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Abstract
In this paper, we further investigate the many ways of using stabilizer operations to generate
a single qubit output from a two-qubit state. In particular, by restricting the input to certain
product states, we discover probabilistic operations capable of transforming stabilizer circuit
outputs back into stabilizer circuit inputs. These secondary operations are ideally suited for
recovery purposes and require only one extra resource input to proceed. As a result of reusing
qubits in this manner, we present an alternative to the original state preparation process that
can lower the overall costs of executing a two-qubit stabilizer procedure involving non-stabilizer
resources.
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1 Introduction

There has been significant progress to building quantum computers. We can protect qubits
with quantum codes, and we can combat the spread of errors with fault-tolerance; high
thresholds approaching 1% [17] is already within reach. Rather, one of the central challenges
is in the efficient handling of noise, where it is necessary to strike a delicate balance between
quality and cost. Currently many physical qubits are required to achieve this desired level
of protection on a logical qubit [10], but this comprises only one part of a larger problem.
The fact remains that most fault-tolerant schemes are constrained to a finite number of
native operations, so there is a limit to the type of computations that we can perform. This
usually consists of stabilizer operations – Clifford group unitaries, Pauli measurements, and
ancilla |0〉 preparation – which are efficiently simulable on classical computers and capable of
producing highly entangled states. Unfortunately, stabilizer operations by themselves are
not universal, placing a premium on any non-stabilizer resource added to a circuit.

Magic state distillation is one solution addressing this inherent limitation of stabilizer
operations [4]. It works as follows: prepare imperfect “magic states,” measure certain
stabilizer code syndrome operators, then postselect on some target outcome. The process is
repeated recursively until the qubits are at a high enough quality to consume: the magic
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states are injected into quantum circuits to implement quantum gates outside the Clifford
group of operations. Despite being quite resource intensive in the early days, numerous
proposals over the last few years have progressively increased the efficiency of distilling
magic states [3, 7, 8, 12, 19], although the overall format more or less remains the same.
Interestingly, stabilizer operations are enough to perform the distillation, which is a testament
to their versatility. Then given a supply of non-Clifford gates, we may employ any number of
pre-existing synthesis algorithms to approximate unitaries over this basis. Previous work has
already succeeded in producing solutions able to generate sequences for single qubit rotations
in an optimal fashion [15, 16, 22, 23]. A recent one even suggests a kind of distill-and-synthesis
hybrid to reduce resource usage even further: a factor of 3 savings with quadratic error
suppression is possible over traditional distill-then-synthesize methods [5, 6].

The creativity that went into designing these distillation protocols is one reason motivating
our broader study of stabilizer operations. Other uses include procedures for distilling multiple
types of magic qubits [7, 8, 12, 18], as well as implementing phase rotations with low depth
circuits. Some notable examples of the latter are contained in [9] and [13], both of which
feature the same stabilizer circuit to perform the operation. The differences lie in the pre-
computed ancillae injected into the circuit, where Duclos-Cianci and Svore [9] additionally
demonstrated how to use the same circuit to create other resource qubits. At any rate,
though simple, both displayed the advantages of having a large set of non-homogeneous
states at our disposal, and all that is required is a two-qubit stabilizer circuit.

Inspired by the magic state model to universal quantum computation, we consider general
two-to-one stabilizer procedures that take a two-qubit state and produce a single qubit output
using stabilizer operations only. Our intent is to explore these processes from a different angle,
outside the realm of state distillation, and simply examine their behavior on more arbitrary
input. And though our problem size is small, we discover some encouraging ideas that are
worth pursuing for larger settings. Some limits on distilling two-qubit states are already
discussed in [21]. Instead, we refine the implementation details first provided by Reichardt
[21] to identify three circuit configurations characterizing all such two-to-one procedures.
These three forms suggest that in addition to Pauli measurements and postselection, single
qubit Clifford gates and at most one CNOT or SWAP are enough to realize any stabilizer
procedure acting on two qubits. When the input set is further confined to certain product
states, we discover an interesting connection between stabilizer circuits of the single CNOT
variety – “interacting” circuits in our dictionary. That is, there are “recovery circuits” that
can recuperate a product state input from a corrupted stabilizer circuit output. Informally
our main result (Theorem 12) states the following.

Main Result (informal): For any interacting two-to-one stabilizer procedure there exist
recovery circuits, and all such recovery circuits are equivalent to one-and-another and hence
have the same probability of recovery.

The magic state injection process is one good area for utilizing such a recovery technique.
We end the article with a few numerical experiments showcasing the benefits of the derived
recovery protocols.
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Figure 1 A postselected two-to-one stabil-
izer circuit (C, b) consists of a stabilizer circuit
component C and a postselected bit value b.

ρ

{
C

ϕ

Z b

Figure 2 The qubit ϕ = Φb(C, ρ) is the
output of a postselected two-to-one stabilizer
circuit (C, b) on the two-qubit input ρ.

2 Preliminaries

This section provides an overview of the elementary stabilizer operations and basic concepts.
The single qubit Pauli matrices are

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

They satisfy not only the identities X2 = Y 2 = Z2 = I and XY = iZ, but they also form
a basis for the space of 2× 2 Hermitian matrices. We can expand any single qubit density
matrix ϕ in terms of Pauli matrices using the expression ϕ = (I + xX + yY + zZ) /2. If we
collect the three previous coefficients, then (x, y, z) ∈ R3 is the Bloch vector of ϕ.

