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Abstract
In the past decade, parameterized unit testing has emerged as a promising method to specify
program behaviors under test in the form of unit tests. Developers can write parameterized
unit tests (PUTs), unit-test methods with parameters, in contrast to conventional unit tests,
without parameters. The use of PUTs can enable powerful test generation tools such as Pex to
have strong test oracles to check against, beyond just uncaught runtime exceptions. In addition,
PUTs have been popularly supported by various unit testing frameworks for .NET and the JUnit
framework for Java. However, there exists no study to offer insights on how PUTs are written
by developers in either proprietary or open source development practices, posing barriers for
various stakeholders to bring PUTs to widely adopted practices in software industry. To fill this
gap, we first present categorization results of the Microsoft MSDN Pex Forum posts (contributed
primarily by industrial practitioners) related to PUTs. We then use the categorization results
to guide the design of the first characteristic study of PUTs in .NET open source projects. We
study hundreds of PUTs that open source developers wrote for these open source projects. Our
study findings provide valuable insights for various stakeholders such as current or prospective
PUT writers (e.g., developers), PUT framework designers, test-generation tool vendors, testing
researchers, and testing educators.
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1 Introduction

With advances in test generation research such as dynamic symbolic execution [23, 35],
powerful test generation tools are now at the fingertips of software developers. For example,
Pex [37, 39], a state-of-the-art tool based on dynamic symbolic execution, has been shipped as
IntelliTest [32, 26] in Microsoft Visual Studio 2015 and 2017, benefiting numerous developers
in software industry. Such test generation tools allow developers to automatically generate
input values for the code under test, comprehensively covering various program behaviors
and consequently achieving high code coverage. These tools help alleviate the burden of
extensive manual software testing, especially on test generation.

Although such tools provide powerful support for automatic test generation, when they
are applied directly to the code under test, only a predefined limited set of properties can be
checked. These predefined properties serve as test oracles for these automatically generated
input values, and violating these predefined properties leads to various runtime exceptions,
such as null dereferencing or division by zero. Despite being valuable, these predefined
properties are weak test oracles, which do not aim for checking functional correctness but
focus on robustness of the code under test.

To supply strong test oracles for automatically generated input values, developers can
write formal specifications such as code contracts [25, 30, 16] in the form of preconditions,
postconditions, and object invariants in the code under test. However, just like writing
other types of formal specifications, writing code contracts, especially postconditions, can
be challenging. According to a study on code contracts [34], 68% of code contracts are
preconditions while only 26% of them are postconditions (the remaining 6% are object
invariants). Section 2 shows an example of a method under test whose postconditions are
difficult to write.

In the past decade, parameterized unit testing [40, 38] has emerged as a practical
alternative to specify program behaviors under test in the form of unit tests. Developers
can write parameterized unit tests (PUTs), unit-test methods with parameters, in contrast
to conventional unit tests (CUTs), without parameters. Then developers can apply an
automatic test generation tool such as Pex to automatically generate input values for a
PUT’s parameters. Note that algebraic specifications [24] can be naturally written in the
form of PUTs but PUTs are not limited to being used to specify algebraic specifications.

Since parameterized unit testing was first proposed in 2005 [40], PUTs have been popularly
supported by various unit testing frameworks for .NET along with recent versions of the
JUnit framework (as parameterized tests [14] and theories [33, 5]). However, there exists no
study to offer insights on how PUTs are written by developers in development practices of
either proprietary or open source software, posing barriers for various stakeholders to bring
PUTs to widely adopted practices in software industry. Example stakeholders are current or
prospective PUT writers (e.g., developers), PUT framework designers, test-generation tool
vendors, testing researchers, and testing educators.

To address the lack of studies on PUTs, we first conduct a categorization of 93 Microsoft
MSDN Pex Forum posts [31] (contributed primarily by industrial practitioners) related to
parameterized unit tests. We then use the categorization results to guide the design of the
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first characteristic study of PUTs in .NET open source projects (with a focus on PUTs written
using the Pex framework, given that Pex is one of the most widely used test generation tools
in industry [39]). Our findings from the categorization results of the forum posts show the
following top three PUT-related categories that developers are most concerned with:
1. “Assumption/Assertion/Attribute usage” problems, which involve the discussion of using

certain PUT assumptions, assertions, and attributes to address the issues faced by
developers, are the most popular category of posts (occupying 23 of the 93 posts).

2. “Non-primitive parameters/object creation” problems, which involve the discussion of
generating objects for PUTs with parameters of a non-primitive type, are the second
most popular category of posts (occupying 17 of the 93 posts).

3. “PUT concept/guideline” problems, which involve the discussion of the PUT concept and
general guidelines for writing good PUTs, are the third most popular category of posts
(occupying 11 of the 93 posts).

Upon further investigation into these top PUT-related categories, we find that developers
in general are concerned with when and what assumptions, assertions, and attributes they
should use when they are writing PUTs. We find that a significant number of forum posts
are directly related to how developers should replace hard-coded method sequences with
non-primitive parameters of PUTs. We also find that developers often question what patterns
their PUTs should be written in. Using our categorization and investigation results, we
formulate three research questions and answer these questions using 11 open-source projects,
which contain 741 PUTs.

In particular, we investigate the following three research questions and attain correspond-
ing findings:
1. What are the extents and the types of assumptions, assertions, and attributes

being used in PUTs? We present a wide range of assumption, assertion, and attribute
types used by developers as shown in Tables 3a, 3b, and 5, and tool vendors or researchers
can incorporate this data with their tools to better infer assumptions, assertions, and
attributes to assist developers. For example, tool vendors or researchers who care
about the most commonly used assumptions should focus on PexAssumeUnderTest or
PexAssumeNotNull, since these two are the most commonly used assumptions. Lastly,
based on the studied PUTs, we find that increasing the default value of attributes
as suggested by tools such as Pex rarely contributes to increased code coverage. Tool
vendors or researchers should aim to improve the quality of the attribute recommendations
provided by their tools, if any are provided at all.

2. How often can hard-coded method sequences in PUTs be replaced with non-
primitive parameters and how useful is it to do so? There are a significant
number of receiver objects in the PUTs (written by developers) that could be promoted to
non-primitive parameters, and a significant number of existing non-primitive parameters
that lack factory methods (i.e., methods manually written to help the tools generate
desirable object states for non-primitive parameters). It is worthwhile for tool researchers
or vendors to provide effective tool support to assist developers to promote these receiver
objects (resulted from hard-coded method sequences), e.g., inferring assumptions for a
non-primitive parameter promoted from hard-coded method sequences. Additionally,
once hard-coded method sequences are promoted to non-primitive parameters, developers
can also use assistance in writing more factory methods for such parameters.

3. What are common design patterns and bad code smells of PUTs? By under-
standing how developers write PUTs, testing educators can teach developers appropriate
ways to improve PUTs. For example, developers should consider splitting PUTs with
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5:4 A Characteristic Study of Parameterized Unit Tests

multiple conditional statements into separate PUTs each covering a case of the conditional
statements. Doing so makes the PUTs easier to understand and eases the effort to
diagnose the reason for test failures. Tool vendors and researchers can also incorporate
this data with their tools to check the style of PUTs for suggesting how the PUTs can
be improved. For example, checking whether a PUT contains conditionals, contains
hard-coded test data, and contains duplicate test code, etc. often accurately identifies a
PUT that can be improved.

In summary, this paper makes the following major contributions:
The categorization of the Microsoft MSDN Pex Forum posts (contributed primarily by
industrial practitioners) related to PUTs.
The first characteristic study of PUTs in open source projects, with a focus on hundreds
of real-world PUTs, producing study findings that provide valuable insights for various
stakeholders.
A collection of real-world open-source projects equipped with developer-written PUTs
and a suite of tools for analyzing PUTs (both are used for our study and are released on
our project website [2]). These PUTs and analysis tools can be used by the community to
conduct future empirical studies or to evaluate enhancements to automated test generation
tools.

The work in this paper is part of the efforts of our industry-academia team (including
university/industrial testing researchers and tool vendors) for bringing parameterized unit
testing to broad industrial practices of software development. To understand how automatic
test generation tools interact with PUTs, we specifically study PUTs written with the Pex
framework. Besides the Pex framework, other .NET frameworks such as NUnit also support
PUTs. In recent years, PUTs are also increasingly adopted among Java developers, partly
due to the inclusion of parameterized test [14] and theories [33, 5] in the JUnit framework.
However, unlike the Pex framework, these other frameworks lack powerful test generation
tools such as Pex to support automatic generation of tests with high code coverage, and part
of our study with PUTs, specifically the part described in Section 5, does investigate the
code coverage of the input values automatically generated from PUTs.

