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Abstract
The complexity of the commuting local Hamiltonians (CLH) problem still remains a mystery after
two decades of research of quantum Hamiltonian complexity; it is only known to be contained in
NP for few low parameters. Of particular interest is the tightly related question of understanding
whether groundstates of CLHs can be generated by efficient quantum circuits. The two problems
touch upon conceptual, physical and computational questions, including the centrality of non-
commutation in quantum mechanics, quantum PCP and the area law. It is natural to try to
address first the more physical case of CLHs embedded on a 2D lattice, but this problem too
remained open apart from some very specific cases [4, 17, 24]. Here we consider a wide class of
two dimensional CLH instances; these are k-local CLHs, for any constant k; they are defined on
qubits set on the edges of any surface complex, where we require that this surface complex is not
too far from being “Euclidean”. Each vertex and each face can be associated with an arbitrary
term (as long as the terms commute). We show that this class is in NP, and moreover that the
groundstates have an efficient quantum circuit that prepares them. This result subsumes that
of Schuch [24] which regarded the special case of 4-local Hamiltonians on a grid with qubits,
and by that it removes the mysterious feature of Schuch’s proof which showed containment in
NP without providing a quantum circuit for the groundstate and considerably generalizes it. We
believe this work and the tools we develop make a significant step towards showing that 2D CLHs
are in NP.
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2:2 On the Complexity of Two Dimensional Commuting Local Hamiltonians

1 Introduction

1.1 Commuting local Hamiltonians
The Local Hamiltonian (LH) problem is central to the theory of quantum complexity. In
1998 it was proved by Kitaev to be QMA-complete [21], initiating by that the area of
quantum Hamiltonian complexity. This result is often considered as the quantum analogue
of the celebrated Cook-Levin theorem, which states that the Boolean Satisfiability problem
(SAT) is NP-complete [23]. In 2003 Bravyi and Vyalyi [9] raised the question of what is the
complexity of the intermediate class in which all terms mutually commute (commuting local
Hamiltonians, or CLHs). The question begs an answer not only because the commutation
restriction is natural and often made in physics; but this is also a computational probe to the
fundamental question: is the uncertainty exhibited by non-commuting operators necessary
for quantum systems to exhibit their full quantum nature? or, perhaps, it happens to be the
(much less expected) case that even commuting quantum systems can express full quantum
power.

The CLH problem may seem at first sight to be trivially in NP, since by the commutation
condition, there exists a common basis of eigenstates to all terms, where each constraint has a
well defined value on each eigenstate; the problem seems like a classical constraint satisfaction
problem (CSP). This hope breaks down when realizing that the eigenstates themselves maybe
highly complex. While in CSP, a proof for satisfiability is simply a string, i.e. a satisfying
assignment, in the quantum case the eigenstates themselves may be highly entangled. Indeed,
a beautiful example is Kitaev’s toric code [20], whose global entanglement is characterized
by topological properties. In the general case, we do not no whether groundstates of CLHs
have an efficient classical description at all (that is, a polynomial size classical representation
from which the result of any local measurement can be deduced efficiently).

The question of CLHs touches upon some of the most important aspects of quantum
many body systems: fundamental, physical and complexity theoretical. For a start, stabilizer
codes can be viewed as ground spaces of CLHs; these constitute by far the most common
framework for the study of quantum error correcting codes. CLHs are also a very convenient
place to start with when studying open problems and toy examples; for example in the study
of the quantum PCP conjecture [2, 3, 7] often CLHs are used as a case study (e.g. [5, 13, 18]).
Moreover, CLH systems provide the simplest examples for systems obeying the area law
bounding the entanglement in groundstates of gapped systems1. In the one dimensional case,
the area law was recently shown in a breakthrough result to provide an efficient classical
algorithm for constructing groundstates [22]. In two or higher dimensions such an algorithm
cannot be expected, since CLHs become NP hard in 2D. However it is still possible that
groundstates satisfying the area law have polynomial size quantum circuits (which may
be hard to find). Understanding whether groundstates of 2D CLH systems have efficient
descriptions is thus an essential first step towards clarifying how the area law affects the
complexity of groundstates.

Despite the importance and fundamental nature of this class, and fourteen years after
the problem was posed [9], the complexity of the CLH problem remains a mystery, even in
the physically motivated case of 2D. A trivial upper bound to the complexity of the CLH
problem is that it belongs to QMA. A simple lower bound exists as well: if we let d denote the
dimension of the particles, and let k denote the maximal number of particles that each local

1 The area law states that the entanglement in the groundstate between two regions grows like the size of
the boundary between these two regions, rather than their volume.
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term acts on, then we may define CLH(k, d) accordingly. Using this notation CLH(k, d) is
NP-hard if k, d ≥ 2. The question becomes then to distinguish between those cases which
are within NP, those which are QMA hard, and possibly, the intermediate cases. However,
excluding a few special cases of CLH, not much is known.

1.2 Previous results
Bravyi and Vyalyi proved that CLH(2, d), namely the class of instances in which the particle
dimensionality d is an arbitrary constant, whereas the interactions only involve two such
particles (this is called two-local CLHs), is in NP [9]. The proof relies on a decomposition
lemma based on the theory of finite dimensional C*-algebra representations [26]. This tool
has become essential in all following results about this problem.

Aharonov and Eldar [4] then considered the 3-local case with qubits and qutrits. They
showed that CLH(3, 2) ∈ NP and also thatNE−CLH(3, 3) ∈ NP where NE is a geometrical
restriction on the interaction called nearly Euclidean [4]. An important fact about the proofs
for both of these results is that the witness which is sent by the prover is virtually a constant
depth quantum circuit which prepares a groundstate for the system, starting from a product
state. Hastings called states which can be generated by constant depth quantum circuits
“trivial” [18]; the name is justified since indeed, local observables can be computed classically
in an efficient way for such states, given the circuit that generates them, because the light
cone of qubits affecting the output qubits of a local observable is of constant size. Thus, the
above mentioned results not only prove containment in NP, but also show that such systems
have groundstates with very restricted multi-particle entanglement which is in some sense
local.

In this regard, Aharonov and Eldar [4] mentioned a tight “threshold” which can be
drawn at this point: commuting systems with parameters as above are essentially classical;
But, when raising k or d just by 1, i.e when considering CLH(4, 2) or CLH(3, 4), we arrive
at a new regime in which the quantum system can exhibit global entanglement, namely,
the groundstates are no longer trivial (by Hastings’ definition). In fact, such systems can
exhibit global entanglement even when the system is embedded on a square lattice: Kitaev’s
toric code [20] is a wonderful example, as it can indeed be shown that groundstates of this
code with nearest neighbor interactions cannot be generated by a constant depth quantum
circuit [8]. This raises the possibility [4] that general CLH systems with parameters above the
“transition point” are too complex for containment in NP, as they allow global entanglement.

