
ContextWorkflow: A Monadic DSL for
Compensable and Interruptible Executions
Hiroaki Inoue1

Graduate School of Informatics, Kyoto University, Kyoto, Japan
hinoue@fos.kuis.kyoto-u.ac.jp

Tomoyuki Aotani
School of Computing, Tokyo Institute of Technology, Tokyo, Japan
aotani@c.titech.ac.jp

Atsushi Igarashi
Graduate School of Informatics, Kyoto University, Kyoto, Japan
igarashi@kuis.kyoto-u.ac.jp

Abstract
Context-aware applications, whose behavior reactively depends on the time-varying status of the
surrounding environment – such as network connection, battery level, and sensors – are getting
more and more pervasive and important. The term “context-awareness” usually suggests prompt
reactions to context changes: as the context change signals that the current execution cannot
be continued, the application should immediately abort its execution, possibly does some clean-
up tasks, and suspend until the context allows it to restart. Interruptions, or asynchronous
exceptions, are useful to achieve context-awareness. It is, however, difficult to program with
interruptions in a compositional way in most programming languages because their support is
too primitive, relying on synchronous exception handling mechanism such as try–catch.

We propose a new domain-specific language ContextWorkflow for interruptible programs as
a solution to the problem. A basic unit of an interruptible program is a workflow, i.e., a se-
quence of atomic computations accompanied with compensation actions. The uniqueness of
ContextWorkflow is that, during its execution, a workflow keeps watching the context between
atomic actions and decides if the computation should be continued, aborted, or suspended. Our
contribution of this paper is as follows; (1) the design of a workflow-like language with asyn-
chronous interruption, checkpointing, sub-workflows and suspension; (2) a formal semantics of
the core language; (3) a monadic interpreter corresponding to the semantics; and (4) its concrete
implementation as an embedded domain-specific language in Scala.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases workflow, asynchronous exception, checkpoint, monad, embedded do-
main specific language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2018.2

Supplement Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.4.3.4

Funding This work was supported in part by Kyoto University Design School (Inoue).

Acknowledgements We thank Hidehiko Masuhara and anonymous reviewers for valuable com-
ments.

1 The current affiliation is Mitsubishi Electric Corporation.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi;
licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).
Editor: Todd Millstein; Article No. 2; pp. 2:1–2:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159847816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hinoue@fos.kuis.kyoto-u.ac.jp
mailto:aotani@c.titech.ac.jp
mailto:igarashi@kuis.kyoto-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.2
http://dx.doi.org/10.4230/DARTS.4.3.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 ContextWorkflow

1 Introduction

As mobile computing devices have spread, recent applications tend to depend on external
information (called context) that is time-varying, such as battery level, heat, human input,
network connection, and availability of external modules; these applications are so-called
context-aware applications [3, 7]. Context-aware applications are usually required to promptly
react to context changes; hence, they have to be interruptible or support asynchronous
interruption.

An example is a package manager application that updates packages in an operating
system or a software development environment. It tends to be running for a long time
because, even if only one package is selected by the user for the update, it is necessary to
resolve package dependency, download archive files, unpack them, and more: the whole task
takes a considerable amount of time. Examples of the interruptions are network disconnection
and a press of the “cancel” button. Another example is a battery-powered robot that moves
around to do some task such as cleaning rooms. Examples of the interruptions are a low
battery level and sensor malfunction.

Reactions to interruptions cannot be simple. In the package manager, for example, it is
not desirable just to abort the package manager promptly in response to a press of the “cancel”
button because the package dependency may be broken, i.e., packages may be partially
updated/installed. A desirable package manager must ensure the consistency of packages by
performing some recovery actions, e.g., reverting the update by re-installing the previous
versions of the packages. It may also be preferable in the case of network disconnection to
suspend the execution until the connection comes back. In the robot example, a desirable
reaction to a low battery level is stopping the task and returning to a base for charge.

The two examples show that, if an interruption occurs, it is necessary for context-aware
applications to be able to promptly (1) abort with reverting the “effects” that comes from
uncompleted tasks (file replacement in the first example and robot movement in the second
example) or (2) suspend the program until we can run the continuations or reversions.

