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Abstract
Many functions in libraries and APIs have the notion of optional parameters, which can be
mapped onto optional properties of an object representing those parameters. The fact that
properties are optional opens up the possibility for APIs and libraries to design a complex “de-
pendency logic” between properties: for example, some properties may be mutually exclusive,
some properties may depend on others, etc. Existing type systems are not strong enough to
express such dependency logic, which can lead to the creation of invalid objects and accidental
usage of absent properties. In this paper we propose TypeScriptIPC: a variant of TypeScript
with a novel type system that enables programmers to express complex presence constraints on
properties. We prove that it is sound with respect to enforcing complex dependency logic defined
by the programmer when an object is created, modified or accessed.
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1 Introduction

Static type checking enables the compile-time detection of type errors in programs, which
would otherwise occur at run-time. To enable static type checking, developers have to include
type declarations in their code. These type declarations also serve as documentation, which
facilitates reasoning over code. Early type systems only describe the basic type of the values
that could be stored in a variable, but throughout the years more complex types have been
introduced, such as intersection types [26], union types, linear types [16] and dependent
types [22]. Using these more expressive types, developers can express more sophisticated
programs while retaining the compile-time guarantee that their code is correct.
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14:2 Static Typing of Complex Presence Constraints in Interfaces

Table 1 Twitter API documentation for sending private messages4.

Property name Optional? Description
text required The text of your direct message.

user_id optional ID of the user who should receive the direct message.
screen_name optional Screen name of the user who should receive the direct message.

Note: One of user_id or screen_name are required.5

Dynamically typed languages have given rise to new challenges in type systems, such as
flow-sensitivity and optional types. One such challenge in particular is using the absence or
presence of parameters to encode information. For example, a search function might require
that at least one filter is specified, or objects might only be considered valid if a group of
properties are all present or all absent. For singular properties, optional types can already
express this. However, in order to fully resolve this challenge using static type systems, these
inter-property constraints must be made explicit.

These types of constraints are common for Web APIs [24], where the presence of a
property can determine the structure of other properties in the object of which it is a member,
or where the presence of a property even excludes other properties. However, inter-property
constraints also exist in programming languages and libraries. We show several examples of
inter-property constraints, classified into three categories:

Exclusive constraints: exactly one of a set of properties must be present. In the Twitter
API, users can be identified by either their user_id or their screen_name. Another
example is found in the Python standard library, where the function os.utime2 sets both
the access and modification time of a file. The documentation describes that the function
takes two optional parameters to set the time: times and ns, moreover it states that “It
is an error to specify tuples for both times and ns ”.
Dependent constraints: constraints on a property depend on the presence or the
value of another property. For example, properties explaining details of a picture (name,
description) should not be present if the picture property itself is not present either.
In Chart.js, a library for designing charts in JavaScript, the documentation for lines
in a chart states that “If the steppedLine value is set to anything other than false,
lineTension will be ignored”.3

Group constraints: a group of properties should either all be present or not present
in an object. For example, latitude and longitude properties of a GPS location should
always occur (or be omitted) together.

We will use a running example from the Twitter API specification to demonstrate that
state-of-the-art interfaces do not suffice to describe inter-property constraints. Table 1 shows
the specification for sending a private message, with a typical translation to a TypeScript
interface in Listing 1. Every object that contains the input data for sending a private message
should adhere to the PrivateMessage interface.

The accompanying note in Table 1 indicates that there is an exclusive constraint imposed

2 https://docs.python.org/3/library/os.html#os.utime
3 http://www.chartjs.org/docs/latest/charts/line.html#stepped-line
4 At the time of writing, the note below the table was explicitly mentioned in the API. Recently, the

description has changed — omitting the note — but the constraint still holds.
5 https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/

api-reference/new-message

https://docs.python.org/3/library/os.html#os.utime
http://www.chartjs.org/docs/latest/charts/line.html#stepped-line
https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/api-reference/new-message
https://developer.twitter.com/en/docs/direct-messages/sending-and-receiving/api-reference/new-message
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on the user properties. However, in TypeScript (and also in other languages) it is impossible
to express that exactly one of user_id and screen_name is required. The question marks
after user_id and screen_name in Listing 1 denote that these properties are optional, but
this means that the type system accepts objects containing none or both of the user properties.
Similarly, a group constraint with latitude and longitude properties cannot be expressed: one
can mark both properties as optional, but the type system will not reject the program when
only one property is provided.

1 interface PrivateMessage {
2 text: string ;
3 user_id ?: number ;
4 screen_name ?: string ;
5 }

Listing 1 TypeScript interface for the specification in Table 1.

The lack of support for inter-property constraints in existing programming languages
causes errors to be delegated to the runtime. In the best case, the API or library provides
a detailed error message, stating which properties were incompatible. Sometimes no error
message is returned at all, and a silent choice is made instead: if both user properties are
provided, Twitter silently chooses the screen name over the user ID.

Existing type systems are incapable of expressing inter-property constraints and statically
checking these constraints both at construction time and during updates. In this paper we
describe a type system that can express such complex presence constraints over multiple
properties of an object. We show how interfaces with support for inter-property constraints
can be incorporated in programming languages in Section 2, and describe the key features of
the type system in Section 3. Sections 4 and 5 present the formalisations of the language,
as a variant of TypeScript. We prove that the type system enforces both type safety and
constraint integrity (Section 6). Sections 7 and 8 discuss related work and future work,
respectively. Section 9 contains concluding remarks.

2 Programming with Inter-property Constraints

In this section, we propose a syntax for expressing inter-property constraints and explain
intuitively how they can be used. Unless otherwise noted, every code snippet in the rest of this
paper is written in TypeScriptIPC, our version of TypeScript with support for inter-property
constraints. The syntax of TypeScriptIPC differs little from the syntax of TypeScript. Instead,
the type system makes optimal use of the information provided by the program about the
structure of objects.

2.1 Definition of interfaces with constraints
To handle inter-property constraints, the interface declaration syntax needs to be extended.
Listing 2 shows an example of an interface declaration, revisiting the Twitter specification
we showed in Table 1. Interfaces now consist of two parts: next to the traditional property
name–type declarations, they also contain a list of constraints over the presence and absence
of those properties. The syntax of constraints is as follows:

c ∈ Constraints ::= present(n) | (c) | c ∧ c | c ∨ c | ¬c | c→ c | c↔ c | c xor c

As opposed to TypeScript and many other languages — where properties are required by
default and can be made optional with a ? annotation — properties in TypeScriptIPC are
optional by default and are made required by adding a present(n) constraint.

ECOOP 2018



14:4 Static Typing of Complex Presence Constraints in Interfaces

Lines 2–4 list the three properties for PrivateMessage, and their types in TypeScriptIPC.
Lines 6 and 7 denote the constraints on the presence of those three properties. To improve
the expressiveness of interfaces, constraints on the presence of a property can be combined
with logical operators. The PrivateMessage interface lists two presence constraints: line 6
requires the presence of the text property and line 7 is the inter-property constraint from our
running example. Objects can only be of an interface type if all its constraints are satisfied.

1 interface PrivateMessage {
2 text: string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text );
7 present ( user_id ) xor present ( screen_name );
8 }

Listing 2 Twitter private messaging API data expressed as interface with constraints.

The constraint definition language does not list optional properties as an explicit constraint
operation, as this can be expressed by the following constraint: present(n) ∨ ¬present(n),
which is a tautology.

Listing 3 shows another example of inter-property constraints, describing an interface
of a picture object with required caption (line 7) and optional geolocation. However, the
lat and long properties are dependent on the picture property: if the picture itself is not
provided, the location should be omitted as well. In other words: the presence of the location
properties implies that the picture must be present as well. These constraints are defined
on lines 8 and 9. The fourth constraint on line 10 requires that the latitude and longitude
properties are present or absent together.

1 interface Picture {
2 caption : string ;
3 picture : string ;
4 lat: number ;
5 long: number ;
6 } constraining {
7 present ( caption );
8 present (lat) → present ( picture );
9 present (long) → present ( picture );

10 present (lat) ↔ present (long );
11 }

Listing 3 Interface with dependent and group inter-property constraints.