There are several examples beyond the transition point which indicate that though global
entanglement is possible, it might still be the case that CLH systems remain "classically
accessible" even in that regime. First, it is known that despite their global entanglement,
toric code states can be constructed in logarithmic depth quantum circuits called MERA [1]
which moreover, allow local measurements to be simulated classically efficiently. In addition,
Schuch proved that CLHs in which all qubits and all 4-local constraints are embedded on a
square lattice (generalizing the toric code to general interactions with the same geometry and
dimensionality) also belong to NP [24]. Interestingly enough though, Schuch’s proof bypasses
the question of whether an efficient description of a groundstate exists; instead, the witness
which is sent by the prover convinces the verifier that a low energy state exists without
describing that state at all. Schuch’s result thus leaves open the possibility, suggested in [4],
that when crossing the transition point from local to global entanglement mentioned above,
groundstates may in general become difficult to describe classically (not including the toric
code special case).

TQC 2018
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Hastings provided two other results proving upper bounds on the complexity of the CLH
problem in certain cases. In [18] he considered k-local CLHs whose interaction graphs are
1-localizable; roughly speaking, these are instances whose interaction graphs can be mapped
to graphs continuously, such that the preimage of every point is of bounded diameter. This
extends the result of [9] that two local Hamiltonians are in NP, to slightly more general
constructions which are in some sense, two-local in every local region. In another result of
Hastings [17], he considered CLHs on a planar lattice, and proved that the problem is in
NP under certain restrictive conditions on the C*-algebraic decomposition (essentially, that
when dividing the lattice to stripes, the transformation which disentangles adjacent stripes,
a’la Bravyi and Vyalyi [9], is local). Hastings also provided parts of a proof that 2D CLH is
in NP, and suggested that the proof will be completed elsewhere, however this was not done.

We note that an interesting clue pointing in fact in the other direction, namely suggesting
that the CLH problem could be harder than NP, was given recently by Gosset, Mehta and
Vidick [14]; they show that a certain problem regarding the connectivity of the ground space
of CLHs is as hard as that of general LHs. It is suggested in [14] that this is probably true
even for CLHs in 2D, though this remains to be worked out.

We are left with the mystery: possibly the above "classical" examples are just special
cases, and in the general case above the low parameters threshold, global entanglement
prevents an efficient description of the groundstates of CLHs; or maybe, the "classicality" of the
entanglement in the toric code groundstates as well as in the other examples mentioned [17,24]
is generic for all CLHs, and thus the problem lies in NP.

1.3 Results
We consider a wide subclass of CLH in 2D. Specifically, we consider CLH(k, 2) instances (i.e
with qubits) where the qubits are arranged on the edges of a polygonal complex K whose
underlying topological space is a surface. We refer to those as 2D complexes2. The local
terms live on the vertices of K (these are called stars), and on its faces (plaquettes), where
each of these terms acts on the edges attached to the vertex or the face, respectively. In
Section 2, this class is formally defined and denoted by 2D−CLH∗(k, 2). We shall emphasize
that the Hamiltonian terms need not be of the form of products of σx or σz Paulis as in
Kitaev’s surface codes, but can be general operators on the relevant qubits (as long as they
commute). Moreover, the locality parameter k, which in this case equals the maximal degree
of vertices and faces of K (a degree of a face is the number of its edges), is an arbitrary
constant as well.

An example of a polygonal complex, where each vertex and each face has a degree of at
most 5. One may define on this complex a 2D − CLH∗(5, d) instance by assigning to each
star and plaquette a Hamiltonian acting on the attached edges, where those Hamiltonians
mutually commute.

We note that there is no restriction whatsoever on the topology of the complex K; it can
be of any genus, and may or may not include a boundary. We impose one condition on K,
which is a metric-geometric condition that we call quasi-Euclidity (though of similar flavor,
it shouldn’t be confused with the nearly-Euclidean condition of [4]). This condition ensures
that the surface induced by the complex admits a triangulation in which the triangles may
be slim (as in hyperbolic geometry) and may be fat (as in elliptic geometry) but only up to
some constant. This makes the complex in some sense Euclidean up to a constant distortion,
and prevents “wild” situations. Any physically natural 2D setting should be covered by this.

2 despite some friction with ordinary simplicial 2-complexes as in e.g [19] which do not necessarily define
topologically a surface
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Figure 1.1 Polygonal complex.

Our main two results are:

I Theorem 1. The 2D − CLH∗(k, 2) problem on quasi-Euclidean complexes is in NP.

I Theorem 2. For any instance of 2D − CLH∗(k, 2) defined on a quasi-Euclidean complex,
there exists a polynomial depth quantum circuit which prepares a groundstate.

Importantly, these results replace the mysterious feature of Schuch’s result [24] providing
a proof for containment in NP without an efficient groundstate description, by one in which
the groundstate can be efficiently classically described; this seems to strengthen the common
feeling that containment in NP should go hand in hand with efficient description for the
groundstate. Moreover, our results hold for a wide class of cases, which includes not only
the 4-local case in a square lattice of Schuch [24], but CLHs with arbitrary locality k,
that are defined on any quasi-Euclidian 2D complex. We remark that our definition of
2D − CLH∗(k, 2) unfortunately does not capture the most general k-local quantum systems
of qubits embedded on a surface (see Section 2).

1.4 Proof overview
Our starting point is a folklore quantum algorithm for preparing the groundstates of the
toric code. Recall that the toric code Hamiltonian [20] acts on qubits set on the edges of an
n× n grid with boundary conditions which make it topologically a torus. The Hamiltonian
has two types of constraints, one for each vertex (star) denoted s, and one for each face
(plaquette) denoted p:

As =
⊗
e∈s

σez, Bp =
⊗
e∈p

σex, H = −
∑
s

As −
∑
p

Bp (1.1)

The groundstates of this Hamiltonian form a code space, and exhibit global-entanglement.
Consider creating “holes” in the torus, by removing a small fraction of the plaquettes, in

a regular manner. Figure 1.2 (A) shows how by removing enough plaquettes we are left with
a punctured Hamiltonian H̃, which involves two local interactions between super-particles
comprised each of constantly many qubits. By [9] there is a constant depth quantum circuit
which prepares a groundstate (denote it |ψ〉) for H̃.

This doesn’t seem at first as real progress, since |ψ〉 is a trivial state, whereas groundstates
of the original Hamiltonian are globally entangled. The key idea is that now we can correct for
the plaquettes we have removed, using the known idea of applying string operators connecting
pairs of “holes”.