Developing context-aware applications in existing mainstream languages is difficult because
of the following two problems. First, as Bainomugisha et al. indicated [7], the languages
lack constructs for promptly reacting to context changes. Inserting the code for the context
checks manually is not desirable from a modularity perspective. Asynchronous exceptions [40],
which enable us to throw exceptions to other threads, could be a solution to the point. It
is, however, still weak for context-aware applications because the context usually depends
on multiple time-varying data and asynchronous exceptions themselves are not helpful for
tidying them up.

Second, support for recovery from asynchronous interruption in the existing languages
is weak. Although today’s standard approach to handling interruptions is to use the
exception handling constructs such as try-catch-finally, they are not useful for reversion
and suspension; in particular, reversion is similar to resource handling with exceptions,
which is hard with the constructs [60]. A more complicated and difficult reaction is partial
abort [25], which is a combination of reversion and suspension and is realized by using
checkpoints [48, 62, 17]. Checkpoints are useful to make applications robust [41] and avoid
wasteful recomputation [14].

Our solution to the problems is based on the ideas of Flute [7] and workflow [22, 12]. Flute
is a programming language originally proposed to solve the first problem. To represent the
context depending on multiple time-varying data, Flute uses functional reactive programming
(FRP) [19, 6] that represents time-varying values as streams and provides operations over
them, which are useful to unify multiple sensory data into one stream. Flute also supports
suspending the program execution.

H. Inoue, T. Aotani, and A. Igarashi 2:3

Workflow [22, 12] represents a long-running interruptible transaction that consists of
several atomic transactions. The typical applications are web applications and business process
management, and recently workflow is adapted to context-aware applications [44, 4, 54].
One import idea of workflow for us is compensation [60], where each action of a program is
accompanied by a compensation action, meaning a recovery action; and program execution
takes account of its progress and automatically constructs its recovery action.

1.1 Contributions
In this paper, we propose a language ContextWorkflow as a solution to the two problems.
ContextWorkflow is a workflow-based language that supports compensation, asynchronous
interruption, suspension, and checkpoints. It also provides sub-workflows and programmable
compensations [9, 12] that ignore and replace the compensations of completed portions of
workflow, respectively.

Our approach to implementing ContextWorkflow is to embed it in other “host” lan-
guages [31]. The benefit of the approach is that the language itself remains small but can be
powerful because any features of the host language are still available.

Our technical contributions are (1) a design of the workflow-based programming language
with asynchronous interruption, (2) a formalization of the language, including the big-step
operational semantics, (3) monadic interpreters corresponding to the semantics, and (4) an
implementation of ContextWorkflow by embedding into Scala. The details are as follows.

Asynchronous Interruption in Workflow. Our approach to asynchronous interruption uses
signals of FRP [19, 6] and polling [20], and our novel finding is that the idea of workflow and
compensation fit with the approach. A workflow in ContextWorkflow is executed under some
context, which changes over time asynchronously and indicates how the execution of workflow
proceeds. An asynchronous interruption is detected by checking the context. We suppose
that each atomic transactions should not be interrupted asynchronously; and we regard
atomic transactions as a primitive construct of our language. The context is checked at the
beginning of each atomic transaction similarly to transactions in database [24] and software
transactional memory [53]. The difference between our workflow and the transactions is with
regard to the time when a check runs. In the transactions, a check runs at the end. We also
introduce constructs for blocking interruptions as in Concurrent Haskell [40] for avoiding
unnecessary context checks.

Formalizing ContextWorkflow. We develop a big-step operational semantics that models
the essential constructs of ContextWorkflow, that is, workflow, compensation, asynchronous
interruption, sub-workflows, programmable compensations, checkpoints, and suspension. The
semantics is inspired by Bruni et al.’s formalization [9] of Sagas [22], which is a foundation
of workflow. Our main contribution is to add checkpoints and suspension to the existing
semantics, especially considering sub-workflows. We also provide and prove basic properties
of the new calculus and describe small extensions. In addition, we discuss whether the polling
code should be inserted before or after an atomic transaction using the core calculus.

Monadic Interpreter. We develop two monadic interpreters in lazy and eager languages
that closely correspond with the big-step operational semantics. We define two CW monads
using the reader, exception monads and free monad transformers that represent the abstract
syntax trees of ContextWorkflow programs. One could define the CW monad based on the free
monad [5] over the compensation functor [47] that consists of the exception and continuation

ECOOP 2018

2:4 ContextWorkflow

monads. Such a definition is, however, not desirable because it is hard to support sub-
workflows, programmable compensations, and checkpoints while keeping correspondence
with the big-step operational semantics straightforward. We instead use the free monad
transformers to define the CW monads. Note that the functions that collapse, or fold, free
monad transformers are different between eager and lazy languages due to efficiency and
stack safety [56]. Two monads and monadic interpreters are therefore necessary.

