
Automating Object Transformations for Dynamic
Software Updating via Online Execution Synthesis
Tianxiao Gu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
tianxiao.gu@gmail.com

Xiaoxing Ma1

State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
xxm@nju.edu.cn

Chang Xu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
changxu@nju.edu.cn

Yanyan Jiang
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
jyy@nju.edu.cn

Chun Cao
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
caochun@nju.edu.cn

Jian Lu
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
lj@nju.edu.cn

Abstract
Dynamic software updating (DSU) is a technique to upgrade a running software system on the fly
without stopping the system. During updating, the runtime state of the modified components of
the system needs to be properly transformed into a new state, so that the modified components
can still correctly interact with the rest of the system. However, the transformation is non-trivial
to realize due to the gap between the low-level implementations of two versions of a program.
This paper presents AOTES, a novel approach to automating object transformations for dynamic
updating of Java programs. AOTES bridges the gap by abstracting the old state of an object to
a history of method invocations, and re-invoking the new version of all methods in the history to
get the desired new state. AOTES requires no instrumentation to record any data and thus has
no overhead during normal execution. We propose and implement a novel technique that can
synthesize an equivalent history of method invocations based on the current object state only.
We evaluated AOTES on software updates taken from Apache Commons Collections, Tomcat,
FTP Server and SSHD Server. Experimental results show that AOTES successfully handled 51
of 61 object transformations of 21 updated classes, while two state-of-the-art approaches only
handled 11 and 6 of 61, respectively.

2012 ACM Subject Classification Software and its engineering → Software evolution

Keywords and phrases Dynamic Software Update, Program Synthesis, Execution Synthesis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.19

1 Corresponding author.

© Tianxiao Gu, Xiaoxing Ma, Chang Xu, Yanyan Jiang, Chun Cao, and Jian Lu;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 19; pp. 19:1–19:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159847833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tianxiao.gu@gmail.com
mailto:xxm@nju.edu.cn
mailto:changxu@nju.edu.cn
mailto:jyy@nju.edu.cn
mailto:caochun@nju.edu.cn
mailto:lj@nju.edu.cn
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Automating Object Transformations via Online Execution Synthesis

Acknowledgements We are grateful to the anonymous reviewers for their insightful comments.
This work was supported by the National Natural Science Foundation of China (Grant Nos.
61690204, 61472177), the 973 Program of China (Grant No. 2015CB352202), and the Collabora-
tive Innovation Center of Novel Software Technology and Industrialization.

1 Introduction

Today’s industry definitely requires high availability of software systems. One of the major
losses of availability is caused by system shutdowns for installing software updates that fix
bugs and security vulnerabilities. Dynamic Software Updating (DSU) can eliminate this loss
by updating running software systems without stopping them.

Modern operating systems and programming language virtual machines provide powerful
runtime code manipulation facilities such as dynamic linking [8], dynamic class loading [28],
on stack replacement [37] and live patch [2]. With these facilities, it is not difficult to update
the code of a running program. In addition to code replacement, DSU also needs to ensure
that the new loaded code can execute properly with the existing runtime state in the memory
(e.g., heap objects) after the dynamic update.

Existing DSU supporting systems, e.g., Ginseng [33], Jvolve [41] and Javelus [15], ensure
only syntactical correctness, i.e., no type error would be caused by the update. To preserve
semantics correctness, the DSU system should apply an additional state transformation that
maps the runtime state left by the old code to a proper state with which the new code
continues. To realize the state transformation, developers usually specify a manually-prepared
state transformation function, i.e., state transformer.

However, it is difficult and error-prone to develop and test state transformers. Software is
seldom developed with DSU in mind but is assumed to start from scratch. The internal states
between different versions of a program can be incompatible, although the external behavior
of the two versions is similar. For example, the internal representation of a container may
be an array in the old version but a linked list in the new version. As a result, transformer
programming not only requires a thorough understanding of implementation details in both
versions, but also has to break the principle of information hiding and manipulate low-level
data representations.

In this paper we aim at automating the state transformations for DSU. In theory, it is
not possible to automatically generate correct transformers for dynamic updates of arbitrary
programs [17]. Nevertheless, in many practical cases, for particular software patches and
particular dynamic update points, state transformations can be automatically derived with
sophisticated program analysis under some proper assumptions. This kind of techniques can
help reduce service disruption caused by software updates, and are useful for application
domains where high availability is the major concern and occasional errors are tolerable or
compensable.

Our approach, named AOTES, is designed for DSU of object-oriented programs, or more
specifically, Java programs. In object-oriented programming, an important principle is to
use information hiding and encapsulation. An object should be interacted with only via
its methods, where methods are closely related to the behavior of the object. Based on
this principle, we have the following observations. First, the current state of an object is a
conclusion of its past method invocations. Second, the current state is also the basis of the
future method invocations. Third, the behavior of an object, or specifically the history of
method invocations, is mostly unchanged during updating, especially when the patch does
not include new behaviors. Thereby, the new state of a stale object (i.e., an instance of an

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:3

updated class) can be synthesized by replaying its past method invocations with the new
version of methods. In this way we can avoid direct mapping of concrete states between two
program versions with different implementations.

Specifically, AOTES abstracts the runtime state of a stale object as a history of method
invocations (i.e., invocation history for short) that can produce the current state from an
initial (object) state. For example, suppose that an array based container object with three
elements e1, e2 and e3 is created by a history of add(e1), add(e2), remove(e2), add(e3)
and add(1,e2). Now a dynamic update requires transforming the array based container into
a linked list based one. We can easily know that the new linked list based container can be
naturally acquired by applying the invocation history with the new version of methods on an
empty linked list based container.

The main challenge of this approach is to obtain the invocation history for a stale object.
Recording every method invocation on every potentially updated object is prohibitively
expensive. Moreover, the actual history may contain redundant elements, e.g., remove(e2)
and add(1,e2). To address these problems, we try to synthesize an equivalent but more
compact invocation history from the current state. For the previous example, we can
synthesize a history of add(e1), add(e2) and add(e3) instead of the actual one.

Unfortunately, it is hardly feasible to synthesize an invocation history using methods
of real world programs. First, synthesizing a single method invocation is difficult because
a method invocation generally requires arguments, which usually lie within a large value
space (e.g., [−231, 231 − 1] for int in Java). Second, searching for a valid invocation history
is time-consuming because method invocations need to be ordered properly to form a valid
invocation history. In the scenario of dynamic updating, an additional challenge is that the
synthesis is performed online and must be completed very quickly.

AOTES addresses these challenges by combining the power of symbolic execution, program
synthesis and execution synthesis. Specifically, AOTES first distills a set of promising execution
paths for each method by an offline symbolic execution technique. During dynamic updating,
AOTES uses the selected execution paths only to realize a backward online execution synthesis
technique. To reuse techniques of forward execution synthesis, AOTES synthesizes an inverse
method for each selected execution path. We tried out AOTES on 21 real updates of widely
used open source software. AOTES correctly handled 51 of 61 different transformations, while
two state-of-the-art methods handled 11 and 6 of 61, respectively.

The paper makes the following primary contributions:
We propose a mechanism to synthesize method invocation histories that can be used to
recreate objects.
We use the object recreating mechanism to automate object transformations for DSU.
We implement the mechanism and evaluate it with updates taken from widely used open
source systems.2

The rest of this paper is organized as follows. We first give an introduction to DSU and
AOTES using an illustrative example in Section 2 and then a detailed overview of AOTES in
Section 3. Next, we describe the offline analysis in Section 4 and online synthesis in Section 5.
Then, we illustrate the implementation of AOTES in Section 6 and evaluate AOTES with
updates from real-world software in Section 7. We summarize related work in Section 8 and
conclude in Section 9.

2 All source code and tests are publicly available at http://moon.nju.edu.cn/dse/aotes.

ECOOP 2018

http://moon.nju.edu.cn/dse/aotes

19:4 Automating Object Transformations via Online Execution Synthesis

1 class DefaultSshFuture {
2 SshFutureListener firstListener;
3 List otherListeners;
4 void addListener (SshFutureListener listener) {
5 if (firstListener == null) {
6 firstListener = listener ;
7 } else {
8 if (otherListeners == null) {
9 otherListeners = new ArrayList (1);

10 }
11 otherListeners.add(listener);
12 }
13 }
14 }

(a) The old version of DefaultSshFuture.
1 class DefaultSshFuture {
2 Object listeners;
3 void addListener (SshFutureListener listener) {
4 if (listeners == null) {
5 listeners = listener ;
6 } else if (listeners instanceof SshFutureListener) {
7 listeners = new Object []{listeners,listener };
8 } else {
9 // Check the array bound

10 // Expand the array if necessary
11 // Append the listener
12 }
13 }
14 }

(b) The new version of DefaultSshFuture.

Figure 1 An update (rev. b98694) of class DefaultSshFuture of Apache SSHD Server.

2 Illustrative Example

In this section, we present an introduction to DSU and AOTES using an illustrative example.

2.1 Dynamic Software Updating and Its Challenges
Software is subject to changes and evolution: Bugs are fixed and new features are introduced
by applying software updates. Figure 1 shows a real-world motivating example of software
update, which will be discussed throughout the paper. The update is from the Apache
SSHD Server. Class DefaultSshFuture provides a method addListener to add listeners
(Figure 1a). For most cases, there is only one or two listeners but the implementation should
support adding more. To save memory, the old version saves the first-added listener to
firstListener and others into otherListeners, which is an auto-expanding list container
(ArrayList). The new version (Figure 1b) only uses a single field listeners and a raw
array to handle all situations.