To do this, we first measure in the state |ψ〉 each of the plaquette terms which were
removed. Due to the commutation relations, the resulting state is still a groundstate of H̃
but now it is also an eigenstate of the toric code, with a known eigenvalue for each of the

TQC 2018



2:6 On the Complexity of Two Dimensional Commuting Local Hamiltonians

(a) Punctured Hamiltonian (b) Logical Operators

Figure 1.2 (A) The white squares are the holes. The dotted lines induce a partition of the set
of qubits (edges) to squares (tilted in 45 degrees), which are the super-particles, each containing a
constant number of qubits. Every local term (star or plaquette) of the punctured Hamiltonian acts
on qubits which belong to at most 2 super-particles. (B): A hole with a spot inside indicates an
excitation (i.e. a violation). The dotted lines are string logical operators (copaths) which annihilate
particles in pairs. The edges in bold denote the qubits on which the logical operator acts.

terms. Viewing the toric code as a subcode of the punctured code (the groundspace of the
punctured Hamiltonian H̃), what we now need is a set of logical operators in the punctured
code, that act within it and can transform our state into a toric code groundstate.

To this end, we recall the notion of string operators which are Pauli operators acting
on the paths (strings) connecting a pair of holes [20]. Such an operator changes the values
of the measurements corresponding to the constraints in both holes, while keeping all the
other values intact. Notice that this process always works on pairs of holes. The dependency
relations between the local terms (

∏
sAs =

∏
pBp = 1) [20] imply that for any eigenstate

of the toric code there is an even number of plaquette (and also star) terms which are in
their excited states. Since all plaquettes in the punctured Hamiltonian are satisfied (i.e., not
excited), it follows that there is an even number of excited plaquettes out of those which we
removed, and thus such a pairing exists.

Note that we could have actually removed all plaquettes, resulting in a punctured
Hamiltonian H̃ consisting only of As terms; Starting with the state |0n〉, which is a groundstate
of H̃, we could then proceed as in the above algorithm, to derive a groundstate of the toric
code (without any help of the prover). We will make use of both approaches in this paper; the
“regular holes” approach is the one we will generalize (conceptually) to more general instances,
while the second more specific approach is used as a subroutine in our final algorithm, for
technical reasons. We will thus present and prove it formally in Section 4.

1.4.1 Physical interpretation

The toric code has a physical interpretation which will be very useful for us [20]. The value
of the edges in the σx and σz basis are interpreted as a Z2 vector potential or electric field,
respectively. When a constraint is violated, we interpret this as if an elementary excitation,
or a particle, is created. The star constraints can be viewed as requiring that the electric
flux from the vertex (namely the values of the qubits in the computational basis) is zero,
i.e., that this vertex will have no electrical charge. If a vertex constraint is violated, we
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say that there is an “electric charge” at that vertex. Likewise, the plaquette constraints
require that the magnetic flux which passes through the face is zero (mod 2). If a plaquette
constraint is violated we say that there is a "magnetric vortex" in this plaquette [20]. The
toric code consists of the states in which neither electrical charges, nor magnetic vortices
appear. The punctured system however allows particles to be created at the sites which
we have removed. After measuring these terms, we know exactly where these particles are.
It is left to annihilate them. Having a closed surface with no boundary, such as the torus,
the total charge on it, as well as the total magnetic flux passing through it, must be zero
(as Gauss and Stoke’s laws imply, respectively). This means that there must be an even
number of electrical charges, and an even number of magnetic vortexes, which can then be
annihilated in pairs, by what is called “string operators” connecting pairs of charges or pairs
of vortexes (see [20]). In the above algorithm for the toric code we only needed to annihilate
magnetic vortices (plaquettes).

1.4.2 From toric code to general 2D − CLH∗(k, 2)

It is far from clear how the methods above concerning the toric code can be applied to
general 2D CLH systems; after all, surface codes seem to be an extremely restricted type of
2D CLHs (where the local terms must take the form of tensor products of either σx or σz
Pauli operators), whereas we are concerned with arbitrary commuting local terms. Theorem
13 in Section 5 provides our first main step in the proof: we show that all 2D − CLH∗(k, 2)
instances are "equivalent to the toric code permitting boundaries". This in particular means
that if all terms, stars and plaquettes, act non-trivially on all of their attached edges,
(plus K is closed, i.e topologically has no boundary), then the instance is, up to a minor
modification, equal to the toric code. In the general case, terms may act trivially on some
of their qubits (edges); we will call such edges boundary/coboundary edges. Theorem 13
says that 2D − CLH∗(k, 2) instance are virtually the toric code, except for those essentially
1D behaving boundary areas (and thus the term "permitting boundaries"). The proof of
this structure theorem relies heavily on the C*-algebraic techniques mentioned earlier. We
emphasize that Theorem 13 holds only after some transformation of the instance to one with
no "classical qubits" whose value is simply a classical bit which can be provided by the prover
(see subsection 3.3).

1.4.3 Constructing the Punctured Hamiltonian
The above equivalence theorem raises the idea of using a similar algorithm as for the toric
code groundstates, and somehow handling the special boundary/coboundary qubits. However,
we encounter two challenges. First, we do not have sufficient control on operators near the
boundary/coboundary. If we carelessly tear out holes in their vicinity, we might not know
how to repair them- the correcting process of the toric code heavily relies on the specific
commutation and anti-commutation relations between a string operator and the Hamiltonian
terms (equation 1.1). We handle this difficulty by tearing out holes only in the interior regions
(that is regions without boundary/coboundary qubits) where we do have resemblance to the
toric code. It turns out that there is no need to tear holes close to boundary/coboundary
qubits as in some sense these special qubits are already punctured: by definition such qubits
are not surrounded by Hamiltonians acting on them non-trivially.

The second challenge is that we do no longer have the dependencies
∏
sAs =

∏
pBp = 1

that ensured earlier an even number of excitations of any given type, and so the idea of
fixing holes in pairs is irrelevant. In the physical interpretation, the latter means that the

TQC 2018
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Figure 1.3 Logical operators.

total charge on the manifold can be different than 0 since now flux can escape through the
boundary. In section 6 we show that the curse of boundaries is in fact a blessing, since now
we can also dump excitations to the boundary/coboundary with string operators, similarly
to logical operators in surface codes [10] (figure 1.4).

The latter idea, which can be viewed as the main conceptual idea in the paper, introduces
a new challenge - we have two types of special qubits. Boundary qubits give rise to copath
string logical operators whereas coboundary qubits give rise to path string logical operators.
We cannot expect that puncturing only plaquette terms out of the surface will allow us to
fix them later on. Figure 1.3 shows simple examples of systems in which only one type of
term (star/plaquette) have access to the boundary/coboundary via copath/path. In short,
plaquettes play nicely with boundary edges whereas stars play nicely with coboundary edges.