The remainder of this paper is organized as follows. Section 2 presents an example of
parameterized unit testing. Section 3 discusses the categorization of Pex forum posts that
motivates our study. Section 4 discusses the setup of our study. Section 5 presents our study
findings and discusses the implications to stakeholders. Section 6 discusses threats to validity
of our study. Section 7 presents our related work, and Section 8 concludes the paper.

2 Background

Consider the method under test from the open source project of NUnit Console [11] in
Figure 1. One way to supply strong test oracles for automatically generated input values is
to write preconditions and postconditions for this method under test. It is relatively easy
to specify preconditions for the method as (sn != null) && (sv != null) but it is actually
quite challenging to specify comprehensive postconditions to capture this method’s intended
behaviors. The reason is that this method’s intended behaviors depend on the behaviors
of all the method calls inside the SaveSetting method. In order to write postconditions
for SaveSetting, we would need to know the postconditions of the other method calls in
SaveSetting (e.g., GetSetting) as well. In addition, the postconditions can be very long since
there are many conditional statements with complex conditions (e.g., Lines 8-11). If a method
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1 public class SettingsGroup {
2 private Hashtable storage = new Hashtable();
3 public event SettingsEventHandler Changed;
4 public void SaveSetting(string sn, object sv) {
5 object ov = GetSetting(settingName);
6 //Avoid change if there is no real change
7 if(ov != null) {
8 if((ov is string && sv is string && (string)ov == (string)sv) ||
9 (os is int && sv is int && (int)ov == (int)sv) ||

10 (os is bool && sv is bool && (bool)ov == (bool)sv) ||
11 (os is Enum && sv is Enum && ov.Equals(sv)))
12 return;
13 }
14 storage[settingName] = settingValue;
15 if(Changed != null)
16 Changed(this, new SettingsEventArgs(sn));
17 }
18 }

Figure 1 SaveSetting method under test from the SettingsGroup class of NUnit Console [11].

contains loops, its postcondition may be even more difficult to write, since we would need to
know the loop invariants and the postconditions may need to contain quantifiers. Thus, there
is a need for a practical method to specify program behaviors under test in the form of unit
tests. Specifying program behaviors in the form of unit tests can be easier since we do not
need to specify all the intended behaviors of the method under test as a single logical formula.
Instead, we can write test code to specify the intended behaviors of the method under test for
a specific scenario (e.g., interacting with other specific methods). For example, a real-world
conventional unit test (CUT) written by the NUnit developers is shown in Figure 2. The
CUT in this figure checks that after we save a setting by calling the SaveSetting method,
we should be able to retrieve the same setting by calling the GetSetting method. Despite
seemingly comprehensive, the CUT in Figure 2 is insufficient, since it is unable to cover Lines
8-12 of the method in Figure 1. Figure 3 shows an additional CUT that developers can write
to cover Lines 8-12; this additional CUT checks that saving the same setting twice does not
invoke the Changed event handler twice. These two CUTs’ corresponding, and more powerful,
PUT is shown in Figure 4.

The beginning of the PUT (Lines 3-5) include PexAssume statements that serve as as-
sumptions for the three PUT parameters. During test generation, Pex filters out all the
generated input values (for the PUT parameters) that violate the specified assumptions.
These assumptions are needed to specify the state of SettingsGroup that one may want to
test. For example, according to Lines 2-3 in Figure 2, sg initially does not have "X" and
"NAME" set. Thus, we need to add PexAssume.IsNull(st.Getting(sn)) (Line 5) to force Pex
to generate only an object of SettingsGroup that satisfies the same condition as Lines 2-3
in Figure 2. Otherwise, without such assumptions, the input values generated by Pex may
largely be of no interest to the developers. The PexAssert statements in Lines 7 and 10
are used as the assertions to be verified when running the generated input values. More
specifically, the assumption on Line 5 and the assertion on Line 7 in the PUT correspond
to Lines 2-3 and Lines 6-7, respectively, in the CUT from Figure 2. Lines 8-9 in the PUT
then cover the case of calling the SaveSetting method twice with the same parameters as
accomplished in the CUT shown in Figure 3. Note that writing the PUT allows the test to
be more general as variable sn can be any arbitrary string, better than hard-coding it to be
only "X" or "NAME" (as done in the CUTs).

A PUT is annotated with the [PexMethod] attribute, and is sometimes attached with
optional attributes to provide configuration options for automatic test generation tools.
An example attribute is [PexMethod(MaxRuns = 200)] as shown in Figure 4. The MaxRuns
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1 public void SaveAndLoadSettings() {
2 Assert.IsNull(sg.GetSetting("X"));
3 Assert.IsNull(sg.GetSetting("NAME"));
4 sg.SaveSetting("X", 5);
5 sg.SaveSetting("NAME", "Charlie");
6 Assert.AreEqual(5, sg.GetSetting("X"));
7 Assert.AreEqual("Charlie", sg.GetSetting("NAME"));
8 }

Figure 2 A real-world CUT for the method in Figure 1.

1 public void SaveSettingsWhenSettingIsAlreadyInitialized() {
2 Assert.IsNull(sg.GetSetting("X"));
3 sg.SaveSetting("X", 5);
4 sg.SaveSetting("X", 5);
5 // Below assert that Changed only got invoked once in SaveSetting
6 ...
7 }

Figure 3 An additional CUT for the method in Figure 1 to cover the lines that the CUT in
Figure 2 does not cover.

1 [PexMethod(MaxRuns = 200)]
2 public void TestSave1(SettingsGroup sg, string sn, object sv) {
3 PexAssume.IsTrue(sg != null && sg.Changed != null);
4 PexAssume.IsTrue(sn != null && sv != null);
5 PexAssume.IsNull(sg.GetSetting(sn));
6 sg.SaveSetting(sn, sv);
7 PexAssert.AreEqual(sv, sg.GetSetting(sn));
8 sg.SaveSetting(sn, sv);
9 // Below assert that Changed only got invoked once in SaveSetting

10 ...
11 }

Figure 4 The PUT corresponding to the CUTs in Figures 2 and 3.

attribute along with the attribute value of 200 indicates that Pex can take a maximum of
200 runs/iterations during Pex’s path exploration phase for test generation. Since the default
value of MaxRuns is 1000, setting the value of MaxRuns to be just 200 decreases the time that
Pex may take to generate input values. Note that doing so may also cause Pex to generate
fewer input values.

3 Categorization of Forum Posts

This section presents our categorization results of the Microsoft MSDN Pex Forum posts [31]
related to parameterized unit tests. As of January 10th, 2018, the forum includes 1,436 posts
asked by Pex users around the world. These users are primarily industrial practitioners. To
select the forum posts related to parameterized unit tests, we search the forum with each
of the keywords “parameterized”, “PUT”, and “unit test”. Searching the forum with these
three keywords returns 14, 18, and 243 posts, respectively. We manually inspect each of
these returned posts to select only posts that are actually related to parameterized unit tests.
Finally among the returned posts, we identify 93 posts as those related to parameterized
unit tests. Then we categorize these 93 posts into 8 major categories and one miscellaneous
category, as shown in Table 1. The categorization details of the 93 posts can be found on
our project website [2]. We next describe each of these categories and the number of posts
falling into each category.

The posts falling into the top 1 category “assumption/assertion/attribute usage” (25% of
the posts) involve discussion of using certain PUT assumptions, assertions, and attributes
to address the issues faced by PUT users. The posts falling into the second most popular
category “non-primitive parameters/object creation” (18% of the posts) involve discussion
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Table 1 Categorization results of the Microsoft MSDN Pex Forum posts related to parameterized
unit tests.