An n-qubit stabilizer circuit is limited to certain quantum gates and measurements. It
may use elements from the Clifford group C(n), and it may apply measurements in the
Z-basis. The Clifford group is generated by the Controlled-NOT (CNOT), Hadamard (H),
and Phase (P ) operators:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H = 1√
2

[
1 1
1 −1

]
, P =

[
1 0
0 i

]
. (2)

A stabilizer circuit thus contains entirely of CNOT, H, and P gates. For the values of n
we are concerned with, C(1) and C(2) have sizes 24 and 11520, respectively, modulo global
phases. The circuit diagram for a Z-measurement is given by the left image below:

Z
×
×

while the right image represents a qubit SWAP. A Clifford circuit is a stabilizer circuit that
excludes measurements and implements a Clifford group unitary only.

3 Postselected Two-to-One Stabilizer Circuits

We revisit the study of stabilizer reductions from [21] to derive Lemma 4. Part of the novelty
that Lemma 4 brings is the realization of recovery circuits described in the next section.
We first introduce some terminology and notation to more concisely capture Reichardt’s
observations in [21] to present our result.

An n-to-1 stabilizer reduction is a procedure that accepts an n-qubit state and generates
a single qubit output using stabilizer operations only. This means all post-measurement
activities are also restricted to classical control over stabilizer operations. Reichardt showed
that any reduction can be standardized to a particular form: an application of a Clifford
unitary on n qubits, followed by a projection of qubits 2 to n onto a computational basis
state [21]. Since our focus is on n = 2, we have the following definition.

TQC 2018
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G1 • G3

G2 Z 0

(a)

G1

G2 Z 0

(b)

× G1

× G2 Z 0

(c)

Figure 3 Any stabilizer procedure generating one qubit from two can be described by a postselected
circuit (C, b) resembling circuit (a), circuit (b), or circuit (c). The choice of single qubit Clifford
gates G1, G2, and G3 depend on C and the postselected measurement b. Circuit (a) is known as an
interacting postselected circuit; the precise definition is provided in Section 4.

I Definition 1 (postselected two-to-one stabilizer circuit). A postselected two-to-one stabilizer
circuit (C, b) is a two-qubit quantum circuit that implements a Clifford unitary C, followed
by a Z-measurement on the second qubit with an outcome b ∈ {0, 1}.

I Definition 2 (probability and output). Let (C, b) be a postselected two-to-one stabilizer
circuit and let ρ be a two-qubit state. Then the probability Qb of outcome b on the transformed
state CρC† is Qb(C, ρ) = Tr((I ⊗ 〈b|)CρC†(I ⊗ |b〉)). If Qb(C, ρ) > 0, then the output Φb of
a postselected circuit (C, b) on an input ρ is

Φb(C, ρ) = (I ⊗ 〈b|)CρC†(I ⊗ |b〉)
Qb(C, ρ) . (3)

At times, we may say run circuit C, which translates to an application of the unitary C
on the input ρ, followed by a Z-measurement on the second qubit. This is often followed
by details on what course of action to take conditional on b (or 1 − b). The term circuit
C thus references the stabilizer circuit piece only of the postselected circuit, including the
measurement at the end. The next definition describes what it means for postselected circuits
to produce similar outputs.

I Definition 3 (equivalent postselected two-to-one stabilizer circuits). Two postselected two-
to-one stabilizer circuits (C1, b1) and (C2, b2) are Clifford equivalent, (C1, b1) ∼ (C2, b2), if
and only if there is a single qubit Clifford gate G such that for all two-qubit states ρ, we
have the equality

(I ⊗ 〈b1|)C1ρC
†
1(I ⊗ |b1〉) = G(I ⊗ 〈b2|)C2ρC

†
2(I ⊗ |b2〉)G†. (4)

Note that a Clifford equivalence implies that the probabilities of observing a b1 or b2 are the
same for the two circuits i.e. Qb1(C1, ρ) = Qb2(C2, ρ). We say two postselected circuits are
simply equivalent, (C1, b1) ≡ (C2, b2), if and only if G = I in Equation 4.

We may alter the circuits using |b2〉 = X|1− b2〉 in Equation 4 so that both postselect on
the same value. As we mentioned before, any two-to-one stabilizer reduction can be achieved
through a postselected two-to-one stabilizer circuit. Despite |C(2)| = 11520, the number of
actual reductions we need to consider is 30: one for each nontrivial two-qubit Pauli, plus
the bit [21]. As such, we can introduce three forms in the following lemma to represent all
postselected circuits (C, b). The proof is provided in Appendix A.

I Lemma 4. For every postselected two-to-one stabilizer circuit (C, b), there exist single qubit
Clifford gates G1 and G2 such that either (C, b) ∼ (I⊗G1, 0), or (C, b) ∼ ((I⊗G1)SWAP, 0),
or (C, b) ∼ (CNOT(G1 ⊗G2), 0).

I Corollary 5. If a postselected two-to-one stabilizer circuit (C, b) is Clifford equivalent to
(C ′, 0), where C ′ = I ⊗G1, or C ′ = (I ⊗G1)SWAP, or C ′ = CNOT(G1 ⊗G2), and G1 and
G2 are single qubit Clifford gates, then (C, 1− b) ∼ ((I ⊗X)C ′, 0).
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Due to Lemma 4, we have a remarkably much easier time studying postselected circuits.
We may substitute (C, b) with another that likely uses fewer gates but behaves in exactly
the same way. Because there are many identities on Pauli operators and Clifford gates, G1
and G2 are not unique e.g. ((CNOT(Z ⊗ I), 0) ≡ ((Z ⊗ I)CNOT, 0) ∼ (CNOT, 0). Of the
30 reductions available, it is easy to see that there are 18 varieties of (CNOT(G1 ⊗G2), 0),
and 6 each for (I ⊗G1, 0) and ((I ⊗G1)SWAP, 0). If we want to separate the circuits by the
stricter kind of equivalence “≡”, the number of classes is multiplied by 24 e.g. 18 · 24 = 432
for ((G3 ⊗ I)CNOT(G1 ⊗G2), 0), since there are |C(1)| = 24 choices of G3.