To allow long-running programs to receive timely updates without restart, dynamic
software updating migrates the running program from the old version to a new version.
Specifically, a DSU system takes over the execution of a running program, transforms the
runtime state at a properly determined update point (e.g., when no updated method is
active) to a new state conforming to the new version, and then continues executing with the
new version [23, 41].

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:5

1 void update (DefaultSshFuture1 o, DefaultSshFuture2 n) {
2 if (o.firstListener != null) {
3 if (o.otherListeners == null) {
4 n.listeners = new Object [] {o.firstListener};
5 } else if (o.otherListeners.size () > 0) {
6 int length = o.otherListeners.size () + 1;
7 n.listeners = new Object [length];
8 n.listeners[0] = o.firstListener;
9 for (int i = 0; i < o.otherListeners.size (); i++) {

10 n.listeners[i + 1] = o.otherListener.get(i);
11 }
12 }
13 }
14 }

Figure 2 A user-defined transformer for the example in Figure 1.

A major challenge in DSU is the state transformation at the update point. A runtime
system’s state consists of the code, the stacks and the heap. As new code can be easily
dynamically re-loaded and stacks mostly remain unchanged at the update point, the main
challenge is the state transformation of the heap. We restrict our discussions to object-
oriented programming languages (e.g., Java) and thus the heap state transformation is
particularly referred to as the object transformation.

An object transformation takes the current state of a stale object as input and produces
the new state as output. The transformation must be consistent: The future execution must
be able to continue from the transformed state and take over the ongoing business smoothly.
None of existing approaches [41, 42, 31, 38] is capable of automatically conducting object
transformations beyond trivial cases. Most state-of-the-art DSU systems [41, 42, 38] provide
default transformations that simply copy the values of unchanged fields from a stale object
to its corresponding new object, and initialize all new fields with type-specific default values,
e.g., 0 for int.

TOS [31] is the only known approach to automating object transformations, which
embodies the idea of learning-by-example. A transformation example consists of an old-
version object, which is collected during running a test over the old version of the program,
and a new-version object, which is collected during running the same test over the new version
of the program at the corresponding time point [31]. After collecting sufficient examples,
TOS inductively composes a function following a set of predefined rules until the composed
function can realize the transformations between all examples. However, TOS relies on
the high quality tests in terms of covering transformations not only in testing but also in
production. Even though there are sufficient good examples, TOS may easily fail due to its
poor predefined rules.

Both default transformations and TOS do not work for our motivating example because
they only use matched fields (i.e., fields with the exactly same name and type) to transfer
information from the stale state to the new state. In other words, neither of them can find the
relation between unmatched fields, i.e., old fields (e.g., firstListener and otherListeners
and new fields (e.g., listeners) that have different names or types. The only solution before
this paper is to ask the developer to provide an object state transformer, which is a non-trivial
procedure tightly coupled with program semantics and low-level implementations. Figure 2
presents a manually prepared transformer for the update in Figure 1. Even though there
may be only a single stale state at the updating point, the transformer has to handle various
stale object states and produces the new object states accordingly by directly manipulating
the data structure of the object.

ECOOP 2018

19:6 Automating Object Transformations via Online Execution Synthesis

firstListener
otherListeners

listeners

firstListener
otherListeners

l1

listeners l1

firstListener
otherListeners

l1
l2

listeners l1 l2

firstListener
otherListeners

l1
l2 l3

listeners l1 l2 l3

addListener1(l3)addListener1(l2)addListener1(l1)

addListener2(l3)addListener2(l2)addListener2(l1)

s1
3s1

2s1
1s1

0

s2
3s2

2s2
1s2

0

Legend: firstListener l1
addListener1(l3)

field listener ArrayList array reference invocation

Figure 3 Object state evolution of DefaultSshFuture. svi denotes the i-th state of the object in
version v. Each state is depicted with a graphical representation of its data structure.

2.2 Object Transformation Using Method Invocation History
Object transformations will be easy if the method invocation histories of objects are available.
A method invocation consists of a method and a sequence of arguments, which may be empty
if the method requires no arguments. A method invocation usually accepts some specific
input state of the receiver object and produces an output state accordingly.

A method invocation history (invocation history for short) is a sequence of method
invocations. Similarly, an invocation history accepts some specific initial state, i.e., the input
state of the first invocation, and produces the final state, i.e., the output state of the last
invocation. During replaying an invocation history, every method invocation must produce a
valid output state as the input state for the consecutive method invocation in the history.

Two invocation histories are equivalent if they can yield the same final state when applied
to the same initial state. For every object, there is a unique actual invocation history, including
all method invocations applied to the object in the chronological order. An invocation history
is complete if it can yield the current state of an object from the empty state, e.g., the actual
history. Note that nested methods are not included in an invocation history. For example,
method add in Figure 4 can be included in an invocation history but nested methods such as
ensureCapacityInternal cannot.

We have the following two assumptions for our approach:
1. The current state of an object is a summary of its past past method invocations. We

can also recreate the current state of an object from its past method invocations, i.e.,
replaying every method invocation on an object from the initial state.

2. The “role” or the behavior of an object is not changed during update [31]. The method
invocation history usually keeps unchanged for such objects during updates that introduce
no new functionalities, e.g., bug fixes or performance improvements. Hence, the invocation
history of the new state can be easily derived form the invocation history of the stale
state.

Now, the idea can be explained in Figure 3 by an update of DefaultSshFuture. The
program invokes addListener1 (In this paper superscripts denote program versions). with
l1, l2 and l3, respectively, and the update point (s1

3) is reached. The transformed new-
version object is synthesized by applying the invocation history, i.e., invoking the new-version
addListener2 with l1, l2 and l3 on a newly allocated new-version object (s2

0). State s2
3

contains exactly the same sequence of listeners as s1
3, indicating that this is a semantically

correct state transformation. In contrast to default transformations and TOS, which cannot
connect unmatched fields, AOTES finds the relations between them by matching arguments
of matched methods.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:7

One limitation of our approach is that methods in the invocation history should be
available in both versions. There is always a method with the same name and signature in the
new version of an object whose interface is not changed. These methods are named matched
methods for later discussion. AOTES does not insist that every changed class should preserve
the binary compatibility. If some changed classes are binary incompatible, their callers must
fix the incompatibility. In practice, there must be a direct or an indirect binary-compatible
caller within a small scope, including one or two callers, since dynamic updating is often used
for evolutionary changes (e.g., build-to-build) rather than revolutionary changes (e.g., release-
to-release), and build-to-build changes usually do not introduce large patches. Suppose that
a stale object’s interface is changed. The invocation of an unmatched method on the object
must be eventually enclosed in an invocation of a matched caller. We can enlarge the scope
of the state being transformed to include all objects subject to the invocation of the matched
caller and use the matched caller for history synthesis.

2.3 Synthesizing the Equivalent Invocation History
Recording method invocation histories for object transformations is impractical for long-
running programs, because (1) we could not predict which objects were to be updated, thereby
all method invocations on all objects would have to be recorded, which would introduce
significant runtime overhead; (2) the log would be prohibitively expensive to store; and (3)
replaying a long history could lead to a large service disruption during updating.

Alternatively, we try to find an equivalent invocation history that yields the same object
state as the actual invocation history when applied to an object in the initial state, but is more
compact, in terms of as few as possible redundant method invocations. For example, listeners
can be added and removed for millions of times for a DefaultSshFuture object. However,
at a specific execution point, only limited listeners are expected in the data structure. Any
invocation history that yields exactly the same set of listeners suffices for a consistent object
transformation.

AOTES synthesizes an object’s equivalent invocation history from its current state without
any logging. No history data need to be kept at runtime and no overhead is introduced
when the program is not being updated. However, the synthesis of an invocation history is
non-trivial because we need to first derive the arguments for a single method invocation and
then find a valid history of method invocations. That means each method invocation must
produce a valid output state as the input state for its consecutive method invocation in the
synthesized history and the final state must be the current state of the object.

A naïve approach would enumerate all possible combinations of methods and arguments to
determine the set of all possible method invocations. Since this searching space of invocation
histories is huge, it is expensive to find an invocation history that can realize the state
transition from the empty state to the current state of a given object. To narrow down the
searching space for arguments [44, 5], execution synthesis techniques leverage on symbolic
execution and constraint solvers. However, these approaches aim at searching for an execution
path that reaches a particular statement, while AOTES aims at searching for an execution
path that produces the given output state on a given input state of the receiver. In addition,
these approaches are used for offline scenarios such as crash reproduction and search in the
space of all execution paths, which may lead to a potentially unbounded searching time for
real-world programs.

We observed that multiple execution paths of a method actually have the same purpose.
To derive arguments of a method invocation, AOTES applies an offline analysis to populate a
set of promising execution paths before dynamic updating, and during dynamic updating

ECOOP 2018

19:8 Automating Object Transformations via Online Execution Synthesis

1 class ArrayList <E> {
2 int size; E[] elements = {};
3 public boolean add(E e) {
4 ensureCapacityInternal (size + 1);
5 elements [size ++] = e;
6 return true;
7 }
8 private void ensureCapacityInternal (int minCapacity) {
9 if (minCapacity - elements . length > 0)

10 grow(minCapacity);
11 }
12 private void grow(int capacity) {. . .}
13 public boolean addAll (Collection <? extends E> c) {. . .}
14 }

Figure 4 A simplified version of class ArrayList in JDK.