The white plaquette and the white plus indicate holes. In a complex with boundary
but no coboundary only plaquette holes can be connected via a copath to utilize a logical
operator, whereas in a complex with coboundary but no boundary only star holes can be
connected via paths to utilize a logical operator.

A major technical effort in the paper is proving Lemma 15 which roughly states that for
any adjacent plaquette and star, at least one of them has access to the boundary/coboundary
(unless they are both already touching the boundary/coboundary), hence a hole in one of
them will be fixable

With this in mind, we construct the punctured Hamiltonian as follows: we start by
considering the set W of "fixable" terms. These are terms which are not in the boundary of
the system (and thus are in the form of a toric code term) and in addition have access to the
boundary or coboundary via a copath or path depending on whether it is a plaquette or star
term respectively (see Definition 14 and Figure 6.1). By Lemma 15 the fixable holes are very
“dense”. We shall not hesitate to remove all of those terms since, by how the elements of the
set W were chosen, we can correct their values later on.

We call the Hamiltonian obtained by removing all of the terms in W the punctured
Hamiltonian H̃.

1.4.4 2-locality of the punctured Hamiltonian
Lemma 15 guarantees that at any large enough constant size area, either there are boundary
qubits (recall these are qubits which are acted trivially by at least one of its surrounding
terms) which may serve as a hole, or else there must be a fixable term in that area, i.e a
member of W, which was removed. In the case of the grid it is now very simple to generate
a 2-local structure among constant size super-particles: just consider a coarse grained grid
of 5 × 5, and use Lemma 15 to conclude that there must be some hole inside each 5 × 5
square. However we are allowing much more general geometries than the grid; it is here
and only here, that we make use of the quasi-Euclidity condition. This is what allows us
to follow a similar process, and to tear holes in some regular manner. Technically, we need
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(a) Punctured Hamiltonian. (b) Logical Operators.

Figure 1.4 (A) Even when boundaries/coboundaries exist, one can tear out holes to obtain a
2-local instance w.r.t superparticles of constant size. (B) After measuring each hole, it remains to
correct it if needed by connecting it to the boundary/coboundary via a string operator depending
on the hole type (i.e plaquette/star).

to apply Moore’s bound [6,15] to bound the number of edges (qubits) which belong to any
super-particle resulting from the process; together with some other combinatorial arguments
the proof goes through.

Now that the punctured Hamiltonian is 2-local, we again are guaranteed that a groundstate
can be generated by a constant depth quantum circuit [9]. This is the only place where the
prover is needed. Note that this groundstate is in general not the groundstate of the original
Hamiltonian, yet, the fact that we have torn out only terms of W , namely the fixable terms,
implies that we can apply the approach of measuring them and correcting them with string
operators to the boundary/coboundary of the system (Figure 1.4 (B)).

1.5 Organization of the paper

In Section 2 we formalize the problem. Section 3 gives some background: "the induced
algebra", "classical qubits", and notations. Section 4 provides the efficient algorithm for
generating toric code states which we use as a subroutine. Section 5 contains Theorem
13, stating that 2D − CLH∗(k, 2) instances are "equivalent to the toric code permitting
boundaries". Based on this, in Section 6 we prove lemma 15 which shows that many fixable
terms (those with "access to the boundary") exist, and define the punctured Hamiltonian, in
which all these terms are removed. In Section 7 we show that the punctured Hamiltonian is
indeed 2-local with respect to super-particles of constant size. Section 8 combines all these
results to prove Theorems 1,2. In Section 9 we discuss the results, their implications, and
state open questions.

This version does not include all proofs in their complete form. Those can be found in
the more techinical version of this paper [6].

TQC 2018
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2 Formulation of the problem

2.1 Definitions
I Definition 1 (CLH instance). An instance of CLH(k, d) consists of a set of Hamiltonian
terms (Hermitian matrices) acting on n qudits (particles of dimension d), where each term
acts non-trivially on at most k of the n qudits. The norm of each term is bounded by 1, and
the terms mutually commute.

To be precise, we note that as usual, the Hermitian matrices are given with entries
represented by poly(n) bits.

We consider the cases where the CLH instance is defined on a 2D complex. The type of
complexes we allow (see definition bellow) is a generalization of a simplicial 2-complex; while
in simplicial complexes the 2-cells must be 2-simplexes (triangles), we allow the 2-cells to
be any simple polygon. Topologically speaking, we may define a simple polygon to be any
set homeomorphic to the closed disk D = {x ∈ R2 | ||x|| ≤ 1} with some choice of a finite
amount (at least three) of points on its boundary to be called the vertices of the polygon.
The arcs on the boundary which connect two adjacent vertices are called the sides of the
polygon. Such complexes are often called polygonal complexes [15].

I Definition 2 (polygonal complex). A polygonal complex K is a collection of points (called
0-cells or vertices), line segments (1-cells, or edges), and simple polygons (2-cells, or faces)
glued to each other such that:
1. Any side of a 2-cell in K is a 1-cell in K. Every endpoint of a 1-cell in K is a 0-cell in K.
2. The intersection of any two distinct 2-cells of K is either empty or else it is a single 1-cell

(along with its endpoints). The intersection of any two distinct 1-cells of K is either
empty or else it is a single 0-cell.

If all polygons have exactly three vertices then K is called a simplicial 2-complex. The
1-skeleton of K is by definition the graph obtained by removing all 2-cells from K. Finally, K
is called two dimensional (2D) if the topological space which it defines S =

⋃
K is a surface.

By surface we mean the topological definition of a surface3 allowing boundaries [25]; that
is a topological space such that each point in the interior has a neighborhood homeomorphic
to R2 whereas each point in the boundary has a neighborhood which is homeomorphic to
the the upper plane {(x, y) ∈ R2 | y ≥ 0}. We shall remark that if K is finite (which will
be the only case we consider) then S is compact. If in addition S has no boundary (in the
ordinary topological sense) then we say that S (and thus also K) is closed.

Note that 2D polygonal complexes have the property that every 1-cell is the face of at
most two 2-cells (one if that 1-cell is in the boundary, and two if it is in the interior). That
is because if 3 or more 2-cells are attached at that 1-cell then the neighborhoods of points in
the interior of that 1-cell are neither homeomorphic to R2 nor to the upper plane.

The 1-skeleton of K admit the natural graph metric in which the distance between any
two vertices is the length of the minimal path between them, where the length of every edge
is 1.