Interfaces with inter-property constraints can also benefit from interface inheritance. For
example, let us consider the case where we want a stricter version of the PrivateMessage
interface in which only the screen name is allowed. Instead of creating a new interface,
the existing interface can also be extended with extra constraints. Listing 4 shows an
interface in which all properties and constraints of PrivateMessage are inherited, with an
additional present(screen_name) constraint. As the xor constraint from PrivateMessage
is still applicable, this interface implicitly forbids the presence of a user_id property.

1 interface PrivateMessageStrict extends PrivateMessage {
2 // reuse properties from PrivateMessage
3 } constraining {
4 present ( screen_name );
5 }

Listing 4 Extending PrivateMessage to require the screen name property.
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2.2 Object creation
Listing 5 shows how three objects are created and assigned to three variables of type
PrivateMessage. Even though the interface contains inter-property constraints, nothing
changes for the programmer on a syntactical level. To type check this code snippet properly,
the type system has to verify that the interface constraints are satisfied for that object. In
the example, the first object (msg1) satisfies all constraints, including the exclusive constraint:
only user_id is passed along as identification for the user. However, the type system has to
generate errors for msg2 and msg3, as they both violate the exclusive constraint.

1 var msg1: PrivateMessage = {text: "Hello", user_id : 42}; // correct
2 var msg2: PrivateMessage = {text: "Hello"}; // error: none present
3 var msg3: PrivateMessage = {text: "Hello",
4 user_id : 42,
5 screen_name : "Alice"}; // error: both present

Listing 5 Creating objects with inter-property constraints.

The type system also needs to ensure that no constraints are violated when expressions
with different interface types are assigned to each other, or when an instance of an interface
is assigned to a variable with a regular object literal type.

2.3 Property access
When inter-property constraints are involved, reading object properties requires extra caution.
The type system should only allow the access of a property when that property is guaranteed
to be present. For example, the property text in the PrivateMessage interface is a
required property and thus it is certain this property is always present in objects of type
PrivateMessage.

By contrast, the type system should reject programs where other properties of a
PrivateMessage object are accessed. The exclusive constraint guarantees that exactly
one of user_id and screen_name will be present, but it is not known which property ac-
tually is. The function getUserId (defined in Listing 6) tries to read the user_id of a
PrivateMessage, which generates a type error as this property access is unsafe.

To prevent errors from accessing undefined properties, programmers must verify whether
properties are present before using them. For example, the function getUser first performs a
test to check whether user_id is present. Inside the true branch, access to the user ID (line 6)
must be allowed. Additionally, because there is an inter-property constraint between user_id
and screen_name, the screen_name property is guaranteed to be absent even though we did
not explicitly test for it. The inverse holds in the false branch.

Similarly, in the function getLocation (which retrieves the longitude and latitude of a
picture), the type system has to allow the access of long, which follows directly from the if
statement. On top of that, the type system should also accept accessing the properties lat
and picture, which are both guaranteed to be present if long is present.

1 function getUserId (msg: PrivateMessage ) : number {
2 return msg. user_id ; // error: user_id is not guaranteed to be present
3 }
4 function getUser (msg: PrivateMessage ) {
5 if (msg. user_id !== undefined ) {
6 msg. user_id ; // :: number ( present due to if statement )
7 msg. screen_name ; // :: undefined (not present due to xor constraint )
8 } else {
9 msg. user_id ; // :: undefined (not present due to if statement )

10 msg. screen_name ; // :: string ( present due to xor constraint )

ECOOP 2018



14:6 Static Typing of Complex Presence Constraints in Interfaces

11 }
12 }
13 function getLocation ( picture : Picture ) {
14 if ( picture .long !== undefined ) {
15 picture .long; // :: number ( present due to if statement
16 picture .lat; // :: number ( present due to group constraint )
17 picture . picture ; // :: string ( present due to dependent constraint )
18 }
19 }

Listing 6 Accessing properties

2.4 Property updates
As with every object-oriented type system, the assignment of a new value to a property of an
object should only succeed when the value is of the correct type. Inter-property constraints
add an extra complication: assigning to a property might invalidate an inter-property
constraint.

Updating a property that was already guaranteed to be present is safe: the previous
section showed that the type system will only assign the intended type to properties that are
known to be present. Line 2 in Listing 7 illustrates this with the text property. The update
of the user_id property on line 4 will fail, however: the type system disallows the property
access, as explained in the previous section.

Note that it is not allowed to assign the value undefined to properties of any type
except Undefined, as this would make a required property absent (line 3). This principle
is known as the strict null-checking mode of TypeScript. In Listing 7, it is only allowed to
assign undefined to screen_name (line 8), as this property is known to be absent inside the
consequent of the if statement.

1 function setMsg (msg: PrivateMessage , text: string , user_id : number ) {
2 msg.text = text; // ok
3 msg.text = undefined ; // error: assigning undefined to present property
4 msg. user_id = user_id ;// error: property with unknown presence status
5
6 if (msg. user_id !== undefined ) {
7 msg. user_id = user_id ; // ok
8 msg. screen_name = undefined ; // ok
9 }

10 }

Listing 7 Updating properties.

The examples of Listing 7 only modify one property at a time. However, an inter-property
constraint often requires the modification of several properties at once, as the object could be
in a type-incorrect state inbetween several assignments. Let us consider the case in Listing 8
where a programmer wants to switch from user ID to screen name. The type system rejects
this program, as it breaks the rules imposed by the strict-null checking mode. This behaviour
is desirable: inbetween lines 3 and 4, the inter-property constraint of msg is violated: it
contains neither user ID nor screen name.

1 var msg: PrivateMessage = {text: "Hello", user_id : 42};
2 if (msg. user_id !== undefined ) {
3 msg. user_id = undefined ;
4 msg. screen_name = "Alice";
5 }

Listing 8 Changing an inter-property constraint is not possible with separate assignments.
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Our solution is to enable updating of multiple properties simultaneously, such that the
object is never in an invalid state between consecutive assignment statements. We propose an
assign(i, o) operator6 that returns a copy of object i, in which the properties from the object
o are added or updated. Listing 9 shows how the assign operator switches from user_id to
screen_name. Note that assign is functional: instead of modifying its first arguments, it
returns a new object.

1 var msg: PrivateMessage = {text: "Hello", user_id : 42};
2 var msg2: PrivateMessage =
3 assign (msg , { user_id : undefined , screen_name : "Alice"}); // correct
4 var msg3: PrivateMessage =
5 assign (msg , { user_id : undefined }); // incorrect

Listing 9 Using multi-assign to switch from user ID to screen name.

While programmers can update any subset of the properties of an object, not all com-
binations are correct, as the msg3 example above shows. Intuitively, if an inter-property
constraint exists between two or more properties, they should all appear together in the call
to assign. The properties of an object can thus be divided into one or more “clusters”. For
example a Picture object has a trivial cluster for caption, and a separate cluster for the
long, lat and picture properties.

3 Verifying Constraints in TypeScript

The addition of constraints to interfaces has consequences on several facets of the type system.
In the following sections, we explain how the type system of TypeScriptIPC deals with the
creation, modification, and access of properties of interfaces with constraints. Because the
constraint language expresses constraints with logical connectives, the type system uses
several concepts from propositional logic to guarantee correctness.

3.1 Object literals have to satisfy constraints
The type system only accepts the assignment of an object literal to a variable with an
interface type when that object satisfies the interface constraints. Using terminology from
propositional logic, the type system requires that the object literal is a valuation [15] that
satisfies the logical formulas of the interface (constraints). More specifically, an object literal
defines a valuation, assigning truth values (presence and absence of properties) to proposition
symbols (property names). Moreover, for every valuation v there exists a unique function v̂
which takes a proposition (here: the constraints) and returns true or false.