4 Recovery Circuits

A quantum circuit involving measurements likely has outcomes that we prefer over others. If
we are less than fortunate, convention dictates that we discard the output and rerun the
circuit on new input instances until we succeed. This is not much of an issue when the initial
overhead is low, but can become problematic otherwise. If the cost associated with state
preparation is a barrier to large computations, any method that alleviates this burden is
highly desirable. It turns out when ρ is a tensor product state, i.e. ρ = ϕ⊗ |ψ〉〈ψ|, we have
an alternative: there exist operations capable of reusing an undesirable output to try and
recovery ϕ.

This input requirement means the only circuit configuration of Lemma 4 worth considering
is (CNOT(G1 ⊗ G2), 0). We can easily see that when (C, b) ∼ (I ⊗ G1, 0), the output of
(C, b) on ϕ1 ⊗ ϕ2 is essentially ϕ1. The output is always an input, and the same is similarly
true for all circuits (C, b) ∼ ((I ⊗G1)SWAP, 0).

I Definition 6 (interacting postselected circuit). A postselected two-to-one stabilizer circuit
(C, b) is interacting if and only if there are single qubit Clifford gates G1 and G2 such
that (C, b) ∼ (CNOT(G1 ⊗ G2), 0). We say circuit C is interacting if and only if (C, 0) is
interacting.

With that, we define the notion of a recovery circuit. For convenience, we use ψ in place
|ψ〉〈ψ| throughout the remainder of our discussion on recovery circuits.

I Definition 7 (recovery circuit). Let (C, b) be an interacting postselected circuit. A postse-
lected two-to-one stabilizer circuit (C ′, b′) is a recovery circuit of (C, b) if and only if for all
two-qubit states ϕ⊗ ψ, we have ϕ = Φb′ (C ′,Φ1−b(C,ϕ⊗ ψ)⊗ ψ).

Notice that an input qubit to (C ′, b′) is the output of (C, 1− b) on ϕ⊗ψ. In this context,
if b is more desirable than 1 − b, then we say circuit C is successful upon measuring b

on C (ϕ⊗ ψ)C†. Otherwise circuit C is unsuccessful, and the recovery circuit provides a
second chance at obtaining the output of (C, b) on ϕ ⊗ ψ. The presumption is that the
implementation of C ′ is far simpler to pursue than the original method to prepare ϕ. Our
next lemma presents one way on how to design such a recovery circuit to (C, b).

I Lemma 8. Every interacting postselected circuit (C, b) has a recovery circuit.

Proof. Let (C, b) ∼ (CNOT(G1 ⊗ G), 0), where G1 and G are single qubit Clifford gates.
By Corollary 5, we know (C, 1 − b) ∼ (CNOT(G1 ⊗ G), 1), which means there is a single
qubit Clifford gate G2 such that (C, 1− b) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗G), 1). We shall show
that ((G†1 ⊗ I)CNOT(G2 ⊗G), 0) is a recovery circuit of (C, b). Figure 4 includes reference
diagrams to aid comprehension.

If the input to circuit C is ϕ1 ⊗ ψ, consider ϕ′1 ⊗ ψ′ = G1ϕ1G
†
1 ⊗GψG†. Let (x1, y1, z1)

be the Bloch vector of ϕ′1 and (x, y, z) be the Bloch vector of |ψ′〉. For ease of notation, we

TQC 2018
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ϕ1 G1 ϕ′1 • ϕ′2 G†2 ϕ2

|ψ〉 G |ψ′〉 Z 1
(a)

ϕ2 G2 • G†1 ϕ1

|ψ〉 G Z 0
(b)

Figure 4 Suppose (C, 1 − b) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗ G), 1). This equivalence allows us to
study (C, 1− b) via its substitute in (a) and come up with the recovery circuit in (b). We include
intermediate states like ϕ′1 and ϕ′2 = G2ϕ2G

†
2 in (a) to signify stages in the circuit.

define outputs ϕ′2 = Φ1(CNOT, ϕ′1 ⊗ ψ′) and ϕ2 = G†2ϕ
′
2G2 = Φ1−b(C,ϕ1 ⊗ ψ). Then the

Bloch vector (x2, y2, z2) of ϕ′2 becomes

x2 = x1x+ y1y

1− z1z
, y2 = y1x− x1y

1− z1z
, z2 = z1 − z

1− z1z
. (5)

Now suppose ϕ3 = Φ0(CNOT(G2⊗G), ϕ2⊗ψ). For postselected circuits with one CNOT,
the equations for computing the output’s Bloch vector are essentially the same:

x3 = x2x− y2y

1 + z2z
, y3 = y2x+ x2y

1 + z2z
, z3 = z2 + z

1 + z2z
, (6)

where (x3, y3, z3) represents the Bloch vector of ϕ3. Using x2 + y2 + z2 = 1, we can show

x3 = x1x
2 + xy1y − xy1y + x1y

2

1− z1z + z1z − z2 = x1. (7)

Likewise, y3 = y1 and z3 = z1, which means ϕ3 = ϕ′1 = G1ϕ1G
†
1. The circuit ((G†1 ⊗

I)CNOT(G2 ⊗G), 0) is therefore a recovery circuit of (C, b). J

Between (C, b) and its recovery circuit ((G†1 ⊗ I)CNOT(G2 ⊗G), 0), there is a relatively
straightforward relationship between the probability that circuit C would have been successful
and the probability that circuit C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) will be successful.