Category #Posts
Assumption/Assertion/Attribute usage 25% (23/93)
Non-primitive parameters/object creation 18% (17/93)
PUT concept/guideline 12% (11/93)
Test generation 11% (10/93)
PUT/CUT relationship 9% ( 8/93)
Testing interface/generic class/abstract class 6% ( 6/93)
Code contracts 5% ( 5/93)
Mocking 5% ( 5/93)
Miscellaneous 9% ( 8/93)
Total 100% (93/93)

of generating objects for PUTs with non-primitive-type parameters, one of the two major
issues [42] for Pex to generate input values for PUTs. The posts falling into category “PUT
concept/guideline” (12% of the posts) involve discussion of the PUT concept and general
guideline for writing good PUTs. The posts falling into category “test generation” (11%
of the posts) involve discussion of Pex’s test generation for PUTs. The posts falling into
category “PUT/CUT relationship” (9% of the posts) involve discussion of co-existence of
both CUTs and PUTs for the code under test. The posts falling into category “testing
interface/generic class/abstract class” (6% of the posts) involve discussion of writing PUTs
for interfaces, generic classes, or abstract classes. The posts falling into category “code
contracts” (5% of the posts) involve discussion of writing PUTs for code under test equipped
with code contracts [25, 30, 16]. The posts falling into category “mocking” (5% of the posts)
involve discussion of writing mock models together with PUTs. The miscellaneous category
(9% of the posts) includes those other posts that cannot be classified into one of the 8 major
categories.

We use the posts from the top 3 major categories to guide our study design described in
the rest of the paper, specifically with research questions RQ1-RQ3 listed in Section 5. In
particular, our study focuses on quantitative aspects of assumption, assertion, and attribute
usage (top 1 category) in RQ1, non-primitive parameters/object creation (top 2 category) in
RQ2, and PUT concept/guideline (top 3 category) in RQ3.

4 Study Setup

This section describes our process for collecting subjects (e.g., open source projects containing
PUTs) and the tools that we develop to collect and process data from the subjects. The
details of these subjects and our tools can be found on our project website [2].

4.1 Subject-collection Procedure
The subject-collection procedure (including subject sanitization) is a multi-stage process. At
a coarse granularity, this process involves (1) comprehensive and extensive subject collection
from searchable online source code repositories, (2) deduplication of subjects obtained multiple
times from different repositories, and (3) verification of developer-written parameterized unit
tests (e.g., filtering out subjects containing only automatically-generated parameterized test
stubs).
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5:8 A Characteristic Study of Parameterized Unit Tests

For comprehensive collection of subjects, we query a set of widely known code search
services. The used query is “PexMethod Assert”, requiring both “PexMethod” and “Assert”
to appear in the source file of the search results. The two code search services that return
non-empty results based on our search criteria are GitHub [9] and SearchCode [4]. For each
code search service, we first search with our query, and then we extract the source code
repositories containing the files in the search results. When a particular repository is available
from multiple search services, we extract the version of the repository from the search service
that has the most recent commit. Lastly, we manually verify that each of our source code
repositories has at least one PUT with one or more parameters and one or more assertions.

4.2 Analysis Tools
We develop a set of tools to collect metrics from the subjects. We use Roslyn [10], the
.NET Compiler Platform, to build our tools. These tools parse C# source files to produce
an abstract syntax tree, which is traversed to collect information and statistics of interest.
More specifically, the analysis tools statically analyze the C# source code in the .cs files of
each subject. The outputs of the tools include but are not limited to the following: PUTs,
PUTs with if statements, results in Tables 3 and 6, the number of assumption and assertion
clauses, and attributes of the subjects’ PUTs. In general, the results that we present in the
remainder of the paper are collected either directly with the analysis tools released on our
website [2], manual investigation conducted by the authors, or a combination of the two (e.g.,
using the PUTs with if statements to manually categorize the number of PUTs that have
unnecessary if statements).

4.3 Collected Subjects
In total, we study 77 subjects and retain only the subjects that contain at least 10 PUTs and
are not used for university courses or academic research (e.g., creating PUTs to experiment
with Pex’s capability of achieving high code coverage). This comprehensive list of subjects
that we study can be found on our project website [2].

Table 2 shows the information on the subjects that contain at least 10 PUTs. We count a
test method as a PUT if the test method is annotated with attribute “PexMethod” and has
at least one parameter. Our detailed study for research questions focuses on subjects with
at least 10 PUTs because a subject with fewer PUTs often includes occasional tryouts of
PUTs instead of serious use of them for testing the functionalities of the open source project.
Column 1 shows the name of each subject, and Columns 2-3 shows the number of PUTs
and CUTs in each subject. Columns 4-6 show the number of the lines of production source
code, PUTs and CUTs, respectively, in each subject. Columns 7-8 shows the percentage of
statements covered in the project under test by the PUTs on which Pex is applied and by the
CUTs of the subject. Column 9 shows the version of Pex a subject’s PUTs were written with.
If a subject contains PUTs written with multiple versions of Pex, the most recent version of
Pex used to write the subject’s PUTs is shown. Altogether, we identify 11 subjects with at
least 10 PUTs, and these subjects contain a total of 741 PUTs. When we examine the profiles
of the contributors to the subjects, we find that all but one of the subjects have contributors
who work in industry. The remaining one subject, PurelyFunctionalDataStructures, referred
to as PFDS in our tables, is developed by a graduate student imitating the algorithms in a
data structure textbook. The table shows the percentage of statements covered for only 5 out
of 11 subjects because we have difficulties compiling the other subjects (e.g., a subject misses
some dependencies). Part of our future work is to debug the remaining subjects so that we
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Table 2 Subjects collected for our study.

#Methods #LOC Code Cov. Pex
Subject Name PUT CUT Source PUT CUT PUT CUT Version
Atom 240 297 127916 3570 3983 N/A N/A 0.20.41218.2
BBCode 17 22 1576 188 219 84% 69% 0.94.0.0
ConcurrentList 23 57 315 243 645 51% 75% 0.94.0.0
Functional-dotnet 41 87 14002 355 1666 N/A N/A 0.15.40714.1
Henoch 63 149 4793 142 2816 N/A N/A 0.94.0.0
OpenMheg 45 6 21809 382 100 N/A N/A 0.6.30728.0
PFDS 10 2 1818 120 34 50% 12% 0.93.0.0
QuickGraph 205 123 38530 1478 2186 5% 50% 0.94.0.0
SerialProtocol 34 0 7603 269 0 49% 0% 0.94.0.0
Shweet 12 42 2481 295 703 N/A N/A 0.91.50418.0
Utilities-net 51 0 3224 475 0 26% 0% 0.94.0.0
Total 741 785 223158 7496 12352 - - -
Average 67 71 22174 681 1123 52% 41% -

can compile them. More details about the subjects (e.g., the contributors of the subjects,
the number of public methods in the subjects) can be found on our project website [2].

5 Study Results

Our study is based on forum posts asked by Pex users around the world as detailed in Sec-
tions 5.1 to 5.3. Our study findings aim to benefit various stakeholders such as current
or prospective PUT writers (e.g., developers), PUT framework designers, test-generation
tool vendors, testing researchers, and testing educators. In particular, our study intends to
address the following three main research questions:

RQ1: What are the extents and the types of assumptions, assertions, and attributes
being used in PUTs?

We address RQ1 because addressing it can help understand developers’ current prac-
tice of writing assumptions, assertions, and attributes in PUTs, and better inform
stakeholders future directions on providing effective tool support or training on writing
assumptions, assertions, and attributes in PUTs.

RQ2: How often can hard-coded method sequences in PUTs be replaced with non-
primitive parameters and how useful is it to do so?

We address RQ2 because addressing it can help understand the extent of writing
sufficiently general PUTs (e.g., promoting an object produced by a method sequence
hard-coded in a PUT to a non-primitive parameter of the PUT) to fully leverage
automatic test generation tools.

RQ3: What are common design patterns and bad code smells of PUTs?
We address RQ3 because addressing it can help understand how developers are currently
writing PUTs and identify better ways to write good PUTs.

5.1 RQ1. Assumptions, Assertions, and Attributes
To understand developers’ practices of writing assumptions, assertions, and attributes in
PUTs, we study our subjects’ common types of assumptions, assertions, and attributes. Our
study helps provide relevant insights to the posts from the Assumption/Assertion/Attribute
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5:10 A Characteristic Study of Parameterized Unit Tests

Table 3

(a) Different types of assumptions in
subjects.

PexAssume Type # #NC
PexAssumeUnderTest 273 273
PexAssumeNotNull 211 211
IsTrue 158 2
AreNotEqual 73 0
EnumIsDefined 22 0
AreDistinct 13 0
AreDistinctValues 13 0
IsNotNull 10 10
IsFalse 9 0
AreEqual 9 0
TrueForAll 7 2
IsNotNullOrEmpty 4 4
Fail 4 0
InRange 3 0
AreElementsNotNull 1 1
Total 810 503
Null Check Percentage 62% (503/810)

(b) Different types of assertions in
subjects.