Embedding in Scala. We carefully embed ContextWorkflow in Scala based on the monadic
interpreter. In our embedding, one can throw Scala exceptions using throw in atomic actions
and handle them using Scala’s standard exception handling mechanism. We use the macro
system in Scala to make the ContextWorkflow program syntax look more natural.

The rest of this paper is organized as follows. In Section 2, we informally introduce
ContextWorkflow with a running example of a maze search robot. Section 3 provides a formal
calculus of the core ContextWorkflow. In Section 4, we construct a monadic interpreter and
show further implementation techniques in Scala. Section 5 presents related work, followed
by future work and conclusion.

2 ContextWorkflow Constructs.

In this section, we look at the basic constructs of ContextWorkflow using a maze search
program as a running example. Here, the notation is based on our implementation, which is
an EDSL in Scala.

A program in ContextWorkflow is a workflow that is a sequence of primitive workflows
(similar to atomic transactions). When an interruption takes place – it can only occur
between primitive workflows – the whole workflow is aborted after running the compensations
of the already completed primitive workflows in the reverse order, or is suspended (and the
rest of the computation is returned).

2.1 Example: Explorer Robot
As a running example, we consider a battery-powered robot that explores a (physical) maze.
Our goal is to program the following context-dependent behavior:
1. The robot must get back to the start or a special point equipped with a battery charger, at

which the robot can recharge its battery. (We call such a special point simply a charger.)
2. When it starts to rain, the robot should suspend its exploration.

Our basic exploration strategy is to visit every place in the maze in the depth-first
search (DFS) manner. We assume that the maze is represented by a graph; the graph is
represented as a set of nodes, which consist of two-dimensional coordinates of integers. A
node is connected to another node if and only if the distance between the two nodes is one,
e.g., (1,0) and (1,1) are connected, but (1,0) and (1,2) are not. This means that if a pair of
coordinates is not in the node set, there is a wall at that position. We define the class Node
for nodes and functions as follows.

case class Node(loc:(Int,Int), var visited:Boolean)
def neighbors(n: Node, maze: Set[Node]): List[Node] = // getting the neighbors of n
def visited(n: Node): Unit = {n.visited = true} // setting the visited flag of n on
def unknown(n: Node): Unit = {n.visited = false} // setting the visited flag off
def move(n: Node): Unit = /* actually moving the robot to n */
def visit(n: Node, maze: Set[Node]): Unit = { // main search program

H. Inoue, T. Aotani, and A. Igarashi 2:5

visited(n);
neighbors(n, maze).foldLeft(()){(_, neighbor) =>
if(!neighbor.visited){ move(neighbor); visit(neighbor, maze); move(n); }
} }

A Node has coordinate information loc and a flag visited that is used to remember whether
the node has been visited or not. The function neighbors returns the neighboring nodes
of a given node n. The functions visited and unknown mark the given node n as visited
and unvisited, respectively. The function move takes a node as an argument and moves the
robot to the position it represents. It works only if the robot is currently at its neighbor
or the node itself. The function visit is the main function that must be refined as our
development proceeds; it takes a node n and a graph maze, and just visits every node in
maze from n recursively in a DFS manner without allowing any interruptions.

In the rest of this section, we revise visit using the features of ContextWorkflow. We
use compensations to move the robot back; suspension to stop the robot when it starts
to rain; nested workflow to skip some compensation actions; blocking constructs atomic
and nonatomic to avoid redundant/unnecessary context checks; and checkpoints to stop the
robot at a charger while it is getting back.

2.2 Interruptible and Compensable Workflow
To make visit interruptible and compensable, we change it to a sequence of primitive
workflows. We write a primitive workflow, which consists of a normal action n and a
compensation action c, as n /+ c in ContextWorkflow. Normal and compensation actions
can be any Scala code (of certain types).