I Corollary 9. Let ϕ1 ⊗ ψ be a two-qubit state and let C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) be a
two-qubit Clifford unitary such that (C ′, 0) is a recovery circuit of (C, b). Then

Q0(C ′,Φ1−b(C,ϕ1 ⊗ ψ)⊗ ψ) = (1− z2)/4
1−Qb(C,ϕ1 ⊗ ψ) (8)

where z = 〈ψ|G†ZG|ψ〉.

Proof. We assume for simplicity that C = CNOT and b = 0, which implies G1 = G2 = G = I.
Let z1 = Tr(Zϕ1) and z = 〈ψ|Z|ψ〉. Also let ϕ2 = Φ1(C,ϕ1 ⊗ ψ). Then

Q1(C,ϕ1 ⊗ ψ) = 1− z1z

2 , z2 = Tr(Zϕ2) = z1 − z
1− z1z

. (9)

The probability of recovering ϕ1 is now clear:

Q0(C ′, ϕ2 ⊗ ψ) = 1 + z2z

2 = 1− z1z + z1z − z2

4
( 1−z1z

2
) = (1− z2)/4

1−Q0(C,ϕ1 ⊗ ψ) (10)

since the circuits perform a single measurement. J
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Another implication of the proof to Lemma 8 is that Φ1−b(C,ϕ1 ⊗ ψ) is always ϕ1, up
to a single qubit Clifford gate, whenever |ψ〉 is an eigenstate of X, Y , or Z (a stabilizer
qubit). Under these circumstances, the behavior of (C, b) on these types of inputs is actually
no different than non-interacting circuits. Hence it does not warrant the use of a circuit
C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G) to try and perform a recovery because the qubit is basically
ϕ1. It is also quite evident by now that there is only one type of recovery circuit, especially
given our construction in Lemma 8.

I Lemma 10. All recovery circuits are interacting postselected circuits.

Proof. Let (C, b) be an interacting postselected circuit and suppose (C ′, b′) is a recovery
circuit of (C, b). If (C ′, b′) is not an interacting postselected circuit, then (C ′, b′) ∼ (I ⊗G, 0)
or (C ′, b′) ∼ ((I ⊗G)SWAP, 0), where G is a single qubit Clifford gate. We can easily find a
two-qubit state ϕ⊗ψ such that (C ′, b′) fails to recover ϕ on the input Φ1−b(C,ϕ⊗ψ)⊗ψ. J

Lastly, it should not come as a surprise that more than one recovery circuit of (C, b)
exists. Even so, we can guarantee that not any one recovery circuit will outperform another.

I Lemma 11. Let (C, b) be an interacting postselected circuit, and let C ′′ = (G†2 ⊗
I)CNOT(G1 ⊗ G) be a two-qubit Clifford unitary such that (C, 1 − b) ≡ (C ′′, 1). Then
(C ′, b′) is a recovery circuit of (C, b) if and only if (C ′, b′) ≡ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0).

Proof. In the reverse direction, equivalence of postselected stabilizer circuits means both
produce the exact same output at the same success rate for all two-qubit states ρ. This
certainly includes all two-qubit product states ϕ2 ⊗ ψ, where ϕ2 is the output of (C, 1− b)
on another input ϕ1 ⊗ ψ.

In the forward direction, Lemmas 14 and 15 in the appendices do most of the job:
(C ′, b′) ∼ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0). We just need to prove equivalence. We look back at
the definition of Clifford equivalent postselected circuits, where we must have a single qubit
Clifford gate G′ such that

(G′ ⊗ 〈b′|)C ′ρC ′†(G′† ⊗ |b′〉) =

(G†1 ⊗ 〈0|)CNOT(G2 ⊗G)ρ(G†2 ⊗G†)CNOT(G1 ⊗ |0〉) (11)

for all two-qubit states ρ. If it is indeed the case that they are strictly Clifford equivalent i.e.
G′ 6= I, then (C ′, b′) cannot have been a recovery circuit of (C, b) because the output from
(C ′, b′) on ρ will be rotated by G′†. Thus the two must be equivalent (with “≡”). J

From Lemmas 8 and 11, we reach our main result, with Corollary 13 as an immediate
consequence to our theorem.

I Theorem 12. Every interacting postselected circuit (C, b) has a recovery circuit (C ′, b′).
Moreover, all recovery circuits of (C, b) are equivalent to (C ′, b′).

I Corollary 13. Every recovery circuit (C ′, b′) has its own recovery circuit (C ′′, b′′).

5 Example Routines Featuring Recovery Circuits

Recovery circuits appear in the literature, where the use cases for our recovery operation seem
more pertinent to state injection and implementing non-Clifford operations than to state
distillation itself. For instance, the programmable ancilla rotation (PAR) of [13] uses qubits of
the type |θ〉 = (|0〉+ eiθ|1〉)/

√
2 and an interacting circuit CNOT to rotate |q〉 = α|0〉+ β|1〉

TQC 2018
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α|0〉+ β|1〉 • α|0〉+ eiθβ|1〉

|θ〉 = |0〉+eiθ|1〉√
2 Z 0

Figure 5 Procedure with the postselected
circuit (CNOT, 0) from [13] to rotate α|0〉+β|1〉
by θ about the Z-axis.

|Hi〉 • |Hi+1〉

|H0〉 Z 0

Figure 6 The same circuit (CNOT, 0) ap-
pears in [9] to produce “ladder” qubits |Hi+1〉
from |Hi〉 ⊗ |H0〉, where H|H0〉 = |H0〉.

|H0〉 • |q1〉

|H0〉 Z 0
⇒
|H0〉 • |q2〉

|q1〉 H Z 0
⇒
|q2〉 H • |q3〉

|H0〉 Z 0

Figure 7 Approach to generate |q3〉 with three postselected circuits and four |H0〉 states. This
qubit appears in [9] (as |ψ0