PexAssert Type # #NC
AreEqual 355 0
IsTrue 199 2
IsFalse 75 3
Inconclusive 43 0
IsNotNull 26 26
Equal 21 1
TrueForAll 19 0
That 17 0
AreElementsEqual 16 0
IsNull 9 9
AreNotEqual 5 0
Fail 5 0
Throws 5 0
AreBehaviorsEqual 4 0
ImpliesIsTrue 3 0
FALSE 3 0
TRUE 3 0
Empty 2 0
Implies 2 0
Contains 1 0
DoesNotContain 1 0
ReachEventually 1 0
Total 815 41
Null Check Percentage 5% (41/815)

usage category described in Section 3. For example, the original poster of the forum post
titled “New to Unit Testing” questions what type of assertions she/he should use. Another
forum post titled “Do I use NUnit Assert or PexAssert inside my PUTs?” reveals that the
original poster does not understand when and what assumptions to use.

5.1.1 Assumption Usage
As shown in Table 3a, PexAssumeUnderTest is the most common type of assumption, used
273 times in our subjects. PexAssumeUnderTest marks parameters as non-null and to be
that precise type. The second most common type of assumption, PexAssumeNotNull, is
used 211 times. Similar to PexAssumeUnderTest, PexAssumeNotNull marks parameters as non-
null except that it does not require their types to be precise. Both PexAssumeUnderTest
and PexAssumeNotNull are specified as attributes of parameters, but they are essentially a
convenient alternative to specifying assumptions (e.g., the use of attribute PexAssumeNotNull
on a parameter X is the same as PexAssume.IsNotNull(X)). Since PUTs are commonly written
to test the behavior of non-null objects as the class under test or use non-null objects as
arguments to a method under test, it is reasonable that the common assumption types
used by developers are ones that mark parameters as non-null. Figure 5 shows that the
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Figure 5 Assumption-type distribution for each of our subjects.

combination of PexAssumeUnderTest, PexAssumeNotNull, and IsNotNull, which are for nullness
checking, appears the most in all of our subjects. Note that Figure 5 contains only the top
10 commonly used assumption types in our subjects. Furthermore, according to the last row
of Tables 3a and 3b, developers perform null checks much more frequently for assumptions
than assertions. Our findings about the frequency of assumption types and assertion types
that check whether objects are null are similar to the findings of a previous study [34]
on how frequently preconditions and postconditions in code contracts are used to check
whether objects are null. Similar to code contracts, we find that 62% of assumptions perform
null checks while the study on code contracts finds that 77% (1079/1356) of preconditions
perform null checks. Our study also finds that 5% of assertions perform null checks while
the study on code contracts finds that 43% (165/380) of postconditions perform null checks.
Since assertions are validated at the end of a PUT and it is less often that code before the
assertions manipulates or produces a null object, it is reasonable that assumptions check for
null much more frequently than assertions do. For assumption and assertion types such as
TrueForAll, developers’ low number of uses may be due to the unawareness of such types’
existence. TrueForAll checks whether a predicate holds over a collection of elements. In
our subjects, we find cases such as the one in Figure 6 where a collection is iterated over
to check whether a predicate is true for all of its elements; instead, developers could have
used the TrueForAll assumption or assertion. More specifically, the developers of the method
in Figure 6 could have replaced Lines 5-8 with PexAssert.TrueForAll(enumerable.Cast<T>(),
item => matrix.Contains(item)). It is important to note that in versions of Pex after 0.94.0.0,
certain assumption and assertion types were removed (e.g., TrueForAll). However, as shown
in Table 2, none of our subjects used versions of Pex after 0.94.0.0.
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1 [PexMethod]
2 public void GetEnumerator_WhenMatrixConvertedToEnumerable_IteratesOverAllElements<T>(
3 [PexAssumeNotNull]ObjectMatrix<T> matrix ) {
4 System.Collections.IEnumerable enumerable = matrix;
5 foreach(var item in enumerable.Cast<T>())
6 {
7 Assert.IsTrue( matrix.Contains( item ) );
8 }
9 }

Figure 6 PUT (in Atom [1]) that could benefit from Pex’s TrueForAll assertion.

5.1.2 Assertion Usage

According to Figure 7, in all of the subjects except OpenMheg, the PUTs usually contain
assertions for nullness or equality checking. Instead, OpenMheg’s assertions are mainly
Assert.Inconclusive. Assert.Inconclusive is used to indicate that a test is still incomplete.
From our inspection of the PUTs with Assert.Inconclusive in OpenMheg, we find that
developers write Assert.Inconclusive("this test has to be reviewed") in the PUTs. When
we investigate the contents of these PUTs, we find that the developers indeed use these
assertions to keep track of which tests are still incomplete. One example of OpenMheg’s PUT
that contains Assert.Inconclusive is shown in Figure 8. The example is one of many PUTs
in OpenMheg that create a new object but then do nothing with the object and contain
no other assertions but Assert.Inconclusive. When we ignore all PUTs of OpenMheg that
contain only Assert.Inconclusive, we find that the remaining assertions are similar to our
other subjects in that most of them are for nullness or equality checking.

As shown in Table 4, the PFDS subject has the highest number of assume clauses per
PUT method. Upon closer investigation of PFDS’s assume clauses, we find that these clauses
are necessary because PUTs in PFDS test various data structures and the developers of
PFDS have to specify assumptions for all of its PUTs to guide Pex to generate data-structure
inputs that are not null and contain some elements. When we examine the assume clauses in
Atom, the subject with the second highest number of assume clauses per PUT method, we
also find similar cases. On the other hand, the Shweet subject has the highest number of
assert clauses per PUT method. Shweet’s high number of assert clauses per PUT method
can be attributed to the fact that the subject has multiple PUTs each of which contains
around 8 assertions. The reason why some of Shweet’s PUTs each have around 8 assertions
is that the subject’s PUTs test a web service, and the service returns 8 values every time
it is triggered. Therefore, multiple of Shweet’s PUTs assert for whether these 8 values are
correctly returned or not.

5.1.3 Attribute Usage

To investigate developers’ practices of configuring Pex via PUT attributes, we study the
number and settings of attributes, as configuration options for running Pex, written by
developers in PUTs. Our findings from the forum posts related to attributes suggest that
developers are often confused on what attributes to use or how they should configure
attributes. More specifically, 5 out of 23 of the Assumption/Assertion/Attribute usage forum
posts involve an answer recommending the use of a particular attribute or configuring an
attribute in a specific way. For example, a post titled “the test state was: path bounds
exceeded - infinite loop” discusses how developers should set the MaxBranches attribute of
Pex. The setting of MaxBranches controls the maximum number of branches taken by Pex
along a single execution path.
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Figure 7 Assertion-type distribution for each of our subjects.

1 [PexMethod]
2 public Content Constructor03(GenericContentRef genericContentRef) {
3 Content target = new Content(genericContentRef);
4 Assert.Inconclusive("this test has to be reviewed");
5 return target;
6 }

Figure 8 PUT (in OpenMheg [12]) that contains Assert.Inconclusive.

The fourth column of Table 4 shows the average number of attributes added per PUT.
The results show that developers add only 1 attribute for every 3-4 PUTs. Table 5 shows
the number of attributes added for our subjects. Common attributes that developers add
are MaxRuns, MaxConstraintSolverTime, and MaxBranches. The setting of MaxRuns controls the
maximum number of runs before Pex terminates. Developers commonly set this attribute to
be 100 runs when the default value is 1,000. Upon our inspection, most of the PUTs that use
this attribute test methods related to inserting objects into a data structure. By setting the
value of this attribute, developers make Pex terminate faster. In fact, 14 out of 18 attributes
used in QuickGraph are MaxRuns.

MaxConstraintSolverTime is another type of attribute that some projects contain. The
attribute controls the constraint solver’s timeout value during Pex’s exploration. By default,
MaxConstraintSolverTime is set to 10 seconds. Similar to MaxRuns, we find that developers
often set the value to be lower than the default value so that Pex would finish sooner. For
example, BBCode contains PUTs with MaxConstraintSolverTime set to 5 seconds, and Atom
contains PUTs with MaxConstraintSolverTime set to 2 seconds.
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Table 4 Number of PexAssume clauses, PexAssert clauses, and Pex Attributes per PUT.