3.2 Constraints dictate property presence
As with other type systems, interface declarations contain a list of properties with their types.
However, looking up a property of an interface may only succeed when the interface contains
a constraint indicating that property is present. Of course, with complex inter-property
constraints, these constraints may not be directly present in the constraint set. Instead, the
type system relies on logical entailment (denoted �`) to verify whether a present(n) constraint
follows from a set of constraints. Calculating logical entailments can be efficiently automated
using deductive systems such as the Gentzen system [15]. Returning to the PrivateMessage

6 assign resembles the Object.assign function in JavaScript, but does not modify its input object.

ECOOP 2018



14:8 Static Typing of Complex Presence Constraints in Interfaces

example, the type system verifies the following logical entailment for accessing the text
property:

{present(text); present(user_id) xor present(screen_name)} �` present(text)

Similarly, inter-property constraints can also guarantee the absence of a property. In the
case where neither the presence or absence of a property can be derived from the constraints,
the type system should conservatively reject the access of that property. This also follows
from the logical entailment. For example, the type checker rejects the function getUserId of
Listing 6, because neither the presence nor the absence of user_id is a logical consequence
of the interface constraints:

{present(text); present(user_id) xor present(screen_name)} 2` present(user_id)
{present(text); present(user_id) xor present(screen_name)} 2` ¬present(user_id)

3.3 Explicit property presence tests
In dynamic languages, it is common to perform runtime property presence tests. These
presence tests can provide the type system with more information about the object being
tested: in one branch it is certain that the property is present, while it is guaranteed to
be absent in the other. For the true branch in the function getUser of Listing 6, the type
system simply adds the new information (present(user_id)) to the set of constraints, to
allow the access of the user_id property.

That extra information can trigger other inter-property constraints, thus guaranteeing
the presence or absence of other properties. Using logical entailment, the type system can
prove that screen_name will not be present:

present(text);
present(user_id) xor present(screen_name);
present(user_id);

 �` ¬present(screen_name)

Similarly, the presence check on longitude in getLocation guarantees that the longit-
ude is present, but also suffices to safely access latitude (by combining the constraint
present(long) ↔ present(lat) with present(long)) and the picture itself (combining
constraints present(long)→ present(picture) and present(long)).

3.4 Interface–interface compatibility
Normally, an instance of interface I0 is considered assignable to a variable with as type
another interface I1 if I0 contains at least every property and method in the other interface.
However, with the addition of constraints we must also take care that no instance of I0
violates the constraints in I1. To guarantee that all constraints of I1 are satisfied, every
constraint from I1 must be a logical entailment of the constraints in I0. Properties which are
absent from I0 result in extra ¬present(n) constraints at the left-hand side of the entailment.

For example, assigning a variable with a more strict interface type PrivateMessage2
(defined in Figure 1) to a variable of type PrivateMessage, gives rise to the following logical
entailment. Next to the constraints of PrivateMessage, the left side of the logical entailment
contains an extra constraint due the absence of the screen name in PrivateMessage2.
Without the third constraint, the logical entailment would not be valid.

present(text);
present(user_id);
¬present(screen_name)

 �`
present(text) ∧

present(user_id) xor present(screen_name)
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1 interface PrivateMessage1 {
2 text: string ;
3 user_id : number ;
4 screen_name : string ;
5 } constraining {
6 present (text );
7 present ( user_id );
8 present ( screen_name );
9 }

interface PrivateMessage2 {
text: string ;
user_id : number ;

} constraining {
present (text );
present ( user_id );

}

Figure 1 Other versions of the PrivateMessage interface.

As for properties, one might expect that I0 may contain a superset of the properties in I1.
However, this can lead to constraint violations: consider the following example, with two
variations on the PrivateMessage interface (defined in Figure 1).

1 var msg1: PrivateMessage1 = {text:"Hello",user_id :42, screen_name :"Alice"};
2 var msg2: PrivateMessage2 = msg1;
3 var msg3: PrivateMessage = msg2;

On line 2, a variable of type PrivateMessage1 is assigned to a variable of type
PrivateMessage2 and line 3 assigns a variable of type PrivateMessage2 to a variable
of the default PrivateMessage interface: both assignments would be allowed, as no con-
straints are violated. However, line 3 would result in an object of type PrivateMessage that
contains both user_id and screen_name, violating its constraints.

Evidently, width subtyping is irreconcilable with a type system that requires the absence
of properties. Therefore, the type system has to counter-intuitively require that the interface
I0 only contains properties other than those in I1 when those properties are guaranteed to
be absent. This is not the case for the second assignment (line 2) in the example:{

present(text); present(user_id); present(screen_name)
}
2` ¬present(screen_name)

3.5 Updated objects have to satisfy constraints
To verify that all constraints are still satisfied after a simultaneous update of multiple
properties, the type system again uses valuations. However, as the update only affects a
subset of the properties, the object literal in the second argument only serves as a valuation
for a subset of the constraints.

Consider the following example of an interface that indicates both the sender (with the
s_* properties) and the receiver (r_*). Logically, these properties form separate clusters
that are not affected by each other.

1 interface PrivateMessage3 {
2 text: string ;
3 r_user_id : number ;
4 r_screen_name : string ;
5 s_user_id : number
6 s_screen_name : string ;
7 } constraining {
8 present (text );
9 r_user_id xor r_screen_name ;

10 s_user_id xor s_screen_name ;
11 }

var msg: PrivateMessage3 =
{text: "Hello",

r_user_id : 42,
s_user_id : 43};

var msg2 = assign (msg ,
{ r_user_id : undefined ,

r_screen_name : "Alice"});
\[
\]

The assign at the right side only updates the receiver of the private message. Therefore,
the constraints for the sender side do not have to be taken into account: the assign operation

ECOOP 2018



14:10 Static Typing of Complex Presence Constraints in Interfaces

type checks if the object literal is a valid valuation of the constraint on line 9. This is the
case, as undefined is interpreted as an absent property. Of course, the types of properties
in the object literal must conform to those defined in the interface (with the exception of
undefined properties). Note that an update is only valid when all properties of the cluster
are updated.

4 TypeScriptIP C: A Variant of TypeScript with Constraints

Section 2 showed how constraints on the presence of properties can be added to TypeScript’s
interfaces and Section 3 gave an informal idea of how the type system statically enforces
that constraints stay satisfied throughout the program. In this section, we formalise these
ideas in TypeScriptIPC, a variant of TypeScript.

TypeScript is an extension of JavaScript which adds optional static typing. It provides
extra features over JavaScript such as structural typing and named interfaces. To ensure
compatibility with existing JavaScript code, type annotations in TypeScript are optional
which enables developers to gradually convert existing JavaScript code to TypeScript.

This section introduces TypeScriptIPC. The syntax, semantics and type rules presented in
this section build upon those presented by Bierman et al. [7]. They present the type system
in two parts: the first is a safe calculus (called safeFTS) which contains the core features
of TypeScript, including structural typing, contextual types and the lack of block scoping
in JavaScript. The second part expands safeFTS to a production-ready calculus, which is
unsafe.

TypeScriptIPC reuses most of safeFTS’s features, which are based upon TypeScript 0.9.5.
However, as checking the presence or absence of properties is a key feature of TypeScriptIPC,
we use the subtyping rules from the strict null checking mode in TypeScript 2.0. These
make it illegal to assign null and undefined to variables of any other type, unless explicitly
allowed.

Our variant of TypeScript with constraints will focus on objects and interfaces. Contextual
typing and constructs to deal with the lack of block scoping are omitted for clarity. As they
are orthogonal to object creation and interfaces, they can be trivially added to the language
presented in this paper.

4.1 Syntax
Figure 2 presents the syntax of TypeScriptIPC, which is based on the syntax presented
in [7]. It features basic language expressions such as identifiers, literals, assignment and
binary operators. Literals can be numbers n, strings s, or one of the following constants:
true, false, null and undefined, where null indicates the empty object and undefined
is returned when accessing a property that is not present in an object.

Objects are defined using object literals, which map property names to values. Multiple
properties of an object can be updated at once using assign. This function returns a new
object that contains all properties of the first argument. Properties from the second argument
are either updated (when already present in the first argument) or added (otherwise).
Function expressions are similar to those in JavaScript, but with type annotations for the
parameters. Expressions can be cast to a type, but only when the cast is known to be
correct. Statements and variable declarations are straightforward. TypeScriptIPC only
features variable declarations where the type and the value for the variable are provided.

