
CrySL: An Extensible Approach to Validating the
Correct Usage of Cryptographic APIs (Artifact)

Stefan Krüger
Paderborn University, Germany
firstname.lastname@uni-padeborn.de

Johannes Späth
Fraunhofer IEM, Germany
johannes.spaeth@iem.fraunhofer.de

Karim Ali
University of Alberta, Canada
karim.ali@ualberta.ca

Eric Bodden
Paderborn University, Germany
firstname.lastname@uni-padeborn.de

Mira Mezini
Technische Universität Darmstadt, Germany
mezini@cs.tu-darmstadt.de

Abstract
In this artefact, we present CrySL, an extensible
approach to validating the correct usage of cryp-
tographic APIs. The artefact contains execut-
ables for CogniCryptsast, the analysis CrySL-
based analysis, along with the CrySL rules we used

in in the original paper’s experiments. We also
provide scripts to re-run the experiments. We
finally include a tutorial to showcase the Cog-
niCryptsast on a small Java target program.

2012 ACM Subject Classification Security and privacy → Software and application security, Software
and its engineering → Software defect analysis, Software and its engineering → Syntax, Software and
its engineering → Semantics
Keywords and phrases cryptography, domain-specific language, static analysis
Digital Object Identifier 10.4230/DARTS.4.3.6
Related Article Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini, “CrySL:
An Extensible Approach to Validating the Correct Usage of Cryptographic APIs”, in Proceedings of
the 32nd European Conference on Object-Oriented Programming (ECOOP 2018), LIPIcs, Vol. 109,
pp. 10:1–10:27, 2018.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
Related Conference 32nd European Conference on Object-Oriented Programming (ECOOP 2018), July
19–21, 2018, Amsterdam, Netherlands

1 Scope

The artefact is supposed to support repeatability of the experiments in the original paper on a
much smaller scale. In particular, it is designed such that the analysis CogniCryptsast may
be applied to some of the apps we used in our evaluation. Lastly, it facilitates running Cog-
niCryptsast on arbitrary Android and Java applications.

© Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 4, Issue 3, Artifact No. 6, pp. 6:1–6:4
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159847846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:firstname.lastname@uni-padeborn.de
mailto:johannes.spaeth@iem.fraunhofer.de
mailto:karim.ali@ualberta.ca
mailto:firstname.lastname@uni-padeborn.de
mailto:mezini@cs.tu-darmstadt.de
http://dx.doi.org/10.4230/DARTS.4.3.6
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.10
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de

6:2 CrySL (Artifact)

2 Content & Usage

The artefact is a docker container that provides the CogniCryptsast analysis, as well as the rule
sets used for RQ2 and RQ4. We provide the full analysis including a version specifically built to
analyse Android apps as well as the CrySL rules from our evaluation. We also provide a few test
apps for the analysis, but have significantly reduced their number compared to the original paper
because the full analysis takes several days to run even on a 16 core machine with 64 GB RAM.

To set up the docker container, please first download the file called crysl-artefact from the
location given in Section 3. The file is a raw docker image that first needs to be imported into
the local docker installation before it can be launched. To this end, execute the commands in the
directory with the crysl-artefact file.

docker import crysl - artefact
docker run -ti -v $absolute /Path/on/your/host/ system :/ home/ output

$hash_of_image /bin/bash

The first command imports the image within the file. The docker run command launches a
container for the image. The ti option sets up a shell in the container and automatically connects
to it. The -v option creates a shared volume between container and host system. The folder
/home/output has already been set up, but a directory on the host system needs to be selected
that should serve as the shared volume (see $absolute/Path/on/your/host/system). The directory
is used to store the analysis results, facilitating their inspection from the host system. Following
that, one needs to specify the image ID, which one can get by executing docker images and then
taking the ID of the most recently added image, as well as the initial command /bin/bash to set
up and launch the shell in the container.

When running the docker run command, the docker container launches at /. Navigate to
/home, in which one may find three folders. First, there is the previously discussed output folder,
next to the folders JavaAnalysis and AndroidAnalysis. Folder JavaAnalysis contains a small Java
example for the analysis that serves as a tutorial to the artefact and which we describe further in
section 2.1. Lastly, folder AndroidAnalysis contains the tools and data to reproduce our results.

2.1 Java Tutorial
In the JavaAnalysis directory, one may find several files that all relate to the analysis. First,
the CryptoAnalysis.jar comprises the CogniCryptsast analysis itself. It further contains the
target project FileEncryptor. The project implements a simple file encryption, but contains a few
bugs CogniCryptsast picks up. Finally, the directory CryslRules contains the full Rulesetfull
rule set, both as binaries and in textual form. The latest version of the rules are available at
https://github.com/CROSSINGTUD/Crypto-API-Rules. To execute the analysis on the target
project, we provide the two scripts runStdOutAnalysis.sh and runFileOutAnalysis.sh. They can
be executed as follows:

./ runFileOutAnalysis .sh

The former prints the analysis report to the console, the latter stores them in a file in /home/out-
put/Javareports (ergo also on the shared folder of the host system). The report file for the tutorial
target project is displayed below. The header of the file lists all involved CrySL rules in case the
user wishes to check the rule their program violated. The actual findings are grouped by class and
further by method name. Each finding contains a short description of the misuse and displays
the statement the misuse was found at in Jimple, the intermediate representation the analysis
framework Soot [3] we have built CogniCryptsast on operates on. The former is to help the user

https://github.com/CROSSINGTUD/Crypto-API-Rules

S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini 6:3

figure out quickly what they have done wrong and how to fix it, the latter should support them in
finding the affected location easily. Applying this structure, the first finding in the report below
can be interpreted as ”In method encrypt of class Crypto.Enc, the parameter first parameter
of the call to Cipher.getInstance() should not just be AES but be extended with one of the
elements in the list.” We suggest the reader to check out the rules in the docker image or online
and either introduce more rule violations to the target program or fix the ones CogniCryptsast
finds in it.