Each function call to visited, move, and visit should be lifted to a primitive workflow
because it changes the “state,” i.e., the flags of nodes and the position of the robot. If an
interruption occurs, the changes have to be reverted by compensations. The compensation
action of each function call is basically its inverse in our example.2 For example, we define a
primitive workflow moveFromTo for move with its reverse as follows:
def moveFromTo(from: Node, to: Node): CW[Unit] = move(to) /+ (_ => move(from))

The normal action move(to) is of the type Unit, and the compensation _ => move(from)
is of the type Unit => Unit; a compensation action takes the result of the corresponding
normal action – which has been finished – as an argument. The whole primitive workflow is
of the type CW[Unit] where CW is the class representing a workflow and means the workflow
returns a value of Unit after its successful execution. A workflow, which is an instance of
CW[T], can be run by invoking exec, which will be explained shortly.

ContextWorkflow provides the workflow block and the operator !! to combine two or
more (primitive) workflows. The workflow block is used to build a long workflow, and the
!! operator is used to sequence workflows in the workflow block.
def workflow[T](body: T): CW[T]
def !![T](m: CW[T]): T

For example, we write like workflow{ val x = !!(m); !!(f(x)); ...}, where x becomes
the result of the workflow m. If unnecessary, val * = can be omitted. This notation is

2 The compensation action is not necessarily the inverse of the normal action in general. The purpose of
the compensation action is to ensure the “state” is acceptable even if an interruption occurs and the
program stops or rolls back.

ECOOP 2018

2:6 ContextWorkflow

almost the syntactic sugar of for-comprehension in Scala; e.g., the foregoing code is equal to
m.flatMap(x => f(x).flatMap(_ => ...)). We can also use ordinary if for branching
and fold (called foldCW) for iteration in ContextWorkflow.

def foldCW[A,B](l: List[A])(z: B)(f: (B,A) => CW[B]): CW[B] // fold for CW

Then, the interruptible version of visit is as follows.

def visit(n: Node, maze: Set[Node]): CW[Unit] = workflow {
!!(visited(n) /+ (_ => unknown(n))) // reversible visited
!!{foldCW(neighbors(n, maze))(()){(_, neighbor) =>
if(!neighbor.visited) workflow{
!!(moveFromTo(n, neighbor)) // the robot moves to the neighbor
!!(visit(neighbor, maze))
!!(moveFromTo(neighbor, n)) // the robot gets back to the original node n
}
else () /+ () } } }

Note that compensation actions are inverses of their corresponding normal actions.
To execute a workflow, we invoke the method exec of CW class:

def exec(...): \/[Option[CW[A]], A]

where \/ introduces disjunctions of two types whose constructors are -\/(l) (meaning the left
value) and \/-(r) (meaning the right value); Option is the type of optional values consisting
of Some(a) and None. The type \/[Option[CW[A]], A] represents that the result may be
abort -\/(None), suspended workflow -\/(Some(cw)) or successful execution \/-(a). The
argument of exec is optional and will be explained in detail later.

2.3 Interruption and Context
We need contexts to interrupt execution of the workflow in ContextWorkflow. A context
signals how the execution of a workflow proceeds and changes over time asynchronously.

The context is represented by a stream of values of type Context, which can be any of
Continue, Abort, PAbort, or Suspend. Their meanings are as follows:

Continue continues the execution; normal actions are executed with their compensations
recorded.
Abort aborts the execution after executing the recorded compensations.
PAbort means partial abort, which is similar to Abort but sensitive to checkpoints: it
rolls back by executing the recorded compensations until the checkpoint most recently
passed and returns the continuation at the checkpoint.
Suspend suspends the execution and returns the rest of the workflow.

The current context is checked periodically (similarly to polling). More concretely, this
periodic checking, called context checking, takes place before the execution of the normal
action of each primitive workflow; if the current context is not equal to Continue, it is
interrupted immediately.

To create a stream of Contexts, we use a signal in the FRP library REScala [51]. For
example, we can represent an interruption due to a low battery level as a signal of Context
as follows, assuming that there is another signal battery indicating the battery level.

val battery: Signal[Int] = /* a signal indicating the battery level */
val lowbattery: Signal[Context] = Signal{ if(battery() < 20) Abort else Continue }

H. Inoue, T. Aotani, and A. Igarashi 2:7

compensation

normal

Abort

🤖

Charger

Visited

compensation

normal🤖

Charger

Visited🤖

Figure 1 Maze search simulation: Abort (left) and Suspend (right).

The signal lowbattery is of the type Signal[Context], whose value is Continue while the
battery level is higher than 20% and Abort otherwise.

