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Abstract
There is an increasing interest in alternative memory management schemes that seek to combine
the convenience of garbage collection and the performance of manual memory management in a
single language framework. Unfortunately, ensuring safety in presence of manual memory man-
agement remains as great a challenge as ever. In this paper, we present a C#-like object-oriented
language called Broom that uses a combination of region type system and lightweight runtime
checks to enforce safety in presence of user-managed memory regions called transferable regions.
Unsafe transferable regions have been previously used to contain the latency due to unbounded
GC pauses. Our approach shows that it is possible to restore safety without compromising on the
benefits of transferable regions. We prove the type safety of Broom in a formal framework that
includes its C#-inspired features, such as higher-order functions and generics. We complement
our type system with a type inference algorithm, which eliminates the need for programmers
to write region annotations on types. The inference algorithm has been proven sound and rel-
atively complete. We describe a prototype implementation of the inference algorithm, and our
experience of using it to enforce memory safety in dataflow programs.
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1 Introduction

Computations performed by a network of concurrent communicating actors often involve data
transfer between producers and consumers. Consider for example the SELECT query operator
shown in Fig. 1, which functions as an actor in a dataflow computation involving a network
of other such query operators. SELECT receives a stream of input messages, each associated
with a time window t, processed by method onReceive. Each input message contains a
list of inputs, each processed by applying a user-defined function to create a corresponding
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11:2 Safe Transferable Regions

1 c lass SelectVertex <TIn , TOut > {
2 Func <TIn , TOut > selector ;
3 Dictionary <Time , List <TOut >> map;
4 ...
5 void onReceive (Time t, List <TIn > inList ) {
6 i f (! map. ContainsKey (t)) map[t] = new List <TOut >();
7 foreach (TIn input in inList ) {
8 TOut output = selector (input);
9 map[t]. add( output ); } }

10 void onNotify (Time t) {
11 List <TOut > outList = map[t];
12 map. Remove (t);
13 transfer ( successorId , t, outList ); }
14 }

Figure 1 SELECT dataflow operator.
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Figure 2 References in and out of a transferable region (R) become invalid after transfer.

output. Multiple messages with the same timestamp are permitted and messages with
different timestamps may arrive out of order. An invocation of method OnNotify indicates
that no more input messages with a timestamp t will be subsequently delivered. At this
point, the operator completes the processing for time window t and sends a corresponding
output message to its successor.

Performance. When the transferred data structures are large, as is the case with many
streaming big-data analysis systems, garbage collection overhead becomes significant [7].
Further, in a distributed dataflow system, the GC pause at one node can have a cascading
adverse effect on the performance of other nodes [7, 14]: a GC pause at an upstream actor can
block downstream actors that are waiting for messages. However, much of the GC overhead
results from the collector performing avoidable or unproductive work. For the example in
Fig. 1, GC might repeatedly traverse the map , although its objects cannot be collected until
a suitable timing message arrives. There has been increasing interest in off-heap memory
management for better performance in the context of several systems and languages (e.g.,
Spark [25], Scala [18], Rust). Several systems (e.g., [3]) resort to using “free object pools” to
partially alleviate this problem, in the absence of language support.

Safety. Several of these systems are designed to allow the producer and consumer to execute
in the same address space or in different address spaces (as determined by the compiler and
runtime). We wish to ensure memory safety in the presence of such transferred data. A
transfer operation, with no additional checks, may cause memory safety violations, both at
the producer of the data structure, and its (possibly remote) consumer. At the producer,
any existing references into the transferred data structure become invalid post transfer. If
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the data structure contains references to objects outside (the transferred data), then such
references become invalid in the context of the consumer. Both scenarios are depicted in
Fig. 2. While references from within the transferable data to outside can be disallowed in
the interest of safety, references into transferable data needs to be allowed before the data is
transferred. Allowing such references is crucial, as any non-trivial program creates temporary
references to the internal objects of a data-structure.

Safe Transferable Regions. In this paper, we present a language-based approach to cleanly
encapsulate transferable data and a safe and efficient implementation of such data based
on regions. A region is a block of memory that is allocated and freed in one shot, often in
constant time. A region may contain one or more contiguous range of memory locations, and
individual objects may be dynamically allocated within the region over time, while they are
deallocated en masse when the region is freed. Thus, a region is a good fit for a transferable
data-structure. In Fig. 1, the output to be constructed for each time window t (i.e., map[t] )
can be a separate region that is allocated when the first message with timestamp t arrives,
and deallocated after map[t] is transferred in onNotify .

The use of regions alleviates the performance concern related to garbage collection
described earlier. (It also enables more efficient serialization/deserialization of data-structures
across address spaces, which is also a significant performance bottleneck in such systems.)
However, manual region memory management introduces memory safety issues such as
dangling pointers. We present a single type system that simultaneously addresses this safety
concern, as well as those described above related to the use of transferable data.

Safe region-based memory management using types was pioneered by Tofte and Talpin [20,
21], who use only lexically scoped regions. At runtime, the set of all regions (existing at a
point in time) forms a stack. Thus, the lifetimes of all regions must be well-nested: it is not
possible to have two regions whose lifetimes overlap, with neither one’s lifetime contained
within the other. Unfortunately, the data structures in the above example do not satisfy
this restriction (as the output messages for multiple time windows may be simultaneously
live, without any containment relation between their lifetimes). We refer to regions with
lexically scoped lifetimes as stack regions and to regions that do not have such a lexically
scoped region as dynamic regions.

Our focus, in this paper, is on first-class memory-safe dynamic regions that can be safely
transferred across address spaces. We refer to such dynamic regions as transferable regions.
Our approach is based on a variation of ideas introduced by [23, 10] that combine linear types
and regions to support dynamic regions. Unlike the prior work, we ensure memory safety in
the presence of transferable regions through a combination of a static typing discipline and
lightweight runtime checks in place of linear types.

Language. The cornerstone of this approach is an open lexical block for transferable regions,
that “opens” a transferable region and guarantees that the region won’t be transferred/freed
while it is open. By nesting a Tofte-Talpin style letregion lexical block, that delimits
the lifetime of a stack region, inside an open lexical block for a transferable region, we can
guarantee that the transferable region will remain live as long as the stack region is live.
We say that the former outlives the latter, and any references from the stack region to the
transferable region are therefore safe. This is particularly useful, since such stack regions
serve as temporary working storage while working with the (opened) transferable regions.

By controlling the outlives relationships between various regions, we only allow safe
cross-region references, while prohibiting unsafe ones. In the above example, an outlives
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11:4 Safe Transferable Regions

relationship from the stack region to the transferable region means that the references in
that direction are allowed, but not the references in the opposite direction. In contrast, if an
open block of a transferable region R0 is nested inside an open block of another transferable
region R1, we do not establish any outlives relationships, thus declaring our intention to
not allow any cross-region references between R0 and R1. Finally, we observe that outlives
relationships are established based on the lexical structure of the program, hence a static
type system can enforce them effectively. By assigning region types to objects, which capture
the regions such objects are allocated in, and by maintaining outlives relationships between
various regions, we can statically decide the safety of all references in the program.

Type System. Formally, our type system introduces region parameters (for both classes
and methods) and uses constrained parametric polymorphism over these parameters, where
the constraints capture outlives constraints between the region parameters. The type system
may be seen as a form of ownership type system [5], with a region being the owner of all
objects allocated in that region.

Lightweight Runtime Checks. Ensuring memory safety using this approach requires en-
suring that the use of transferable regions satisfies certain temporal properties. Firstly, a
transferable region should not be transferred/freed inside an open block of that region (i.e,
while it is still open). Secondly, a transferred/freed region should not be opened. These are
typestate invariants on the transferable region objects, which are hard to enforce statically in
the presence of unrestricted aliasing. Techniques like linear types and unique pointers can be
used to restrict aliasing, but the constraints they impose are often hard to program around.
We therefore enforce typestate invariants at runtime via lightweight checks. In particular, we
define an acceptable state transition discipline for transferable regions (Fig. 4), and check, at
runtime, whether a given transition of a transferable region (e.g., from open state to freed
state) is valid or not. The check is lightweight since it only involves checking a single tag
that captures the current state. We believe that this is a reasonable choice since regions are
coarse-grained objects manipulated infrequently, when compared to the fine-grained objects
that are present inside these regions, for which safety is enforced statically.

Type Inference. One of the key contributions of this paper is a type inference algorithm
that eliminates the need for users to write region type annotations. The users write programs
in the underlying language that provides primitives for the users to manipulate regions (create,
open, free, transfer) and to allocate objects in regions, but has no region type annotations.

Our inference algorithm proceeds in three stages: in the first stage, we elaborate the
program by introducing region parameters (for classes and methods); in the second stage
we generate a set of constraints that must be satisfied for the program to type check; in
the third stage, we solve the set of constraints, inferring the preconditions of all classes and
methods (in terms of the expected outlives-constraints between the region parameters). We
show that the algorithm is sound, and the stages of constraint generation and solving are
complete (i.e., the algorithm is complete relative to the first stage of elaboration).

Evaluation. Our work was inspired by [7], which presents evidence that realistic programs
can be written using transferable regions and that this can yield significant performance
improvements. While [7] addresses the engineering challenges in extending a managed
runtime with transferable regions, it adopts an ad hoc approach insofar as language design
is concerned, exposing the region functionality through an unsafe API, and in the process
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losing the safety guarantees. Our contribution is an alternative approach that is grounded in
sound theory and restores the language safety guarantees. The utility of our approach is
demonstrated by a prototype implementation of our type inference algorithm that was able
to identify unsafe memory accesses among the benchmarks extracted from [7].

Contributions. The paper makes the following contributions:
We present Broom, a C# -like typed object-oriented language that supports programmer-
managed memory regions. Broom extends its core language, which includes lambdas
(higher-order functions) and generics (parametric polymorphism), with constructs to
create, manage and free static and transferable memory regions. Transferable regions are
first-class values in Broom.
Broom is equipped with a region type system that statically guarantees safety of all
memory accesses in a well-typed program, provided that certain typestate invariants on
regions hold. The latter invariants are enforced via simple runtime checks.
We define an operational semantics for Broom, and a type safety result that clearly
defines and proves safety guarantees described above.
We describe a region type inference algorithm for Broom that (a). completely eliminates
the need to annotate Broom programs with region types, and (b). enables seamless
interoperability between region-aware Broom programs and legacy standard library code
that is region-oblivious. Our inference algorithm is based on a novel constraint solver
that performs abduction in a partial-order constraint domain to infer weakest solutions
to recursive constraints.
We establish the soundness and relative completeness of the type inference algorithm.
We describe an implementation of Broom frontend in OCaml, along with case studies
where the region type system was able to identify unsafe memory accesses statically.