Ruleset :
SecretKey
...
SecureRandom
Cipher
Signature
KeyGenerator
...
SecretKeyFactory

Findings in Java Class: Crypto .Enc
in Method : byte [] encrypt (java.lang.String ,javax. crypto . SecretKey)

"AES" should be any of AES /{CBC , GCM , PCBC , CTR , CTS , CFB , OFB}
@r3 = staticinvoke <javax. crypto . Cipher : javax. crypto . Cipher

getInstance (java.lang. String) >(" AES ")
Variable r2 of type javax. crypto . SecretKey was not properly

generatedKey
@virtualinvoke r3.<javax. crypto . Cipher : void init(int ,java. security

.Key) >(1, r2)
in Method : java.lang. String decrypt (byte [], javax. crypto . SecretKey)

"AES" should be any of AES /{CBC , GCM , PCBC , CTR , CTS , CFB , OFB}
@r3 = staticinvoke <javax. crypto . Cipher : javax. crypto . Cipher

getInstance (java.lang. String) >(" AES ")

Findings in Java Class: FileHandler
in Method : java.lang. String performEncryption (java.lang. String)

Object of type byte [] was not properly randomized
@specialinvoke $r4.<javax. crypto .spec. SecretKeySpec : void <init >(

byte [], java.lang. String) >($r6 , "AES ")

2.2 Experiments
In the AndroidAnalysis folder, one can find all files related to reproducing our experiments. In dir-
ectory apps, we provide a few apps along with the artefact in order to facilitate the execution of the
analysis. We direct any readers who wish to re-run the full analysis to AndroZoo [1] and Section 8
of our paper in which we outline the selection criteria for the apps. In any case, the folder further
contains the rule sets Rulesetfull in CogniCryptRules and Rulesetcl in CryptoLintRules, both
in their binary and textual form. We used the Rulesetfull in answering all research questions,
the Rulesetcl for RQ4 only. As we analyse Android apps, we require platform files for different
versions of the Android SDK in platforms. On top of that, we also need the Android-aware vari-
ant of CogniCryptsast CryptoAnalysis-Android-1.0.0-jar-with-dependencies.jar. It comes with
some wrapper code that deals the Android-specific content of the apk files and uses Flowdroid [2]
for call-graph construction. Once that is done, CogniCryptsast resumes on the remaining Java
code. To launch the analysis, execute one of the two runCogniCryptRulesAnalysis.sh or run-

DARTS

6:4 CrySL (Artifact)

CryptoLintRulesAnalysis.sh scripts, depending on which rule set you want applied. Note that we
limit the execution time of the analysis to ten minutes by means of timeout. We opted for this
solution as the execution time fluctuated heavily between five and 25 minutes on our different
testing machines.

The analysis stores its results in /home/output/Androidreports. For each app, a report file
following the above described structure is created. Additionally, the analysis summarizes the
results in a .csv file.

3 Getting the artefact

You may download the artefact at https://uni-paderborn.sciebo.de/s/uLtxYDv3Aafob2L.

4 Tested platforms

The artefact has been tested with Docker for Windows 10.

5 License

The whole artefact licensed under Eclipse Public License (EPL) Version 2.0 (https://www.
eclipse.org/legal/epl-2.0/). This does not hold for the apps we provide along with the
artefact. They remain licensed under their own license.

6 MD5 sum of the artefact

b6c347f79bd437978b1cc8d0c018ba16

7 Size

2.0 Gb

References
1 Kevin Allix, Tegawendé F. Bissyandé, Jacques

Klein, and Yves Le Traon. Androzoo: collect-
ing millions of android apps for the research com-
munity. In Proceedings of the 13th Interna-
tional Conference on Mining Software Repositor-
ies, MSR 2016, Austin, TX, USA, May 14-22,
2016, pages 468–471, 2016.

2 Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein,
Yves Le Traon, Damien Octeau, and Patrick D.
McDaniel. Flowdroid: precise context, flow, field,

object-sensitive and lifecycle-aware taint analysis
for android apps. In ACM SIGPLAN Confer-
ence on Programming Language Design and Im-
plementation, PLDI ’14, Edinburgh, United King-
dom - June 09 - 11, 2014, pages 259–269, 2014.

3 Raja Vallée-Rai, Etienne Gagnon, Laurie J.
Hendren, Patrick Lam, Patrice Pominville, and Vi-
jay Sundaresan. Optimizing java bytecode using
the soot framework: Is it feasible? In Compiler
Construction, pages 18–34, 2000.

https://uni-paderborn.sciebo.de/s/uLtxYDv3Aafob2L
https://www.eclipse.org/legal/epl-2.0/
https://www.eclipse.org/legal/epl-2.0/

	Scope
	Content & Usage
	Java Tutorial
	Experiments

	Getting the artefact
	Tested platforms
	License
	MD5 sum of the artefact
	Size