The empty sequence is denoted with •, a concatenation is denoted using a comma, and a
sequence of expressions is written as e. A sequence of property assignments {n : e} is an
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e, f ∈ Expressions ::= x (Identifier)
l (Literal)
{a} (Object literal)
e = f (Assignment operator)
assign(e, {a}) (Assign operator)
e ⊗ f (Binary operator)
e.n (Property access)
e(f) (Function call)
<T>e (Type assertion)
function (x : T) : S {s} (Function expression)

a ∈ Property assignments ::= n : e (Property assignment)
s, t ∈ Statements ::= e; (Expression statement)

if (e) {s} else {t} (If statement)
return; (Return statement)
return e; (Return value statement)
var x:T = e (Variable declaration)

Figure 2 Syntax of TypeScriptIPC.

abbreviation for {n1 : e1, . . . , nn : en}, with n the length of the sequence. Similarly, (x : T) is
a sequence of function arguments (x1 : T1, . . . , xn : Tn).

To reduce the size and complexity of our formalisation, we omit parts of safeFTS
that do not contribute to the necessary adaptations for inter-property constraints. More
specifically, TypeScriptIPC does not support computed property accesses, untyped identifiers,
call signatures without parameter types or return types, and untyped and uninitialised
variable declarations.

Figure 3 shows that TypeScriptIPC has three kinds of types: the top type any, primitive
types and object types. An object type is represented by either a literal type or an interface
type. Note that functions are represented as callable objects that contain one field with
its type of the form (x : S):T. A sequence of types is denoted as T, and the sequence of
properties and call signatures is analogous to their corresponding value sequences.

Interfaces play a key role in expressing inter-property constraints, and their declaration
in TypeScriptIPC is different from other languages:

D ∈ Declarations ::=
{

interface I {n : T} constraining {c}
interface I extends I {n : T} constraining {c} (I non-empty)

TypeScriptIPC interfaces first list the property (field or method) names, together with
their types as usual. However, constraints on the presence of a property are specified in the
constraining section, using the syntax presented in Section 2.1. By default, all properties
are optional unless marked as present. In addition, the constraining section can impose
inter-property constraints on properties of the interface. Interfaces can inherit properties
and constraints from other interfaces. TypeScriptIPC does not allow interfaces to define
properties with the same name as any of their superinterfaces. Furthermore, all properties
are public.

To retrieve the properties and constraints from a given interface, we define two auxiliary
functions properties and constraints. Analogous to the inheritance of properties, constraints
from the superinterfaces are simply accumulated.
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R, S, T ∈ Types ::= any
P
O

P ∈ Primitive types ::= number
string
boolean
void
Null
Undefined

O ∈ Object types ::= I (Interface type)
L (Literal type)

L ∈ Object literal types ::= {M}
M, N ∈ Type members ::= n:T (Property)

(x : S):T (Call signature)

Figure 3 Types of TypeScriptIPC.

Property lookup (1)
Σi(I) = interface I {n : T} constraining {c}

properties(I) = {n : T}

Property lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

properties(I) = {n : T} ∪ properties(I)

Constraint lookup (1)
Σi(I) = interface I {n : T} constraining {c}

constraints(I) = {c}

Constraint lookup (2)
Σi(I) = interface I extends I {n : T} constraining {c}

constraints(I) = {c} ∪ constraints(I)
Before analysis starts, all interface declarations are gathered and stored in a mapping Σi

of interface names I to their respective declaration D. As in safeFTS, a program is a pair
(Σi, s) containing an interface table and a sequence of statements. TypeScriptIPC requires
every interface to satisfy a set of sanity conditions:
1. For every I ∈ dom(Σi), Σi(I) = interface I {n : T} constraining {c} or Σi(I) =

interface I extends I {n : T} constraining {c};
2. for every interface name I appearing anywhere in Σi, it is the case that I ∈ dom(Σi);
3. there are no cycles in the dependency graph induced by the extends clauses of the

interface declarations defined in Σi;
4. for every interface name I in dom(Σi), there exists at least one valuation (that assigns

truth values (indicating presence or absence) to proposition symbols (property names))
that satisfies the constraints (constraints(I));

5. for every interface name I in dom(Σi), none of the properties of I is allowed to be of
type any or Undefined.

The first three sanity conditions are common, and almost identical to those in safeFTS, the
latter two are specifically for interfaces with inter-property constraints. The fourth condition
prevents the declaration of interfaces with inherent contradictions, and the fifth condition
prevents the assignment of undefined to an object property, which — at runtime — is equal
to an absent property.
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4.2 Type System
In this section we present the type system of TypeScriptIPC. Figure 4 shows the type rules of
TypeScriptIPC, which are based on those of safeFTS. For clarity, we omit contextual typing
and JavaScript’s lack of block scoping from the typing rules, which are orthogonal extensions
to the contribution in this paper. The typing judgement is written as follows: Γ ` e : T,
where given an environment Γ the expression e is of type T. Γ maps variables to types
(x : T) and is extended as follows: Γ, x : T. For sequences, we write Γ ` e : T as shorthand for
Γ ` e1 : T1, . . . ,Γ ` en : Tn, with n the length of the sequence. S 5 T is an abbreviation for
S1 5 T, . . . , Sn 5 T and we write S 5 T as shorthand for S1 5 T1, . . . , Sn 5 Tn.

The rules that do not (directly) deal with interfaces are standard: I-Id looks up a variable
in the environment. I-Number, I-String, I-Bool, I-Null and I-Undefined all type check a
constant. The type of an object literal is a mapping of all property names onto the type of
their expression (I-ObLit). In I-Op, the type system checks that the parameters have the
expected type.

4.2.1 Property lookup
I-Prop first retrieves the type of the object, and then determines the type of the property
using the lookup function:

lookup(S, n) =



lookup(Number, n) if S = number

lookup(Boolean, n) if S = boolean

lookup(String, n) if S = string

T if S = {M0, n:T, M1}
lookup(Object, n) if S = {M} and n /∈ M

T if S = I and n : T ∈ properties(I)
and constraints(I) �` present(n)

Undefined if S = I and n : T ∈ properties(I)
and constraints(I) �` ¬present(n)

Properties of primitive types are looked up in their associated interface type (lines 1–3).
Looking up a property in an object literal type is as expected (line 4). When the property is
not found in the object literal type, the lookup function searches the property in the Object
type (line 5). The last two lines show how a property is looked up in a TypeScriptIPC
interface. Simply looking up the property in the list of interface properties does not suffice:
as shown in Section 3.2, the constraints on an interface type dictate the presence of its
properties. If the property is guaranteed to be present, lookup returns its type, otherwise it
returns Undefined. If neither the presence nor the absence of a property can be guaranteed,
the lookup function is not defined.