0〉) to help create more diverse “ladder” qubits. If we measure 1 at any of
the three steps, then we restart from the first circuit on the left with two new |H0〉 copies. Adding
recovery for the last two-qubit circuit additionally improves the average |H0〉 cost.

about the Z-axis by an angle θ. This is demonstrated in Figure 5. On the chance that
the Z-measurement returns 1, then instead of |q + θ〉 = α|0〉+ eiθβ|1〉, the output becomes
|q− θ〉 = α|0〉+ e−iθβ|1〉, which is |q〉 rotated by −θ. Jones et. al [13] suggest pairing |q− θ〉
with |2θ〉 as a direct line to |q+ θ〉, but we can alternatively break this down into two smaller
steps if |θ〉 are the only states available. We first run the CNOT circuit on |q − θ〉 ⊗ |θ〉. If
we measure 0, then we recover |q〉, and we proceed with rerunning circuit CNOT on |q〉 ⊗ |θ〉.

The method in [9] is similar. It uses the same interacting circuit with a single CNOT to
obtain “ladder” qubit states of the kind

|Hi〉 = cos (θi) |0〉+ sin (θi) |1〉, cot (θi) = coti+1 (π/8) (12)

for i ≥ 0. The production starts by supplying two copies of the magic state H|H0〉 = |H0〉
to the circuit, as seen in Figure 6. Each time we gain a new state |Hi〉, we reuse the qubit
to try and create the next |Hi+1〉. If the attempt fails, then the output of (CNOT, 1) on
|Hi〉 ⊗ |H0〉 is |Hi−1〉. Given that the recovery circuit of (CNOT, 0) is itself, the method to
recover |Hi〉 from |Hi−1〉 ⊗ |H0〉 is no different than the procedure to create it.

Another example is provided in Figure 7. Here, we show our recovery technique improves
the average magic |H0〉 cost to produce

|q3〉 = cos(φ3)|0〉+ sin(φ3)|1〉, cos(2φ3) = 6 + 5
√

2
6 + 6

√
2
, 2φ3 ≈ 0.4456. (13)

This qubit participates in the same ladder routine of [9] to generate more varied ladder
states. Duclos-Cianci and Svore’s method [9] leads to an average cost 12.5 |H0〉 states, but
we find |q3〉 is also obtainable following the procedure in Figure 7. As such, we may consider
incorporating a recovery step at one or two places to try and optimize our magic state usage.
Simulations of the process in Figure 7 without recovery report an average 10.04 |H0〉 qubits,
but adding recovery for the final stabilizer circuit brings the number down slightly to 9.45.
Although the reduction is small, the Section 6 experiments suggest the potential is greater
when the relative cost increases between |q2〉 and |H0〉.

In general, if we start with the two-qubit state ϕ⊗ ψ, then ϕ is allowed to be mixed, and
it can even be part of a larger entangled system. As a quick demonstration, suppose we have
the situation as illustrated in the left circuit of Figure 8. Let (C ′, b′) be a recovery circuit of
(C, b) and let

UρU† = 1
2n (PI ⊗ I + PX ⊗X + PY ⊗ Y + PZ ⊗ Z) (14)
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Uρ

...
...

ϕ
C

|ψ〉 Z b


(a)

ϕ
C

ϕ′

|ψ〉 Z 1− b

ϕ′

C ′
ϕ

|ψ〉 Z b′

(b)

Figure 8 Recovery circuits are also applicable when one of the qubits is entangled with another
system. In (a), we trace out all but the n-th qubit of UρU† to get ϕ⊗ψ as input to circuit C. If we
measure 1− b as pictured in the top circuit of (b), then we execute circuit C′ on ϕ′ ⊗ ψ to try and
recover ϕ. We succeed with the recovery if we measure b′.

where PL are Pauli operator sums on the first n− 1 qubits. While the proof to Lemma 8 is
generalizable to include the unused portions PL of the entangled state, the math is simpler
and works out the same if we trace out the first n− 1 qubits, keeping only the last qubit
ϕ = Tr1,n−1

(
UρU†

)
that we need for the two-qubit circuit. If we are unlucky, then qubit n

becomes ϕ′ = Φ1−b(C,ϕ⊗ ψ), but we can try to regain ϕ by executing circuit C ′ on ϕ′ ⊗ ψ.
If the recovery is successful, then we have another opportunity at the output Φb(C,ϕ⊗ ψ).
In all likelihood, this is a less lengthy process than preparing another ρ and running the
circuit of U again; by some estimates, a synthesis of U over a universal gate set may require
an exponential number of gates [11]. This is a stark contrast to C ′, which uses one CNOT
with possibly a couple more single qubit Clifford gates.

6 Experimentation with Recovery Circuits

Consider a two-qubit Clifford unitary C1 and a two-qubit state ϕ⊗ ψ. Suppose we have a
target outcome of b1; the intent is to produce output Φb1(C1, ϕ⊗ ψ). Then by Corollary 13,
we can define a depth k protocol to be a procedure on k− 1 postselected circuits (C1, b1), . . .,
(Ck−1, bk−1) such that (Ci+1, bi+1) is the recovery circuit of (Ci, bi). We start by running
circuit C1 on ϕ⊗ ψ. If circuit C1 is successful i.e. we measure b1, then no recovery attempts
are necessary and we declare success. Otherwise, we enlist circuit C2 to try and obtain ϕ.
More generally, if circuit Ci is successful, then we recover an input qubit to circuit Ci−1; if
not, we run circuit Ci+1 to recover an input qubit to circuit Ci.