I Definition 3 (triangulation). A triangulation of a topological space X is a finite simplicial
2-complex T together with a homeomorphism f : T → X. The 2-cells of T are called the
triangles of the triangulation.

3 In many texts (e.g [19]) second countability and Hausdorff are required in the definition as well. In
our case however, we are only considering finite polygonal complexes which always satisfy these two
conditions.
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Figure 2.1 Quasi-Euclidean polygonal complex.

The following definition is inspired by metric geometry in which hyperbolic spaces are
roughly defined to be metric spaces which have only r-slim triangles - triangles which do not
contain any ball of radius r; whereas elliptic metric spaces are such which have a bound on
the diameter of triangles [11].

I Definition 4 (quasi-euclidean 2D complex). Let K be a 2D polygonal complex with underly-
ing surface S. A triangulation of S is said to be (r,R)−quasi-Euclidean for some 0 < r < R

if each of its triangles contains a ball of radius r in K (w.r.t metric defined above) and the
subgraph in it is of diameter at most R. The degree of a triangulation is by definition the
maximal degree of its 1-skeleton. In the case where S admits such a triangulation we say
that K is (r,R)-quasi-Euclidean.

We emphasize that there is no demand from the triangulation to be in any sort in
accordance with the complex structure of K (e.g vertices of T do not need to be located on
vertices of K).

A triangulation T (dark lines) of the surface S on which the complex K lies. T is
(r,R)-quasi-Euclidean with r = 2,R = 12 since each triangle contains a ball of radius 2 but
its diameter is less than 12. The makes K a (r,R)-quasi-Euclidean complex. Having each
triangle contain a ball of radius r ≥ 2k (here k = 7) ensures that there exists a polygon
which is contained in the triangle, as well as all other polygons touching it. The fact that
the diameter of each triangle is at most R implies that the number of edges in each triangle
is bounded by a number dependent only on R and k, by Moore’s bound [15].

I Definition 5 (2D − CLH∗(k, d) instance). Consider instances x of CLH(k, d) for which:
1. There exists a two dimensional polygonal complex K.
2. There exists a 1-1 mapping between qudits of x and edges of K.
3. There exists a 1-1 mapping between local terms of x and the set of vertices and faces of
K.

4. If h corresponds to a vertex v then the set of qudits {q1, ..., qr} which h acts on corresponds
to the set of edges {e1, ..., er} attached to v.

5. If h corresponds to a face f then the set of qudits {q1, ..., qr} which h acts on corresponds
to the set of edges {e1, ..., er} which are in the boundary of f .

We consider the restriction of this class to quasi-Euclidean complexes - those which admit a
(r,R)-quasi-Euclidean triangulation of degree D, for some arbitrary constants D > 0 and
R > r > 2k. We call such 2D − CLH∗(k, d) instances quasi-Euclidean.
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The quasi-Euclidean condition doesn’t limit the topology in any way. Specifically, for any
compact surface S there exists a quasi-Euclidean polygonal complex K such that S is its
underlying surface (i.e S =

⋃
K) [25]. This condition is needed only in Section 7. Hence in

the following we ignore it and treat general 2D−CLH∗(k, 2) instances; only in Section 7 we
will mention this condition again.

Another possible way to define a CLH on a 2D polygonal complex is to place the qudits
on the vertices rather than the edges, and then local terms are associated with faces alone.
We denote the class of such instances by 2D − CLH(k, d) (i.e without the star symbol).
The latter definition captures the notion of a 2D system in a more general way: every
2D − CLH∗(k, 2) instance can be converted to a 2D − CLH(k, 2) whereas the converse is
true only when the instance has no vertices of degree 3. In addition, if our results can be
generalized to 2D − CLH∗(k, d) for arbitrary d, this will in fact imply that they also hold
for 2D − CLH(k, d), under a mild condition similar to quasi-Euclidity (see [6]).

To each of those classes corresponds the local Hamiltonian problem of deciding, given
a < b with b− a < 1

poly(n) , whether the ground energy of the system (i.e the sum of all local
terms) is bellow a or above b, provided the promise that one of these cases hold. We use
the same notation to denote both the class of such instances (as in Theorem 2) and the
corresponding decision problem (as in Theorem 1).

3 Notation and Background

3.1 Notations
Throughout this paper we use H to denote Hilbert spaces, q to denote qubits, and accordingly
Hq to denote the Hilbert space associated with the qubit q. K denotes the complex on which
the 2D−CLH∗(k, 2) is defined whereas S denotes its underlying surface. We use s to denote
stars, p to denote plaquettes and let |s| and |p| denote the degree of a star or a plaquette, i.e
the number of edges which belong to s or to p. As denotes the local term which corresponds
to s and Bp denotes the local term which corresponds to p. h denotes a local term in general.
We say that two stars (plaquettes) are adjacent if they share an edge, and say that a star and
plaquette are adjacent if they share two edges (which is the only way a star and a plaquette
can intersect). When more geometrical aspects are discussed we will consider vertices instead
of stars denoted by v, edges instead of qubits denoted by e and faces instead of plaquettes
denoted by f . We let H denote the sum of all local terms H =

∑
sAs +

∑
pBp where s

and p range over the stars and plaquettes of the instance. When we construct a punctured
Hamiltonian, i.e a Hamiltonian obtained by removing some terms from the original one, we
will always denote it by H̃.

3.2 The induced algebra
I Definition 6 (induced algebra). Let h be an operator on a tensor product Hilbert space
Hq1 ⊗ Hq2 and let h =

∑m
i=1 h

i
q1
⊗ hiq2

be a Schmidt decomposition4 of h. The induced
algebra of h on Hq1 is denote by AhHq1

or in short Ahq1
and is defined to be the C*-algebra

generated by {I} ∪ {hiq1
}mi=1 (I denotes the identity operator).

4 That is to say: hi
q1 ∈ L (Hq1 ), hi

q2 ∈ L (Hq2 ) for each i and the that sets
{

hi
q1

}m

i=1
,
{

hi
q2

}m

i=1
are

orthogonal with respect to the Hilbert-Schmidt inner product i.e tr(hi
ql

† · hj
ql

) = 0 for any i 6= j and
l = 1, 2.
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3.3 Classical qubits
The equivalence to the toric code which we are aiming for can be shown only after performing
a certain reduction of removing "classical qubits". Classical qubits are classical in the sense
that they do not participate in the entanglement of the system and consequently, the prover
may hand us its correct value as a classical bit.

I Definition 7 (trivial qubit). A qubit (or qudit) is called trivial, if no local term acts on it
non-trivially.