1 public boolean add(E e) {
2 if (size + 1 < elements . length)
3 elements [size ++] = e;
4 return true;
5 }

Figure 5 The simplified equivalent version of method add.

applies an online execution synthesis that considers these execution paths only. Typically, a
method with multiple paths usually has a fast path that handles the most common situation
and many slow paths that handle the rest cases. Moreover, the length of the execution path is
usually guided by some input. We found that first the fast path is sufficient during execution
synthesis for some methods, and second a long execution path guided by a large input can
be replaced by many short execution paths guided by a small input.

Take the program in Figure 4 as an example. Method add has a fast path that appends
the added element directly into the array (at line 5) and many slow paths that need to
additionally calculate the new array size and expand the array (at line 10). AOTES can use
the fast path only to synthesize the invocation history as if the array is initially allocated
in the current size without any expansion. By this way, we can exclude the slow path (i.e.,
the call to grow) during execution synthesis. The fast path of add can be expressed by the
method in Figure 5. Besides, an invocation of addAll with a large input collection in the
actual history can be replaced by many invocations of addAll with a small input collection,
or even many invocations of add with a single element.

To avoid backtracking, AOTES conducts a greedy backward searching starting from the
current state instead of a forward searching starting from the initial state. Instead of every
step searching for a method invocation that is applicable to a given input state, AOTES
searches for a method invocation that can produce a given output state. This is because
the initial input state (i.e., the empty state) has zero information to guide the search, while
the final output state (i.e., the current state) has fruitful information. For example, if we
synthesize a history for an array list from the empty state, we may include many method
invocations that add or remove irrelevant elements. But if we synthesize the history backward
from the current state, we can require that every method invocation must at least contribute
to a field with a non-default value in the current output state.

To facilitate the backward searching, AOTES converts each execution path into a separated
inverse method by the offline analysis. The benefit is that we can simply make use of existing

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:9

1 Object [] add() {
2 size --;
3 assert (size + 1 < elements . length);
4 return new Object [] { elements [size] };
5 }

Figure 6 The inverse method of add shown in Figure 5.

P 1 P 2

diff

Matched methods M

Symbolic execution

Inverse method synthesis

Inverse methods M

Output

m ∈ M

e3e2e1 . . . e5

e3e2e1 . . . e5

Mm

Mm

m2 . . . m5

Mm

s1
0

Old initial state

s2
0

New initial state

Actual history

1. Synthesize

3. Replay

Offline Analysis Online Synthesis

M1

sc

Current state

sn

New state

2. Revert

Figure 7 System overview.

symbolic execution techniques to realize backward execution synthesis. Figure 6 shows an
inverse method add of the method add shown in Figure 5. Here, an inverse method generally
takes no arguments but only the receiver as input, reverts the receiver to a previous state
(e.g., line 2 in Figure 6), and finally returns an array of values (e.g., line 4 in Figure 6).
The return values can be used as the arguments to replay the invocation history of original
methods. For example, suppose that an object of ArrayList is in state o, which contains
two elements e1 and e2. After invoking add on the object, the state o becomes o′, which
contains only a single element e1, and the return value of add is e2. If we invoke add (in
Figure 4) on o′ with e2, the state will be updated from o′ to o again. Here, the input of a
method consists of both the arguments and the state of the receiver, and the output of a
method consists of both the return value and the final state of the receiver.

3 Approach Overview

Figure 7 presents an overview of our approach. AOTES aims at automatically constructing
the new state sn based on the current state sc only. There must be an actual history H1

a

that leads to sc. Instead of recording H1
a from scratch, AOTES tries to synthesize a history

H1
s that can also lead to sc. As the state of an object is a summary of its past method

invocations, H1
a and H1

s should encode the same behavior accordingly. We assume that the
role and the behavior of an object is unchanged during updating. Therefore, H1

s can be used
to recreate the new state sn.

AOTES first conducts an offline analysis, which takes two versions of a program (P 1 and
P 2) as input, and tries to produce the following output:

A number of execution summaries (em) for each matched methodm in P 1. Using symbolic
execution, AOTES builds a mapMm : S × P → S from the symbolic pre-state Σpre ∈ S,
i.e., symbolic object state before applying this method, and the symbolic arguments
Ψ ∈ P, to the symbolic post-state Σpost ∈ S, i.e., symbolic object state after applying
this method.

ECOOP 2018

19:10 Automating Object Transformations via Online Execution Synthesis

A number of inverse execution summaries em ∈ Mm : S → S × P, each of which
corresponds to an execution summary inMm. An inverse execution summary takes a
concrete state s aligned with the symbolic post-state Σpost and computes a concrete state
s′ aligned with the symbolic pre-state Σpre and concrete arguments p such that applying
m with p on an object in state s′ will change its state to s.

To facilitate the online searching, AOTES serializes an inverse execution summary into an
inverse method. An inverse method m takes only the receiver as input and reverts the state of
the receiver to the state just before invoking the original method m. Moreover, it also returns
all arguments required by the invocation of the original method m. For example, suppose
that addListener1 is an inverse method of addListener1. We can obtain s1

2 if we apply
addListener with l2 to s1

1. Conversely, we can obtain s1
1 and l2 if we apply addListener1

on s1
2.
Next, AOTES attempts to synthesize an inverse method invocation history (inverse

invocation history for short) for the object and revert the object to the initial state. An
inverse invocation history is a sequence of inverse methods and return values (i.e., the
corresponding reverted arguments). For example, 〈addListener1/l2, addListener1/l1〉 is
a synthesized inverse invocation history for s1

2. The inverse invocation history can be
synthesized by concatenating inverse methods as all inverse methods only take the object as
input. Specifically, the inverse invocation historyH1

s is synthesized by searching for a sequence
of inverse execution summaries emi , emi−1 , · · · , em1 , such that em1(em2(· · · (emi(sc)))) = s0
and as well emi(emi−1(· · · (em1(s0)))) = sc.

Finally, AOTES constructs a new invocation history by inverting the inverse invocation
history, substituting every inverse method with the new version of its original method, and
using the return value of each inverse method as the arguments. The new state can be reified
by applying the new invocation history on the new initial state. For example, an invocation
history 〈addListener2(l1), addListener2(l2)〉 can be constructed by reverting the inverse
invocation history 〈addListener1/l2, addListener1/l1〉.

If the input of the original method cannot be derived by executing the inverse method,
AOTES introduces a fresh symbolic variable for the input and leverages symbolic execution
techniques to derive its value during online execution synthesis. AOTES considers a set of
short execution paths as the promising candidates for execution synthesis. This is because
long execution paths generally produce long path constraints that may not be solved by a
constraint solver. Moreover, short paths can also help to mitigate the problem of long-running
loop and deep recursive methods whose executions are guided by some input [43]. A long
execution path guided by a very large input is replaced by many short execution paths, each
of which is guided by a small input. An example about loop and recursion with detailed
explanation is available in Section 4.4.

Figure 8 shows three inverse methods of addListener1 (in Figure 1a) generated by
AOTES. Note that the generated code has been simplified for brevity. We can obtain s1

0
and l1 when applying addListener11 to s1

1. Specifically, addListener11 first loads l1 from
firstListener at line 2 and returns it at line 5, and then updates firstListener with a
fresh symbolic value (denoted by a wild-card *) at line 3. The assertion at line 4 restricts
the fresh symbolic value to be null, which can be derived by a constraint solver. Thereby,
firstListener is null and the state becomes s1

0 if the previous state is s1
1.

Similarly, we can obtain s1
1 and l2 by applying addListener21 to s1

2. Let’s first analyze
the original execution trace, i.e., lines 5, 8, 9, and 11 in Figure 1a. Specifically, the
argument listerner is l2, and the input state is s1

1, in which firstListener references
l1 and otherListeners is null. Then, otherListeners is assigned to a newly allocated

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:11

1 Object [] addListener11 () {
2 v0 = firstListener;
3 v1 = firstListener = *;
4 assert (v1 == null);
5 return { v0 };
6 }
7 Object [] addListener21 () {
8 v0 = firstListener;
9 v1 = otherListeners;

10 v2 = v1.size;
11 v3 = v1.elements;
12 v4 = v3.length;
13 v5 = v3 [0];
14 v3 [0] = *;
15 assert (v4 == 1);
16 assert (v2 == 1);
17 v6 = otherListeners = *;

18 assert (v0 != null);
19 assert (v6 == null);
20 return { v5 };
21 }
22 Object [] addListener31 () {
23 v0 = otherListeners;
24 v1 = v0.size;
25 v2 = v0.elements;
26 v3 = firstListener;
27 v4 = v1 - 1;
28 v0.size = v4;
29 v5 = v2[v4];
30 v2[v4] = *;
31 assert (v0 != null);
32 assert (v3 != null);
33 return { v5 };
34 }

Figure 8 Inverse methods of addListener in Figure 1a generated by AOTES. The execution
traces of lines 5 and 6, lines 5, 8, 9, and 11, and lines 5, 8, and 11 in Figure 1a are postfixed with 1,
2 and 3, respectively. Note here we have simplified the generated code for brevity.

ArrayList, in which size is initialized to 0 and elements is assigned to an empty array.
After executing otherListeners.add, elements is expanded to an array of length 1, size
is updated to 1, and the argument l2 is placed at the first (index 0) slot of elements. Note
that the ArrayList is the simplified implementation shown in Figure 4. Now we analyze the
inverse method addListener21 shown in Figure 8. Lines 8 and 18 assert that firstListener
should not be null. Line 17 reverts otherListeners to a fresh symbolic value, which is
further assigned to null by the assertion at line 19. Line 13 retrieves l2 from elements by
index 0 and line 20 returns l2. We can easily verify that the state of the receiver is updated
to s1

1 at last, where firstListener still references l1 and otherListeners is null. The
third inverse method addListener31 is similar, where the return value l3 is retrieved from
elements by index size - 1.