4.2.2 Assignment Compatibility
In I-Assign, a new expression may only be assigned to an expression when the new expression
has a type that is assignable to the type of the original expression. Similarly, I-Call uses the
assignment compatibility relationship to check that the parameters of the function call have
the correct type. When type checking a function definition, I-Func extends the environment
as usual with the type declarations for the parameters, and type any for the this variable.
The return types of the function body must all be assignable to the declared return type. As
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I-Id Γ, x:T ` x:T
I-Number Γ ` n : number

I-String Γ ` s : string

I-Bool Γ ` true, false : boolean
I-Null Γ ` null : Null

I-Undefined Γ ` undefined : Undefined
I-ObLit Γ ` e : T

Γ ` {n : e} : {n : T}

I-Op
Γ ` e : S0 Γ ` f : S1 S0 ⊗ S1 = T

Γ ` e⊗ f:T
I-Prop

Γ ` e : S
lookup(S, n) = T

Γ ` e.n:T

I-Assign

Γ ` e : S Γ ` f:T
T 5 S

Γ ` e = f:T
I-Call

Γ ` e : {(x : S) : R}
Γ ` f : T T 5 S

Γ ` e(f) : R

I-Func
Γ, this : any, x : T ` s : R R 5 S

Γ ` function(x : T) : S {s} : {(x : T) : S}
I-Assert

Γ ` e : S
S 5 T

Γ ` <T>e : T

I-AssertInf

Γ ` {n : e} : {M} {Mp} = {n : T | n : T ∈ {M} ∧ T 6= Undefined}
{Mp} ⊆ properties(I) cp = {present(n) | n : T ∈ {Mp}}

{Mnp} = properties(I) \ {Mp} cnp = {¬present(n) | n : T ∈ {Mnp}}
v = cp ∪ cnp v̂(constraints(I)) = true

Γ ` <I>{n : e} : I

I-UpdateObj
Γ ` e : {M} Γ ` {n : e} : {N}

Γ ` assign(e, {n : e}) : {M} ] {N}

I-UpdateInf

Γ ` e : I I′ = slice(I, n, constraints(I))
Γ ` <I′>{n : e} : I′ n ∈ dom(properties(I)) n = dom(properties(I′))

Γ ` assign(e, {n : e}) : I

Figure 4 Type rules of TypeScriptIPC.

only safe casts are allowed in TypeScriptIPC, casting an expression to another type is only
allowed when the original type is assignable to the cast type (I-Assert).

The assignment compatibility relation is defined in Figure 5, and is based on the rules
of safeFTS. In safeFTS, interfaces are replaced by corresponding object literals. When an
interface (indirectly) references itself in its field declarations, this can lead to an infinite type
expansion. To deal with this, safeFTS defines assignment compatibility as a coinductive
relation, which guarantees termination. In TypeScriptIPC, on the other hand, interfaces
cannot be replaced by object literals, as interfaces may also contain constraints. Thus,
assignment compatibility for interface fields with interface types in TypeScriptIPC must be
checked against the interface definition instead of via a coinductive relation.

First, assignment compatibility is transitive (A-Trans) and reflexive (A-Refl). Any type
can be assigned to any (A-AnyR). null can only be assigned to itself or any, and undefined
can only be assigned to itself, any or void (A-Undefined). For assigning primitive types,
A-Prim looks up their interface type. An object literal type can be assigned to another
object literal type when all the properties of the source object are also present on the target
object, and properties are assignable pairwise (A-Object). A-Prop defines that assigning
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properties to each other is invariant. Assigning call signatures is contra-/co-variant (A-CS
and A-CS-Void). A-Interface is as discussed in Section 3.4: interfaces must be at least as
strict as the target interface to be considered assignment-compatible, and common properties
should have the same type. Extra properties on I0 are not allowed, unless their absence can
be proven from the contraints. A-IntObj allows assigning an interface to an object when the
constraints on the interface guarantee that all properties are present.

Due to width subtyping, the type of an object does not guarantee that only those
properties are present at runtime (as can be seen in A-Object). However, width subtyping
conflicts with inter-property constraints, that may require properties to be absent: the
assignment of an object to an interface could possibly invalidate the interface constraints at
runtime. Therefore, there is no assignment compatibility rule for assigning an object to an
interface: TypeScriptIPC only allows the casting of a literal object to an interface. This is
covered by the rule I-AssertInf (covered in Section 4.2.3). By only allowing object literals
(instead of all object literal types), the type system has an exact view of the properties that
are present and can thus guarantee that the interface constraints are satisfied.

A small study7 on web APIs indicates that this is not a severe restriction. The study
explored a list of GitHub projects that use an SDK to send requests to the Twitter and
YouTube API. In 163 of the 180 studied API calls, the data was provided as an object literal.
In 14 out of the 17 cases where the data argument was not an object literal, the object was
defined directly above the API call.

Note that, as a consequence, the examples in Section 2 that create objects with inter-
property constraints (Listing 5) are only accepted by the type checker if they are first typecast
to PrivateMessage.

4.2.3 Creating and updating
The rule I-AssertInf covers the case where an object literal is cast to an interface. As
explained in Section 3.1, the cast only succeeds when the properties of the object have
the correct type and the presence and absence of properties form a valid valuation of the
constraints. A property is considered absent when it is not in the object literal, or when its
type is Undefined.

I-UpdateInf and I-UpdateObj cover updating multiple properties of an object at once,
using the functional assign function (see Section 3.5). When the type of the first argument
of assign is an object literal type, I-UpdateObj simply combines (updates or adds, when
the property is already present resp. not present in the first argument) the properties of the
second argument with the first, using ]. More caution is required when the type of e is an
interface, as updating properties could invalidate the constraints. As the second argument
does not necessarily contain every property of the interface, it does not suffice to check
whether the new properties satisfy all the constraints. To solve this, I-UpdateInf uses the slice
function (defined below) to generate an interface that only contains constraints concerning
the properties that are being updated. Given this generated interface, rule I-AssertInf is
reused to verify whether the updated properties satisfy the applicable subset of constraints.
An assign fails if any of the updated properties are not declared in the interface I, or when
not all properties of I’ are part of the second argument of assign.

To preserve soundness, assign does not modify its first argument; instead it returns a
fresh object. Allowing assign to mutate the object would impose severe usage restrictions
(such as in Flow [10] and RSC [34]), or requires tracking aliases (such as in DJS [11]).

7 http://soft.vub.ac.be/~noostvog/typescriptipc/olrestriction.pdf
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A-Trans
R 5 S S 5 T

R 5 T
A-Refl S ` �

S 5 S
A-AnyR S ` �

S 5 any

A-Undefined
Undefined 5 void

A-Prim
I(P) 5 T

P 5 T

A-Object
{M0, M1} ` � M1 5 M2

{M0, M1} 5 {M2}
A-Prop

n : T 5 n : T

A-CS

T 5 S R1 6= void
R0 5 R1

(x : S) : R0 5 (y : T) : R1
A-CS-Void

T 5 S R ` �
(x : S) : R 5 (y : T) : void

A-Interface

∀n : S ∈ properties(I0) ∧ n : T ∈ properties(I1) : S = T
c0 = {¬present(n) | n : T ∈ properties(I0) \ properties(I1)}
c1 = {¬present(n) | n : T ∈ properties(I1) \ properties(I0)}

constraints(I0) ∪ c1 �`

∧
constraints(I1)

∧
c0

I0 5 I1

A-IntObj
properties(I) 5 {M} {n : T} = {M} constraints(I) �` present(n)

I 5 {M}

Figure 5 Assignment compatibility for types in TypeScriptIPC.

slice returns the transitive closure of all properties and constraints of the given interface
which are affected by the properties being updated. Formally, slice is defined as follows. It
uses an auxiliary function fv which takes a constraint and returns all referenced properties.

slice(I, p, c) =
{

interface I′ {p} constraining {c} if (p, c) ≡ (p′, c′)
slice(I, p′, c′) otherwise

where c′ = c ∪ {c | c ∈ constraints(I) ∧ fv(c) ∩ p 6= ∅}
p′ = p ∪ {fv(c)|c ∈ c′}

4.2.4 Sequence typing
Finally, Figure 6 shows the type rules for sequences, which are of the form Γ ` s : R, where
given an environment Γ the sequence of statements s has a set of return types R. These
return types are collected from all return statements in the sequence. This is used by the
type system to verify whether the types of all return statements in a function are assignable
to the declared return type.

All rules are default and identical to those in safeFTS, except for the type rules for if
statements. As with latent predicates in occurrence typing [33], the type system uses the
presence tests inside conditions of if statements to refine interface types in the branches.
I-IfPresenceInterface shows the case where the condition contains a property presence test
(cfr. Section 3.3) for a property of an object with an interface type.