The context may depend on multiple sensory data. Such a context is easy to represent,
owing to the expressiveness of REScala. For example, to suspend the robot when the rain
starts, we need another sensory data that reflects the weather condition. It is achieved by
creating another signal that relates to both the battery level and the weather.

val weather: Signal[Context] = Signal{ if(/* badWeather */) Suspend else Continue }
val mazectx: Signal[Context] = Signal { (lowbattery(), weather()) match {
case (Continue, Continue) => Continue
case (Abort, _) => Abort
case _ => Suspend } }

The signal mazectx depends on not only lowbattery but also weather, which is another
context related to the weather. Notice that we also give precedence between the two contexts
here: Abort from lowbattery supersedes Suspend from weather.

To make our workflow depend on mazectx, we need to give it as the argument to exec:

visit(...).exec(mazectx)

Fig. 1 illustrates an execution of visit, where it is aborted (left) or suspended (right)
halfway. Currently, a partial abort at the same place results in the same trace as the aborted
case, since chargers (checkpoints) are not set yet.

A suspended workflow is also a workflow and we can start it by writing as follows:

val r = visit(...).exec(...)
sleep(/*until it is ready to resume the program*/);
r match { case -\/(Some(s)) => s.exec(...) } // restart if suspended

Here, s is the suspended workflow and its type is CW[Unit].

2.4 Nested Workflow and Programmable Compensations
Sometimes we would like to skip some compensation actions. In our example, the behavior of
the aborted case is not desirable because the robot follows exactly the path in which it came
to the aborted point and does not come back straight to the start. A better compensation
would be to take a shortcut to the start node as shown in Fig. 2.

This can be achieved by delimiting a part of a workflow and ignoring the compensation
actions of the delimited part if the part is completed successfully. We call such a part
sub-workflow and provide a construct sub that makes a part of workflow a sub-workflow:

ECOOP 2018

2:8 ContextWorkflow

compensation

normal

Abort

🤖

Charger

Visited

Figure 2 Maze search simulation: Abort (refined).

def sub[A](cw: CW[A]): CW[A]

We revise visit by using sub to skip undesirable compensation actions as follows:

1 def visit(n: Node, maze: Set[Node]):CW[Unit] = workflow {
2 ...
3 if(!neighbor.visited)
4 sub{ workflow{
5 !!(moveFromTo(n, neighbor))
6 !!(visit(neighbor, maze))
7 !!(moveFromTo(neighbor, n))
8 } } ... }

If a partial search from the neighbor is complete, compensations for it will be skipped.
It is possible to perform another compensation action instead of just skipping the

compensation actions within sub-workflows by writing something like sub(...)/+ comp,
which is the so-called programmable compensation [9, 12]. For example, we can add a log:

sub{ ... } /+ (_ => println("skipping compensations"))

2.5 Checkpoint
Using the above constructs, we still cannot realize the behavior of the robot so that it gets
back to a charger. What we have to do is to let the robot partially roll back its move
and suspend at the charger. For this purpose, we use checkpoints. A checkpoint saves the
current execution state when it is passed. If a workflow is partially aborted, it executes only
compensations until the checkpoint most recently passed and then suspends.

Let Node have another flag hasCharger that represents whether the node has a charger
or not. We just add a checkpoint, which is a construct provided by ContextWorkflow, into
the method visit as follows:

class Node(..., hasCharger:Boolean)
def visit(n: Node, maze: Set[Node]):CW[Unit] = workflow {
!!(visited(n) /+ (_ => unknown(n)))
if(n.hasCharger) !!(checkpoint) // checkpoint setting
!!{foldCW(...)(...){...} }

}

H. Inoue, T. Aotani, and A. Igarashi 2:9

compensation

normal

Partial	Abort

🤖

Charger

Visited🤖

compensation

normal

Partial	Abort

🤖
Charger

Visited

S

Figure 3 Maze search simulation: Partial abort (left) and its restart (right).

The left side of Fig. 3 illustrates a search being partially aborted and suspended at the
checkpoint (charger). If exec on the suspended workflow, returned by the partial abort, is
invoked, then the robot moves again from the charger (the right side of Fig. 3).