I Definition 8 (classical qubit). A qubit (or qudit) is called classical if its Hilbert space can
be decomposed into a direct sum of 1-dimensional subspaces which are invariant under all
local terms in the Hamiltonian H.

When we say that a Hamiltonian h acts trivially on a certain qubit we simply mean that
it can be written as h = I ⊗ h′ where I is the identity operator on that qubit, and h′ acts
only on other qubits.

Note that due to the low dimension of qubits, once such a non-trivial direct sum decom-
position exists then the subspaces must be one dimensional and so the qubit is classical.
Note also that every trivial qubit is in particular classical - any direct sum decomposition
will do. The following claim says that whenever there is a classical qubit q, the instance can
be reduced to a new instance in which it is a trivial qubit.

I Claim 9 (removing classical qubits). To derive theorems 1,2 it is sufficient to prove it under
the restriction of 2D − CLH∗(k, 2) to instances with the condition that every classical qubit
is trivial.

This claim is the key idea in the proof that the 2-local commuting Hamiltonian problem
lies in NP [9]; In fact, one can easily construct a formal proof for claim 9 using the same
arguments as in [9] (see [6]).

Thus, we shall assume from now on that all classical qubits were turned to be trivial
qubits.

4 Generating a toric code state

The toric code is a special case of a 2D − CLH∗(k, 2) instance. We shall not restrict to the
particular setting of a grid on a torus, so by saying toric code we refer to any 2D−CLH∗(k, 2)
instance defined on a closed complex K (i.e it topologically has no boundary) with the usual
star and plaquette local terms (equation 1.1).

Starting with the state |0〉⊗n, we measure all plaquettes and record the measurement
results by λ̄ = (λp)p (where λp = ±1). As a result, the system collapses to a state
corresponding to the measured values: |ψλ̄〉. Note that |ψλ̄〉 is a toric code state (i.e a
groundstate of the Hamiltonian given in equation 1.1) precisely when λp = 1 for each
plaquette p.

Whenever we have two plaquettes p1,p2 with λp1 = λp2 = −1 we can connect them by
a copath γ∗, apply L∗ =

⊗
e∈γ∗ Ze, and obtain a new state |ψλ̄′〉 where λ and λ′ are the

same except for the value on the plaquettes p1,p2 (see [6] for a more elaborate explanation of
logical and string operators). In other words, a pair of plaquette terms which are in their
excited state can always be relaxed. After matching pairs of excitations, and annihilating
them by applying string operators between them, we obtain a toric code state. It is thus left
to show that such a matching always exists:
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I Claim 10 (even amount of excitations). The number of plaquettes p for which λp = −1 is
even.

Proof. Since K is closed so
∏
pBp = 1 (and also

∏
sAs = 1). Therefore:

|ψλ̄〉 = 1 |ψλ̄〉 =
∏
p

Bp |ψλ̄〉 =
∏
p

λp |ψλ̄〉 = (
∏
p

λp) |ψλ̄〉

It follows that
∏
p λp = 1. J

This is summarized in the following algorithm:

Algorithm - constructing a toric code state (folklore):

1. Start with the tensor product state |0〉⊗n.
2. For each star p measure Bp and record the measured value λp.
3. As long as −1 ∈ {λp}p choose two stars p1, p2 with λp1 = λp2 = −1, find a copath γ∗

connecting them (with some linear time path-finding classical algorithm) and apply Z
along that copath, that is the operator L =

⊗
q∈γ Zq. Then change the values of λp1 , λp2

from −1 to 1.

It is not hard to be convinced that a similar approach works also for a variation of the
toric code where each term is as in the toric code but with some scalar factor (see [6]). This
remark is relevant since the equivalence to the toric code (which we formulate in the following
section) allows such factors.

5 Equivalence to the toric code

We now formulate the notion of equivalence between general 2D−CLH∗(k, d) instances and
the toric code.

I Definition 11 (boundary/coboundary qubit). A qubit is said to be in the boundary of the
system if it is acted non-trivially by at most one plaquette; it said to be in the coboundary of
the system if it is acted non-trivially by at most one star. Other qubits are said to be in the
interior. A local term which acts only on interior qubits is said to be in the interior of the
system.

Qubits that live on edges which are topologically on the boundary of the manifold are of
course in the boundary of the system; however qubits which are (topologically) in the interior
of the manifold can also be in the boundary/coboundary of the system if a Hamiltonian term
acts trivially on them. When this happens, these qubits serve, in spirit, as “holes”. We will
later exploit this fact in order to tear out holes only in the interior of the system to obtain
the 2-local punctured Hamiltonian and a constant depth circuit that generates groundstate
for it.

Following [9], we will make use of the notion of induced algebras (Definition 6) of any
term in the Hamiltonian, on any set of qubits it acts on. The induced algebra from a star
(plaquette) term s (p) on qubits q1, ...qr is denoted Asq1,...,qr

(Apq1,...,qr
). In addition, given

an operator h we denote by 〈h〉 the algebra generated by this operator. We can now state
the definition of equivalence to the toric code:
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I Definition 12 (equivalence to the toric code permitting boundaries). An instance of 2D −
CLH∗(k, 2) is said to be equivalent to the toric code if its underlying surface S is closed (it
topologically doesn’t have boundary) and there exists a choice of basis for each qubit such
that As ∈

〈
Z⊗|s|

〉
\C · I, Bp ∈

〈
X⊗|p|

〉
\C · I for any s, p.

An instance is said to be equivalent to the toric code permitting boundaries if there exists
a choice of basis for each qubit such that:
1. Asq1,...,qr

= 〈Z⊗r〉 for any star s, for (q1, ..., qr) a copath of qubits of s which are not in
the coboundary, with no two consecutive qubits in the boundary.

2. Apq′1,...,q′r = 〈X⊗r〉 for any plaquette p, for (q′1, ..., q′r) a path of qubits of p which are not
in the boundary, with no two consecutive qubits in the coboundary.

I Theorem 13 (equivalence to the toric code permitting boundaries). Every 2D−CLH∗(k, 2)
instance (after removing all classical qubits as described in subsection 3.3) is equivalent to the
toric code permitting boundaries. In particular, if it has no qubits which are in the boundary
or in the coboundary then it is equivalent to the toric code.

The first step in the proof is to classify the possible induced algebras of a Hamiltonian on
a single qubit in the interior and show that these algebras are always generated by a single
Pauli operator (i.e., an operator which is equal to a Pauli matrix up to a change of basis).
This can be done quite easily using the ordinary C*-algebraic techniques as in [9,24]. The
main technical part is to establish severe restrictions on the induced algebras on pairs of
qubits (which are in the interior, roughly), and essentially showing that they must be similar
to those of the toric code. This analysis involves a close and fairly technical study of the
implication of the commutation relations between the Hamiltonians on the algebras that
they induce.

