q), q 6 64. The
four new items from this paper are in bold.
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