AOTES can sacrifice the completeness because it does not aim at synthesizing all possible
transformations. The objects that AOTES cannot handle may be disposed at a later
update point. On the other hand, a fixed number of inverse methods are sufficient for all
transformations in practice. In Section 5.1, we will show that three inverse methods are
sufficient for all transformations of DefaultSshFuture.

4 Inverse Program Synthesis

The insight of AOTES is to synthesize an inverse method from a symbolic execution trace
not from all traces. We first give a high level overview of the symbolic execution technique
of AOTES followed by a detailed description before illustrating the details.

4.1 Symbolic Execution of AOTES

In general, symbolic execution [25] is a technique to interpret a program with symbolic values
instead of concrete values. A symbolic value is a formula over a set of symbolic inputs, and
can be evaluated to a concrete value by substituting symbolic inputs with concrete values
and then evaluating the formula.

ECOOP 2018

19:12 Automating Object Transformations via Online Execution Synthesis

AOTES populates a certain number of symbolic execution traces from a matched method
to generate inverse methods. The symbolic execution technique of AOTES needs to allocate
objects with explicit types, because dynamic method dispatching should know the type of
each object. This requirement makes it non-trivial to symbolically execute an arbitrary
method of an object, because the heap, or at least the receiver, must be instantiated in to a
proper shape before execution. We name this heap pre-heap (Πpre).

For example, suppose that a symbolic execution trace of addListener in Figure 1a
explores lines 5, 8 and 11. Invoking add at line 11 should trigger a NullPointerException
(NPE) if otherListeners does not reference an object. Otherwise, we have no idea about
exploring which add method. To avoid the NPE and continue the execution, one can allocate
an object in the pre-heap for otherListeners before the execution. However, we have no
idea about the type for object allocation as there may be numerous subclasses of List. The
type for object allocation should be as exact as possible. Here, the type must be ArrayList
not any other type.

During the symbolic execution, an object is either pre-allocated in the pre-heap before
execution or newly allocated during execution. The type of a newly allocated object is known
at its allocation site. For pre-allocated objects, AOTES maintains a shared dictionary S that
maps an access path (e.g., this.otherListeners) to a set of types. A type is randomly
picked out for the pre-allocated object if there are multiple types for an entry. AOTES will
produce inverse methods for each randomly chosen type. During runtime execution synthesis,
only inverse methods that match the actual type are applicable.

The dictionary S is empty at first and updated by traversing the heap at the end of every
successful symbolic execution, which is named post-heap (Πpost). Note that at any time, only
live objects in a heap are of interest. The execution trace that explores lines 5, 8 and 11
depends on the type at this.otherListeners in S. Hence, the execution should be first
suspended at line 11 and resumed until some other symbolic execution trace updates the
entry. Fortunately, the execution that explores lines 5, 8, 9 and 11 can update the entry.
Line 9 allocates an ArrayList for otherListeners. The entry at this.otherListeners in
S is updated by ArrayList.

To update missing entries in S, AOTES dynamically collects extra methods to execute.
If the missing entry is rooted at the receiver, all methods of the receiver are added. If the
missing entry is rooted at an argument of the entry method of the symbolic execution, all
callers of the entry method are added. Callers of a method are determined by a call graph.
AOTES constructs a static call graph at first and refines it when invoking a method during
symbolic execution.

4.2 Program and Execution Definitions
This subsection gives a detailed description of the symbolic execution technique of AOTES.
A program in AOTES is a set of classes. A class C is a set of fields F and a set of methods M,
which also include those inherited from super classes. Every method has a receiver and an
optional sequence of parameters. A method is a sequence of Java virtual machine bytecode
instructions [29]. A bytecode instruction may allocate new objects, create new values, copy
or move existing values, and evaluate branch conditions and change control flow accordingly.

We group all bytecode instructions into seven groups, which are shown in Table 1. A
bytecode instruction may have one operand encoded with it. In a nutshell, this kind of
operand may be an array index i, a field f , a method m, a class C, a constant c, or an
offset ρ of instruction index. AOTES can handle almost all bytecode instructions, except
invokedynamic. This is because invokedynamic usually needs to execute a piece of custom

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:13

Table 1 Bytecode instructions.

Type Instructions
Stack & Local ldc c, load i, store i
Array Access aload, astore
Field Access getfield f , putfield f
Allocation new C, newarray

Binary Operator add, sub, mul, div, rem
Branch ifgt ρ, ifeq ρ, iflt ρ, goto ρ

Invoke & Return invoke m, return

code to resolve the callee. We list a single invoke instruction only without showing various
method dispatching semantics (e.g., invokevirtual and invokespecial), because AOTES
tracks the type of every object and method dispatching for these invoke instructions is
straightforward if we know the receiver type.

An object, i.e., an instance of a class or an array, is defined as a tuple of (C,L), in which
C is its type and L is its heap locations. C is either the class of the instance, or a generic
array type, which means that we do not distinguish array element types. A variable that can
appear in symbolic input and output (actually as a fresh symbolic value) is represented by a
location θ, which may be a named location or a heap location of an object. A named location
is either the receiver or a method parameter of the entry method of the symbolic execution.
A heap location is either an object field or array element and denoted by (o, α), in which o is
the reference of the object, α is either a field f or a symbolic value i representing the array
index.

AOTES organizes symbolic values into a value graph. A node in the value graph represents
a symbolic value, and is a tuple of (t, P, a), in which t is the type of the node, P is a set of
predecessors, and a is an optional type-specific attribute associated with this node. There
are six types of nodes.

1. Constant: (Const,∅, c), where c is the constant literal in an ldc instruction.
2. Reference: (Ref,∅). The heap is a mapping between reference values and objects. A

new or newarray instruction allocates a new object and creates a reference value for the
object to retrieve the object from the heap,

3. Expression: (Expr, {v1, v2}, op), where v1 and v2 are two operand values and op is a
binary operator, i.e., one of +, -, *, /, and %.

4. Assertion: (Assert, {v1, v2}, op), where v1 and v2 are two operand values and op is a
relational operator, i.e., one of >, >=, ==, !=, < and <=. An opposite operator (e.g., <= for
ifgt) is used when a false branch is taken.

5. Input: (Input,∅, θ), where θ is a location in the pre-heap or a method parameter.
6. Output: (Output, {vθ}, θ), where θ is a location in the post-heap and vθ is the value of

θ.

Figure 9 summarizes the effects of each bytecode instructions in terms of the modification
of a configuration. A configuration is a refection of the runtime of a running Java program,
and is composed of the following components, denoted as (F ,Π,Φ,Σ) for brevity.
F , the stack for method frames.
Π, the symbolic heap, a mapping from values to objects.
Φ, the path condition, actually a sequence of Assert.
Σ, the symbolic state, a mapping from variable (locations) to values (nodes).

ECOOP 2018

19:14 Automating Object Transformations via Online Execution Synthesis

Table 2 Symbols used in the rules.

Symbol Description

σ, σ′ a configuration (F ,Π,Φ,Σ)
〈ldc c, σ〉 ⇒ σ′ a rule for the instruction ldc c

v, o, i a generic value, a reference value and an index value, respectively
ΠJoK obtain the object referenced by o

ΠJo=(C,L)K update the heap and make o reference the object (C,L)
ΣJ(o, i)K read the value of the location (o, i)

ΣJ(o, i)=vK update the value of the location (o, i)
F · (m, pc,L, E) push a frame (m, pc,L, E) to the method frame stack F

E · v push a value v into the expression stack

A method frame is denoted by a tuple (m, pc,L, E) of the method m, the current bytecode
index pc, the local variables array L, and the expression stack E for bytecode instructions [29].
Since most instructions are intra-procedure, we ignore the method m and a configuration is
also denoted by a sextuple (pc,L, E ,Π,Φ,Σ).

Rules in Figure 9 actually define an structural operational semantics [35] of each bytecode
instruction over the node (t, P, a). The detailed semantics of each bytecode instruction can
be found in [29]. Table 2 summarizes the symbols used in describing every rule.

Not all bytecode instructions produce values, e.g., an invoke only copies arguments from
the caller to the callee. For the entry method, AOTES creates a Const and allocates a
pre-allocated object for its receiver, and creates an Input for each method parameter of
it. Input in pre-allocated objects are created when first used. At the end of a normally
terminated execution, AOTES creates an Output for every heap location in objects reachable
from the receiver. Exceptional executions are abandoned.

Note that in symbolic execution, which branch (i.e., true or false) is taken is not
determined by evaluating the condition to a concrete value but by a strategy. AOTES takes
a random strategy to explore branches and collect path conditions. First, it randomly takes
an unvisited branch. After all branches have been visited, it then randomly takes a visited
branch. For any method, we only collect a path condition of a limited length. Loop and
recursion are discussed in detail in Section 4.4.

Finally, we create a value graph to summarize an execution. There are two kinds of
edges between nodes, representing value dependency or location dependency. The location
dependency tracks values in heap locations of Input and Output (e.g., object reference and
array index), and is used to align the symbolic post-heap to a concrete heap. The value graph
is constructed as follows. Initially, the value graph is empty. Then, all Input, Output,
Assert are first added to the value graph. Other nodes are recursively added by following
the two kinds of dependency edges.

Figure 10 depicts three value graphs of addListener in Figure 1a. Note that we simplify
the implementation of method add of class ArrayList for brevity but AOTES can handle
the actual one. Lets take the left-most graph as an example to illustrate the semantics of a
value graph. The value graph contains the following nodes and edges.