2.6 Blocking Context Checking
We would like to avoid redundant/unnecessary context checks from an efficiency perspective.
In our example, it is not necessary to check the context at the beginning of (1) marking the
node as visited and (2) skipping (i.e., ()/+()) because they take little time. ContextWorkflow
provides atomic and nonatomic blocks to activate and deactivate context checks.
def atomic[A](cw: CW[A]): CW[A]
def nonatomic[A](cw: CW[A]): CW[A]

An atomic block restrains context checking inside it, and a nonatomic block enforces context
checking inside it. If they are nested inside each other, the innermost block takes effect.

Then, we refine the method visit as follows:
1 def visit(n: Node, maze: Set[Node]):CW[Unit] =
2 atomic{ workflow {
3 !!(visited(n) /+ (_ => unknown(n))); ...
4 !!{foldCW(neighbors(n, maze))(()){(_, neighbor) =>
5 if(!neighbor.visited)
6 nonatomic{ sub{ workflow{ ... visit(...); ... } } }
7 else () /+ () } } } }

By enclosing the whole workflow (except the sub-workflow) by atomic, context checks will
not be performed on lines 3 and 7.

The purpose of atomic and nonatomic blocks is not only to improve the efficiency but
also to control the atomicity of interruption. Such constructs are also very common in the
languages supporting asynchronous exceptions and/or transactions; for example, Concurrent
Haskell [40] has blocking constructs of asynchronous exceptions block and unblock.

3 Operational Semantics of Core ContextWorkflow

In this section, we describe the operational semantics of ContextWorkflow by formalizing
a core calculus, which models compensation, checkpoints, sub-workflow, programmable
compensations, and context-checking. Our calculus is inspired by Bruni et.al’s formalization
of Sagas [9]. Our main contribution is how to treat suspension and checkpointing considering
sub-workflows, in the context of workflow languages.

ECOOP 2018

2:10 ContextWorkflow

t ::= A/C | check | cp | cp#E | sub(t)/C | t;t (workflows)
A, C ::= ε | ... (atomic actions)
c ::= C | sub | ccp#E (compensations)
E ::= [] | E[[];t] (evaluation context)

Figure 4 Syntax of core ContextWorkflow.

3.1 Syntax
We show the syntax of our calculus in Fig. 4. Meta-variable t ranges over context workflows;
s ranges over contexts; c ranges over compensations; A and C range over atomic actions,
which are commands from the underlying programming language and so not specified. (We
assume only that the empty atomic action ε is included.) We use A for normal and C for
compensation actions.

A/C is a primitive workflow consisting of a pair of a normal action A and a compensation
action C. sub(t)/C is a sub-workflow with a programmable compensation; if /C is omitted,
the empty action will be assumed. check is the context checking code that asks the current
execution status. The reason why check is explicit in the syntax is to point out where
context checking occurs; actually, whether check appears before or after a primitive workflow
is significant – see Section 3.4 for discussions. cp is a checkpoint declaration and cp#E, which
does not appear in the source program, is an automatically created checkpoint declaration
that records an evaluation context E, and cp is replaced by cp#E at run time.

In compensations, sub is the marker that indicates the start point of a sub-workflow;
ccp#E is a checkpoint automatically installed into a compensation sequence, where E is the
evaluation context that is going to be executed when this checkpoint is executed.

3.2 Big-Step Semantics
In this section, we present a big-step semantics. We use overlines to denote sequences (with
appropriate delimiters). For example, c stands for a possibly empty sequence c1; · · · ;cn.
We also use c \ c to represent the sequence obtained by removing c from c, and similarly for
other metavariables. Moreover, we use #»A for a sequence of atomic actions excluding ε, e.g.,
A1, · · · , An, Cn, · · · , C1.

The following relations give our semantics of core ContextWorkflow:

〈t, E, c〉 ⇓
#»A 〈c′〉 workflow success

〈t, E, c〉 ⇑
#»A
A|P |S 〈c

′, Es〉 workflow interruption
〈c〉 ⇓

#»A 〈c′, Es〉 compensations success
〈t, c〉 ⇓

#»A 〈〉 program commit
〈t, c〉 ⇓

#»A
A 〈〉 program abort

〈t, c〉 ⇓
#»A
P 〈c′, Es〉 program partial abort

〈t, c〉 ⇓
#»A
S 〈c′, Es〉 program suspend

where “A|P |S” means that one of these symbols (A for abort, P for partial abort, and
S for suspend) comes at this position and Es is an evaluation context. These judgments
basically mean that, if the left side of ⇓