The function addConstraint adds the constraints to the interface, and performs a satis-
fiability check to verify that there are no inconsistent constraints in the extended constraint



N. Oostvogels, J. De Koster, and W. De Meuter 14:17

I-EmpSeq Γ ` • : • I-ExpSt Γ ` e : S Γ ` s : R
Γ ` e; s : R

I-IfPresenceInterface

Γ ` x : I n : S ∈ properties(I) Γ ` s : R
I− = addConstraint(I,¬present(n)) Γ ] x : I− ` t1 : T1
I+ = addConstraint(I, present(n)) Γ ] x : I+ ` t2 : T2

Γ ` if (x.n ≡ undefined) {t1} else {t2}; s : T1, T2, R

I-IfGeneral

Γ ` e : S Γ ` t1 : T1
Γ ` t2 : T2 Γ ` s : R

Γ ` if (e) {t1} else {t2}; s : T1, T2, R
I-Return Γ ` s : R

Γ ` return; s : void, R

I-ReturnVal Γ ` e : T Γ ` s : R
Γ ` return e; s : T, R

I-ITVarDec
Γ ` e : T T 5 S noDup(Γ, x : S) Γ ] x : S ` s : R

Γ ` var x : S = e; s : R

Figure 6 Sequence type rules in TypeScriptIPC.

set. In the case of inconsistencies (ie. when the formula present(n) ∧ ¬present(n) can be
proven for any n), addConstraint will return the bottom type Undefined, preventing access
to an invalid object. The definition of addConstraint is straightforward and omitted for
lack of space. Note that the type assignment for e is overwritten in both branches using ],
leaving type assignments for other variables as-is. Although Figure 6 only defines rules for a
single pattern of conditional expressions, the type rule can be generalised to inequalities and
combined logical expressions, like in [33]. If statements without presence tests are covered by
I-IfGeneral.

5 Operational Semantics of TypeScriptIPC

TypeScript is a superset of JavaScript that adds typing. However, after compilation,
TypeScript emits JavaScript code in which all types are erased, which means that the
semantics of TypeScript (and TypeScriptIPC) are the same of those of JavaScript. However,
we provide the operational semantics of TypeScriptIPC, which will be used in Section 6 to
prove its soundness.

A heap H is a partial function from locations (l) to heap objects (o) . A heap object is
either a closure or an object map. A closure represents a function, and is a pair containing
a lambda expression (where function(x){s} is shortened to λx.{s}) and a scope chain L.
An object map represents an object literal, and is a partial function from variables (x) to
values (v). A variable is either a program variable x, a property name n or the internal
properties @this or @interface. A value is a location l or a literal l. A result r is a value
or a reference, and a reference is a pair containing a location and a variable.

An empty heap is indicated by emp, a heap cell by l 7→ o, a heap lookup by H(l, x),
a heap update by H[l 7→ o] and the union of two disjoint heaps is indicated by H1 ∗ H2.
H[(l, x) 7→ v] updates or extends an object map l with the element x. H(l, x)↓ is true iff
H(l, x) is defined. We define a helper function γ(H, r) that returns r if r is a value, otherwise
(i.e. r is a reference (l, x)) it returns H(l, x) if defined and undefined otherwise. null is a
distinguished location, and may not be in the domain of the heap.

ECOOP 2018



14:18 Static Typing of Complex Presence Constraints in Interfaces

The evaluation rules use a scope chain to model the treatment of variables in JavaScript:
JavaScript resolves variables dynamically against a scope object. A scope chain is a list of
locations of the scope objects, and l : L is a concatenation of a location l to a scope chain L.
A program is evaluated with a scope chain containing only the global JavaScript object lg.
For each function call, a new scope object is created and prepended to the beginning of the
scope chain. After evaluating the function call, that scope object is removed from the scope
chain. The variable lookup function σ is defined as follows:

σ(H, l : L, x) =
{
l if H(l, x)↓
σ(H,L, x) otherwise

The evaluation of an expression e is written as follows: 〈H1, L, e〉 ⇓ 〈H2, r〉, with H1 as
initial heap and L as scope chain, evaluating to heap H2 with result r. As we often need to
evaluate expressions to values instead of references, we define 〈H1, L, e〉 ⇓v 〈H2, v〉 as the
combination 〈H1, L, e〉 ⇓ 〈H2, r〉 and γ(H2, r) = v.

Figure 7 shows the semantics for evaluating expressions in TypeScriptIPC. The evaluation
rules of TypeScriptIPC are almost identical to those in safeFTS, but omit block scoping.
E-Oblit uses an auxiliary function new to create a new location in the object map, E-Update
uses the auxiliary function clone to duplicate an object, and E-Prop’ uses the auxiliary
function box to box primitive values. Note that we do not create bindings for all local variables
up front: they are added to the local scope as they are declared and initialised. E-Update and
E-TypeAssertInf are new. E-Update evaluates the functional update of multiple properties
at once, and E-TypeAssertInf covers the casting of an object literal to an interface. Next to
evaluating the object literal (as in E-ObLit), the internal property @interface indicates that
the expression is of interface type I. In the next section, this property is used for linking the
run-time interface in a location to the declared type in the program. In E-Call, the auxiliary
functions This and act are used:

This(H, (l, x)) =
{
l if H(l, @this)↓
lg otherwise

act(l, x, v, l′) = l 7→ ({x 7→ v, @this 7→ l′})

The evaluation relation for statement sequences is written as 〈H1, L, s1〉 ⇓ 〈H2, s〉, where
s is a statement result (i.e. either return;, return v; or ;). These rules are omitted for
brevity. Unlike safeFTS, the branches of if statements introduce a new scope, so variables
declared there are not visible outside.

6 Soundness

The novelty of the TypeScriptIPC type system lies in its guarantee that all constraints
imposed on objects are guaranteed to be satisfied throughout the execution of the program,
including those over multiple properties. This property is captured in Lemma 1.

Our proof of type soundness is structured identically to [7], albeit without support for
block typing and contextual typing. We define a heap type Σ as a partial function from
heap locations to types [3, 8] (either function types, object literal types, or interface types).
Next, we introduce a number of judgments. First, we define a well-formedness judgment
for heaps H |= � and a judgment that a heap H and scope chain L are compatible, written
H , L |= �. This judgment requires that all scope objects in the scope chain exist on the heap.
We use a judgment Σ |= H to denote that the heap H is compatible with the heap type Σ .
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E-Id
σ(H,L, x) = l

〈H,L, x〉 ⇓ 〈H, (l, x)〉
E-Lit

〈H,L, l〉 ⇓ 〈H, l〉

E-this

σ(H,L,@this) = l1
H(l1,@this) = l

〈H,L, this〉 ⇓ 〈H, l〉
E-Op

〈H0, L, e1〉 ⇓v 〈H1, l1〉
〈H1, L, e2〉 ⇓v 〈H2, l2〉

〈H0, L, e1 ⊗ e2〉 ⇓ 〈H2, l1 ⊗ l2〉

E-ObLit

H1 = H0 ∗ [l 7→ new()]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(l, nm) 7→ vm]

〈H0, L, {n1 : e1, . . . , nm : em}〉 ⇓ 〈H, l〉

E-Assign
〈H0, L, e1〉 ⇓ 〈H1, (l, x)〉 〈H1, L, e2〉 ⇓v 〈H2, v〉

〈H0, L, e1 = e2〉 ⇓ 〈H2[(l, x) 7→ v], v〉

E-Update

〈H0, L, e〉 ⇓v 〈H ′0, l〉 H1 = H ′0 ∗ [lr 7→ clone(l)]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(lr, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(lr, nm) 7→ vm]
〈H0, L, assign(e, {n1 : e1, . . . , nm : em})〉 ⇓ 〈H, lr〉

E-Prop

〈H0, L, e〉 ⇓v 〈H1, l〉
l 6= null

〈H0, L, e.n〉 ⇓ 〈H1, (l, n)〉
E-Prop’

〈H0, L, e〉 ⇓v 〈H1, l〉
H2 = H1 ∗ [l 7→ box(l)]
〈H0, L, e.n〉 ⇓ 〈H2, (l, n)〉

E-Call

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return v; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, v〉

E-CallUndef

〈H0, L0, e〉 ⇓ 〈H1, r〉 γ(H1, r) = l1
H(l1) = 〈λx.{s}, L1〉 This(H1, r) = l2

〈H1, L0, e1〉 ⇓v 〈H2, v1〉 . . . 〈Hn, L0, en〉 ⇓v 〈Hn+1, vn〉
H ′ = Hn+1 ∗ act(l, x, v, l2) 〈H ′, l : L1, s〉 ⇓ 〈H ′′, return; 〉