The value of k represents a stopping point in our protocol: when circuit Ck−1 is unsuc-
cessful, we declare failure, discard the output, and restart with a new copy ϕ⊗ ψ to circuit
C1. Thus this process on k− 1 circuits is nothing more than a classical random walk on k+ 1
integers {0, . . . , k}, where the walk begins at location 1, a step onto 0 signifies success, and a
step onto k means failure. The success probability of circuit Ci is the probability of a left
step from i to i− 1 and is determined recursively by Equation 8 in Corollary 9. A step in
either direction consumes one |ψ〉.

We conduct simulations of this process to obtain a better idea for Nk, the expected
number of |ψ〉 resources needed to create one Φb1(C1, ϕ⊗ ψ) with our depth k protocol. Let
d be the cost to prepare a single instance of ϕ relative to the cost of |ψ〉. Then the cost of
one execution or trial is the same as d plus the number of |ψ〉 qubits used before halting,
regardless of declaring success or fail. The costs from all trials are averaged to obtain Nk.
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Figure 9 The success probability between circuit Ci and circuit Ci+1 defined recursively in
Corollary 9 drops more dramatically as z moves closer to 1. This leads to a greater expected cost
Nk of our protocol since the recovery is less likely to succeed relative to other choices of z. On the
other end of the spectrum, the success probability of each circuit Ci is uniform when z = 0.

We compare this against the expected cost without recovery (k = 2), which is

N2 = d+ 1
Qb1(C1, ϕ⊗ ψ) . (15)

We assume for the sake of simplicity that (C1, b1) = (CNOT, 0), which means (C2, b2) =
(CNOT, 0), and so forth for the other k − 3 recovery circuits.

We further assume that Q0(CNOT, ϕ⊗ψ) = 1/2. Since we fix the first success probability,
Nk is dependent on the parameter z = 〈ψ|Z|ψ〉 that appears in the recovery success
rate Equation 8. Technically, we need a different ϕ with each choice of |ψ〉 to maintain
Q0(CNOT, ϕ⊗ψ) = 1/2 and the same output Φ0(CNOT, ϕ⊗ψ). Usually different ϕ means
different costs d, but we will ignore this momentarily and assume the preparation overhead d
for each ϕ is the same for the purposes of a broader comparison of Nk across different |ψ〉
qubits. In the first set of experiments, we include only one recovery circuit (k = 3). The
following table summarizes the expected costs for four samples of z obtained over the course
of 100000 trials:

d N2 N3 : z =
√

0.96 N3 : z =
√

0.50 N3 : z =
√

0.04 N3 : z = 0
10−1 2.2 3.20 3.18 3.15 3.15
100 4.0 4.99 4.75 4.51 4.50
101 22 22.7 20.5 18.2 18.0
102 202 200.4 177.9 155.1 157.7
103 2002 1988.9 1750.7 1521.9 1498.7
104 20002 19816.4 17488.0 15215.4 14998.7

The first row with d = 0.1 should be interpreted as ϕ being cheaper to prepare than |ψ〉. We
clearly see an improvement when factoring in recovery in the face of large relative preparation
overhead between ϕ and |ψ〉. We also see a trend of lower costs as z grows smaller, when |ψ〉
is moving closer to the XY -plane in the Bloch sphere. This is due to the differences in the
recovery success rate at circuit C2, which are 0.02, 0.25, 0.48, and 0.5, respectively.

In the second batch of experiments, we maintain d = 1000 but vary the number of circuits
parameterized by k. Again, Q0(CNOT, ϕ⊗ ψ) = 1/2 and we run 100000 trials. Data for Nk
is compiled together in the table below, starting with k = 3:
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k Nk : z =
√

0.96 Nk : z =
√

0.50 Nk : z =
√

0.04 Nk : z = 0
3 1981.7 1753.2 1522.9 1501.6
4 1982.9 1720.5 1372.2 1336.9
5 1982.4 1716.5 1302.9 1255.2
6 1987.5 1710.9 1266.6 1206.2
7 1982.5 1715.3 1246.7 1174.7
10 1991.7 1717.0 1221.5 1120.8
20 2002.5 1727.3 1220.2 1072.9
30 2006.3 1734.6 1231.4 1064.5
40 2023.5 1743.7 1240.8 1066.3

Observe that the value of Nk continues to lower noticeably for some of the |ψ〉 cases as
more circuits are added before increasing again. This behavior is no surprise since at some
point, the penalty to sustain the recovery process will exceed the overhead of repeating the
computation. If we look at the success probabilities for the first eight circuits of the protocol
for each of the four z samples in Figure 9, we also see the success rates decrease to some
lower boundary as i increases, with the exception of when z = 0. The drop in probabilities
from circuit C1 to circuit C3 is quite significant when z is close to 1 (and 1− z2 is small), so
the chance of recovery at circuit C3 is only slightly larger than 0. This explains why there is
no apparent change in Nk between one recovery circuit (k = 3) versus two (k = 4) for the
case z =

√
0.96. The ideal situation is to know beforehand how many circuits to include to

minimize resource usage.

7 Conclusion

We have shown two-qubit stabilizer circuits require nothing more than a few Clifford gates
to perform a job. These simplifications shed light into the complementary nature between
interacting circuits. Despite measurements generally being irreversible, we find an exception
when handling a two-qubit product state ϕ ⊗ ψ. That is, we can use |ψ〉 in conjunction
with a specific circuit to salvage the expensive resource qubit ϕ. What direct effects the
recovery operation will have on larger, more complex distillation schemes is unclear. At the
moment, we are only able to recognize a small number of applications that involve injecting
a non-stabilizer resource state into a computation.