Two Const nodes w.r.t. this and null.
Two Input nodes w.r.t. firstListener and the parameter.
An Output w.r.t. firstListener. This Output has a location dependency edge from
this (Const) and a value dependency edge from the parameter (Input).

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:15

〈ldc c, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · (Const,∅, c),Π,Φ,Σ)
〈load i, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · LJiK,Π,Φ,Σ)

〈store i, (pc,L, E · v,Π,Φ,Σ)〉 ⇒ (pc + 1,LJi=vK, E,Π,Φ,Σ)

Stack & Locals

〈aload, (pc,L, E · o · i,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · ΣJ(o, i)K,Π,Φ,Σ)
〈astore, (pc,L, E · o · i · v,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E,Π,Φ,ΣJ(o, i)=vK)

Array Access

〈getfield f, (pc,L, E · o,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · ΣJ(o, f)K,Π,Φ,Σ)
〈putfield f, (pc,L, E · o · v,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E,Π,Φ,ΣJ(o, f)=vK)

Field Access

〈new C, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · o,ΠJo=(C,L)K,Φ,Σ) ∧ o← (Ref,∅)
〈newarray, (pc,L, E · v,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · o,ΠJo=(A,L)K,Φ,ΣJ(o, ι)=vK) ∧ o← (Ref,∅)

Allocation

〈add, (pc,L, E · v1 · v2,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E · (Expr, {v1, v2}, +),Π,Φ,Σ)

Binary Operator

〈ifgt ρ, (pc,L, E · v1 · v2,Π,Φ,Σ)〉 ⇒ (pc + ρ,L, E,Π,Φ ∪ (Assert, {v1, v2}, >),Σ), if true

〈ifgt ρ, (pc,L, E · v1 · v2,Π,Φ,Σ)〉 ⇒ (pc + 1,L, E,Π,Φ ∪ (Assert, {v1, v2}, <=),Σ), if false

〈goto ρ, (pc,L, E,Π,Φ,Σ)〉 ⇒ (pc + ρ,L, E,Π,Φ,Σ)

Branch

〈invoke m, (F · (m′, pc′,L′, E′ · o · v1 · · · vn),Π,Φ,Σ)〉 ⇒ (F · (m, 0,LJ0=oKJ1=v1K · · · Jn=vnK,∅),Π,Φ,Σ)

〈return, (F · (m′, pc′,L′, E′ · o · v1 · · · vn) · (m, pc,L, E · v),Π,Φ,Σ)〉 ⇒ (F · (m′, pc′,L′, E′ · v),Π,Φ,Σ)

Invoke & Return

Figure 9 Rules describing effects of bytecode instructions. Each rule is in the format 〈inst, σ〉 ⇒
σ′, where inst is a bytecode instruction, σ and σ′ are the configurations before and after execution
the instruction, respectively.

An Assert w.r.t. the if statement at line 5 in Figure 1a. This Assert has value
dependency edges from firstListener (Input) and null (Const).

AOTES aims at deriving values for the two Input nodes from a given concrete object. The
derivation is conducted by traversing the graph. First, AOTES derives the concrete value
for Output by loading firstListener after aligning this to the concrete object. Next,
AOTES derives the value for the parameter (Input) using the value of firstListener
(Output) directly. Note that we need to check whether the Assert satisfies. The Input
(w.r.t. firstListener) has been overridden during forward execution. We then create a
fresh symbolic value for the Input and try to use the constraint solver to derive a value for
it. All deriving steps are serialized into a method to facilitate the online execution synthesis,
which will be discussed in the next subsection.

4.3 Inverse Method Synthesis

We say that a node is resolved if its concrete value has been derived. An inverse method is
created by resolving all Input. An Output can be directly resolved if its symbolic location
can be aligned to a concrete location. this can be directly aligned to the receiver. An object
field can be aligned if its object reference is resolved. Thus, all fields accessed from this
can be aligned. An array element can be aligned if both the object reference and index are
resolved. AOTES translates every resolution and alignment into a statement. All statements
finally make up the inverse method. AOTES supports four kinds of resolution methods.

ECOOP 2018

19:16 Automating Object Transformations via Online Execution Synthesis

1 lines 5 and 6 2 lines 5, 8, 9 and 11 3 lines 5, 8, and 11
firstListenerparameter

this

firstListener

==

null

otherListeners

thisnull

firstListener

!=

==

ArrayList

elements

Object[1]

elements[0] parameter

0

size

1

length

otherListeners

thisnull

firstListener

!=

!=

elements

elements elements[size]

parameter

size

size

+

1

Input Output Const Expr Assert Ref predecessor location

Figure 10 Value graphs of three execution traces of addListener in Figure 1a. Their inverse
methods are in Figure 8.

1. Direct Resolution: All Const and aligned Output can be directly resolved.
2. Forward Resolution: A node is resolved if all predecessors are resolved. For example, if

a = b× c, and b and c are resolved, then a can also be resolved by evaluating b× c again.
3. Backward Resolution: If an Expr and one of its predecessors are resolved, we can resolve

the other predecessor by these two nodes. For example, if a = b − c, and a and b are
resolved, then c can be resolved by evaluating b− a. We treat +, -, *, and / invertible
due to the aggressive nature of AOTES.

4. Aggressive Resolution: As an inverse method is used for execution synthesis, we can
aggressively guess a value for an Input by assigning a fresh symbolic value to it. Besides,
we can guess an index for an array element if its object reference has been resolved.

Algorithm 1 aims at resolving all nodes of a value graph. The algorithm maintains a
sequence of statements m, and two sets of nodes, R and U , i.e., the sets of resolved and
unresolved nodes, respectively. At first, R and m are empty, and U contains all nodes in
the value graph. The four resolution methods try to apply rules defined in Figure 11 and
return true if there is an applicable rule, which means some nodes have been resolved. Every
successful resolution appends a statement to m (denoted by]). In theory, we can continue
to apply aggressive resolution to resolve every Input and then use forward resolution to
resolve all unresolved nodes in the value graph. The algorithm can finally terminate when R
is fixed, since a value can never be moved from R to U . m is successfully generated only if U
is empty. We then decorate m into a valid Java method. This method has no parameter and
returns all reverted arguments.

Every node is indeed converted into a variable with a unique name. Every resolved Input
must be aligned first and its concrete location is also updated with the resolved value. For
presentation, this requirement is not expressed in the rules. A fresh symbolic value is denoted
by * but in fact produced by a runtime method. We also provide a runtime method guess
that chooses an index in a given array.

Figure 11 presents rules that are used to resolve a node. A rule takes a node from the
value graph and the currently visiting status (i.e., the tuple (R,U,m)) as input to update
the visiting status for next visiting and produce a statement for the inverse method m as
output. Each rule has a precondition that should be checked first. Basically, the precondition
at least ensures that each node is resolved once by a rule. Take rules of direct resolution as
an example. To resolve a Const, the rule only checks whether the node being resolved has
been resolved. To resolve an Output, the two rules further check whether the location has
been aligned.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:17

Algorithm 1: Resolution of a value graph.
Input: (V,E), the value graph.
Output: (R,U,m), where R is the set of resolved nodes, U is the set of unresolved nodes, and m

is the inverse method.
1 (R,U,m)← (∅, V,∅) foreach v ∈ U do Direct(v, (R,U,m))
2 repeat
3 repeat
4 foreach v ∈ U do Forward(v, (R,U,m))
5 foreach v ∈ R do Backward(v, (R,U,m))
6 until R is fixed
7 foreach v ∈ U do
8 if Aggressive(v, (R,U,m)) then break
9 until R is fixed

10 return (R,U,m)

Figure 8 shows the inverse methods created by resolving nodes from value graphs in
Figure 10. We have simplified the output, e.g., remove redundant variables for Const.
Algorithm 1 and rules in Figure 11 ensure that a node is only resolved once. We randomly
visit nodes and thereby, a node can be resolved via different rules and nodes. For consistency,
AOTES attempts to resolve every node using a different method at last and adds assertions
to ensure that all resolved concrete values must be equal, e.g., lines 15 and 16.

4.4 Loop and Recursion
AOTES takes a single-path symbolic execution and limits the length of the path condition.
Hence, the loop and recursive method invocations are unrolled for a limited length. A
set of short execution paths is considered as the promising candidates for online execution
synthesis. Obviously, there do exist long-running loops and deep recursions. Thus, the
symbolic execution trace may be infeasible for some inputs (pre-heaps).

Actually, the problem of loop and recursion may not be as critical as it seems to be. Recall
that AOTES has no need to synthesize an inverse method for all execution traces. Besides, a
fixed number of inverse methods are sufficient sometimes. In comparison with existing whole
program execution techniques [44, 5], the insight of invocation history synthesis is that it
infers the sequence from the state only and requires no complete control flow and call graph.
Moreover, many loops and recursive methods are guided by some input [43]. AOTES can
split a loop with a very large input in the actual history into many loops with a small input
in the synthesized history.

Take the class in Figure 12 as an example. Method addN has a loop and also recursively
calls itself. AOTES can easily populate the execution trace where n is 1 and also synthesize an
inverse method for it, because addN(a,1) is equivalent to elements.add(a). We have shown
that AOTES can easily handle ArrayList. Hence, no matter how divergent the actual history
is, AOTES can always guarantee to synthesize a history addN(e0,1), . . . , addN(ei,1), . . . ,
addN(ek−1,1), where ei is the i-th element in elements and k is the size of the list elements.
For example, an actual history composed of an addN([a,b],2) would be replaced by the
following synthesized history: addN(a,1), addN(a,1), addN(b,1), addN(b,1), where both of
them fill the ArrayList referred to by elements with the sequence [a, a, b, b].