Subject Name # of Assume # of Assert # of Attrs
Cl. / PUT Cl. / PUT / PUT

Atom 1.72 (412/240) 1.71 (411/240) 0.07 (16/240)
BBCode 1.71 ( 29/ 17) 1.47 ( 25/ 17) 2.18 (37/ 17)
ConcurrentList 0.96 ( 22/ 23) 0.74 ( 17/ 23) 0.26 ( 6/ 23)
Functional-dotnet 1.39 ( 57/ 41) 1.24 ( 51/ 41) 0.17 ( 7/ 41)
Henoch 0.78 ( 49/ 63) 0.05 ( 3/ 63) 0.38 (24/ 63)
OpenMheg 0.76 ( 34/ 45) 1.29 ( 58/ 45) 0.00 ( 0/ 45)
PFDS 2.70 ( 27/ 10) 1.10 ( 11/ 10) 0.00 ( 0/ 10)
QuickGraph 0.91 (186/205) 0.85 (175/205) 0.10 (21/205)
SerialProtocol 0.44 ( 15/ 34) 0.00 ( 0/ 34) 0.00 ( 0/ 34)
Shweet 1.00 ( 12/ 12) 3.42 ( 41/ 12) 0.33 ( 4/ 12)
Utilities-net 0.18 ( 9/ 51) 1.37 ( 70/ 51) 0.00 ( 0/ 51)
Average 1.14 1.20 0.32

Table 5 Different types of Pex attributes in our subjects’ PUTs.

Pex Attribute Type #
MaxBranches 36
MaxRuns 18
MaxConstraintSolverTime 12
MaxConditions 8
MaxRunsWIthoutNewTests 6
MaxStack 5
Timeout 4
MaxExecutionTreeNodes 4
MaxWorkingSet 4
MaxConstraintSolverMemory 4
Total 101

In contrast to MaxRuns, we find that developers commonly set the value of MaxBranches
to be higher than the default value. A common value set by developers is 20,000 when the
default value is 10,000. When we study these PUTs, we find that the code tested by these
PUTs all has loops, and the developers’ intention when using this attribute is to increase
the number of loop iterations allowed by Pex. For example, ConcurrentList contains several
PUTs with MaxBranches = 20000 set. When we run Pex without this attribute, Pex suggests
to set MaxBranches to 20000. However, when we compare the code coverage with and without
the attribute being set, we find that the code coverage does not increase with the attribute
set. In fact, we find that when we manually unset all attributes of ConcurrentList, the code
coverage does not change at all. The number of input values (generated by Pex) that exhibit a
failed test result also does not change. Our findings indicate that increasing the default values
of attributes often does not help increase the code coverage. In fact, for some of BBCode’s
PUTs, its developers set 9 different attributes all to the value of 1,000,000,000. Based on our
estimation of running Pex on these PUTs, it would take approximately 2000 days for Pex
to terminate. When we run Pex with a time limit of three hours on BBCode’s PUTs with
the developer-specified attributes, we notice that the coverage increases marginally by less
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than 1% compared to running Pex with the same time limit on BBCode’s PUTs without any
attributes.

5.1.4 Implications
With the wide range of assumption and assertion types used by developers as shown in
Tables 3a and 3b, tool vendors or researchers can incorporate this data with their tools
to better infer assumptions and assertions to assist developers. For example, tool vendors
or researchers who care about the most commonly used assumption types should focus
on PexAssumeUnderTest or PexAssumeNotNull, since these two are the most commonly used
assumption types. Lastly, based on our subjects’ PUTs, we find that increasing the default
value of attributes as suggested by tools such as Pex rarely contributes to increased code
coverage. Tool vendors or researchers should aim to improve the quality of the attribute
recommendations provided by their tools, if any are provided at all.

5.2 RQ2. Non-primitive Parameters
Typically developers are expected to avoid hard-coding a method sequence in a PUT to
produce an object used for testing the method under test. Instead, developers are expected to
promote such objects to a non-primitive parameter of the PUT. In this way, the PUT can be
made more general, to capture the intended behavior and enable an automatic test generation
tool such as Pex to generate objects of various states for the non-primitive parameter. We
find that 4 out of 17 answers from our non-primitive parameters/object creation category
of forum posts described in Section 3 are directly related to how developers should replace
hard-coded method sequences with non-primitive parameters. For example, in a forum post
titled “Can Pex Generate a List<T> for my PUT”, one of the answers to the question is
that the developer should write a PUT that takes List as a non-primitive parameter instead
of hard-coding a specific method sequence for producing a List object. Doing so enables
Pex to generate non-empty, non-null objects of that list. Since many of our forum posts are
related to how developers should replace hard-coded method sequences with non-primitive
parameters, we decide to study how frequently developers write PUTs with non-primitive
parameters and how often hard-coded method sequences in these PUTs could be replaced
with non-primitive parameters. More details about the forum posts specifically related to
this research question can be found on our project website [2].

5.2.1 Non-primitive Parameter Usage
As shown in Table 6, our result indicates that developers on average write non-primitive
parameters 59.0% of the time for the PUTs in our subjects. In other words, for every
10 parameters used by developers, 5-6 of those parameters are non-primitive. However,
developers write factory methods for only 17.9% of the non-primitive parameters used in
our subjects’ PUTs. The lack of non-primitive parameters and factory methods for such
parameters inhibits test generation tools such as Pex from generating high-quality input
values. For example, Figure 9 depicts 1 out of 16 PUTs that tests the BinaryHeap data
structure in the QuickGraph subject. Promoting the object that it is testing (BinaryHeap) to
a non-primitive parameter enables Pex to use factory methods such as the one depicted in
Figure 10 to generate high-quality input values. Without promoting the BinaryHeap object
to a parameter and using a factory method such as the one in Figure 10, the input values
generated by Pex with the 16 PUTs can cover only 13% of the code blocks in the BinaryHeap
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Table 6 Statistics for factory methods and non-primitive parameters of our subjects. Average is
calculated by dividing the sum of the two relevant columns (e.g., 59.0% is from the sum of Column
3 / the sum of Column 2).

Subject Name
Non-prim Non-prim w/ Factory

Total Non-prim / Params / Non-prim
Params Params Params w/ Factory Params

Atom 456 290 63.6% 66 22.8%
BBCode 33 9 27.3% 0 0.0%
ConcurrentList 16 0 0.0% 0 -
Functional-dotnet 50 5 10.0% 2 40.0%
Henoch 54 48 88.9% 0 0.0%
OpenMheg 75 55 73.3% 0 0.0%
PFDS 10 10 100.0% 0 0.0%
QuickGraph 125 111 88.8% 21 18.9%
SerialProtocol 51 21 41.2% 12 57.1%
Shweet 21 1 4.8% 0 0.0%
Utilities-net 66 15 22.7% 0 0.0%
Average 59.0% 17.9%

class as opposed to 80% when the BinaryHeap object is promoted and a factory method is
provided for it. When developers do not promote non-primitive objects to a non-primitive
parameter or provide factory methods for it, the effectiveness of their tests really depends
on the values that the developers use to initialize the objects in their tests. For example, if
developers do not promote the BinaryHeap object to a parameter or provide factory methods
for it, then depending on the values that the developers would use to initialize the BinaryHeap
object, the code blocks covered by the 16 PUTs could actually range from 13% to 80% (the
same as that achieved by promoting the BinaryHeap object to a parameter and providing
a factory method for it). Promoting the BinaryHeap object to a parameter and providing
factory methods for it not only enable tools such as Pex to generate objects of BinaryHeap
that the developers may not have thought of themselves, but also alleviate the burden of
developers to choose the right values for their tests to properly exercise the code under
test. It is important to note that if we just promote the BinaryHeap object in the 16 PUTs
but do not provide a factory method for it, the percentage of code blocks covered by the
PUTs is 52%. Our findings here suggest that to enable tools such as Pex to generate input
values that cover the most code, it is desirable to promote non-primitive objects in PUTs to
non-primitive parameters and provide factory methods for such parameters. However, even
if no factory methods are provided, simply promoting non-primitive objects in PUTs may
already increase the code coverage achieved by the input values generated by tools such as
Pex.