2 An Informal Overview of Broom

Broom enriches a simple object-oriented language (supporting parametric polymorphism
and lambdas) with a set of region-specific constructs. In this section, we present an informal
overview of these region-specific constructs.

2.1 Using Regions in Broom

Stack Regions. The “ letregion R { S } ” construct creates a new stack region, with a
static identifier R , whose scope is restricted to the statement S . The semantics of letregion
is similar to Tofte and Talpin [20]’s letregion expression: objects can be allocated by S in
the newly created region while R is in scope, but the region and all objects allocated within
it are freed at the end of S .

Object Allocation. The “ new@R T() ” construct creates a new object of type T in the
region R . The specification of the allocation region R in this construct is optional. At
runtime, Broom maintains a stack of active regions, and we refer to the region at the top
of the stack as the allocation context. The statement new T() allocates the newly created
object in the current allocation context. This is important as it enables Broom applications
to use existing region-oblivious C# libraries, as explained soon.

ECOOP 2018



11:6 Safe Transferable Regions

Transferable Regions. Transferable regions are first class values of Broom: they are
objects of the class Region , they are created using the new keyword, and can be passed as
arguments, stored in data structures, and returned from methods. A transferable region is
intended to encapsulate a single data-structure, consisting of a collection of objects with a
distinguished root object of some type T , which we refer to as the region’s root object. The
class Region is parametric over the type T of this root object.

The Region constructor takes as a parameter a function that constructs the root object:
it creates a new region and invokes this function, with the new region as the allocation
context, to create the root object of the region. The following code illustrates the creation of
a transferable region, whose root is an object of type A .

Region <A> rgn = new Region <A >(() => new A())

In the above code, rgn is called the handler to the newly created region, and is required to
read the contents of the region, or change its state. The class Region offers two methods:
a free method that deallocates the region (and all the objects allocated within it), and
transfer method that transfers the region to a (possibly remote) consumer process.

Open and Closed Regions. A transferable region must be explicitly opened using Broom’s
open construct in order to either read or update or allocate objects in the region. Specifically,
the construct “ open rgn as v@R { S } ” does the following: (a). It opens the transferable
region handled by rgn for allocation (i.e., makes it the current allocation context), (b).
binds the identifier R to this open region, and (c). initializes the newly introduced local
variable v to refer to the root object of the region. The @R part of the statement is optional
and may be omitted. The open construct is intended to simplify the problem of ensuring
memory safety, as will be explained soon. We refer to a transferable region that has not been
opened as a closed region. A transferable region can only be transferred or freed when it is
in closed state. The acceptable state transition discipline over the lifetime of a transferable
region is described in Fig. 4. Enforcement of this discipline is done at runtime.

Opening a region also makes it the current allocation context. Thus, given a C# library
function f (that makes no use of Broom’s region constructs), opening a region R and
invoking f has the effect that all objects created by this invocation are allocated in the
region R .

Motivating Example. Fig 3 shows how the motivating example of Fig. 1 can be written in
Broom. The onReceive method receives its input message in a transferred region (i.e., a
closed region whose ownership is transferred to the recipient). On Line 7, we create a new
region to store the output for time t , initializing it to contain an empty list. On Lines 8
and 9, we open the input region inRgn followed by creating a new stack region R0 . The
temporary objects created by the iteration on line 10, for example, will be allocated in the
stack region R0 that lives just long enough. We open the desired output region on line
11, so that the new output objects created by the invocation of selector on line 12 are
allocated in the output region. Finally, the input region is freed on line 14. The output
region at map[t] stays as along as input messages with timestamp t keep arriving. When
the timing message for t arrives, the onNotify method transfers the outRgn at map[t]
to a downstream actor.

Cloning. Note that in the example from Fig. 3 the object returned by the selector (on
Line 12) should not contain any references to the input object, since the input region, where
the object resides, will be freed at the end of the method. If there is a need for the output
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1 c lass SelectVertex <TIn , TOut > {
2 Func <TIn , TOut > selector ;
3 Dictionary <Time , Region <List <TOut >>> map;
4 ...
5 void onReceive (Time t,Region <List <TIn >> inRgn){
6 i f (! map. ContainsKey (t))
7 map[t] = new Region <List <TOut >> (() => new List <TOut >());
8 open inRgn as inList {
9 letregion R0 {

10 foreach (TIn input in inList ) {
11 open map[t] as outList {
12 TOut output = selector (input);
13 outList .add( output ); } } } }
14 inRgn.free ();
15 }
16 void onNotify (Time t) {
17 Region <List <TOut >> outRgn = map[t];
18 map. Remove (t);
19 outRgn . transfer ( successorId );
20 }
21 }

Figure 3 SELECT dataflow operator in Broom.

CLOSED OPEN

FREEDTRANSFERRED

new 
Region()

free()transfer()
open

open

Figure 4 The lifetime of a dynamic (transferable) region in Broom.

π ∈ Region identifiers ρ ∈ Region variables a, b ∈ Type variables

m ∈ Method names x, y, f ∈ Variables and fields

cn ∈ Class names ::= Object | Region | A | B
K ∈ FGJ class types ::= cn〈T 〉
T ∈ FGJ types ::= a | K | unit | T → T

r ∈ Region annotations ::= ρ | π
N ∈ Annotated class types ::= cn〈T 〉〈r〉
τ ∈ types ::= T@r | N | unit | 〈ρ |φ〉τ r−→ τ

C ∈ Class definitions ::= class cn〈a / K〉〈ρ |φ〉 / N{τ f ; d}
d ∈ Methods ::= τ m〈ρ |φ〉(τ x){ return e; }
φ,Φ ∈ Region constraints ::= true | r � r | r = r | φ ∧ φ
e ∈ Expressions ::= () | x | e.f | e.m〈r〉(e) | new N(e)

| λ@r〈ρ |φ〉(x : τ).e | e〈r〉(e) | let x = e in e

| letregion π in e | open e as y@π in e

Figure 5 Featherweight Broom: syntax.
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object to point to subobjects of the input object, such subobjects must be cloned (to copy
them from the input region to the output region). Fortunately, Broom’s region type system
(§ 3) is capable of capturing such nuances in the type of selector and the type checker will
ensure correctness. Furthermore, the type can be automatically inferred by Broom’s region
type inference (§ 4), which can perform the above reasoning on behalf of the programmer.

3 Featherweight Broom

The purpose of Broom’s region type system is to enforce the key invariant required for
memory safety, namely that an object o1 in a region R1 contains a reference to an object o2 in
R2, only if R2 is guaranteed to outlive R1. While the invariant is easily stated, enforcing it in
the presence of first-class dynamic regions, parametric polymorphism (generics), and higher-
order functions requires new reasoning principles that we formally develop in this section.
We introduce Featherweight Broom (FB), an explicitly typed core language (with region
types) that incorporates the features introduced in the previous section. Featherweight
Broom builds on the Featherweight Generic Java (FGJ) [13] formalism, and reuses notations
and various definitions from [13], such as the definition of type well-formedness for the core
(region-free) language. (The language used in Section 2 is essentially a version of FGJ without
region types and with some syntactic sugar.)

3.1 Syntax

Fig 5 describes the syntax of FB. We refer to the class types of FGJ as core types. The
following definition of Pair class in FB illustrates some of the key elements of the formal
language (the symbol / should be read extends, and the symbol � stands for outlives):

c lass Pair <a / Object , b / Object >
<ρ0, ρ1, ρ2 | ρ1 � ρ0 ∧ ρ2 � ρ0> / Object <ρ0> {

a@ρ1 fst;
b@ρ2 snd;
a@ρ1 getFst () { return this .fst; }

}

Note that we elide showing constructors since they are uninteresting from the type system’s
standpoint; their behavior in FB is same as in FGJ.

A class in FB is parametric over zero or more type variables (as in FGJ) as well as one
or more region variables ρ. We refer to the first region parameter (ρ0 in the above example)
as the allocation region of the class: it serves to identify the region where an instance of the
class is allocated2. An object in FB can contain fields referring to objects allocated in regions
(ρ) other than its own allocation region (ρ), provided that the former outlive the latter (i.e.,
ρ � ρ). In such case, the definition of object’s class needs to be parametric over allocation
regions of its fields (i.e., their classes). Furthermore, the constraint that such regions must
outlive the allocation region of the class needs to be made explicit in the definition, as the
Pair class does in the above definition. We say that the Pair class exhibits constrained
region polymorphism.

2 In general, ρ denotes the sequence ρ1ρ2... of region parameters of a class or a method. In some cases,
we also represent region parameters as ρρ to clearly distinguish between the allocation region parameter
(ρ) and the rest.
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To construct objects of the Pair class, its type and region parameters need to be
instantiated with core types (T ) and region annotations3 (r), respectively. For example:
letregion π0 in

let snd = new Object <π0 >() in
letregion π1 in

let fst = new Object <π1 >() in
let p = new Pair <Object ,Object ><π1,π1,π0> (fst ,snd);

In the above code, the instantiation of ρ0 and ρ1 with π1, and ρ2 with π0 is allowed because
(a) π0 and π1 are live during the instantiation, and (b). π0 � π1 and π1 � π1 (since outlives
is reflexive). Observe that the region type of p conveys the fact that (a). it is allocated
in region π1, and (b). it holds references to objects allocated in region π0 and π1. In
contrast, if we choose to allocate the snd object also in π1, then p would be contained in π1,
and its region type would be Pair< Object , Object ><π1,π1,π1> , which we abbreviate as
Pair< Object , Object >@π1 . In general, we treat B〈T 〉@π as being equivalent to B〈T 〉〈π〉.
Region annotation on type a, where a is a type variable, assumes the form a@π. If a is
instantiated with Pair< Object , Object > , the result is the type of a Pair object contained
in π.