To better gauge the utility of recovery circuits, one direction we may pursue is a more
detailed and thorough examination of the depth k protocol in Section 6. In particular, there
is an optimal number of circuits to employ that uses the fewest number of resources in
expectation on each invocation. As we saw earlier, the behavior of our protocol is akin to
that of a (possibly non-uniform) random walk. This modeling of probabilistic circuits is
nothing new (see [1, 9, 13]). One matter we need to keep in mind is the costs of attaining
qubits ϕ and |ψ〉. The amount of work that went into preparing ϕ should exceed that of |ψ〉
in order for the recovery to be cost effective, which stems from the fact that we need a copy
of |ψ〉 to operate each circuit. The random walk techniques in [14] should also prove useful
for gathering a more precise cost estimate.

Since our two-qubit setting is appropriate for only a limited number of scenarios, a
natural follow-up is whether something resembling recovery circuits can easily be extended
to larger stabilizer circuits. This question has been answered to an extent for the Clifford+T
gate set in [1, 2, 20], where we can treat |ψ〉 = HP †|H0〉 to perform a non-Clifford π/4
phase rotation T . The goal in [1, 2, 20] uses a multiqubit circuit of Clifford+T gates to
approximate an arbitrary single qubit unitary U up to some error ε. If the measurements
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are unfavorable, then there is a backup operation that either returns the qubits to the initial
state, or directly tries to approximate U using a secondary circuit. It is worth investigating
whether there exist conditions that enable larger stabilizer circuits to exhibit the recovery
feature we demonstrated here on general |ψ〉 resources.
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A Proof of Lemma 4

Similar to a single qubit, a two-qubit density matrix ρ can be expressed as a real combination
of two-qubit Pauli operators σjk = σj ⊗ σk, where σ0 = I, σ1 = X, σ2 = Y , and σ3 = Z

e.g. σ13 = X ⊗ Z. We omit the tensor product and use σjk for notation reasons. We define
P± = {±σjk | j 6= 0 and k 6= 0} to be a set of nontrivial two-qubit Pauli operators.

To prove Lemma 4, we start by rewriting Equation 4 in Definition 3 as

C1Π1ρΠ1C
†
1 = (G⊗ I)C2Π2ρΠ2C

†
2(G† ⊗ I) (16)

where Π1 = C†1(I ⊗ |b1〉〈b1|)C1 and Π2 = C†2(I ⊗ |b2〉〈b2|)C2 are projection operators.
Reichardt [21] showed that Equation 16 holds for some single qubit Clifford G on all states
ρ if Π1 = Π2. In our two-qubit case, there are only 30 cases of Π1 = Π2. We make some
refinements here to make the ideas in [21] a little more digestible in our notation.

I Lemma 14. Let (C1, b1) and (C2, b2) be postselected two-to-one stabilizer circuits. If
Π = C†1(I ⊗ |b1〉〈b1|)C1 = C†2(I ⊗ |b2〉〈b2|)C2, then (C1, b1) ∼ (C2, b2).

Proof. Note that 2(I ⊗ |bj〉〈bj |) = σ00 + (−1)bjσ03. Let 2Π = σ00 + λ03, where λ03 ∈ P±,
and let λ10, λ20, λ30 ∈ P± be two-qubit Pauli operators such that [λ03, λ10] = [λ03, λ20] =
[λ03, λ30] = 0 and iλ30 = λ10λ20. Let ρ be a two-qubit state. Then

ΠρΠ = 1
8 (wσ00 + wλ03 + xλ10 + xλ13 + yλ20 + yλ23 + zλ30 + zλ33) (17)

where λk3 = λ03λk0 and x = Tr((λ10 + λ13)ρ). The coefficients w, y, z are determined
similarly with σ00 + λ03, λ20 + λ23, and λ30 + λ33, respectively. Our starting condition
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Cjλ03C
†
j = (−1)bjσ03 implies

Cjλ10C
†
j , Cjλ20C

†
j ∈ {σ10, (−1)bjσ13,−σ10, (−1)bj+1σ13,

σ20, (−1)bjσ23,−σ20, (−1)bj+1σ23,

σ30, (−1)bjσ33,−σ30, (−1)bj+1σ33 }. (18)

This means there are single qubit Clifford gates Gj to permute the operators in a way that

(Gj ⊗ I)Cjλ10C
†
j (G†j ⊗ I) ∈ {σ10, (−1)bjσ13 } (19)

(Gj ⊗ I)Cjλ20C
†
j (G†j ⊗ I) ∈ {σ20, (−1)bjσ23 }. (20)

The value of (Gj ⊗ I)Cjλ30C
†
j (G†j ⊗ I) is fixed given the other two. Our unnormalized

post-measurement states ρ′j = (Gj ⊗ I)CjΠρΠC†j (G†j ⊗ I) are now

ρ′j = 1
4 (wI + xX + yY + zZ)⊗ |bj〉〈bj |. (21)

The first qubit of ρ′1 and ρ′2 are the same after G1 and G2. Therefore (C1, b1) ∼ (C2, b2). J

We now have the tools to prove Lemma 4. Note that a Clifford equivalence (C1, b1) ∼
(C2, b2) is invariant with respect to Clifford circuits that execute prior to circuits C1 and C2
i.e. (C1, b1) ∼ (C2, b2) if and only if (C1U, b1) ∼ (C2U, b2) for any Clifford unitary U .