5 Execution Synthesis

This section depicts the online synthesis and replaying of invocation histories.

ECOOP 2018

19:18 Automating Object Transformations via Online Execution Synthesis

v 6∈ R
〈v = (Const,∅, c), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = c;)

v 6∈ R ∧ θ = (o, i) ∧ o ∈ R ∧ i ∈ R
〈v = (Output, {vθ}, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o[i];)

v 6∈ R ∧ θ = (o, f) ∧ o ∈ R
〈v = (Output, {vθ}, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o.f;)

Direct Resolution

v 6∈ R ∧ v1 ∈ R ∧ v2 ∈ R
〈v = (Expr, v1, v2, +), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = v1 + v2;)

v 6∈ R ∧ v1 ∈ R ∧ v2 ∈ R
〈v = (Assert, v1, v2, >), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] assert(v1 > v2);)

Forward Resolution

v1 6∈ R ∧ v ∈ R
〈v = (Output, {v1}, θ), (R,U,m)〉 ⇒ (R ∪ {v1}, U \ {v1},m] v1 = v;)

v2 6∈ R ∧ v ∈ R ∧ v1 ∈ R
〈v = (Expr, v1, v2, +), (R,U,m)〉 ⇒ (R ∪ {v2}, U \ {v2},m] v2 = v - v1)

Backward Resolution

θ = (o, i) ∧ o ∈ R ∧ i 6∈ R
〈i, (R,U,m)〉 ⇒ (R ∪ {i}, U \ {i},m] i = guess(o);)
v 6∈ R ∧ ΠpreJvK = ∅ ∧ θ = (o, i) ∧ o ∈ R ∧ i ∈ R

〈v = (Input,∅, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o[i] = *;)
v 6∈ R ∧ ΠpreJvK = ∅ ∧ θ = (o, f) ∧ o ∈ R

〈v = (Input,∅, θ), (R,U,m)〉 ⇒ (R ∪ {v}, U \ {v},m] v = o.f = *;)

Aggressive Resolution

Figure 11 Rules for resolving nodes and generating statements. Each rule is in the format
P

〈v,(R,U,m)〉⇒(R′,U′,m′) , where P is the precondition of applying the rule, v is the node that we
attempt to resolve, R is the set of resolved nodes, U is the set of unresolved nodes, m is the sequence
of generated statements, and P ′, U ′ and m′ are new versions after applying the rule.

5.1 Online Synthesis of Invocation Histories

AOTES uses a greedy strategy to search for an inverse invocation history. As shown in
Algorithm 2, AOTES first collects all applicable inverse method invocation (T), and uses a
heuristic method to rank them (by function Rank). Intuitively, a better inverse method
should revert more Input in the Πpre from non-default values to default values and preserve
more locations in the Πpre, which is the Πpost for the next step. Hence, AOTES prefers
the inverse method with no aggressively resolved Input first, then more live locations after
execution, and finally more reverted Input. The searching stops when the object is in the
empty state or there is no applicable inverse method. AOTES executes an inverse method
in two ways, i.e., TestApply, which will restore the object state for applying next inverse
method, and Apply, which will retain the modification.

For example, suppose that an object of DefaultSshFuture is in state s1
3. addListener21

is not applicable as line 16 in Figure 8 fails, i.e., the size is not 2. Both addListener11

and addListener31 are applicable, but we prefer addListener31 over addListener11 as it
reverts more locations and also preserves otherListeners. The object state then becomes s1

2.
addListener21 is still not applicable on s1

2 as line 15 fails, i.e., the array has been expanded
and its length is not 1. We then prefer addListener31 for the same reason and apply it to
obtain s1

1. Now, only addListener11 is applicable on s1
1. addListener31 is inapplicable on

s1
1 as line 28 attempts to revert size from 0 to -1. At last, there is no applicable inverse
method and the synthesis terminates.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:19

1 class LoopAndRecursion {
2 List elements = new ArrayList ();
3 void addN(Object o, int n) {
4 if (n < 1) {
5 return ;
6 } else if (o instanceof Object []) {
7 for (Object e : (Object []) o) {
8 addN(e, n);
9 }

10 } else {
11 elements .add(o);
12 addN(o, n -1);
13 }}}

Figure 12 An example of loop and recursion.

Algorithm 2: History synthesis.
Input: o, the receiver object for history synthesis, M, the set of inverse methods.
Output: H, the invocation history for o.

1 H ← ∅
2 while isNotEmptyState(o) do .Stop once the object is reverted into the empty state.
3 T ← ∅ .The set of applicable inverse method invocation at this step.
4 foreach m ∈ M do
5 a← TestApply(m, o) .Apply m to o and restore o afterwards.
6 T ← T ∪ {(m,a)}
7 if T = ∅ then
8 break .Stop when there is no applicable inverse method.
9 (m,a)← Rank(T) .Heuristic-based ranking.

10 H ← H∪ {(m,Apply(m, o))} .Apply m to o without restore.
11 return Revert(H) .Revert H and replace every m by its original method m.

5.2 Realizing Object Transformations

AOTES realizes object transformations as follows. Given a stale object, we first try to
synthesize an inverse invocation history for it. If the history is empty, then we fall back
to default transformations. Otherwise, we apply a default transformation to the object
after reverting its state by applying the inverse invocation history. Finally, we invert the
inverse invocation history to build a new history and apply it to the object. Note that the
synthesized history is not necessarily to be complete.

6 Implementation

We implemented AOTES, including the symbolic execution engine, inverse method synthesizer
and invocation history synthesizer, in about 25K lines of Java code. AOTES is fully automated
and only takes binary class files as input and thus requires no source code, no test case and
no human specified update points.

We implemented a trivial single-variable solver. For example, a fresh symbolic value for
int includes all integers in [MIN_INT, MAX_INT]. As such a symbolic value is mostly used
in assertions and pre-states. Therefore, it narrows its range towards passing the assertion
and to the default value during evaluation. For example, suppose that a variable v1 has a
fresh symbolic value for int. After evaluating the assertion assert(v1 == 0), its range is
narrowed to [0, 0], which means that this symbolic value can only be 0. Currently, we are
working on integrating Z3 [9] as the solver to further improve the effectiveness of AOTES.

ECOOP 2018

19:20 Automating Object Transformations via Online Execution Synthesis

The main limitation of AOTES in analyzing real-world applications is uninterpreted
native methods. The current implementation of AOTES only handles a small part of native
methods that we have encountered during evaluation, among which some are re-implemented
using Java, e.g., arraycopy, and others are manually marked as operators, e.g., sin and
identityHashCode. Operator methods are not interpreted during symbolic execution and
their effects are recorded like an operator (i.e., creating an Expr). During synthesis, they
can be executed as all arguments are available at present. We allocate a phantom object for
every class as the container for static fields. The reference of the phantom object is treated
as a Const and thus a static field can be easily aligned.

7 Experiments

We evaluated AOTES’s effectiveness with real-world updates and performance in synthesizing
long histories using a micro benchmark, respectively. All experiments were conducted on an
Intel Core i7 3.4GHz machine with 20 GB memory running 64-bit Windows 10. The offline
synthesis was conducted on JDK 1.8.0_65 and the dynamic updating was carried out on
Javelus. We forced AOTES to only explore at most 20 different traces for a method and 1000
branches for a trace.

7.1 Real-world Updates

We collected 21 updated classes from Apache Commons Collections, Apache FTP Server,
Apache SSHD Server and Apache Tomcat, which are all widely used common libraries and
server applications under years of active development. These updates were chosen for the
following reasons. First, the two versions of all updates must be successfully compiled.
Second, all updates must involve field changes otherwise would require no transformation.
We classified these fields changes into the following four types:
1. Value Change: with no field added, but the values of some fields need to be updated.
2. Name Change: with a field renamed only.3

3. Type Change: with a type-changed field only.
4. Complex Change: any other changes.
Third, an updated class must not invoke uninterpreted native methods beyond those handled
by the current implementation of AOTES. Finally, we also excluded rare cases in which
the stale state does not contain sufficient information to determine the new state. In this
situation, even a programmer may not be able to provide a transformer based on the stale
state without additional information, not to mention TOS or AOTES.

In addition to existing test cases, we additionally wrote a few test cases for some updated
classes under our test frame work designed for DSU, because most updated classes have no test
case and some existing test cases were insufficient to detect improper object transformations.
Every test created an object with one or a few method invocations before dynamic updating.
Then, we triggered the dynamic updating and applied the transformation to the object.
Every dynamic update was verified as follows [33, 30]. That is, the state after dynamic
updating of the old version must be equivalent to a state that can be achieved by executing
the same methods on the new version.

3 Note that if either the name or type of a field is changed, it is considered as deleted and a new field
with the new name or type is added.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:21

Table 3 Results of real-world updates.

Type Update Tests AOTES Default TOS

Value Change tomcat-dd741c 6 4α) 4 N.A.

Name Change
ftp-5d5592 4 3α) 0 N.A.
sshd-6f8507 2 2 1 N.A.

tomcat-951e08 2 2 1 N.A.
tomcat-b75f5c 2 2 1 N.A.

Type Change

collections-0e1140 1 1 0 N.A.
collections-cdacd4 1 1 0 N.A.

ftp-f8110b 5 5 0 N.A.
sshd-054334 3 3 1 N.A.

tomcat-480edc 3 3 0 N.A.