Classes in FB are independently parameterized over types and regions. While this design
decision has a downside in that it allows type variables to only denote the types of objects
contained in a single region, it yields benefits that outweigh the costs. In particular, it lets us
support region-polymorphic higher-order functions as class fields. This allows, for example, a
generic class, whose type parameters are a and b, to contain a region-polymorphic function
of type 〈ρ0, ρ1, ρ2 | ρ1 � ρ0 ∧ ρ2 � ρ0〉(a@ρ1, b@ρ2)→ Pair 〈a, b〉〈ρ0, ρ1, ρ2〉 as its field. Such
region-polymorphic higher-order fields are used frequently by the dataflow operators, which
apply them in the context of various regions (e.g., see Fig. 3). Keeping type and region
parameterizations separate also simplifies the type system so that inference becomes practical
(Sec. 4). The need for polymorphism at the field level is also why FB treats function closures
specially, rather than as objects of type Func as in C#.

Like classes, methods can also exhibit constrained region polymorphism. A method
definition in FB is necessarily polymorphic over its allocation context (§ 2.1), and optionally
polymorphic with respect to the regions containing its arguments (i.e., a method has at
least one region parameter). Region parameters, like those on classes, are qualified with
constraints (φ). If a method is not intended to be polymorphic with respect to its allocation
context (for example, if its allocation context needs to be same as the allocation region of its
this argument), then the required monomorphism can be captured as an equality constraint
in φ.

FB extends FGJ’s expression language with a lambda expression and an application
expression (e〈r〉(e)) to define and apply functions (lambdas). Functions, like methods, exhibit
constrained region polymorphism, as evident in their arrow region type (〈ρ |φ〉τ r−→ τ). A
function, like a method, is necessarily polymorphic w.r.t its allocation context. Since a
function closure can escape the context in which it is created, it is important to keep track
of the region in which it is created in order to avoid unsafe dereferences. The r annotation
above the arrow in the arrow type denotes the allocation region of the corresponding closure.

Note that mutable object fields are conspicuously absent from the FB model (and also
the FGJ model in general), but this isn’t a major shortcoming considering that constructor
application, which happens during a new object creation, includes assignments to the object
fields (see FGJ [13]). Thus the type system is already obligated to handle unsafe assignments.

3 Region annotations (r) include region variables (ρ) and region identifiers (π). Region identifiers are to
region variables, as types (T ) are to type variables (a)
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3.2 Types and Well-formedness

Well-formedness and typing rules of Featherweight Broom establish the conditions under
which a region type is considered well-formed, and an expression is considered to have a
certain region type, respectively. Fig. 6 contains an illustrative subset of such rules4. The
rules refer to a context (A), which is a tuple of:

A set (∆ ∈ 2r) of regions that are estimated to be live,
A finite map (Θ ∈ a 7→ K) of type variables to their bounds, i.e., classes they are declared
to extend (this artifact is inherited from FGJ), and
A constraint formula (Φ) that captures the outlives constraints on regions in ∆.

In addition, the context for the expression typing judgment also includes (a). a type envir-
onment (Γ ∈ x 7→ τ) that contains the type bindings for variables in scope, and (b). the
region (r) that serves as the allocation context for the expression being type checked. Like
the judgments in FGJ [13], all the judgments defined by the rules in Fig. 6 are implicitly
parameterized on a class table (CT ∈ cn 7→ D) that maps class names to their definitions in
FB.
The well-formedness judgment on region types (A ` τ ok) makes use of the well-formedness
and subtyping judgments on core types. We use a double-piped turnstile () for judgments
in FGJ [13], and a simple turnstile (`) for those in FB. The class table (JCT K) for FGJ
judgments is derived from FB’s class table (CT ) by erasing all region annotations on types,
and region arguments in expressions (J·K denotes the region erasure operation). The well-
formedness rule for class types (B〈T 〉〈r〉) is responsible for enforcing the safety property
that prevents objects from containing unsafe references. It does so by insisting that regions
r satisfy the constraints (φ) imposed by the class on its region parameters. The latter is
enforced by checking the validity of φ, with actual region arguments substituted for formal
region parameters, under the conditions (Φ) guaranteed by the context. The semantics of this
sequent is straightforward, and follows directly from the properties of outlives and equality
relations. For any well-formed core type T , T@r is a well-formed region type if r is a valid
region. The type Region 〈T 〉〈r〉 is well-formed only if r = π>, where π> is a special immortal
region that outlives every other live region. This arrangement allows Region handlers to
be aliased and referenced freely from objects in various regions, regardless of their lifetimes.
On the flip side, this also opens up the possibility of references between transferable regions,
which become unsafe in context of the recipient’s address space. Fortunately, such references
are explicitly prohibited by the type rule of Region objects, as described below.

The type rules distinguish between the new expressions that create objects of the
Region class, and new expressions that create objects of other classes. The rule for the latter
relies on an auxiliary definition5 called fields (undefined for Region class) that returns the
sequence of type bindings for fields (instance variables) of a given class type. Like in FGJ,
the names and types of a constructor’s arguments in FB are same as the names and types
of its class’s fields. The type rule for the field access expression (e.fi) also uses fields and
another definition called bound, which returns the bound of a type variable (bound is an
identity function for concrete types).

The type rule for the new Region expression expects the Region class’s constructor
to be called with a nullary function that returns a value in its allocation context. This
ensures that the value returned by the function stores no references to objects allocated

4 Full formal development can be found in the appendix
5 All auxiliary definitions we use in this exposition originate from the FGJ calculus.
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Type Well-formedness A ` τ ok

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...} r ∈ ∆ Θ  B〈T 〉 ok Φ ` [r/ρ](φ)
(∆,Θ,Φ) ` B〈T 〉〈r〉 ok

Θ  T ok r ∈ ∆ Θ  T <: Object

(∆,Θ,Φ) ` T@r ok

Θ  T ok A = (∆,Θ,Φ)
A ` Region 〈T 〉〈π>〉 ok

Expression Typing A,Γ, r ` e : τ

A,Γ, r ` e : τ
A ` N ok fields(N) = f : τ
A,Γ, r ` new N(e) : N

A,Γ, r ` e : 〈ρ〉 unit r−→ T@ρ
A,Γ, r ` new Region 〈T 〉〈π>〉(e) : Region 〈T 〉〈π>〉

A,Γ, r ` e : τ ′

f : τ = fields(boundA.Θ(τ ′))
A,Γ, r ` e.fi : τi

A = (∆,Θ,Φ) A′ = (∆ ∪ {π},Θ,Φ ∧ φ)
π /∈ ∆ φ = ∆ � π A′,Γ, π ` e : τ A ` τ ok

A,Γ, r ` letregion π in e : τ

A = (∆,Θ,Φ) π /∈ ∆
A,Γ, r ` ea : Region 〈T 〉〈π>〉
A ` τ ok A′ = (∆ ∪ {π},Θ,Φ)

Γ′ = Γ[y 7→ T@π] A′,Γ′, π ` eb : τ
A,Γ, r ` open ea as y@π in eb : τ

A = (∆,Θ,Φ) r ∈ ∆ ∆ � r
ρ, ρ /∈ ∆ A′ = (∆ ∪ {ρ, ρ},Θ,Φ ∧ φ)

∆ ∪ {ρ, ρ} ` φ ok A′ ` τ1 ok

A′ ` τ2 ok A′,Γ[x 7→ τ1], ρ ` e : τ2

A,Γ, r ` λ@r〈ρρ |φ〉(x : τ1).e : 〈ρρ |φ〉τ1 r−→ τ2

A = (∆,Θ,Φ) A,Γ, r ` e0 : τ
mtype(m, boundΘ(τ)) = 〈ρρ |φ〉τ1 → τ2

r, r ∈ ∆ A ` 〈ρρ |φ〉τ1 → τ2 ok

A,Γ, r ` e : [rr/ρρ] τ1 Φ ` [rr/ρρ]φ
A,Γ, r ` e0.m〈rr〉(e) : [rr/ρρ] τ2

A = (∆,Θ,Φ) r′, r, r ∈ ∆

A,Γ, r ` e : 〈ρρ |φ〉τ1 r′
−→ τ2

Φ ` [rr/ρρ]φ A,Γ, r ` e : [rr/ρρ]τ1

A,Γ, r ` e〈rr〉(e) : [rr/ρρ]τ2

Method Well-formedness d ok in B

∆ = {ρ, ρm, ρm} A = (∆, [a 7→ K], φm) ∆ ` φm ok

A ` τ1, τ2 ok CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...} A,Γ, ρm ` e : τ2

Γ = ·[x 7→ τ1][ this 7→ B〈a〉〈ρ〉] A ` override(m,N, 〈ρmρm |φm〉τ1 → τ2)
τ2 m〈ρmρm |φm〉(τ1 x){ return e; } ok in B

Figure 6 Featherweight Broom: select type rules.

elsewhere, including the top region (π>), thus preventing cross-region references originating
from transferable regions. The body of the function might however create new regions while
execution, but this is not a problem as long as such regions, and objects allocated in them,
don’t find their way into the result of its evaluation.

The type rule for the letregion expression requires that the static identifier introduced
by the expression be unique under the current context (i.e., π /∈ ∆). This condition is needed
in order to prevent the new region from incorrectly assuming existing outlives relationships
on an eponymous region. The expression (e) under letregion is typechecked with the new
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region as its allocation context, under the assumption that the region is live (∆ ∪ {π}) and
that it is outlived by all existing live regions (∆ � π). The result of a letregion expression
must have a type that is well-formed under a context not containing the new region. This
ensures that the value obtained by evaluating a letregion expression contains no references
to the temporary objects inside the region.

The rule for the open expression, unlike the rule for letregion , does not introduce
any outlives relationship between the newly opened region and any pre-existing region while
checking the type of the expression (e) under open . This prevents new objects allocated
inside the transferable region from storing references to those outside. The newly opened
region becomes the allocation context for e, which is type checked under an environment (Γ)
extended with the type binding for the root object.