An immediate implication of Theorem 13 is that we now know how to generate a
groundstate for any 2D − CLH∗(k, 2) instance which has no qubits in the boundary or
coboundary of the system, since such instances are equivalent to the toric code.

6 Construction of punctured Hamiltonian

We are now ready to show how we can generate a groundstate of an arbitrary quasi-Euclidean
2D − CLH∗(k, 2) instance, even when there are qubits in the boundary/coboundary.

I Definition 14 (access to the boundary/coboundary). A star s is said to have access to
the coboundary if there exists a path γ starting from s which ends at a coboundary edge
such that L =

⊗
q∈γ Xq anti-commutes with As and commutes with any other local term.

Similarly, a plaquette p is said to have access to the boundary if there exists a copath γ∗
starting from p which ends at a boundary edge such that L∗ =

⊗
q∈γ∗ Zq anti-commutes

with Bp and commutes with any other local term.

Access to the boundary or coboundary means that either L∗ or L serve as an appropriate
logical operator for the corresponding plaquette or star respectively in the sense that it flips
its value while keeping the value of all other constraints in tact.

I Lemma 15 (Main lemma: access to the boundary/coboundary). Let s, p be adjacent star
and plaquette which are in the interior of the system. Then either s has access to the
coboundary, or p has access to the boundary.

The proof of Lemma 15 relies on the a further study of the induced algebras near the
boundary/coboundary of the system. The idea is to start with an edge shared by s and p
and start drawing a ribbon from it which is briefly a juxtaposition of a path and an adjacent
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Figure 6.1 A ribbon to the boundary

copath (see Figure 6.1). We do this until we encounter a boundary/coboundary edge. At
areas far from the boundary, we are in a regime which look like the toric code and thus the
desired commutation and anti-commutation relations hold. Near the boundary/coboundary
there are enough restrictions on the induced algebras to conclude that either the path or the
copath within the ribbon can serve as the support for a logical operator which can correct p
or s respectively (see [6]).

The labeled edges in bold form a ribbon. The stars and plaquettes which are shared
between two adjacent edges in the ribbon are labeled as well. Ribbons include in them both
a path which can easily be seen in the figure and a copath which is drawn as a dotted line.
The last qubit of the ribbon is in the boundary and so we say that the first qubit has access
to the boundary via a copath. See [6] for a full explanation.

Construction of punctured Hamiltonian: Let W denote the set consisting of all stars and
plaquettes in the interior of the system which have access to the coboundary or to the
boundary, respectively. This set can be thought of as the set of “fixable” terms. Let H̃ be
the punctured Hamiltonian: the local Hamiltonian obtained by replacing all terms which are
in W by the identity operator.

7 2-locality of the punctured Hamiltonian

We now show with the help of Lemma 15 that the punctured Hamiltonian H̃ has so many
holes that it is 2-local.

The division to superparticles is based on the quasi-Euclidean condition (this is the
only place we use this condition). Recall that by definition, the quasi-Euclidity condition
(Definition 4) provides us with a triangulation T of S of degree D = O(1) such that each
triangle contains a ball of radius 2k and is of diameter R = O(1) (with the ordinary graph
metric with edge length 1).

We now construct a graph which will help us divide the qubits to superparticles. The
vertices of this graph will be associated with terms in the Hamiltonian. A local term can be
associated with a point in the surface in a natural way: each star is naturally realized as the
vertex which is associated with it, and each plaquette p is associated with some arbitrarily
chosen point in its interior to be called “the center of the plaquette”. This allows us to
precisely speak of a local term as a point on the surface.

I Claim 16 (punctured triangles). For each triangle T ∈ T there exists a term h of H̃ such
that all of the edges attached to it (i.e the edges associated with the qubits which h acts on),
are fully contained in T and moreover, h acts trivially on at least one of its qubits.
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Figure 7.1 Choosing a holes in each triangle and separating to regions.

The idea of the proof is very simple: T contains a ball of radius 2k and thus must contain
a pair of adjacent star and plaquette which are in the interior. By Lemma 15 at least one of
them belongs to W so let h be that term.

Choose such a term h for every triangle T ∈ T and call it “the center of the triangle T”.
Such a term acts trivially on some edge e (when considered as a term in H̃; if h was removed,
then this term is in fact the identity). In addition, for each 1-cell of T , that is a side of
a triangle T ∈ T , choose some point in its interior to be called “the center of the 1-cell”.
Then connect each triangle center with 3 paths to the centers of the sides of T . Those paths
should be non intersecting, contained in the interior of T (except at the end of the paths)
and in addition must satisfy one more condition: clearly, those three non-intersecting paths
divide T into 3 regions; the paths should be drawn such that e belongs to one region and all
the other edges of h belong to the two other regions (that way h will act non-trivially on at
most 2 regions). To be sure that such paths can always be drawn, it suffices to show it for
an equilateral triangle - this can of course be done. Then the general case is obtained as a
homeomorphism of the triangle (see figure 7.1).

According to Claim 16, every triangle includes a local term h which acts trivially on (at
least) one of its edges e (this edge is marked as a double edge). Whether a star term or a
plaquette term, we can connect it to the three triangle sides with three paths (dotted curves)
such that e belongs to one region, and the other edges belong to the two other regions.

This construction gives rise to a graph G which highly resembles T ∗ the dual of T . The
vertices of G consist of the chosen triangles center of T , as well as the centers of 1-cells of
triangles in T which are on the boundary of S. Between any two vertices of G corresponding
to the centers of two triangle T1, T2 which share a side (i.e T1 ∩ T2 is a 1-cell of T ) let there
be an edge; in addition, for every triangle which has a side on the boundary of the surface,
let there be an edge between the triangle center and the boundary. The edges of G are drawn
on S as the paths constructed in the previous paragraph.

Consequently, vertices of T are in one-to-one correspondence with faces of G. Those
faces induce a partition P of the set of qubits Q according to the face of G which they
belong to (if an edge of K touches more then one face of T ∗ then join it to one of those faces
arbitrarily) [12]. We accordingly have: H =

⊗
q∈QHq =

⊗
P∈P HP with HP :=

⊗
q∈P Hq.

We refer to each cluster P ∈ P and to its Hilbert space HP as a super-particle.
The dark lines are the quasi-Euclidean triangulation. The dotted curves are the edges of

the graph G realized as the chosen paths in S. The faces of G induce a partition of the qubits
into superparticles. The fatness of the triangles and the bounded degree of the triangulation
implies that the superparticles’ size is constant.