Complex Change

collections-b7327a 2 2 0 N.A.
ftp-43ff5f 4 2β) 0 N.A.
ftp-4907aa 4 2β) 0 N.A.
ftp-5df186 4 2β) 0 N.A.
sshd-009d83 5 5 0 N.A.
sshd-1487b0 1 1 0 1
sshd-2297b2 1 1 0 1
sshd-b98694 7 7 2 2
sshd-eeeec6 1 0α) 0 1

tomcat-24bc4d 2 2 1 1
tomcat-2db0f7 1 1 0 N.A

Total 61 51/83.6% 11/18.3% 6/9.8%
a) α and β indicates inconsistent and incomplete synthesized history, respectively.

We ran all tests with dynamic updating for both AOTES and default transformations on
Javelus. All results are shown in Table 3. AOTES succeeded in 51 (83.6%) updates and failed
in other 10 updates due to incomplete or inconsistent synthesized histories. An incomplete
history cannot update all fields as the searching also stops when no applicable inverse method
is found. This is mainly because many native methods prevent AOTES from generating
sufficient inverse methods. We plan to model more native methods in future. An inconsistent
history leads to the same state as the actual history in the old version but different states in
the new version. We will discuss this limitation with examples in the following paragraphs.

We did not run TOS with dynamic updating as TOS is not fully automated and requires
extra training tests and manually specified update points. Instead, we used our validation
tests to train TOS and hope that it could synthesize a conditional transformer for each
update that can realize transformations for all test cases. TOS failed to synthesize a function
for 16 of 21 updates (marked with N.A. in Table 3). For the rest 5 updates with 12 tests in
total, TOS even failed in validating its output against 6 training tests.

As shown in Table 3, almost all updates have field name changes or type changes. These
updates are the majority of updates that require transformations in practice. Default
transformations and TOS failed to derive a valid transformation/transformer even for
many name and type changes because they cannot find the relations between fields with
different names or types. AOTES can infer their relations when changed fields used the same
arguments in matched methods. Moreover, both default transformations and TOS used a
set of predefined simple rules, and cannot handle transformations involving custom type
conversions (e.g., ArrayList to ConcurrentHashMap). AOTES leveraged program code to
infer custom type conversions when objects of different types used the same arguments in
matched methods for initialization.

ECOOP 2018

19:22 Automating Object Transformations via Online Execution Synthesis

We discuss the limitation and effectiveness of AOTES with the following four examples.
AOTES failed in the first two examples and succeeded in the last two examples.

7.1.1 Value Change: Tomcat dd741c

1 - private String jmxNameBase = "pool";
2 + private String jmxNameBase = null;

This update only changes the initial value of jmxNameBase in the constructor. If the setter
of jmxNameBase is not invoked, the transformation should update the value to null. AOTES
failed in two test cases due to inconsistent histories. That is, both the constructor and the
setter method can assign "pool" to jmxNameBase in the old version but null and "pool"
in the new version. In fact, even a programmer cannot write a general transformer here
because using the current state only cannot distinguish different actual histories that lead to
the same current state.

7.1.2 Name Change: FTP 5d5592

1 - private int maxIdleTimeMillis = 10000;
2 + private int idleTime = 300;
3 public void setIdleTime (int idleTime) {
4 - maxIdleTimeMillis = idleTime * 1000;
5 + this.idleTime = idleTime;
6 }

Except this update, we can just copy the value from a new field to the old field for all Name
Change updates. AOTES failed in the only test for the same reason as Tomcat dd741c.
maxIdleTimeMillis was set to 10000 by the constructor in the old version but in the new
version idleTime should be 300.

7.1.3 Type Change: FTP f8110b

1 class DefaultFtpletContainer {
2 - private List ftplets = new ArrayList();
3 - class FtpletEntry { String name; Ftplet ftplet; }
4 + private Map ftplets = new ConcurrentHashMap();
5 public void addFtplet (String name , Ftplet ftplet) {
6 - ftplets.add(new FtpletEntry(name, ftplet));
7 + ftplets.put(name, ftplet);
8 }
9 }

Type conversions between built-in types are easy, e.g., int to long. However, for this update,
we need the key to convert an ArrayList to a ConcurrentHashMap. AOTES can synthesize
inverse methods for addFtplet and the constructor and also a history using them. The key
can be inferred from the parameter name of the new version of addFtplet.

7.1.4 Complex Change: SSHD 009d83

1 class AgentImpl {
2 private List keys = new ArrayList ();
3 - private boolean closed;
4 + private AtomicBoolean open = new AtomicBoolean(true);
5 public void close () throws IOException {
6 - closed = true;

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:23

7 - keys.clear();
8 + if (open.getAndSet(false)) {
9 + keys.clear();

10 + }
11 }
12 public void addIdentity (KeyPair key , String comment) {
13 keys.add(new Pair(key , comment));
14 }
15 }

This update changes both the type and the name of a field. Method close removes all
elements in keys. Hence, the synthesized history is a constructor and a close if the last
method in the actual history is a close. For example, suppose that the actual history
includes a constructor of AgentImpl, an addIdentity, and a close. However, a critical field
modCount in ArrayList, which is used to avoid concurrent modification during iterating the
list, prevents AOTES from applying the inverse constructor of AgentImpl if its value cannot
be reverted to 0. Fortunately, the inverse method of clear decrements modCount. As a
result, the synthesized history is a constructor followed by two invocations of close.

7.2 Micro Benchmark

We selected five classes of commonly used collections and designed a micro benchmark to
evaluate the synthesizing time of AOTES. Theoretically, the synthesizing time only directly
depends on the current object state and the number of inverse methods but not the actual
history. Thereby, we first conducted experiments with all synthesized inverse methods and
then repeated the experiments with a small set of inverse methods. The results help us to
reveal solutions that can optimize the synthesizing time of AOTES.

The micro benchmark created an object of each class, filled it with a number of elements
(ranged from 0, 10, . . . , 90), and finally synthesized a history for it. We also repeated the
procedure for 10 times first to warm up the JVM. Figure 13a shows the distribution of
inverse methods generated by AOTES for all public methods of every class. We first ran the
benchmark on all inverse methods and then repeated the benchmark with only previously
used inverse methods.

The synthesizing time using all inverse methods is shown in Figure 13b. The time depends
on the size of elements in a collection. AOTES spent more than 5s in the worst case for
Vector. This is mainly because our implementation heavily uses reflections and exceptions.
Besides, most of the inverse methods of these classes were indeed redundant.

The number of inverse method candidates has an impact to the searching time. Figure 13c
shows the number of different inverse methods (not different inverse method invocations)
appeared in each history. No more than four inverse methods were actually used for all
histories. That means the online synthesis wasted a certain amount of time on trying out
redundant inverse methods. Note that here an inverse method may be invoked for many
times. The actual number of method invocations in total were mostly the same as the number
of elements.

Pruning redundant inverse methods can speed up the online history synthesis. In practice,
we can prune redundant inverse methods using an automatic random testing tool [36].
Figure 13d shows the synthesizing time using only previously used inverse methods. AOTES
only spent 35ms in the worst case for LinkedList and only 12ms for Vector. We believe
that this synthesizing time is acceptable for practical usage and can also be further reduced
with a more efficient implementation of AOTES.

ECOOP 2018

19:24 Automating Object Transformations via Online Execution Synthesis

Arr
ayL

ist

Has
hM

ap

Link
edL

ist
Vec

tor

Has
hta

ble

89

120

44

97

57

In
ve

rs
e

M
et

ho
ds

(#
)

0 10 20 30 40 50 60 70 80 90
0

1K

2K

3K

4K

5K

Size (#)

T
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

Size (#)

In
ve

rs
e

M
et

ho
ds

(#
)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

Size (#)

T
im

e
(m

s)

(a) (b)

(c) (d)

ArrayList HashMap LinkedList Vector Hashtable

Figure 13 Results of micro benchmark.

7.3 Discussion

AOTES can be used as a complement to existing techniques such as default transformations,
TOS, and manual approaches, especially for name changes, type changes and complex changes.
While both default transformations and TOS cannot find the relations between old fields
and new fields that have different names or types, AOTES can find the relations by matching
the arguments in matched methods. Different from TOS, which requires test cases and
manual efforts during collecting transformation examples, AOTES is fully automated and
works purely on binaries without source code and test cases. AOTES is the only approach
that can leverage the program code to infer powerful transformations. Moreover, it is an
on-demand dynamic approach and can avoid synthesizing transformation that are hard to be
automated but may not be encountered during dynamic updating.

The two assumptions of AOTES (Section 2.2) may be a threat. Techniques such as
random testing [36] can help to reveal the violation of assumptions before updating. The
time of online execution synthesis may be another threat to AOTES, particularly when
there are many stale objects. AOTES tackles this challenge by adopting a lazy updating
mechanism and sharing searching strategies across different transformations. Specifically,
AOTES first mitigates the disruption caused by synthesis using a lazy updating technique,
which is naturally supported by Javelus. Second, AOTES can try out methods that have
already been used only. The effectiveness has been demonstrated in the micro benchmark.
In other words, AOTES shares the searching strategy across different transformations, while
TOS and manual approaches share the transformer.

8 Related Work

We survey related work in this section, including dynamic software updating, and program
and execution synthesis.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:25

8.1 Dynamic Software Updating

In general, DSU systems can be divided in two types, intra-process state transformation and
inter-process state transfer. Many challenges in implementing inter-process state transfer have
made it not so popular in building DSU systems [21, 12]. Not all programs can run multiple
instances of multiple versions simultaneously, particularly in a production environment [21],
e.g., the Linux kernel. In contrast, this approach has been extensively studied in live migration
of virtual machines [6].