The type rule for the lambda expression typechecks the lambda-bound expression (e)
under an extended type environment containing bindings for function’s arguments, assuming
that region parameters are live, and that declared constraints over region parameters hold.
The constraints (φ) are required to be well-formed under ∆ extended with the function’s
region parameters (ρρ). Unlike a typical object, a function closure might capture references
that may become unsafe if the closure escapes its allocation context. FB prevents this
scenario by requiring the function closure to always be allocated in the current allocation
context (r).

The type rule for method application uses an auxiliary definition mtype that gives the type
of a class method. Method application involves instantiation of method’s region parameters,
and the type rule requires the first region parameter to be instantiated with the current
allocation context (r). The type rule for function application does similarly. This requirement
ensures the safety of closures as demonstrated by the following example.

Consider a method m with two region parameters - ρ0 and ρ1 (i.e., m〈ρ0, ρ1〉(. . . )).
Suppose the method immediately returns a function closure that contains a reference to
(an object in) ρ1. Since function closures are always allocated in the current allocation
context, the closure is allocated in ρ0, the allocation context for the method body (the rule
for methods discussed below). Now, consider the following use of the method:

letregion R0 in
let f = letregion R1 in m<R0 ,R1 >()
in f()

Observe that the first region parameter of m is instantiated with R0 , while the allocation
context for the method call is R1 . The function f returned by m stores a reference to R1 ,
which is unsafe when f is finally called. The type system fortunately disallows this scenario
by enforcing certain restrictions during method and function applications as described above.

The method well-formedness rule makes use of an auxiliary definition override that judges
whether the current method is a valid overriding of any eponymous method from the super
class. The type environment is extended with a binding that binds the this keyword to
the type of the current class. Note that the type of the current method as accessed via
this (i.e., this . m ) is region-parametric, thus admitting region-polymorphic recursion (i.e.,
recursive call to m can have different region arguments than m ).

3.3 Operational Semantics and Type Safety
The operational semantics of FB describes a non-trivial runtime component that introduces
memory regions and performs run-time verification of their typestate. Fig. 7 shows the
additional language constructs of FB that manifest only at run-time. A location (l) abstracts
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l ∈ Memory locations

r ∈ Region annotations ::= l | . . .
s ∈ Region Typestate ::= � | � | ×
e ∈ Expressions ::= letd l in e | opened l(s) in e | ⊥ | . . .

Figure 7 Featherweight Broom: extended syntax to accommodate run-time constructs.

all the memory locations associated with a region (i.e., each memory region is associated with
a single location). A transferable region can be in one of three possible states: closed (�),
open/live (�), and transferred/freed (×). Constructs letd and opened are the run-time
manifestations of letregion and open ; letregion reduces to letd while allocating a
(static) region, and open reduces to opened while opening a (transferable) region. An
opened expression is tagged with the typestate (s) of the transferable region before it is
opened (as Fig. 4 shows, a transferable region can be open ’d from either an open state or a
closed state). Special value ⊥ denotes an exception.

Operational semantics of FB defines a four-place small-step reduction relation of the
form shown below:

(e,Σ) −→ (e′,Σ′)

The typestate of regions is tracked by a finite map (Σ) from locations to typestates (Fig. 4).
The reduction relation relates an expression (e) and a typestate map (Σ) to a reduced
expression (e′) and an updated typestate map (Σ′). The semantics gets “stuck” if e attempts
to access an object whose allocation region is not present in ∆, or if e tries to open a
transferable region that is not mapped to an appropriate typestate by Σ. On the other hand,
if e attempts to commit an operation on a Region object that is not sanctioned by the
transition discipline in Fig. 4, then it raises an exception value (⊥). An illustrative subset
of operational semantics that formalize the intuitions described above is shown in Fig. 8.
Fig. 15 of the appendix contains rest of the rules.

To help state the type safety theorem, we define the syntactic class of (runtime) values:

v ∈ values ::= new B〈T 〉〈l〉(v) | λ@l〈ρ |φ〉(τ x).e | new Region 〈T 〉〈l>l〉(v)

The first two forms are obtained by using locations for region annotations in new and
lambda expressions. The last form is the value that new Region expressions gets evaluated
to; the location l> stands for the region π>, and l is the location of the newly allocated
transferable region. The following type safety theorem shows that a well-typed program will
never attempt to dereference an “invalid” reference (a reference to an object in a region that
has been transferred or freed):

I Theorem 1 (Type Safety). ∀e, τ,∆,Σ, such that consistent(∆,Σ) and ∆ ` Φ ok, if
(∆, ·,Φ), · ` e : τ , then either e is a value, or e raises an exception ((e,Σ) −→ ⊥), or there
exists an e′ and a Σ′ such that consistent(∆,Σ′) and (e,Σ) −→ (e′,Σ′) and (∆, ·,Φ), · ` e′ : τ .

The relation consistent relates ∆ and Σ only if both make consistent assumptions about
liveness of regions. Since ∆ is consistent with both Σ and Σ′, the theorem also captures the
key property of operational semantics that no live region is ever freed or transferred.

ECOOP 2018



11:14 Safe Transferable Regions

(e,Σ) −→ (e′,Σ′)

[LetRegionBegin]
l 6∈ dom(Σ) Σ′ = Σ[l 7→ �]

( letregion r in e,Σ) −→ ( letd l in [l/r]e,Σ′)

[LetRegion]
(e,Σ) −→ (e′,Σ′)

( letd l in e,Σ) −→ ( letd l in e′,Σ′)

[LetRegionEnd]
Σ′ = Σ[l 7→ ×]

( letd l in v,Σ) −→ (v,Σ′)

[NewRegion]
l 6∈ dom(Σ) Σ′ = Σ[l 7→ �]

( new Region 〈T 〉〈π>〉(v),Σ) −→ ( new Region 〈T 〉〈l>l〉(v〈l〉()),Σ′)

[NewRegion]
(e,Σ[l 7→ �]) −→ (e′,Σ′)

( new Region 〈T 〉〈l>l〉(e),Σ) −→ ( new Region 〈T 〉〈l>l〉(e′),Σ′)

[Open]
va = new Region 〈T 〉〈l>l〉(v) Σ(l) = � or Σ(l) = � Σ′ = Σ[l 7→ �]
( open va as x@r in eb,Σ) −→ ( opened l(Σ(l)) in [v/x][l/r]eb,Σ′)

[Opened]
(e,Σ) −→ (e′,Σ′)

( opened l(s) in e,Σ) −→ ( opened l(s) in e′,Σ′)

[OpenEnd]
Σ′ = Σ[l 7→ s]

( opened l(s) in v,Σ) −→ (v,Σ′)

[OpenTransferred]
va = new Region 〈T 〉〈l>l〉(v) Σ(l) 6= � and Σ(l) 6= �

( open va as x@r in eb,Σ) −→ ⊥

[Transfer]
Σ(l) = � Σ′ = Σ[l 7→ ×]

(( new Region 〈T 〉〈l>l〉(v)).transfer(. . .),Σ) −→ ( () ,Σ′)

[TransferOpened]
Σ(l) = �

(( new Region 〈T 〉〈l>l〉(v)).transfer(. . . ),Σ) −→ ⊥

Figure 8 Featherweight Broom: a select subset of operational semantics.

Integrating regions with GC heap. FB stores the region handlers in a distinguished top
region, which abstracts the GC heap. Type system prevents transferable regions from storing
references into the GC heap. A static region however can store references to region handles,
which need to be taken into account while GC’ing the heap. Traversing the region memory
to identify references into the GC heap unfortunately defeats the purpose of regions. The
solution we adopt is to disable collecting region handles as long as any static region is open.
Since static regions are intended to store temporary objects while populating a dynamic
region, their lifetimes are short enough to let region handles to be GC’d.
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4 Type Inference

Broom’s region type system imposes an annotation burden, and manually annotating C#
standard libraries with region types can be tedious. We now present our region type inference
algorithm that eliminates the need to write region type annotations. Formally, the type
inference algorithm is an elaboration function from programs in JFBK (i.e., FB without region
types, but with letregion and open expressions, similar to the language introduced in § 2)
to programs in FB. For simplicity, we assume that each letregion and open construct in
the input program introduces a distinct region identifier π.

Overview. We now present a high-level outline of the type inference algorithm. The
algorithm consists of the following steps:
1. Region Parameterization. The first step elaborates the input program by introducing

formal region parameters (for each class and method), and region variables (representing
yet undetermined actual region parameters). We also introduce for each class and method,
a predicate variable (ϕ) to denote an undetermined set of outlives-constraints over the
region parameters of that class/method.

2. Constraint Generation. In the second step, we analyze the program to generate a set of
constraints (over the region identifiers and the predicate variables) that must hold (as
per the static semantics in Fig. 6).

3. Constraint Solving. We solve the generated set of constraints using our fixpoint constraint
solving algorithm, which reduces the constraint solving problem to an abduction problem.
If the original program in JFBK contains unsafe references, for example, a reference
from a transferable region to a stack region, then the constraints generated during the
elaboration are not satisfiable. In such a case, the solver fails to solve the constraints.

4. If the solver succeeds, it returns a solution η consisting of a pair of substitution functions
ηR and ηP for free region and predicate variables, respectively, introduced in step 1. We
apply these substitutions to the elaborated program to produce the final program.

We later on establish the soundness of the type inference algorithm, and the completeness
of the constraint-generation and constraint-solving steps (steps 2 and 3 above).

4.1 Region Parameterization for Classes
Region parameterization is an iterative process involving the following three steps, the first
two of which are mutually dependent on each other.

Introduction of Formal Region Parameters. For every class C , we identify a sequence of
formal region parameters π0, · · ·πn that C should be parametric over.

Introduction of Actual Region Parameters. We then replace every instance of class C in
the program by an instance C 〈ρ0, · · · , ρn〉, where ρ0, · · · , ρn are fresh identifiers denoting
actual region parameters.

Predicate Variable Introduction. For every class C , we introduce a fresh predicate variable
ϕ, which represents the yet undetermined outlives-constraints between the formal region
parameters of class C .