〈H0, L0, e(e1, . . . , en)〉 ⇓ 〈H ′′, undefined〉

E-Func
H1 = H0 ∗ [l 7→ 〈λx.{s}, L〉]

〈H0, L, function(x){s}〉 ⇓ 〈H1, l〉
E-TypeAssert

〈H0, L, e〉 ⇓ 〈H1, r1〉
〈H0, L, <T>e〉 ⇓ 〈H1, r1〉

E-TypeAssertInf

H1 = H0 ∗ [l 7→ {@interface 7→ I}]
〈H1, L, e1〉 ⇓v 〈H ′1, v1〉 H2 = H ′1[(l, n1) 7→ v1]

. . .
〈Hm, L, em〉 ⇓v 〈H ′m, vm〉 H = H ′m[(l, nm) 7→ vm]

〈H0, L, <I>{n : e}〉 ⇓ 〈H, l〉

Figure 7 Operational semantics of TypeScriptIPC.
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This compatibility also requires that the constraints of interface types are satisfied, which we
prove in Lemma 2. Finally, we depend on a function context(Σ , L) which builds a typing
judgment describing the variables in the scope chain L, using the types in Σ . The ] operator
ensures that only the inner-most type for a variable is used: if a variable is present on both
sides, the right instance is returned. Because E-TypeAssertInf attaches an @interface label
to all interface variables in the heap, Σ can reconstruct interface types as well as function
types and object literal types.

context(Σ, []) = {}
context(Σ, l : L) = context(Σ, L) ] Σ(l)

We combine the judgments above to write Σ |= 〈H , L, e〉 : T to mean Σ |= H ;
H , L |= �; and context(Σ , L) ` e : T. We define an analogous judgment for statements,
as Σ |= 〈H , L, s〉 : T. Finally, we add a judgment on the result of evaluation of expressions,
written Σ |= 〈H , r〉 : T.

Before we can prove the safety properties of our type system with respect to evaluation,
we first show that the constraints of an interface type accurately predict the presence or
absence of its properties at runtime.

I Lemma 1 (Constraint–presence correlation). The type system of TypeScriptIPC guarantees
that if the constraints of an interface contain a constraint present(n), it is certain that the
property n is present at runtime in objects with that interface type. Similarly: if there is a
constraint not(present(n)), it is certain that the property n will not be present.

Proof. There are three cases to consider:
Case 1: Construction Interfaces can only be constructed in three ways, which all ensure

that the correlation holds:
Case 1a: I-AssertInf. When an object literal is cast to an interface, the interface con-

straints are verified against the properties in the object literal. The correlation is thus
informed by the exact properties of the runtime object (E-TypeAssertInf) and enforced
by the type system.

Case 1b: I-Assign. When an instance of interface I0 is assigned to a variable of type
interface I1, the type system requires that the constraints are satisfied via the as-
signment compatibility rule A-Interface. The correlation holds for the source object
(with type I0) and the compatibility rule asserts that the properties of I1 must be
respectively present or absent. Therefore, the correlation must hold after the cast as
well. At runtime, nothing changes.

Case 1c: I-Assert. Analogous to Case 1b: assignment compatibility dictates the presence
and absence of properties in the source object. Nothing changes at runtime.

Case 2: Property assignment The assignment of new values to object properties either hap-
pens on a per-property basis (Case 2a), or multiple properties at once using
assign (Case 2b).
Case 2a: I-Assign. When a new value is assigned to a property n of an interface, two

typing rules are relevant: I-Prop (including the lookup function) and I-Assign. At
runtime, the E-Assign rule simply overwrites the object property, so it is up to the
type system to enforce the correlation. We assume the correlation holds before the
assignment, so the constraints of the interface must state one of the following:
present(n): the lookup function of I-Prop returns the type of n and I-Assign then

allows the assignment of another value (following the typing rules). As this will
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only update the value of a property that is already present, this does not change
the presence of n in the object, thus the correlation holds.

¬present(n): the lookup function of I-Prop returns type Undefined. The assignment
compatibility required by I-Assign will fail as no type is assignable to Undefined,
except for undefined, in which case the property will remain absent. Again, the
correlation holds.

Neither: the lookup function of I-Prop is not defined in this case, so the program does
not typecheck. Without this safety guard in place, the correlation would not hold.

Case 2b: I-Update. The assign function updates multiple properties of an object.
Again, we assume that the correlation holds before the assignment. The assign
function returns a new object, of the same type as the first argument, in which the
properties of the second argument are updated. Properties can become absent or
present (by resp. assigning undefined or a value different from undefined), or simply
change value. The assignment is only accepted by the type checker if the second
argument of assign is assignable to the generated interface which covers its prop-
erties. Therefore, a change in presence for those properties is only allowed if the
input interface did not already require their presence or absence. At runtime, rule
E-Update first clones the object and then the properties are overwritten by those of
the second argument. The correlation holds for both the generated interface (because
of assignment compatibility and isolation) and the rest of the object.

Case 3: After a presence test In case of an if statement that tests the presence of an
interface property, the newly gained information is added to the constraints of the type
in both branches (function addConstraint in I-IfPresenceInterface). Here the property
follows from the program flow: if the field presence test succeeds the type system can only
conclude that the present constraint applies, and vice versa when the presence test fails.
Outside of the if statement, the present constraint is discarded again. Even though the
runtime value does not change, this is again an example of the properties of the runtime
value informing the the type system and thus the correlation. J

From Lemma 1, we can prove that a well-typed program does not violate constraints at
runtime. We add an additional condition to the heap–heap type compatibility rule stated
above as Σ |= H : (the fields function returns field names of an object at runtime)

I Lemma 2 (Correctness of interface types at runtime). For heap locations tagged as interface
types, i.e. those where Σ(l) = I, the following is required:
1. Every interface object is tagged as such:

H (l, @interface) = I′ ∧ I′ 5 I;
2. All properties are correctly typed:
∀n ∈ fields(l) : n:T ∈ properties(I) ∧H ,Σ ` (l, n) : T′ ∧ T′ 5 T.

3. The constraints are satisfied by a valuation over the presence or absence of properties:
v = cp ∪ cnp and v̂(constraints(I)) = true

where cp = {present(n) | n ∈ fields(l)}
where cnp = {¬present(n) |n ∈ properties(I)

∧ (¬H (l, n)↓∨ H (l, n) = undefined)}
where fields(l) = {n | H (l, n) ↓ ∧ n 6= @interface ∧H (l, n) 6= undefined}

This lemma is not only unaffected by explicit property presence tests, it guarantees it because
of property 3. Assuming an object (with interface type I) is well-formed before the presence
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test, then the strengthened interface type I′ in the taken branch must more closely resemble
the state of the runtime object.

Proof. By induction on the evaluation rules. Most rules do not directly modify the heap, so
we only focus on the rules that potentially invalidate this condition.
E-TypeAssertInf This evaluation rule is responsible for instantiating interface types on
the heap, given an object literal. Property 1 follows from the evaluation rule. Properties 2
and 3 follow directly from the type system.
E-Assign There are three sub-cases: e1 can either resolve to a variable reference, an object
property, or an interface property:

In case of a variable reference to an interface I, the three properties follow directly from
assignment compatibility between I and the interface type I’ assigned to e2.
In case of a property belonging to an object: the three properties cannot be invalidated.
In case of an interface property: it depends on whether this expression is trying to add a
new property or update a present property. The type system assigns type Undefined to
properties which are guaranteed to be absent, and rejects programs that access properties
whose presence is unknown.
For property update, we prevent users from modifying the @interface property (pre-
serving property 1). Properties 2 and 3 are guaranteed by assignment compatibilty.