5.2.2 Promoting Receiver Object

To determine how often developers could have replaced a hard-coded method sequence with
a non-primitive parameter, we manually inspect each PUT to determine the number of them
that could have had their receiver objects be replaced with a non-primitive parameter. We
consider an object of a PUT to be a receiver object if the object directly or indirectly affects
the PUT’s assertions. The detailed results of our manual inspection effort can be found on
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1 [PexMethod(MaxRuns = 100)]
2 [PexAllowedExceptionFromTypeUnderTest(typeof(InvalidOperationException))]
3 public void InsertAndRemoveMinimum<TPriority, TValue>(
4 [PexAssumeUnderTest]BinaryHeap<TPriority, TValue> target,
5 [PexAssumeNotNull] KeyValuePair<TPriority, TValue>[] kvs)
6 {
7 var count = target.Count;
8 foreach (var kv in kvs)
9 target.Add(kv.Key, kv.Value);

10 TPriority minimum = default(TPriority);
11 for (int i = 0; i < kvs.Length; ++i)
12 {
13 if (i == 0)
14 minimum = target.RemoveMinimum().Key;
15 else
16 {
17 var m = target.RemoveMinimum().Key;
18 Assert.IsTrue(target.PriorityComparison(minimum, m) <= 0);
19 minimum = m;
20 }
21 AssertInvariant(target);
22 }
23 Assert.AreEqual(0, target.Count);
24 }

Figure 9 InsertAndRemoveMinimum PUT from the BinaryHeapTest class of QuickGraph [3].

1 [PexFactoryMethod(typeof(BinaryHeap<int, int>))]
2 public static BinaryHeap<int, int> Create(int capacity)
3 {
4 var heap = new BinaryHeap<int, int>(capacity, (i, j) => i.CompareTo(j));
5 return heap;
6 }

Figure 10 Factory method for the BinaryHeapTest class of QuickGraph [3].

our project website [2] under “PUT Patterns”. As shown in Table 7, 95.7% (709/741) of the
PUTs in our subjects have at least one receiver object. However, we find that 49.2% (349/709)
of these PUTs with receiver objects do not have a parameter for the receiver objects, and
89.4% (312/349) of them can actually be modified so that all receiver objects in the PUT
are promoted to PUT parameters. As shown in Table 8, we categorize the 349 PUTs whose
receiver objects could be promoted into the following four different categories. (1) In 47.9%
(167/349) of the PUTs, we can easily promote their receiver objects into a non-primitive
parameter (e.g., removing the object creation line and adding a parameter). (2) In 41.5%
(145/349) of the PUTs, their receiver objects are static (which cannot be instantiated). (3)
In 9.7% (34/349) of the PUTs, they are testing their receiver objects’ constructors. (4) In
1.6% (3/349) of the PUTs, they are testing multiple receiver objects with shared variables
(e.g., testing the equals method of an object).

Of the PUTs belonging to the first category shown in Table 8, 33.0% (55/167) of them
test specific object states. Figure 11 shows an example of a PUT that tests a specific object
state. The developers of this PUT could have promoted _list and element to parameters
and updated index accordingly before the assertion in Line 9. Figure 12 depicts a more
general version of the PUT in Figure 11. Notice how the initial contents of the list and the
element being added to the list are hard-coded in Figure 11 but not in Figure 12.

Upon further investigation, we find that the 145 PUTs in the second category shown in
Table 8 can and should actually be promoted by making the class under test not be static.
On the other hand, the PUTs that test their receiver objects’ constructors have no need to be
improved by promotion. Lastly, the PUTs that test multiple receiver objects are best left not
promoted. In the end we find that the 167 PUTs in the first category (their receiver objects
can be easily promoted) and the 145 PUTs in the second category (their receiver objects
are static) are PUTs whose receiver objects could be promoted and they should actually be
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Table 7 Statistics of PUTs with receiver objects (ROs).

Subject Name # of PUTs # of PUTs w/o # of PUTs whose ROs
w/ ROs promoted ROs should be promoted

Atom 90.4% (217/240) 59.4% (129/217) 98.4% (127/129)
BBCode 88.2% ( 15/ 17) 100.0% ( 15/ 15) 100.0% ( 15/ 15)
ConcurrentList 100.0% ( 23/ 23) 56.5% ( 13/ 23) 100.0% ( 13/ 13)
Functional-dotnet 85.4% ( 35/ 41) 91.4% ( 32/ 35) 100.0% ( 32/ 32)
Henoch 100.0% ( 63/ 63) 25.4% ( 16/ 63) 43.8% ( 7/ 16)
OpenMheg 100.0% ( 45/ 45) 25.0% ( 11/ 45) 18.2% ( 2/ 11)
PFDS 100.0% ( 10/ 10) 100.0% ( 10/ 10) 100.0% ( 10/ 10)
QuickGraph 99.5% (204/205) 20.1% ( 41/204) 73.2% ( 30/ 41)
SerialProtocol 100.0% ( 34/ 34) 55.9% ( 19/ 34) 68.4% ( 13/ 19)
Shweet 100.0% ( 12/ 12) 100.0% ( 12/ 12) 100.0% ( 12/ 12)
Utilities-net 100.0% ( 51/ 51) 100.0% ( 51/ 51) 100.0% ( 51/ 51)
Total 95.7% (709/741) 49.2% (349/709) 89.4% (312/349)

1 [PexMethod]
2 public void GetItem(int index) {
3 IList<int> _list = new ConcurrentList<int>();
4 PexAssume.IsTrue(index >= 0);
5 const int element = 5;
6 for (int i = 0; i < index; i++)
7 _list.Add(0);
8 _list.Add(element);
9 Assert.That(_list[index], Is.EqualTo(element));

10 }

Figure 11 PUT testing a specific object state in ConcurrentList [7].

1 [PexMethod]
2 public void GetItem_Promoted(int index, IList<int> _list, int element) {
3 int size = _list.Count;
4 PexAssume.IsTrue(index >= 0);
5 for(int i = 0; i < index; i++)
6 _list.Add(0);
7 _list.Add(element);
8 index += size;
9 Assert.That(_list[index], Is.EqualTo(element));

10 }

Figure 12 Version of the PUT in Figure 11 with receiver object promoted.

promoted. These two categories of PUTs form the total of 89.4% (312/394) of the PUTs that
could be promoted and should be promoted. Promoting these objects enables test generation
tools such as Pex to use factory methods to generate different states of the receiver objects
(beyond specific hard-coded ones) for the PUTs.

Based on our promotion experiences, often the time, after we promote receiver objects
(resulted from hard-coded method sequences) to non-primitive parameters of PUTs, we need
to add assumptions to constrain the non-primitive parameters so that test generation tools
will not generate input values that are of no interest to developers. For example, for the
GetItem_Promoted PUT in Figure 12, one of the input values generated by Pex with this
PUT can be found in Figure 13. Although the value of index (0) from the GetItem_CUT in
Figure 13 is reasonable for both the GetItem and GetItem_Promoted PUTs and the value of
element (5) is reasonable for the GetItem_Promoted PUT, the additional value of _list (null)
is unreasonable. The value is unreasonable because the GetItem PUT is expected to test
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Table 8 Categorization results of the PUTs whose receiver objects could be promoted.

Category #PUTs
(1) Their receiver objects can be easily promoted 167 (47.9%)
(2) Their receiver objects are static 145 (41.5%)
(3) Testing their receiver objects’ constructors 34 ( 9.7%)
(4) Testing multiple receiver objects with shared variables 3 ( 0.9%)
Total 349

1 [TestMethod]
2 public void GetItem_CUT()
3 {
4 GetItem_Promoted(0, null, 5);
5 }

Figure 13 Example of a CUT generated from the PUT in Figure 12.

adding various elements to _list but it is not expected to test the case when _list is null.
However, due to our promotion of _list’s hard-coded method sequence to a non-primitive
parameter, input values generated from GetItem_Promoted would actually test such a case.
In order for developers to prevent such nonsensical input values from being generated, the
developers would have to add the assumption of PexAssume.IsNotNull(_list) before Line 3
of GetItem_Promoted. Such assumption writing can be time-consuming: essentially promoting
hard-coded method sequences to be non-primitive parameters and adding assumptions to
these parameters are going from specifying “how” (to generate specific object states) to
specifying “what” (specific object states need to be generated).

5.2.3 Implications

There are a significant number of receiver objects (in the PUTs written by developers)
that could be promoted to non-primitive parameters, and a significant number of existing
non-primitive parameters that lack factory methods. It is worthwhile for tool researchers
or vendors to provide effective tool support to assist developers to promote these receiver
objects (resulted from hard-coded method sequences), e.g., inferring assumptions for a
non-primitive parameter promoted from hard-coded method sequences. Additionally, once
hard-coded method sequences are promoted to non-primitive parameters, developers can also
use assistance in writing effective factory methods for such parameters.