We identify the region parameters of classes as follows.
Non-Recursive Classes. The class Object is defined to have a single region parameter

π0 (the allocation region). The region parameters for any other non-recursive class C is
determined only after the region parameters of any class that C depends on have been
determined: this includes the base-class B of C and the class (type) of any of its fields. We
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replace every dependee type T in C by its instantiated type, using fresh region parameters
as needed. The sequence of region parameters for C is defined to be the sequence of region
parameters for the base class B concatenated with the list of all fresh region parameters
introduced while instantiating the types of the fields in the class. (The class inherits its
allocation region from its base class. Note that if a class does not specify an explicit base
class, it has an implicit base class Object .)

This transformation is illustrated below, using a non-generic Pair class:

c lass Pair / Object {
Object fst;
Object snd;

}
⇒

c lass Pair 〈ρ0, ρ1, ρ2 | ϕ〉 / Object 〈ρ0〉 {
Object 〈ρ1〉 fst;
Object 〈ρ2〉 snd;

}

Recursive Classes. The region parameters for a recursive class is computed in a similar
fashion, with the following difference: any recursive field is ignored while instantiating region
parameters for the fields of the class, and the region parameters of the recursive class are
computed as before. We then do parameter instantiation for all recursive fields, such that
their region annotations (the actual region parameters) are exactly the same as the (formal)
region parameters of the class. The following example illustrates this for a non-generic List
class. The resulting class represents a linked list with spine in the region ρ0 and data objects
in the region ρ1.

c lass List / Object {
Object data;
List next;

}
⇒

c lass List 〈ρ0, ρ1 | ϕ〉 / Object 〈ρ0〉 {
Object 〈ρ1〉 data;
List 〈ρ0, ρ1〉 next;

}

The above technique can be extended to mutually recursive classes in a straightforward
manner, by simultaneously parameterizing them (and then instantiating them).

Type-Parametric Classes. The type parameter T of a class C is instantiated as T @ρ
using a single region parameter ρ. (This can be extended to use the bound specified for T , if
any.)

Function Types. Since FB is higher-order, fields of function type are allowed.We explain
how the parameter instantiation step instantiates function types below, after discussing
parameterization for methods.

4.2 Region Parameterization for Methods and Function Types
As the next step, we introduce region parameters for every method. We do this by instantiating
the types of all parameters and the return value (of the method) using fresh region identifiers
(as explained previously), and then generalizing these region identifiers as formal region
parameters of the method. In addition, a fresh region identifier is introduced to represent
the allocation region. We also introduce a fresh predicate variable ϕ for every method, just
as we did for each class. Thus, the method

Object m (List x) {...}
is instantiated as

Object〈ρ3〉 m〈ρ0, ρ1, ρ2, ρ3〉 (List〈ρ1, ρ2〉 x) {...}
We then consider every method invocation in the program, and introduce fresh region

variables representing the (yet unknown) actual region parameters for this particular invoca-
tion. We similarly perform instantiation for every constructor invocation of the form new@π0
T(. . .) , by instantiating the type T as before, turning it into new T〈π0, ρ1, · · · , ρn〉(. . .) ,
where ρ1, · · · , ρn are fresh region variables. Note that the programmer typically specifies the
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π ∈ R (Region constants) ν ∈ V (Region vars) ϕ ∈ P (Predicate vars) ∆ ⊆ R

ρ ∈ Region Identifiers ::= π | ν
φ ∈ Region Constraint ::= true | ρ � ρ | φ ∧ φ

F ∈ Substitution ::= · | [ρ/ρ]F
` ∈ Antecedent ::= φ | ϕ | ϕ ∧ φ
r ∈ Consequent ::= φ | F (ϕ)

Constraint ::= ` ` r | ν ∈ ∆ | ∆ ` ϕ ok

Figure 9 Syntax of constraints.

region π0 where the object is to be allocated. If the programmer does not specify this, it is
allocated in the allocation-context region by default. Region variables are introduced only
for the other region parameters.

Function types (of fields and parameters) are instantiated just like methods above, (and
the region where the closure is allocated is determined just as for other objects). For example,
the function type List → Object is instantiated as 〈ρ0, ρ1, ρ2, ρ3 |ϕ〉 List 〈ρ1, ρ2〉

π−→
Object 〈ρ3〉. Note that the newly introduced region identifiers are generalized as formal
region parameters of the function type. This is a (heuristic) choice made in the case of higher
order functions. Consider a higher order function f with a function typed parameter g. The
fresh region identifiers introduced while instantiating the type of g could be alternatively
generalized as formal region parameters of f , but we choose to generalize them as formal
region parameters of g. We will discuss this aspect again later.

4.3 Constraint Generation
The constraint generation algorithm mimics the static type checker, but accumulates con-
straints that must hold for the type checking to succeed.

Syntax of Constraints. (See Fig. 9.) The constraints are expressed using a set R of region
constants, a set V of region variables, and a set P of predicate variables.

Recall that a region constant may be either (a) a formal region parameter of a class
or method, or (b) a static region identifier introduced by a letregion construct, or (c)
an open transferable region identifier introduced by an open construct. A region variable
is introduced to represent an unknown actual region parameter of a method invocation or
object allocation, and the constraint-solver, if successful, will bind each region variable to a
region constant.

A region-constraint φ consists of a conjunction of outlives-constraints of the form ρ1 � ρ2.
A predicate variable ϕ is introduced to represent, e.g., the unknown precondition of a method.
The constraint-solver will end up binding it to a region-constraint φ over a set of fixed formal
region parameters. Our constraints also make uses of pending substitutions F : A pending
substitution serves to bind formal region parameters in ϕ to the actual region parameters
used in a particular context: E.g., in the validity constraint π1 � π2 ` [π1/ρ1][π2/ρ2]ϕ, the
pending substitution is [π1/ρ1][π2/ρ2].

The constraints are primarily of the form ϕi ∧ φcx ` φcs or ϕi ∧ φcx ` Fj(ϕj). Here, ϕi
is a predicate variable (representing the precondition of a method to be determined), φcs is a
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Expression Typing Constraint Generation A,Γ, r ` e : τ C C

[New]
A,Γ, r ` e : τ C C1 A ` N ok C C2 fields(N) = f : τ

A,Γ, r ` newN(e) : N C C1 ∪ C2

[NewRegion]
A,Γ, r ` e : 〈ρ〉 unit r−→ T@ρ C C

A,Γ, r ` new Region 〈T 〉〈π>〉(e) : Region 〈T 〉〈π>〉 C C

[LetRegion]

A = (∆,Θ,Φ) π /∈ ∆ A′ = (∆ ∪ {π},Θ,Φ ∧ (∆ � π))
A′,Γ, π ` e : τ C C1 A ` τ ok C C2

A,Γ, r ` letregion π in e : τ C (C1 ∪ C2)

[FnApply]

A = (∆,Θ,Φ) C1 = {rr ∈ ∆} A,Γ, r ` e : 〈ρρ |φ〉τ1 r−→ τ2 C C2

C3 = {Φ ` [rr/ρρ]φ} A,Γ, r ` e : [rr/ρρ]τ1 C C4

A,Γ, r ` e〈rr〉(e) : [rr/ρρ]τ2 C ∪4
i=1Ci

[Open]

A = (∆,Θ,Φ) π /∈ ∆ A,Γ, r ` ea : Region 〈T 〉〈π>〉 C C1

(∆ ∪ {π},Θ,Φ),Γ[y 7→ T@π] ` eb : τ C C2 A ` τ ok C C3

A,Γ, r ` open ea as y@π in eb : τ C (C1 ∪ C2 ∪ C3)

Figure 10 Constraint generation rules part 1.

region-constraint that is required to hold at a particular program point (within the method),
and φcx is a region-constraint that is known to hold at that program point. Constraints of
the form ϕi∧φcx ` Fj(ϕj) are generated by an invocation of a method with precondition ϕj .

We use well-formedness constraints of the form ρ ∈ ∆ to restrict the domain of unification
for a region variable (ρ) to a constant set ∆ = {π1, · · · , πn} of regions in scope, and well-
formedness constraints of form ∆ ` ϕ ok to restrict the domain of a predicate variable (ϕ) to
the set of all possible region-constraint formulas over a fixed set of regions (∆ = {π1, · · · , πn})
in scope.

Constraint Solution. We define an assignment η to be a pair of functions (ηR, ηP ), where
ηR is a map from V to R and ηP is a map from P to a region-constraint formula. Such an
assignment is said to satisfy a set of constraints C if every sequent in C is valid after the
substitutions ηP and ηR. We say that C is satisfiable if it has a satisfying assignment.

Constraint Generation. The constraint generation algorithm is a direct adaption of the
type checker: each type checking judgment is modified to produce a set of constraints that
must hold for the type checker to succeed.

Fig. 10 illustrates this for selected language constructs. (The appendix contains the
remaining constraint generation rules.) These rules use the same context as the corresponding
typing judgment in Fig. 6, except that this is generalized to permit the use of region variables
and predicate variables. Symbols A and Γ retain their meaning, modulo this extension. Thus,
the component Φ of A will now be a symbolic expression of the form ϕ ∧ φ, where ϕ is the
predicate variable representing the undetermined precondition of the method being analyzed.
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The algorithm proceeds top-down, analyzes an expression e in a context A,Γ, r, and returns
a type τ and a set of constraints C (expressed in the rules as A,Γ, r ` e : τ CC ), indicating
that the expression will have a type τ provided the constraints C hold.

When we adapt a type-checking judgement rule to produce a corresponding constraint-
generation rule, we treat the antecedent conditions of the type-checking rule in one of
two ways. Many of these antecedent conditions are converted into constraints which are
accumulated in the set C. However, some of the antecedent conditions are expected to be
trivially satisfied and are expressed as antecedent conditions in the constraint-generation
rule as well. E.g., our frontend ensures that the region constants introduced by open and
letregion constructs are unique (and the elaboration phase ensures this by alpha-renaming
them as needed). Thus, the precondition ρ 6∈ ∆ in rules LetRegion and Open is expected
to hold true at constraint-generation time (and does not produce any constraints).

The rules for generating constraints from a method and class definition first build a
context (A) containing a set (∆) denoting regions that are currently live, a map (Θ) mapping
type variables to their bounds, and a constraint formula (Φ) capturing constraints over live
region variables. We use predicate variables (ϕ and ϕm) to capture constraints over variables
in ∆ that are yet to be inferred.