So far we have only used the “slimness” of a triangle condition in the definition of
quasi-Euclidean condition. Here is where we need the bound on the fatness of triangles and
the upper bound on its degree.
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Figure 7.2 The graph embedding of G in S.

I Claim 17 (constant sized super-particles). Each super-particle includes at most D · kR+2

qubits (in particular O(1)).

The proof is a straightforward consequence of Moore’s bound [6, 15] which provides a
bound on the number of vertices and edges which are contained in some ball in a graph of
bounded degree. Since each vertex of K is of degree at most k, and the diameter of each
triangle is at most R we immediately obtain a bound on the number of edges in each triangle
and thus in each super-particle (since the number of triangles it intersects is at most D - the
maximal degree of T ).

I Claim 18 (punctured Hamiltonian is 2-local). Each local term of H̃ acts on at most two
super-particles.

The proof follows by the observation that the only plaquettes/stars which act on 3
super-particles are the ones near the vertices of G which were removed (see Figure 7.2)

8 Completing the algorithm and the proofs for Theorems 1 & 2.

We now proof Theorems 1 & 2. By Claims 17, 18, it is possible to prepare a ground space∣∣ψ̃〉 of H̃, using a constant depth quantum circuit. Given such a groundstate, we measure
every h ∈ W one by one. Actually it will be simpler to measure I − 2 ·πh instead where πh is
the orthogonal projector onto the ground space of h. Record that result of the measurement
by λh. Accordingly, having λh = 1 indicates that

∣∣ψ̃〉 is already a groundstate of h whereas
λh = −1 indicates an excitation at that spot. The state we had

∣∣ψ̃〉 collapses by these
measurements to a new state |ψ〉 which is an eigenstate of every h ∈ W, while still being
in the ground space of H̃. Recall that the set of terms we measured (the set W) all have
access to the boundary (Definition 14). Thus their value can be changed via string logical
operators while not effecting the value of any other term. This is summarized by the following
algorithm:

Algorithm (constructing a groundstate for an arbitrary quasi-Euclidean
2D − CLH∗(k, 2) instance):
1. If the instance has no boundary or coboundary qubits, then it is equivalent to the toric

code, so apply algorithm 4 and terminate.
2. Else, generate a groundstate of H̃ with a constant depth quantum circuit.
3. For each term h ∈ W which was removed, measure I−2 ·πh, and record the measurement

value as λh = ±1. (πh is the orthogonal projector onto the groundspace of h).
4. Fix every h ∈ W for which λh = −1: if h is a star term s, find a path γ from s to the

coboundary and apply L =
⊗

q∈γ Xq. If h is a plaquette term p, find a copath γ∗ from p

to the boundary and apply L∗ =
⊗

q∈γ∗ Zq.



D. Aharonov, O. Kenneth, and I. Vigdorovich 2:19

This proves Theorem 2. Theorem 1 follows as well: if the instance has no boundary/-
coboundary qubits (and this can of course be checked efficiently by the verifier) then the
system is equivalent to the toric code, so it’s ground energy can be computed easily (see [6]
for the case where the local terms are as in the toric code only upto a factor of a scalar).
Otherwise, the problem of computing the ground energy of H reduces to computing the
ground energy of H̃, since the verifier knows that any groundstate of H̃ can be corrected to
a (possibly other) groundstate of H̃ such that all terms in W are satisfied (i.e the energy
with respect to the terms in W is minimal). It is thus left to note that H̃ is a 2-local CLH,
and this problem is in NP by [9].

9 Discussion

An interesting property of the algorithm is that all of the quantum operations are summed up
to have only constant depth. Indeed, the algorithm consists of three steps: a constant depth
quantum circuit that generates a groundstate for the punctured Hamiltonian, a non-constant
depth computation of path finding which can be carried out in a classical manner, and finally
a constant depth quantum circuit of logical operators (tensor product of Pauli operators).

This observation regards the complexity of the algorithm, but it is interesting also
conceptually. While the quantum circuit presented here is of polynomial depth, it is enough
for the verifier to obtain only a constant depth circuit description, and verify that it is indeed
a groundstate of the punctured Hamiltonian, in order to be know the ground energy of the
whole system (since the verifier knows that these holes can always be fixed). This means that
while the time it takes to generate a groundstate for the system is concentrated on creating
global entanglement, all the hardness and potential frustration of the groundstate comes
into play only at the level of local entanglement of the groundstate of the 2-local punctured
system.

Moreover, our results shed new light on the possible threshold phenomenon suggested
in [4]. Recall that this threshold (described above in subsection 1.2) regards the fact that
up until k = 3, d = 3, and also for k = 2 and arbitrary d, CLH(k, d) always have trivial
groundstate, which in turn implies that those problems are in NP. The threshold refers to the
fact one cannot expect the exact same phenomenon for higher parameters since then there
are systems with topological quantum order which are known to have no trivial groundstates.
It is thus interesting that our proof extends this trivial state phenomenon even beyond this
transition point into the regime of potentially global entanglements, in the sense that even
here the prover hands us a description of a trivial state - a ground state of H̃ (even though
it cannot in general be a groundstate of the actual instance). This raises the question of
whether such a property holds for more general CLHs.

Can these results be extended to all 2D systems? A generalization from qubits to qudits
of dimension larger than 2 would imply this, under the quasi-Euclidity assumption. Thus,
the main open problem is to generalize our results to higher dimensional particles. We note
that in any case one can still tear holes in a regular manner (using e.g the quasi-Euclidity
assumption) to obtain a punctured Hamiltonian which is 2-local with respect to superparticles,
and thus has a trivial groundstate. The problem is that we do not know how to fix those
holes later on: our characterization of 2D − CLH∗(k, 2) instances (i.e Theorem 13) and
of fixable terms (namely, the creation of logical operators in Lemma 15) strongly uses the
fact that the particles are 2 dimensional. It is open whether further generalization could be
derived using more general characterizations of commuting local Hamiltonians, perhaps over
general finite groups (e.g the quantum double model [20]).
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We mention that if indeed the results can be generalized to qudits, it might also be
possible to generalize to 3D manifolds or more, perhaps in an inductive manner.

A more technical question is whether the quasi-Euclidity condition can be relaxed.
Quasi-Euclidity seems closely related to the notion of 1-localizablity introduced in Hastings’
paper [18] already mentioned (In fact, the quasi-Euclidity condition we use can be replaced
by the technical assumption used in [18] regarding the girth of the complex; we could then
deduce the existence of a groundstate for H̃ from 1-localizabilty instead of 2-locality). This
raises the question of whether manifolds which are very non-Euclidean and which have low
girths, can exhibit much more complex multi-particle entanglement (we mention in this
context [16]).
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