Proof. We partition the 15 Pauli operators σjk into the following sets:

PA = {σjk | j, k ∈ {1, 2, 3}}, PB = {σ01, σ02, σ03}, PC = {σ10, σ20, σ30}. (22)

We look at σ33 first. Suppose there is a bit b′ such that Cσ33C
† = (−1)b′

σ03. For
readability, set C ′ = CNOT. Knowing C ′σ33C

′† = σ03, we obtain (C, b) ∼ (CNOT, b +
b′ mod 2) from Lemma 14. For the remaining σjk ∈ PA, suppose CσjkC† = ±σ03. Choose
single qubit Clifford gates G1 and G2 such that (G1 ⊗ G2)σjk(G†1 ⊗ G

†
2) = σ33. Define

C ′′ = C(G†1 ⊗G
†
2). Then C ′′σ33C

′′† = (−1)b′
σ03 for some b′. The rest follows from previous

arguments to conclude (C ′′(G1 ⊗G2), b) = (C, b) ∼ (CNOT(G1 ⊗G2), b+ b′ mod 2).
For the operator σ03 ∈ PB , assume Cσ03C

† = (−1)b′
σ03. Then (C, b) ∼ (σ00, b+b′ mod 2).

Coverage of the other five from PB and PC is similar to the above.
To finish, suppose (C, b) ∼ (I ⊗ G, b + b′ mod 2), where G is a single qubit Clifford

gate. If b + b′ mod 2 = 1, then (C, b) ∼ (I ⊗ G, 1) ≡ (I ⊗ XG, 0). The same applies
when (C, b) ∼ ((I ⊗ G)SWAP, 1). If (C, b) ∼ (CNOT(G1 ⊗ G2), 1), then we include (I ⊗
X)CNOT(G1 ⊗G2) = CNOT(G1 ⊗XG2). The other case b+ b′ mod 2 = 0 follows directly
from Lemma 14. J

B Additional Material on Recovery Circuits

We may use the following to help us determine when two recovery circuits are Clifford
equivalent. In particular, it dispels concerns that there may be two recovery circuits where
one has a better chance of succeeding than the other. We use the same notation for two-qubit
Paulis σjk and P± as in Appendix A.

I Lemma 15. Let (C1, b1) be a recovery circuit of an interacting postselected circuit (C, b).
If (C2, b2) is also a recovery circuit of (C, b), then C†1(I ⊗ |b1〉〈b1|)C1 = C†2(I ⊗ |b2〉〈b2|)C2.
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Proof. It is easier to prove the contrapositive. Specifically, we show the recovery from
(C2, b2) will fail on one particular pair of qubits ϕ2 and |ψ〉, although many exist that
are equally as good. Suppose Π2 = C†2(I ⊗ |b2〉〈b2|)C2. Let 2Π2 = σ00 + λ03, where
λ03 ∈ {±σjk | j, k ∈ {1, 2, 3}}, and let λ30 and λ33 be two-qubit Pauli operators from P±
such that [λ03, λ30] = 0 and λ03 = λ30λ33. The qubits ϕ2 and |ψ〉 we choose shall have Bloch
vectors

ϕ2 : (x2, y2, z2) =
(√

2
17 ,
√

5
17 ,
√

10
17

)
, |ψ〉 : (x, y, z) =

(√
1
11 ,
√

3
11 ,
√

7
11

)
. (23)

Let ϕ1 be a qubit so that ϕ2 = Φ1−b(C,ϕ1 ⊗ ψ). Let ϕ′1 = Φb2(C2, ϕ2 ⊗ ψ).
To prove the recovery by (C2, b2) will fail, we merely need to verify that the Bloch vectors

from all 18 choices of λ03 are different, which implies ϕ′1 6= ϕ1 whenever C†1(I ⊗ |b1〉〈b1|)C1 6=
Π2. We track the coefficients ajk = Tr(λjk(ϕ2 ⊗ ψ)). Then

Tr (Π2 (ϕ2 ⊗ ψ) Π2) = 1 + a03

2 , Tr (λ30Π2 (ϕ2 ⊗ ψ) Π2) = a30 + a33

2 , (24)

yielding v = (a30 + a33)/(1 + a03) as a Bloch vector component of ϕ′1. The most convenient
choices for λ30 and λ33 are tensor products with the identity e.g. λ03 = −σ33, λ30 = σ30,
λ33 = −σ03, and λ03 = σ11, λ30 = σ10, λ33 = σ01, which means that a03 = a30a33. If we look
at the coefficients from the first example with λ03 = −σ33, then a30 = z2 and a33 = −z. We
get the following components for each of the positive possibilities for λ03:

λ03 a03 λ30 a30 λ33 a33 v

σ11 x2x σ10 x2 σ01 x 0.5841
σ12 x2y σ10 x2 σ02 y 0.7338
σ13 x2z σ10 x2 σ03 z 0.8957
σ21 y2y σ20 y2 σ01 x 0.7252
σ22 y2y σ20 y2 σ02 y 0.8296
σ23 y2z σ20 y2 σ03 z 0.9354
σ31 z2x σ30 z2 σ01 x 0.8678
σ32 z2y σ30 z2 σ02 y 0.9205
σ33 z2z σ30 z2 σ03 z 0.9708

and the following for each of the negative possibilities for λ03:

λ03 a03 λ30 a30 λ33 a33 v

−σ11 −x2x σ10 x2 −σ01 −x 0.0463
−σ12 −x2y σ10 x2 −σ02 −y −0.2183
−σ13 −x2z σ10 x2 −σ03 −z −0.6260
−σ21 −y2y σ20 y2 −σ01 −x 0.2879
−σ22 −y2y σ20 y2 −σ02 −y 0.0280
−σ23 −y2z σ20 y2 −σ03 −z −0.4501
−σ31 −z2x σ30 z2 −σ01 −x 0.6055
−σ32 −z2y σ30 z2 −σ02 −y 0.4083
−σ33 −z2z σ30 z2 −σ03 −z −0.0792

Neither are any of the values v the same if we multiple each one by −1, which may come about
from an application of a single qubit Pauli on the output. Thus our statement holds. J
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