Let GenConstraint(q) denote the set of constraints generated from an elaborated
program q. The following theorem states that constraint-generation is sound and complete:

I Theorem 2. Let C = GenConstraint(q). An assignment η (for the region and predicate
variables in q) satisfies C iff q[η] is well-typed.

4.4 The Constraint Solver

We refer to any validity constraint whose antecedent contains a predicate variable (i.e., is of
the form ϕ∧φcx) as an abduction constraint. Here, φcx is either true (in which case, we call the
constraint a trivial abduction constraint) or a conjunction of one or more outlives-constraints
(in which case, we call the constraint a non-trivial abduction constraint).

Non-trivial abduction constraints are a key challenge in solving the constraints. We now
describe some special properties of the set of constraints C generated by our algorithm, which
allow us to handle abduction constraints efficiently.

For any predicate variable ϕ used in C, C has exactly one constraint of the form ∆ ` ϕ ok.
We will refer to this ∆ as ∆C

P (ϕ). (Our constraint-generation algorithm guarantees the
preceding property. Even otherwise, a set of constraints ∆i ` ϕ ok can be replaced by
the single equivalent constraint (∩i∆i) ` ϕ ok.) We say that an abduction constraint is
C-decomposable if its antecedent is of the form ϕ ∧ φcx where ϕ is a predicate variable and
φcx is a conjunction of zero or more outlives-constraints of the form π1 � π2 satisfying
the following conditions: (1) π2 /∈ ∆C

P (ϕ). (2) if π1 ∈ ∆C
P (ϕ), then for every πf ∈ ∆C

P (ϕ),
πf � π2 is a conjunct in φcx. We will omit the reference to C in the above notation if no
confusion is likely.

I Lemma 3. Every abduction constraint in C, where C = GenConstraint(q), is C-
decomposable.

I Lemma 4. Consider any C-decomposable constraint ϕ ∧ φ ` πi � πj where both πi and
πj are region constants. Let η satisfy C.
(a) If {πi, πj} ⊆ ∆P (ϕ): η satisfies ϕ ∧ φ ` πi � πj iff η satisfies ϕ ` πi � πj.
(b) If {πi, πj} 6⊆ ∆P (ϕ): η satisfies ϕ ∧ φ ` πi � πj iff η satisfies φ ` πi � πj
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The above lemma shows how we can reduce a non-trivial abduction constraint to either a
trivial abduction constraint or a non-abduction constraint, provided that the consequent is
an outlives-constraint without region variables.

Constraint Solver. The first step in our algorithm for solving a set of constraints C computes
a set C∗ ⊇ C of constraints by iteratively applying the following rules until a fixed point is
reached:
1. (Initialization) ` ` r ∈ C ⇒ ` ` r ∈ C∗

2. (Transitivity)
a. ` ` ρ1 � ρ2 ∈ C∗, ` ∧ φ ` ρ2 � ρ3 ∈ C∗ ⇒ ` ∧ φ ` ρ1 � ρ3 ∈ C∗

b. ` ∧ φ ` ρ1 � ρ2 ∈ C∗, ` ` ρ2 � ρ3 ∈ C∗ ⇒ ` ∧ φ ` ρ1 � ρ3 ∈ C∗

3. (Substitution) ` ` F (ϕ) ∈ C∗, ϕ ` φ ∈ C∗ ⇒ ` ` F (φ) ∈ C∗

4. (Abduction Decomposition)
a. ϕ ∧ φcx ` πi � πj ∈ C∗, {πi, πj} ⊆ ∆P (ϕ) ⇒ ϕ ` πi � πj ∈ C∗

b. ϕ ∧ φcx ` πi � πj ∈ C∗, {πi, πj} 6⊆ ∆P (ϕ), {πi, πj} ⊆ R ⇒ φcx ` πi � πj ∈ C∗

We can show that every new constraint added by the above rules is implied by existing
constraints:

I Theorem 5. Let C = GenConstraint(q). An assignment η satisfies C iff η satisfies C∗.

A key goal of this step is to identify the value every region variable must have in any
solution of the set of constraints, as explained below. Consider a set of constraints D. We
say that a region variable ρ occurs in a context ` (in D) if D contains some constraint ` ` r
where ρ occurs in r. We say that a region variable ρ is bound to a region constant π in a
context ` if {` ` ρ � π, ` ` π � ρ} ⊆ D. We say that a region variable ρ is bound to a
region constant π (in D) if ρ is bound to π in every context ` in which it occurs. We say
that a region variable ρ is somewhere-bound to a region constant π (in D) if ρ is bound to π
in some context ` in which it occurs.

The set C∗ makes it easy to identify a solution η̂ (if one exists), as below. For
any predicate variable ϕ, η̂P (ϕ) is defined to be ∧{π1 � π2 | π1, π2 ∈ R,ϕ ` π1 �
π2 ∈ C∗}. For any region variable ρ, we define η̂R(ρ) to be any element of the set
{π ∈ R | ρ is somewhere-bound to π in C∗}, if this set is non-empty. If this set is empty for
any ρ, η̂ is undefined.

The set C∗ also makes it easy to check if C is satisfiable. Let C∗g denote the subset of all
ground constraints (i.e., constraints without any region variable or predicate variable) in
C∗. Let WFR denote the subset of all well-formedness constraints for region variables in C∗.
Define Solve(C) as below.

Solve(C) =
{

Some(η̂) if C∗g is valid and η̂ is defined and satisfies WFR
None otherwise

I Theorem 6. Let C = GenConstraint(q). (Soundness) If Solve(C) = Some(η), then
η satisfies C. (Completeness) If Solve(C) = None, then C is unsatisfiable.

Checking the validity of a ground constraint is straightforward. A ground constraint
is of the form ∧i∈I`i ` r, where each `i and r is an outlives-constraint. Let D denote
{ ` `i | i ∈ I}. The given constraint is valid iff r belongs to D∗.
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Algorithmic Aspects. Note that checking the validity of a ground constraint can be realized
using a simple graph reachability algorithm. Given a set S of outlives constraints, define
the directed graph G(S) = (V (S), E(S)) as follows. Every distinct region identifier ρ in S is
represented by a vertex, which we will also refer to as ρ. Every outlives constraint ρ1 � ρ2 is
represented by an edge from ρ1 to ρ2. It is easy to see that ∧S ` ρ1 � ρ2 iff there exists
a path from ρ1 to ρ2 in G(S). Thus, a simple graph reachability algorithm can be used to
check the validity of ground constraints.

This idea generalizes. Extending the simple graph reachability algorithm to incorporate
the Substitution rule (in computing C∗) turns the problem into a context-free reachability
problem in graphs [16] (as usual for context-sensitive interprocedural analysis).

Algorithms for context-free reachability can be adapted to incorporate the Abduction
Decomposition step. Alternatively, the iterative process described above is a standard fixed
point computation and can be encoded using a set of Datalog rules, allowing us to compute
the closure using any Datalog engine.

4.5 Soundness and Completeness: Discussion
Theorems 2 and 6 show that the second and third steps of the type-inference algorithm are
sound. It is easy to verify the soundness of the first step (the elaboration phase): For any
program p ∈ JFBK, the elaboration phase produces a q such that for any assignment η, we
have Jq[η]K = p. The soundness of the type inference algorithm follows.

Theorem 2 and 6 also establish the completeness of the constraint-generation and
constraint-solving steps. The only source of incompleteness in the type inference algorithm
is the set of heuristic choices made during the first step, as explained below.

(1) We determine the set of region parameters for a recursive class using the heuristic
that a recursive occurrence of the class has the same parameters, in the same order, as the
class itself. This heuristic fails, for example, if the program uses a recursive list type whose
elements alternatively come from two different regions. Such a program would require the
following elaboration, which is beyond the scope of our approach:

c lass List / Object
{

Object data;
List next;

}

⇒

c lass List 〈ρ0, ρ1, ρ2 | ϕ〉 / Object 〈ρ0〉
{

Object 〈ρ1〉 data;
List 〈ρ0, ρ2, ρ1〉 next;

}

(2) Our technique for region parameterization also uses a heuristic in the case of higher
order programs. The following examples illustrates that principal types may not exist for
higher order functions.

unit apply ( T → unit f, T x, T y) { f(x); f(y); }

This method may be typed assuming either that f is polymorphic over the region that
its parameter is allocated in (permitting x and y to be allocated in any regions), or by
assuming that x and y are allocated in the same region ρ1 that f expects its parameters
to be allocated in. Neither type subsumes the other. Our algorithm heuristically chooses the
first option, as it appears to be the more likely and useful candidate.

If users provide partial region annotations, especially in situations (such as above) where
elaboration makes a heuristic choice, the elaboration procedure can use the user-provided
choices instead. This can help the type-inference overcome these limitations.
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4.6 Modularity Aspects of Type Inference
The type inference algorithm, as presented, traverses the entire program to generate the
set of constraints, which are solved en masse, using an iterative fixed point computation.
However, the type inference can be realized in a modular and compositional fashion, subject
only to the restrictions imposed by recursion.

In the elaboration phase, we can process a class C only after any class B that C depends
on has been processed: class C depends on class B if B is either C ’s base class or the
type of any field of C depends on B . In effect, this means that any collection of mutually
recursive classes must be processed together. Non-recursive dependences can be handled in a
compositional fashion: if class C depends on B non-recursively, then the elaboration can be
done for B first, and then C can be processed.

The same idea applies to the constraint-solving phase as well. Given a set of constraints,
we say that a predicate variable ϕ1 directly-depends on another predicate variable ϕ2 if the
set of constraints includes a constraint ϕ1 ∧ φcx ` F (ϕ2). We say that ϕ1 depends on ϕ2
if ϕ1 transitively depends on ϕ2. The constraint solver needs to process any collection of
mutually dependent predicate variables together. In effect, this requires the type inference
to process any collection of mutually recursive methods together. However, methods that
are not mutually recursive can be processed separately.

5 Implementation and Evaluation

As mentioned earlier, our work is a continuation of the work reported in [7], which provides
users with a C#-based implementation of transferable regions (the features described in
Section 2). This system has no type system and provides users with no safety guarantees. [7]
presents evidence that realistic programs can be implemented using transferable regions and
that this can yield significant performance gains. In particular, it reports speedups up to
34% for typical big-data analytics jobs. We now describe our implementation and experience
with the type system and type inference algorithm presented in the current paper.