5.3 RQ3. PUT Design Patterns and Bad Smells

Our categorization of forum posts as described in Section 3 shows that 5 out of 11 of the
PUT concept/guideline posts discuss patterns in which PUTs should be written in. For
example, two of the posts titled “Assertions in PUT” and “PUT with PEX” involve answers
informing the original poster that assertions are typically necessary for PUTs. One such
forum post contains the following response: “You should write Asserts, in order to ensure
that the Function (TestInvoice in this case) really does what it is intended to do”. To better
understand how developers write PUTs, we manually inspect all of the PUTs in our subjects
to see what the common design patterns and bad smells are. The detailed results of our
manual inspection effort can be found on our project website [2] under “PUT Patterns”.
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1 [PexMethod]
2 public void Clear<T>([PexAssumeUnderTest]ConcurrentList<T> target) {
3 target.Clear();
4 }

Figure 14 PUT (in ConcurrentList [7]) that should be improved with assertions.

Table 9 Categorization results of bad smells in PUTs

Category #PUTs
(1) Code duplication 55
(2) Unnecessary conditional statement 39
(3) Hard-coded test data 37
Total 131

5.3.1 PUT Design Patterns
We find that the majority of the PUTs are written in the following patterns: “AAA” (Triple-A)
and Parameterized Stub. Triple-A is a well-known design pattern for writing unit tests [13].
These tests are organized into three sections: setting up the code under test (Arrange),
exercising the code under test (Act), and verifying the behavior of the code under test (Assert).
On the other hand, a Parameterized Stub test is used to test the code under test that already
contains many assertions (e.g., code equipped with code contracts [25, 30, 16]). In general,
Parameterized Stub tests are easy to write and understand, since the test body is short and
contains only a few method calls to the code under test. In our subjects, we find that 34.6%
(270/741) and 32.1% (251/741) of the PUTs to exhibit the Triple-A and Parameterized Stub
test pattern, respectively. Of the 251 PUTs that exhibit the Parameterized Stub pattern,
we find that 74.5% (187/251) of them are PUTs that should be improved with assertions,
given that the code under test itself does not contain any code-contract assertions or any
other type of assertions. For example, the PUT in Figure 14 contains only a single statement
to test the robustness of the Clear method, which by itself does not contain any assertions.
Developers of this PUT should at least add an assertion such as Assert.That(target.Count,
Is.EqualTo(0)); to the end of the PUT to ensure that once Clear is invoked, then the number
of elements in a ConcurrentList object will be 0.

Similar to the bad smells typically found in conventional unit tests [29], we consider the
following three categories of bad smells in our PUTs: (1) code duplication, (2) unnecessary
conditional statement, and (3) hard-coded test data. These three categories of bad smells can
cause tests to be difficult to understand and maintain. Table 9 shows the number of PUTs
containing each category of bad smells. Our analysis tools as described in Section 4.2 assist
our manual inspections of the PUTs by listing the PUTs that contain conditional statements
or hard-coded test data (as arbitrary strings). Using these lists of PUTs, we then manually
inspect each of these PUTs to determine whether it really has bad code smells. To determine
code duplication, we manually compare every PUT with every other PUT of the same class.
Next, we discuss each of the categories in detail.

5.3.2 Code Duplication in PUTs
Similar to conventional unit tests, PUTs also contain the bad smell of test-code duplication.
Test-code duplication is a poor practice because it increases the cost of maintaining tests.
Duplication often arises when developers clone tests and do not put enough thought into how
to reuse test logic intelligently. As the number of tests increases, it is important that the
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1 [PexMethod]
2 public void GetItem(int index)
3 {
4 PexAssume.IsTrue(index >= 0);
5 const int element = 5;
6 for (int i = 0; i < index; i++)
7 {
8 _list.Add(0);
9 }

10 _list.Add(element);
11 Assert.That(_list[index], Is.EqualTo(element));
12 }

Figure 15 PUT (from the ConcurrentListHandWrittenTests class of ConcurrentList [7]) that
contains many lines of test-code duplication with another PUT named SetItem from the same class.

Table 10 Categorization results of why conditional statements exist in PUTs.

Category #PUTs
(1) Testing particular cases 16
(2) Forcing Pex to explore particular cases 9
(3) Testing different cases according to boolean conditions 9
(4) Unnecessary if statements 5
Total 39

developers either factor out commonly used sequences of statements into helper methods that
can be reused by various tests, or in the case of PUTs, consider merging the PUTs and using
assumptions/attributes to ensure that the specific cases being tested previously are still tested.
In our subjects’ PUTs, we find that 7.4% (55/741) of them contain test-code duplication. In
other words, for 55 of our subjects’ PUTs, there exist another PUT (in the same subject)
that contains a significant amount of duplicate test code. One example of such PUT is shown
in Figure 15. The PUT in this example is from the ConcurrentListHandWrittenTests class
of ConcurrentList [7] and is almost identical to another PUT named SetItem in the same
class. More specifically, the only lines that differ between the two PUTs are Lines 6 and
10. For Line 6 the loop terminating condition is set to i <= index as opposed to i < index.
For Line 10, instead of adding an element with the Add method, the line is _list[index] =
element;. In .NET, the use of brackets and an index value to add elements to a collection is
enabled by Indexers [6]. Since the intention of the two PUTs is to test whether setting and
getting an element from a list of arbitrary size correctly set and get the correct element, the
two differences in Lines 6 and 10 between the two PUTs actually do not matter. Instead of
duplicating so many lines of test code, the developers of these two PUTs should just delete
one of them. Doing so will not only help decrease the cost for developers to maintain the
tests, but also to speed up the testing time, since there will be fewer tests that cover the same
parts of the code under test. Developers can also make use of existing tools for detecting
code clones [18, 19] to automatically help detect code duplication in PUTs.

5.3.3 Unnecessary Conditional Statements in PUTs

Typically developers are expected not to write any conditional statements in their tests,
because tests should be simple, linear sequences of statements. When a test has multiple
execution paths, one cannot be sure exactly how the test will execute in a specific case.
In our subjects, 7.0% (52/741) of the PUTs contain at least one conditional branch. To
understand why developers write PUTs with conditionals, we study whether the conditionals
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1 IList<int> _list = new ConcurrentList<int>();
2 [PexMethod(MaxBranches = 20000)]
3 public void Clear(int count)
4 {
5 var numClears = 100;
6 var results = new List<int>(numClears * 2);
7 var numCpus = Environment.ProcessorCount;
8 var sw = Stopwatch.StartNew();
9 using (SaneParallel.For(0, numCpus, x =>

10 {
11 for (var i = 0; i < count; i++)
12 _list.Add(i);
13 }))
14 {
15 for (var i = 0; i < numClears; i++)
16 {
17 Thread.Sleep(100);
18 results.Add(_list.Count);
19 _list.Clear();
20 results.Add(_list.Count);
21 }
22 }
23 sw.Stop();
24 for (var i = 0; i < numClears; i++)
25 Console.WriteLine("Before/After Clear #{0}: {1}/{2}", i, results[i << 1], results[(i << 1) + 1]);
26 Console.WriteLine("ClearParallelSane took {0}ms", sw.ElapsedMilliseconds);
27 _list.Clear();
28 Assert.That(_list.Count, Is.EqualTo(0));
29 }

Figure 16 PUT with hard-coded test data in the SaneParallelTests class of ConcurrentList [7].

in these PUTs are necessary and if they are not, why the developers write such conditionals
in their PUTs. We find that 25% (13/52) of the PUTs contain conditional statements that
could not be removed. These PUTs are typically testing the interactions of two or more
operations of the code under test (e.g., adding and removing from a data structure). The
remaining 75.0% (39/52) of the PUTs with conditionals can have their conditionals removed
or each of these PUTs should be split into two or more PUTs. Table 10 shows the reasons
for why the conditionals of such PUTs should be removed and the number of PUTs for each
of the reasons. The PUTs in the first and second categories should replace their conditionals
with PexAssume() statements to force Pex to explore and test particular cases. The PUTs in
the third category should be each split into multiple PUTs each of which tests a different
case of the conditional. For the PUTs created from the third category, developers can use
PexAssume() statements in the new PUTs to filter out inputs that do not satisfy the boolean
conditions of the case that the new PUTs are responsible for. The PUTs in the last category
contain conditionals that can be removed with a slight modification to the test (e.g., some
conditionals in a loop can be removed by amending the loop and/or adding code before the
loop). The automatic detection and fixing of unnecessary conditional statements in PUTs
would be a valuable and challenging line of future work due to the following. There are
various reasons for why a PUT may have conditionals as shown in Table 10, and depending
on the reason why a PUT may have conditionals, the fix for removing the conditionals, if
removal is possible, can be quite different.