E-Update This rule first clones the source object (for which all properties are already
satisfied) before assigning the new fields. Property 1 follows from the evaluation rule: the
@interface tag is cloned along with other fields. We now consider the generated interface
I′ in I-UpdateInf. slice ensures that the interface contains the smallest possible subset of
constraints and properties such that all constraints in I either do not mention any properties
from I′ or are part of the constraints in I′. For the fields in I′, the properties 2 and 3 are
guaranteed by the I-UpdateInf rule. For fields not in I′, properties 2 and 3 continue to hold,
as they cannot be affected by the assign operation by definition.
E-ObLit This rule creates a new object on the heap, but cannot invalidate existing interface
types on the heap.
E-Prop’, E-Func These rules create a heap location for respectively properties of literal
objects and a closure, but neither can affect existing interface types on the heap.
E-Call, E-CallUndef The heap modifications made by these two rules are limited to
evaluation of sub-expressions or the allocation of a new scope object to hold the new
function’s local variables. In the latter case, we rely on the fact that extension cannot affect
existing interface types on the heap. J

Finally, we can combine Lemma 2 with the existing proof of safeFTS to obtain proof of
type safety in the presence of constraints.

I Theorem 3 (Subject reduction).
If Σ |= 〈H , L, e〉 : T and 〈H , L, e〉 ⇓ 〈H ′, r〉
then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, r〉 : T′ and T′ 5 T.
If Σ |= 〈H , L, s〉 : T and 〈H , L, s〉 ⇓ 〈H ′, s〉
then ∃Σ ′, T′ such that Σ ⊆ Σ ′,Σ ′ |= 〈H ′, s〉 : T′ and T′ 5 return(T).

7 Related Work

To the best of our knowledge, TypeScriptIPC is the first language that statically verifies all
aspects of programming with inter-property constraints: defining, initialising, accessing and
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updating objects with inter-property constraints. In this section, we give an overview of
existing work related to various aspects of the type system presented in this paper.

Dependent and refinement types

Dependently typed languages [5, 36] allow programmers to write more expressive types,
by parametrising types on values. There are no restrictions on what dependent types can
express, which comes at the cost of decidability. Refinement types are a restricted form of
dependent types where types are “refined” with predicates that are statically decidable, for
example through SMT solvers. Refinement types have been used to verify many different
properties [35, 14, 29, 23, 6, 11, 34]. We limit our discussion of refinement types to the
applications that are close to our work: refinement types for dynamic programming languages
and object-oriented programming languages.

DJS [11] extends a subset of JavaScript with dependent types, which allows (with some
modifications) the expression of inter-property constraints over object properties. However,
DJS requires extensive knowledge on heap typing from the developer. This significant
annotation overhead is acknowledged in the paper. Contrast this to TypeScriptIPC, which
proposes a lightweight extension to regular TypeScript interfaces.

In [34], Vekris et al. introduce RSC, a lightweight refinement system for TypeScript. RSC
allows invariants to be imposed in classes and objects, including inter-property constraints
on properties. However, the soundness of these invariants is guaranteed by restricting
invariants to be imposed on immutable properties. Flanagan et al. introduce Hoop [13], a
hybrid object-oriented programming language with refinement types and object invariants.
Hoop requires refinements and variants to be pure and therefore refinements can only be
placed on immutable data. In [23], Nystrom et al. introduce a form of dependent types for
objects in X10. Again, constraints can only be imposed on immutable fields. To conclude,
although refinement type systems are often able to express inter-property constraints, none
of them support inter-property constraints after the initialisation phase: updating properties
that are part of inter-property constraints is impossible. In contrast, TypeScriptIPC allows
single-property updates of objects, and guarantees that the constraints remain satisfied.

Type refinements

The type system of TypeScriptIPC extracts property presence information from conditional
expressions. This concept is known as occurrence typing [32, 33] or type refinement, which
narrows (or strengthens) variable types based on predicates in conditional expressions.
Several static type systems for dynamic languages such as TypeScript [2], Hack [1], Flow [10],
λS [17] and [20] support refining types using tests on the type of a value. Recently, a
hybrid occurrence-refinement type system was proposed in [21]. As this paper demonstrates,
occurrence typing can also be applied to objects with inter-property constraints.

Constraint-based programming

The constraint-centric interfaces introduced in this paper should not be confused with
constraint-based programming [30]. Constraint-based programming is a discipline that finds
solutions for a number of variables given constraints over these variables. By contrast,
TypeScriptIPC uses constraints and flow information to determine the most specific presence
information for properties of objects.
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Type systems for dynamic languages

In recent years, several formalisations for TypeScript have been proposed. As already men-
tioned earlier, TypeScriptIPC is based on earlier work [7] by Bierman et al., who formalised
both sound and unsound features of TypeScript, including features such as contextual typing
and the lack of block scoping in JavaScript. There exist several other approaches for adding
gradual typing to dynamic languages such as TypeScript [27, 28] and Dart [19]. These
approaches focus on improving the combination between sound and unsound parts of type
systems for dynamic languages, which is orthogonal to the goal of our paper: enabling
programmers to express inter-property constraints and statically enforcing them.

There already exist several research efforts that focus on the dynamic nature of objects in
JavaScript [4, 31, 18, 9], providing a static type system that verifies the usage of objects, such
as property additions, accesses and updates. The focus of this paper is not on supporting
JavaScript’s object types, but on extending object types with inter-property constraints.
Accessing and updating object properties with inter-property constraints is allowed, but only
when it does not invalidate the object constraints.

Optional object properties

TypeScriptIPC is not the first language to impose constraints on the presence of an object
property. In TypeScript, objects (and methods) can contain optional properties (and
parameters). In strict null checking mode, the type of an optional property in TypeScript
is automatically transformed to a union type, combining the original type with Undefined.
Similarly, programmers can only assign null to value types in C# if that type is indicated
as a nullable type. To support the notion of required and optional properties in Java, there
also exist Java frameworks that provide support for @NonNull annotations (such as [12, 25]).
However, all of these languages and frameworks are restricted to single-property constraints
(types and presence) and cannot express inter-property constraints.

8 Future Work

This paper introduces the concept of constraints in programming languages. Going forward,
we would like to further expand the expressiveness of constraint-centric interfaces. So far,
TypeScriptIPC only supports inter-property constraints on the presence of properties. In
the future, we plan to add support for value-dependent constraints, where the presence of
a property depends on the value of another property. The introduction already listed an
example of a value-dependent constraint in the Chart.js library: “If the steppedLine value
is set to anything other than false, lineTension will be ignored”. Another example can be
found in the Google Maps API for rendering directions8, where “the infoWindow property is
ignored when the property suppressInfoWindows is set to true”. To enable value-dependent
constraints, we plan on using TypeScript’s literal types that limit types to a set of predefined
values.

In this paper we only considered constraints as applied to interfaces, but constraints could
also be imposed on the parameters of a function definition. Listing 10 shows the (simplified)
function utime from the Python standard library, which imposes a NAND constraint on two
of its parameters.

8 https://developers.google.com/maps/documentation/javascript/reference/3/directions

https://developers.google.com/maps/documentation/javascript/reference/3/directions
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1 function utime(path: string , times: array , ns: array) {
2 // ...
3 } constraining {
4 present (path );
5 ¬( present (ns) ∧ present (times ));
6 }

Listing 10 Hypothetical example of a function with inter-parameter constraints.

Finally, this paper highlighted the need for updating multiple properties at once. In
the future, we plan on updating multiple object properties in place without increasing the
annotation burden, by means of alias tracking or stronger heap types.

9 Conclusion

This paper shows how complex constraints on the presence of interface properties can be
statically enforced in programming languages. We introduced a type system with constraint-
centric interfaces, which express constraints on the presence of properties in the desired
pattern.

To achieve this, the type system is extended with four new features: 1) Interfaces carry
constraints on their properties; 2) The type system uses if statements to enrich variable
types of interfaces used in the condition with extra information about property presence;
3) Accessing and updating a property of an object is only allowed when the constraints can
statically guarantee its presence; 4) Finally, a novel procedure assign allows the (functional)
updating of multiple properties at once, which is necessary to safely update properties that
are part of an inter-property constraint.

Implementation. The implementation of TypeScriptIPC is available at https://github.
com/noostvog/TypeScriptIPC.
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