We have implemented Broomc, a prototype of Broom compiler frontend, including its
region type system and type inference, in 3k+ lines of OCaml. The input to Broomc is a
program in JFB+K, an extended version of JFBK that includes assignments, conditionals,
loops, more primitive datatypes (e.g., integers), and a null value. Our implementation of
region type inference and constraint solving closely follows the description given in Sec. 4.

We performed two kinds of experiments to evaluate our region type system and type
inference. First, we implemented some microbenchmarks (≤100 LOC) consisting of standard
classes such as pairs, lists, list iterators, etc., in JFB+K, and used our inference engine to
infer their region types. These classes are region-oblivious. Hence, as long as they are
well-typed as per the core type system, Broomc must be able to automatically construct its
region-type-annotated definition without fail. Broomc was able to infer the expected region
types for all these classes under 10ms. Fig 11 shows the region-type-annotated definition
computed for the list reverse method. Observe that Broomc was able to infer that the list
and its data (of type T ) can be allocated in different regions, as long as the latter outlives
the former. This allows, for instance, a preOrder method to traverse a tree in a transferable
region, and return a list of its nodes, where the list itself is allocated in the stack region.

Next, we translated 4 out of the 6 Naiad streaming query operator benchmarks (Naiad
vertices) used in [7] to JFB+K, and used Broomc to verify their safety. The 2 remaining
benchmarks were left out because their region behavior (from the perspective of the type
system) is subsumed by the included benchmarks. The number of LOC performing operations
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c lass LinkedList <T><R5 ,R4 | R4�R5 > {
ListNode <T><R5 ,R4 > head; ...
List <T><R17 ,R4 > rev <R17 ,R4 | R4�R17 >( unit u) {

List <T><R17 ,R4 > xs = new List <T><R17 ,R4 >( this .head.val);
ListNode <T><R5 ,R4 > cur = this .head.next;
while (! cur == Null) {

xs.add <R17 >( cur.val)
cur = cur.next; }

return xs;
}

Figure 11 Region-annotated definition of rev computed by Broomc.

on Region objects relative to the total LOC is 8% or under in the Naiad benchmarks. During
the process, we found multiple instances of potential memory safety violations in the JFB+K
translation of all the 4 Naiad vertices, which we verified to be present in the original C#
implementation as well. The cause of all safety violations is the creation of a reference from
the outgoing message (a transferable region) to the payload of the incoming message. For
example, the implementation of SelectVertex contains the following:

i f ( this . selector (inMsg. payload [i])) {
outMsg .set( outputOffset , inMsg. payload [i]);
...

}

The outMsg is later transferred to a downstream actor, where the reference to inMsg ’s
payload becomes unsafe6. We eliminated such unsafe references by creating a clone of
inMsg.payload[i] in outMsg , and our compiler was subsequently able to certify the safety
of all references.

Our experience with Naiad benchmarks shows the utility of our type inference/checking
tool, particularly because it comes at no additional cost to the developer.

6 Related Work

Following Tofte and Talpin’s seminal work in [15, 20, 21], static type systems for safe region-
based memory management have been extensively studied in the context of various languages
and problem settings [8, 10, 24, 2, 1, 9, 23, 17, 11]. Our work differs from the existing
proposals in one or more of the following respects.

1. Our design choice focuses on ensuring memory-safety while giving programmers control
over region management and allocation of objects in regions. In contrast, some systems
automate all aspects of memory management. This is a convenience-performance trade-off.

2. We support both lexically scoped (stack) regions and dynamic transferable regions (both
programmer-managed).

3. We exploit a combination of a simple static type discipline and lightweight runtime
checks to ensure memory safety. In particular, our approach circumvents the need for
restrictive static mechanisms (e.g., linear types and unique pointers) or expensive runtime
mechanisms (e.g., garbage collection and reference counting) in order to guarantee safety.

6 This unsafe reference could have gone unnoticed during experiments in [7] because their experimental
setup included only one actor.
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4. We present a full (interprocedural) type inference algorithm that eliminates the need to
write region annotations on types.

5. Our underlying language is an object-oriented programming language, equipped with
higher-order functions and parameterized (generic) types. These language features
necessitate some non-trivial choices in the design of the region-parametricity aspect of
the language, which also have an impact on aspects such type inference.

Tofte and Talpin’s approach [21] uses compiler-managed lexically scoped (stack) regions
(as a replacement for GC). Our type inference is analogous to theirs in some respects, while
differing in others. Their inference algorithm only generates equality constraints, solvable
via unification. Our type inference algorithm generates partial order outlives constraints.
Consequently, our constraint solving algorithm is more sophisticated, and is capable of
inferring unknown outlives constraints over region arguments of polymorphic recursive
functions.

Walker and Watkins [23] extend lambda calculus with first-class regions with dynamic
lifetimes, and impose linear typing to control accesses to regions. Our open/close lexical
block for transferable regions traces its origins to the let! expression in [23] and [22], which
safely relaxes linear typing restrictions, allowing variables to be temporarily aliased. We
don’t use linear typing (for references to regions), thus admit unrestricted aliasing, but use
lightweight runtime checks for safety. Moreover, [23]’s linear type system is insufficient to
enforce the invariants needed to ensure safety under region transfers, such as the absence of
references that escape a transferable region.

Cyclone [8] equips C with programmer-managed stack regions, and a typing discipline
that statically guarantees the safety of all pointer dereferences. Later proposals [10, 19]
extends Cyclone with dynamic regions. Broom differs from Cyclone in its non-intrusiveness
design principle, which requires its safety mechanisms to not intrude on the programming
practices of C#. Broom programmers, for example, shouldn’t be forced to abandon iterators
in favor of for-loops, annotate region types, or rewrite C#’s standard libraries to use in
Broom. Cyclone requires C programmers to use new language constructs and abandon some
standard programming idioms in the interest of preserving safety. For instance, Cyclone
programmers are required to write region types for functions; the type inference is only
intraprocedural. Ensuring safety in presence of dynamic regions requires using either unique
pointers or reference-counted objects. Both approaches are intrusive. For example, unique
pointers constrain, or in some cases forbid, the use of the familiar iterator pattern, which
requires creation of aliases to objects in a collection. Some standard library functions, for
example, those that use caching, may need to be rewritten. Moreover, even with unique
pointers, safety cannot be guaranteed statically; checks against NULL are needed at run-time
to enforce safety. For ref-counted objects, Cyclone requires programmers to use special
functions ( alias_refptr and drop_refptr ) to create and destroy aliases. Reference count
is affected only by these functions. An alias going out of scope, for instance, does not
decrement the ref-count. The requirement to use additional constructs to manage aliases
makes reference counting more-or-less as intrusive as unique pointers.

Our work differs from Cyclone also in terms of its technical contributions. While Cyclone
equips C with a range of region constructs [19], the semantics of (a significant subset of)
such constructs, and the safety guarantees of the language are not formalized. In contrast,
the (static and dynamic) semantics of Broom has been rigorously defined with respect to a
well-understood formal system (FGJ). The safety guarantees have been formalized and proved.
Similar contrast can be made of region type inference in both the languages. Cyclone’s type
inference was only ever described as being similar to Tofte and Talpin’s, and its effectiveness
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in presence of tracked pointers is not clear. In contrast, a detailed type inference algorithm
is one of our core contributions.

Our region type system can also be thought of as a specialized ownership type system [5],
where each region is the owner of all objects allocated in the region. An ownership type
system for safe region-based memory management in real-time Java has been proposed
by Boyapati et al. [2]. Their language permits only lexically-scoped (stack) regions. In
contrast, we permit regions with dynamically determined lifetimes. Our language also admits
generics and higher-order functions. We also establish type safety and transfer safety results
that formalize the guarantees provided by our system. While Boyapati et al.’s language is
explicitly typed, our language comes equipped with full type inference. However, several
inference algorithms have been proposed in the context of other ownership type systems.
Our type inference algorithm is also novel compared to these existing ownership inference
algorithms, which are based on, e.g., pointer analysis [12] or boolean satisfiability [6]. (See
Section 5.2 of Clark et al.’s survey of ownership type systems [5] for a more comprehensive
discussion of ownership inference algorithms.) Some distinguishing characteristics of our
algorithm is that it is customized to our problem, does not use any pointer analysis algorithm
(which can be a source of imprecision) or SAT solvers (which can be a source of inefficiency),
and comes with relative completeness guarantees.

Henglein et al. [9] propose a flow-sensitive approach for first-order programs to generalize
Tofte and Talpin’s approach to dynamic regions. Cherem and Rugina [4] describe a flow-
insensitive and context-sensitive analysis that transforms Java programs to use (dynamic)
regions. However, neither of themr supports dynamic regions as first-class objects; they
cannot be stored in data structures or passed to methods. Furthermore, while Henglein et
al. [9] require reference counting to ensure memory safety, Cherem and Rugina’s analysis [4]
comes with no formal safety guarantees. Holk et al. [11] use regions to safely transfer data
between the CPU and GPU in the context of Scheme. However, their setting only includes
lexically-scoped regions for which Tofte and Talpin-style analysis suffices. In contrast, we
provide first-class support for transferable regions with dynamic lifetimes.
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A Appendix

A.1 Static Semantics

allocRgn(A〈rr〉〈T 〉) = r

allocRgn(〈ρ |φ〉τ1 r−→ τ2) = r

shape(A〈r〉〈T 〉) = A〈T 〉

boundΘ(a@r) = Θ(a)@r
boundΘ(N) = N

fields( Object 〈r〉) = •

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{τf f ; ...} S = [r/ρ, T/a] fields(S(N)) = g : τg

fields(B〈T 〉〈r〉) = g : τg, f : S(τf )

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{τf f ; d} m /∈ d S = [r/ρ, T/a]
mtype(m,B〈T 〉〈r〉) = mtype(m,S(N))