5.3.4 Hard-coded Test Data in PUTs

Another bad smell that we identify in our subjects’ PUTs is hard-coded test data. This smell
can be problematic for three main reasons. (1) Tests are more difficult to understand. A
developer debugging the tests would need to look at the hard-coded data and deduce how
each value is related to another and how these values affect the code under test. (2) Tests
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are more likely to be flaky [28, 22, 15]. A common reason for tests to be flaky is the reliance
on external dependencies such as databases, file system, and global variables. Hard-coded
data in these tests often lead to multiple tests modifying the same external dependency
and these modifications could cause these tests to fail unexpectedly. (3) Hard-coded test
data prevent automatic test generation tools such as Pex from generating high-quality input
values. In our subjects’ PUTs, we find that 5.0% (37/741) of them use hard-coded test data.
One example of such PUT is shown in Figure 16. In this example, the developers are testing
the Clear method of the ConcurrentList object (_list). The PUT adds an arbitrary number
of elements to the _list object, clears the list, and records the number of elements in the list.
The process of adding and clearing the list repeats 100 times as decided by numClears on
Line 5. As far as we can tell, the developers arbitrarily choose the value of 100 for numClears
on Line 5. When we parameterize the numClears variable and add an assumption that the
variable should be between 1 and 1073741823 (to prevent ArgumentOutOfRangeException), we
find that the input values generated by Pex for the numClears variable to be 1 and 2. These
two values exercise the same lines of the Clear method just as the value of 100 would. The
important point here is that contrary to the developers’ arbitrarily chosen value of 100, Pex
is able to systematically find that using just the values of 1 and 2 would already sufficiently
test the Clear method. That is, as we manually confirm, even if the developers devote more
computation time to testing the Clear method by setting numClears to 100, they would not
cover any additional code or find any additional test failures. Therefore, the developers of
this PUT should not hard code the test data, and instead they should parameterize the
numClears variable. Doing so would enable automatic test generation tools such as Pex to
generate high-quality input values that sufficiently test the code under test. Developers can
also make use of existing program analysis tools [41] to automatically detect whether certain
hard-coded test data may exist between multiple PUTs.

5.3.5 Implications
By understanding how developers write PUTs, testing educators can suggest ways to improve
PUTs. For example, developers should consider splitting PUTs with multiple conditional
statements into separate PUTs each covering a case of the conditional statements. Doing so
makes the developer’s PUTs easier to understand and eases the effort to diagnose the reason
for test failures. Tool vendors and researchers can incorporate this data with their tools
to check the style of PUTs for better suggestions on how the PUTs can be improved. For
example, checking whether a PUT is a Parameterized Stub, contains conditionals, contains
hard-coded test data, and contains duplicate test code often correctly identifies a PUT that
can be improved.

6 Threats to Validity

There are various threats to validity in our study. We broadly divide the main threats into
internal and external validity.

6.1 Internal Validity
Threats to internal validity are concerned with the validity of our study procedure. Due
to the complexity of software, faults in our analysis tools could have affected our results.
However, our analysis tools are tested with a suite of unit tests, and samples of the results
are manually verified. Results from our manual analyses are confirmed by at least two of the
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authors. Furthermore, we rely on various other tools for our study, such as dotCover [8] to
measure the code coverage of the input values generated by Pex. These tools could have
faults as well and consequently such faults could have affected our results.

6.2 External Validity

There are two main threats to external validity in our study.
1. We use the categorization of the Microsoft MSDN Pex Forum posts [31] to determine

the issues surrounding parameterized unit testing. These forum posts enable us and
the research community to access the issues of developers objectively and quantitatively,
but the issues identified from the posts may not be representative of all the issues that
developers encounter.

2. Our findings may not apply to subjects other than those that we study, especially since we
are able to find only 11 subjects matching the criteria defined in Section 4. Furthermore,
we primarily focus on projects using PUTs in the context of automated test generation,
so our findings from such subjects may not generalize to situations outside of this setting
(e.g., general usage of Theories [33] in Java). In addition, our analyses focus specifically
on subjects that contain PUTs written using the Pex framework, and the API differences
or idiosyncrasies of other frameworks may impact the applicability of our findings. All of
our subjects are written in C#, but vary widely in their application domains and project
sizes. Finally, all of our subjects are open source software, and therefore our findings may
not generalize to proprietary software.

7 Related Work

To the best of our knowledge, our characteristic study is the first on parameterized unit testing
in open source projects. In contrast, previous work focuses on proposing new techniques for
parameterized unit testing and does not provide any insight on the practices of parameterized
unit testing. For example, Xie et al. [43] propose a technique for assessing the quality of
PUTs using mutation testing. Thummalapenta et al. [36] propose manual retrofitting of
CUTs to PUTs, and show that new faults are detected and coverage is increased after such
manual retrofitting is conducted. Fraser et al. [21] propose a technique for generating PUTs
starting from concrete test inputs and results.

Our work is related to previous work on studying developer-written formal specifications
such as code contracts [16]. Schiller et al. [34] conduct case studies on the use of code
contracts in open source projects in C#. They analyze 90 projects using code contracts and
categorize their use of various types of specifications, such as null checks, bound checks, and
emptiness checks. They find that checks for nullity and emptiness are the most common
types of specifications. Similarly we find that the most common types of PUT assumptions
are also used for nullness specification. However, the most common types of PUT assertions
are used for equality checking instead of null and emptiness.

Estler et al. [20] study code contract usage in 21 open source projects using JML [27]
in Java, Design By Contract in Eiffel [30], and code contracts [16] in C#. Their study also
includes an analysis of the change in code contracts over time, relative to the change in the
specified source code. Their findings agree with Schiller’s on the majority use of nullness code
contracts. Furthermore, Chalin [17] studies code contract usage in over 80 Eiffel projects.
They show that programmers using Eiffel tend to write more assertions than programmers
using any other languages do.
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8 Conclusion

To fill the gap of lacking studies of PUTs in development practices of either proprietary
or open source software, we have presented categorization results of the Microsoft MSDN
Pex Forum posts (contributed primarily by industrial practitioners) related to PUTs. We
then use the categorization results to guide the design of the first characteristic study of
parameterized unit testing in open source projects. Our study involves hundreds of PUTs
that open source developers write for various open source projects.

Our study findings provide the following valuable insights for various stakeholders such
as current or prospective PUT writers (e.g., developers), PUT framework designers, test-
generation tool vendors, testing researchers, and testing educators.
1. We have studied the extents and types of assumptions, assertions, and attributes being

used in PUTs. Our study has identified assumption and assertion types that tool
vendors or researchers can incorporate with their tools to better infer assumptions
and assertions to assist developers. For example, tool vendors or researchers who care
about the most commonly used assumption types should focus on PexAssumeUnderTest or
PexAssumeNotNull, since these two are the most commonly used assumption types. We
have also found that increasing the default value of attributes as suggested by tools such
as Pex rarely contributes to increased code coverage. Tool vendors or researchers should
aim to improve the quality of the attribute recommendations provided by their tools, if
any are provided at all.

2. We have studied how often hard-coded method sequences in PUTs can be replaced
with non-primitive parameters and how useful it is for developers to do so. Our study
has found that there are a significant number of receiver objects in the PUTs written
by developers that could be promoted to non-primitive parameters, and a significant
number of existing non-primitive parameters that lack factory methods. Tool researchers
or vendors should provide effective tool support to assist developers to promote these
receiver objects (resulted from hard-coded method sequences), e.g., inferring assumptions
for a non-primitive parameter promoted from hard-coded method sequences. Additionally,
once hard-coded method sequences are promoted to non-primitive parameters, developers
can also use assistance in writing effective factory methods for such parameters.

3. We have studied the common design patterns and bad smells in PUTs, and have found that
there are a number of patterns that often correctly identify a PUT that can be improved.
More specifically, checking whether a PUT is a Parameterized Stub, contains conditionals,
contains hard-coded test data, and contains duplicate test code often correctly identifies
a PUT that can be improved. Tool vendors and researchers can incorporate this data
with their tools to check the style of PUTs for better suggestions on how these PUTs can
be improved.

The study is part of our ongoing industry-academia team efforts for bringing parameterized
unit testing to broad industrial practices of software development.
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