The majority of DSU systems apply transformations to the intra-process states. These
approaches can generate default transformations and support programmers specified trans-
formations as well [41, 13, 15]. Besides, they also provide a safety guarantee, e.g. type safety,
to facilitate developing transformers [23, 34, 4, 32, 41, 14]. The transformations can be taken
eagerly [41, 42], or lazily [14, 15], or both [38]. Although the size of a valid transformer may
not be great [2], it should be delivered with extremely timing constraints, e.g., for security
patches.

Automated approaches such as TOS [31] and TTST [12] require a pair of matched objects
as example and infer transformations from these examples. AOTES requires no example
as it uses matched methods, which makes it able to handle non-trivial cases that TTST
and TOS cannot handle. Other approaches for debugging prefer no user intervention by
sacrificing the flexibility or validity [11, 24]. Gupta et al. have proved that the validity of
general dynamic updating is undecidable [17]. Besides, existing programming techniques
can also help transformer programming, e.g., formalization and verification [20, 26, 45] and
software testing [19, 22].

8.2 Program and Execution Synthesis

Program Synthesis and Execution Synthesis [44] have been extensively studied for years.
Among them most related to AOTES are inverse program generation [10, 40] and data
transformations [16, 18, 27, 39]. AOTES combines the program synthesis and execution
synthesis. AOTES indeed makes use of reverse execution [3, 7, 1] over symbolic execution
traces to generate an inverse program.

9 Conclusion

AOTES is an experimental approach to automating object transformations for dynamic
software updating. It preserves the continuity of stateful behavior of objects whose classes
are changed at runtime. The novelty of AOTES is to synthesize a method invocation history
that can produce the current object state in the old version, and replay the history to get
the desired state for the new version. Our preliminary evaluation shows that AOTES has
the promising ability to handle software updates taken from real-world software systems.
Although the current implementation of AOTES is for Java only, we believe that the general
idea of AOTES can also apply to other object-oriented programming languages. In the future,
we plan to improve AOTES by supporting more native methods and searching strategies, and
also conduct a thorough evaluation of AOTES with more real-world updates.

ECOOP 2018

19:26 Automating Object Transformations via Online Execution Synthesis

References
1 Tankut Akgul and Vincent J. Mooney III. Assembly instruction level reverse execution for

debugging. ACM Transaction Software Engineering Methodology, 13(2):149–198, 2004.
2 Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic rebootless kernel updates. In

Proceedings of the 4th ACM European Conference on Computer Systems, pages 187–198,
2009.

3 Bitan Biswas and R. Mall. Reverse execution of programs. SIGPLAN Notices, 34(4):61–69,
1999.

4 Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. POLUS: A powerful
live updating system. In Proceedings of the 29th International Conference on Software
Engineering, pages 271–281, 2007.

5 N. Chen and S. Kim. STAR: Stack Trace Based Automatic Crash Reproduction via Sym-
bolic Execution. IEEE Transactions on Software Engineering, 41(2):198–220, 2015.

6 Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian
Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceed-
ings of the 2nd Conference on Symposium on Networked Systems Design & Implementation
- Volume 2, pages 273–286, 2005.

7 Jonathan J. Cook. Reverse execution of Java bytecode. The Computer Journal, 45(6):608–
619, 2002.

8 Robert C. Daley and Jack B. Dennis. Virtual memory, processes, and sharing in MULTICS.
Communications of the ACM, 11(5):306–312, 1968.

9 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, 2008.

10 Edsger W. Dijkstra. Program inversion. In Program Construction, volume 69, pages 54–57.
Springer-Verlag, 1979.

11 Mikhail Dmitriev. Towards flexible and safe technology for runtime evolution of Java
language applications. In Proceedings of the Workshop on Engineering Complex Object-
Oriented Systems for Evolution, 2001.

12 Cristiano Giuffrida, Calin Iorgulescu, Anton Kuijsten, and Andrew S. Tanenbaum. Back
to the future: Fault-tolerant live update with time-traveling state transfer. In Proceedings
of the 27th Large Installation System Administration Conference, pages 89–104, 2013.

13 Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe and automatic live
update for operating systems. In Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 279–292,
2013.

14 Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian Lu. Javelus:
A low disruptive approach to dynamic software updates. In Proceedings of 19th the Asia-
Pacific Software Engineering Conference, pages 527–536, 2012.

15 Tianxiao Gu, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and Jian Lü. Low-
disruptive dynamic updating of Java applications. Information and Software Technology,
56(9):1086–1098, 2014.

16 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 317–330, 2011.

17 Deepak Gupta, Pankaj Jalote, and Gautam Barua. A formal framework for on-line software
version change. IEEE Transactions on Software Engineering, 22(2):120–131, 1996.

18 William R. Harris and Sumit Gulwani. Spreadsheet table transformations from examples.
In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 317–328, 2011.

T. Gu, X. Ma, C. Xu, Y. Jiang, C. Cao, and J. Lu 19:27

19 Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster. Efficient
systematic testing for dynamically updatable software. In Proceedings of the 2nd Interna-
tional Workshop on Hot Topics in Software Upgrades, pages 9:1–9:5, 2009.

20 Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster, and Jeffrey S. Foster.
Specifying and verifying the correctness of dynamic software updates. In Proceedings of
the 4th International Conference on Verified Software: Theories, Tools, Experiments, pages
278–293, 2012.

21 Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State
transfer for clear and efficient runtime updates. In Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering Workshops, pages 179–184, 2011.

22 C.M. Hayden, E.K. Smith, E.A. Hardisty, M. Hicks, and J.S. Foster. Evaluating dynamic
software update safety using systematic testing. IEEE Transactions on Software Engineer-
ing, 38(6):1340–1354, 2012.

23 Michael Hicks and Scott Nettles. Dynamic software updating. ACM Transactions on
Programming Languages and Systems, 27(6):1049–1096, 2005.

24 Jevgeni Kabanov and Varmo Vene. A thousand years of productivity: the JRebel story.
Software: Practice and Experience, 2012.

25 James C. King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

26 V.P. La Manna, J. Greenyer, C. Ghezzi, and C. Brenner. Formalizing correctness criteria
of dynamic updates derived from specification changes. In Proceedings of the 2013 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems, pages 63–72,
2013.

27 Vu Le and Sumit Gulwani. FlashExtract: A framework for data extraction by examples.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 542–553, 2014.

28 Sheng Liang and Gilad Bracha. Dynamic class loading in the Java virtual machine. In
Proceedings of the ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, pages 36–44, 1998.

29 Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine
Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.

30 Xiaoxing Ma, Luciano Baresi, Carlo Ghezzi, Valerio Panzica La Manna, and Jian Lu.
Version-consistent dynamic reconfiguration of component-based distributed systems. In
Proceedings of the ACM SIGSOFT Symposium and the European Conference on Founda-
tions of Software Engineering, pages 245–255, 2011.

31 Stephen Magill, Michael Hicks, Suriya Subramanian, and Kathryn S. McKinley. Automat-
ing object transformations for dynamic software updating. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Appli-
cations, pages 265–280, 2012.

32 Kristis Makris and Rida A. Bazzi. Immediate multi-threaded dynamic software updates
using stack reconstruction. In Proceedings of the Conference on USENIX Annual Technical
Conference, 2009.

33 Iulian Neamtiu and Michael Hicks. Safe and timely updates to multi-threaded programs.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 13–24, 2009.

34 Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic soft-
ware updating for c. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 72–83, 2006.

35 Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal Intro-
duction. Wiley, 1 edition, 1992.

ECOOP 2018

19:28 Automating Object Transformations via Online Execution Synthesis

36 Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In Proceedings of the 29th International Conference on
Software Engineering, pages 75–84, 2007.

37 Michael Paleczny, Christopher Vick, and Cliff Click. The Java HotSpot™ server compiler.
In Proceedings of the 2001 Symposium on Java™ Virtual Machine Research and Technology
Symposium - Volume 1, pages 1–12, 2001.

38 Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for Java on a stock JVM. In
Proceedings of the 2014 International Conference on Object Oriented Programming Systems
Languages Applications, pages 103–119, 2014.

39 Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-
output examples. In Proceedings of the 24th International Conference on Computer Aided
Verification, pages 634–651, 2012.

40 Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster. Path-based
inductive synthesis for program inversion. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 492–503, 2011.

41 Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic software updates:
A VM-centric approach. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 1–12, 2009.

42 Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic code evolution for
Java. In Proceedings of the International Conference on the Principles and Practice of
Programming in Java, pages 10–19, 2010.

43 Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. Characteristic studies of loop
problems for structural test generation via symbolic execution. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering, pages 246–256,
2013.

44 Cristian Zamfir and George Candea. Execution synthesis: A technique for automated
software debugging. In Proceedings of the 5th European Conference on Computer Systems,
pages 321–334, 2010.

45 Min Zhang, Kazuhiro Ogata, and Kokichi Futatsugi. Formalization and verification of be-
havioral correctness of dynamic software updates. Electronic Notes in Theoretical Computer
Science, 294(0):12–23, 2013.

	Introduction
	Illustrative Example
	Dynamic Software Updating and Its Challenges
	Object Transformation Using Method Invocation History
	Synthesizing the Equivalent Invocation History

	Approach Overview
	Inverse Program Synthesis
	Symbolic Execution of AOTES
	Program and Execution Definitions
	Inverse Method Synthesis
	Loop and Recursion

	Execution Synthesis
	Online Synthesis of Invocation Histories
	Realizing Object Transformations

	Implementation
	Experiments
	Real-world Updates
	Value Change: Tomcat dd741c
	Name Change: FTP 5d5592
	Type Change: FTP f8110b
	Complex Change: SSHD 009d83

	Micro Benchmark
	Discussion

	Related Work
	Dynamic Software Updating
	Program and Execution Synthesis

	Conclusion