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{τf f ; d} τ2 m〈ρm |φm〉(τ1 x){...} ∈ d S = [r/ρ, T/a]
mtype(m,B〈T 〉〈r〉) = S(〈ρm |φm〉τ1 → τ2)

mtype(m,N) = 〈ρ1 |φ1〉τ11 → τ12 implies

A.Φ ` φ2 ⇔ [ρ2/ρ1](φ1) and τ21 = [ρ2/ρ1](τ11) and A ` τ22 <: [ρ2/ρ1](τ12)
A ` override(m,N, 〈ρ2 |φ1〉τ21 → τ22)

Figure 12 Featherweight Broom: auxiliary definitions.
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Subtyping A ` τ1 <: τ2

A ` τ <: τ
(∆,Θ,Φ) ` a@ρ <: Θ(a)@ρ CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...}

A ` B〈T 〉〈r〉 <: [r/ρ, T/a](N)

A ` τ1 <: τ2
A ` τ2 <: τ3
A ` τ1 <: τ3

A.Φ ` φ1 ⇒ φ2

A ` τ11 <: τ21 A ` τ22 <: τ12

A ` 〈ρ |φ2〉τ21 r−→ τ22 <: 〈ρ |φ1〉τ11 r−→ τ12

Type, and Type Constraint Well-formedness A ` τ ok, ∆ ` φ ok

r ∈ ∆
(∆,Θ,Φ) ` Object 〈r〉 ok

r0, r1 ∈ ∆
∆ ` r0 � r1 ok

∆ ` φ0 ok ∆ ` φ1 ok

∆ ` φ0 ∧ φ1 ok

r ∈ ∆ ρ 6∈ ∆ ∆′ = ∆ ∪ {ρ} A′ = (∆′,Θ,Φ ∧ φ) ∆′ ` φ ok A′ ` τ1 ok A′ ` τ2 ok

(∆,Θ,Φ) ` 〈ρ |φ〉τ1 r−→ τ2 ok

Class Well-formedness B ok

∆ = {ρ, ρ} Θ = [a 7→ K] Φ = φ A = (∆,Θ,Φ) ∆ ` φ ok Θ  K ok d ok in B

A ` N, τf ok shape(N) 6= Region 〈T 〉 Φ ` allocRgn(τf ) � ρ allocRgn(N) = ρ

class B〈a / K〉〈ρρ |φ〉 / N{τf f ; d} ok

Figure 13 Featherweight Broom: subtyping and well-formedness rules (contiunuation of
Fig. 6).

Expression Typing A,Γ, r ` e : τ

A,Γ, r ` e1 : τ1
A,Γ[x 7→ τ1], r ` e2 : τ2

A,Γ, r ` let x = e1 in e2 : τ2

A = (∆,Θ,Φ) l /∈ ∆
A′ = (∆ ∪ {l},Θ,Φ ∧∆ � l)
A′,Γ, l ` e : τ A ` τ ok

A,Γ, r ` letd l in e : τ

A = (∆,Θ,Φ) A′ = (∆ ∪ {l},Θ,Φ) A′ ` T@l ok A′,Γ, l ` e : T@l

A,Γ, r ` new Region 〈T 〉〈l>l〉(e) : Region 〈T 〉〈π>〉

A = (∆,Θ,Φ) A′ = (∆ ∪ {l},Θ,Φ)
l ∈ ∆ implies s = � A′,Γ, l ` e : τ A ` τ ok

A,Γ, r ` opened l(s) in e : τ

A,Γ, r ` e : τ
A ` τ <: τ ′

A,Γ, r ` e : τ ′

Figure 14 Featherweight Broom: expression typing (continuation of Fig. 6).
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A.2 Operational Semantics

(e,Σ) −→ (e′,Σ′)

[EvalOrder]
(e,Σ) −→ (e′,Σ′)

(E[e],Σ) −→ (E[e′],Σ′)

[Exception]
(e,Σ) −→ ⊥

(E[e],Σ) −→ ⊥

[FieldAccess]
Σ(l) = � fields(A〈T 〉〈ll〉) = f : τ

(( new A〈T 〉〈ll〉(v)).fi,Σ) −→ (vi,Σ)

[MethodInv]
Σ(l) = � mbody(m,A〈T 〉〈ll〉) = ρρ.x.e

(( new A〈T 〉〈ll〉(v)).m〈l′l′〉(v′),Σ) −→
([l′l′/ρρ][v′/x][ new A〈T 〉〈ll〉(v)/ this ] e,Σ)

[FnApply]
va = λ@l′〈ρρ〉(τ x).e Σ(l′) = �

(va〈ll〉(v),Σ) −→ ([v/x][ll/ρρ] e,Σ)

[Exception]
Σ(l) = � (e,Σ[l 7→ �]) −→ ⊥

( new Region 〈T 〉〈l>l〉(e),Σ) −→ ⊥

[LetExp]
( let x = v in e,Σ) −→ ([v/x]e,Σ)

Evaluation Context E

E ::= • | (•).f | •.m〈l〉(e) | v.m〈l〉(..., •, ...) | new N(..., •, ...)
| new Region 〈T 〉〈π>〉(•) | •〈l〉(e) | v〈l〉(..., •, ...)
| let x = • in e | open • as y@r in e

Figure 15 Featherweight Broom: operational semantics (continuation of Fig. 8).
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A.3 Constraint Generation Rules

Expression Typing Constraint Generation A,Γ, r ` e : τ C C

[Unit] A,Γ, r ` () : unit C {}

[Var] A,Γ, r ` x : Γ(τ) C {}

[FieldAccess]
A,Γ, r ` e : τ ′ C C f : τ = fields(boundA.Θ(τ ′))

A,Γ, r ` e.fi : τi C C

[Let]
A,Γ, r ` e1 : τ1 C C1 A,Γ[x 7→ τ1], r ` e2 : τ2 C C2

A,Γ, r ` let x = e1 in e2 : τ2 C C1 ∪ C2

[MethodInv]

A,Γ, r ` e0 : τ C C1 C2 = {rr ∈ A.∆}
mtype(m, boundA.Θ(τ)) = 〈ρρ |φ〉τ1 → τ2

A ` 〈ρρ |φ〉τ1 → τ2 ok C C3 A,Γ, r ` e : [rr/ρρ](τ1) C C4

C5 = {A.Φ ` [rr/ρρ](φ)}
A,Γ, r ` e0.m〈rr〉(e) : [rr/ρρ](τ2) C C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5

[Lambda]

r ∈ A.∆ ρρ /∈ A.∆ A′ = (A.∆ ∪ {ρρ},A.Θ,A.Φ ∧ φ)
A′.∆ ` φ ok A′ ` τ1 ok C C1 A′ ` τ2 ok C C2

A′,Γ[x 7→ τ1], ρ ` e : τ2 C C3

A,Γ, r ` λ@r〈ρρ |φ〉(x : τ1).e : 〈ρρ |φ〉τ1 r−→ τ2 C ∪4
i=1Ci

[SubTyping]
A,Γ, r ` e : τ C C1 A ` τ <: τ ′ C C2

A,Γ, r ` e : τ ′ C C1 ∪ C2

Method Well-formedness Constraint Generation ` d ok in B C C

[Method]

CT (B) = class B〈a / K〉〈ρ |ϕ〉 / N{· · · }
A = (∆,Θ,Φ) = ({ρ, ρm, ρm}, [a 7→ K], ϕm) C1 = {∆ ` ϕm ok}
Γ = ·[ this 7→ B〈a〉〈ρ〉][x 7→ τ1] mtype(m,N) = 〈ρm |φm〉τ1 → τ2

A,Γ, ρm ` e : τ2 C C2 A ` τ1 ok C C3 A ` τ2 ok C C4

` τ2 m〈ρmρm |ϕm〉(τ1 x){ return e; } ok in B C (C1 ∪ C2 ∪ C3 ∪ C4)

Class Well-formedness Constraint Generation ` B ok C C

[Class]

A = (∆,Θ,Φ) = ({ρ, ρ}, [a 7→ K], ϕ)
C1 = {∆ ` ϕ ok} Θ  K ok A ` N ok C C2 A ` τf ok C C3

C4 = {Φ ` allocRgn(τf ) � ρ ∧ allocRgn(N) = ρ}
` d ok in B C C5

` class B〈a / K〉〈ρρ |ϕ〉 / N{τf x; d} ok C
⋃5

i=1 Ci

Figure 16 Featherweight Broom: Constraint generation rules part 2 (Continuation of Fig. 10).
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Subtyping Constraint Generation A ` τ1 <: τ2 C C

[Reflexivity] A ` τ <: τ C {}

[Unify] A ` τ <: [π/ρ](τ) C {π � ρ, ρ � π}

[Transitivity]
A ` τ1 <: τ2 C C1 A ` τ2 <: τ3 C C2

A ` τ1 <: τ3 C C1 ∪ C2

[FnSubtyping]

C1 = {A.Φ ` φ1 ⇒ φ2}
A ` τ11 <: τ21 C C2 A ` τ22 <: τ12 C C3

A ` 〈ρ |φ2〉τ21 r−→ τ22 <: 〈ρ |φ1〉τ11 r−→ τ12 C C1 ∪ C2 ∪ C3

Type Well-formedness Constraint Generation A ` τ ok C C

[ObjectType]
C = {r ∈ ∆}

(∆,Θ,Φ) ` Object 〈r〉 ok C C

[ClassType]

CT (B) = class B〈a / K〉〈ρ |φ〉 / N{...} Θ  B〈T 〉 ok

C = {r ∈ ∆,Φ ` [r/ρ](φ)}
(∆,Θ,Φ) ` B〈T 〉〈r〉 ok C C

[TypeParam]
Θ  T ok Θ  T <: Object C = {r ∈ ∆}

(∆,Θ,Φ) ` T@r ok C C

[FnType]

C1 = {r ∈ ∆}
ρ /∈ ∆ ∆′ = ∆ ∪ {ρ} A′ = (∆′,Θ,Φ ∧ φ)

∆′ ` φ ok C C2 A′ ` τ1 ok C C3 A′ ` τ2 ok C C4

(∆,Θ,Φ) ` 〈ρ |φ〉τ1 r−→ τ2 ok C C1 ∪ C2 ∪ C3 ∪ C4

[RegionType]
Θ  T ok

(∆,Θ,Φ) ` Region 〈T 〉〈π>〉 ok C {}

Figure 17 Featherweight Broom: Constraint generation rules part 3 (Continuation of Fig. 16).
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