#»A
_ or ⇑

#»A
_ is executed, it terminates after executing #»A

and returns the right side, which is a sequence of compensation actions c′ possibly with a
suspended computation Es. The first two relations are for the execution of t under evaluation

H. Inoue, T. Aotani, and A. Igarashi 2:11

context E with compensation actions c recorded by past commands; the first relation is for
successful execution and the second relation is for interrupted execution, where Es is empty
([]) in the case of abort A or partial abort P . The third relation is for the execution of
compensation actions that are returned when a workflow is aborted or partially aborted.
The last four relations are the main relations for execution of a program, which is t and
compensation actions c, which are in many cases empty. If the program is committed or
aborted, it returns nothing; if the program is partially aborted or suspended, then it returns
compensations c′ and the evaluation context Es. The reason why a compensation sequence
is also returned is that it is used when the suspended workflow restarts; in other words, if
〈c, Es〉 is returned by suspension, a restart of the suspended computation can be expressed by
running a program 〈Es[check], c〉 – check means that the restart should check the context
first to check if the context allows the restart.

The semantics is defined by the rules in Fig. 5; the auxiliary function rmsub1 to forget
compensations in the nearest sub-workflow is defined as follows.

rmsub1 (•) = •
rmsub1 (c;c) = if c = sub, then c else rmsub1 (c)

The rule CW-PW is for the primitive workflow that performs normal action A and adds
compensation C. The rules CW-Check-* are for check and one of them is chosen non-
deterministically. The rule CW-Checkpoint is for a checkpoint, which records the cur-
rent continuation E (with symbol ccp) to the list of compensation actions. The hole
in the evaluation context is filled with []; cp#E, which means that, when the recorded
continuation is executed under a different context, the original continuation is recorded
(CW-Checkpoint-Revisit). The rule CW-Sub is for a successful sub-workflow execution,
which replaces compensations in the sub-workflow with c; CW-Sub-Int is for interrupted
sub-workflow execution. Both rules also add (sub [])/C onto the stack of frames (that is,
the evaluation context) before executing t. The rules CW-Seq-* are for sequences, which
push t2 on the stack of frames. The rules CW-Program-* are for program execution,
where CW-Program-Abort is to run compensations except ccp (represented by c′ \ ccp),
meaning that checkpoints are simply ignored. CW-Program-PAbort performs compensa-
tions – if they include ccp, compensation will stop at the first ccp and return the evaluation
context recorded there (see CW-Comp-CCP). The rules CW-Comp* are for the execution
of compensations.

An example of workflow execution is shown as follows. The derivation tree for this relation
is given in Appendix A.2.

〈sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4, •〉 ⇓A1,A2,Ca

P

〈C1;sub;sub, sub(sub([];cp#E1;sub(t2)/Ca;check)/Cb;t3);t4〉
where tk = Ak/Ck (1 ≤ k ≤ 4) and E1 = sub(sub([];sub(t2)/Ca;check)/Cb;t3);t4.

This is an example of partial abort at the check; hence, an evaluation context and compens-
ations are returned. If we would like to restart the suspended workflow, we give check (or
ε/ε, if the initial check can be omitted) to the evaluation context. Then, restarting it may
perform normal actions A2, A3, and A4 and terminate. In other words, the relation below can
be derived.

〈sub(sub(check;cp#E1;sub(t2)/Ca;check)/Cb;t3);t4, C1;sub;sub〉 ⇓A2,A3,A4 〈〉

ECOOP 2018

2:12 ContextWorkflow

〈A/C,E,c〉 ⇓A 〈C;c〉
(CW-PW)

〈check,E,c〉 ⇓ε 〈c〉
(CW-Check-Cont)

〈check,E,c〉 ⇑εS 〈c,E〉
(CW-Check-Suspend)

〈check,E,c〉 ⇑εA 〈c,[]〉
(CW-Check-Abort)

〈check,E,c〉 ⇑εP 〈c,[]〉
(CW-Check-PAbort)

〈cp,E,c〉 ⇓ε 〈ccp#E[[];cp#E];c〉
(CW-Checkpoint)

〈cp#E0,E,c〉 ⇓ε 〈ccp#E0[[];cp#E0];c〉
(CW-Checkpoint-Revisit)

〈t,E[(sub [])/C],sub;c〉 ⇓
#»A 〈c′〉

〈sub(t)/C,E,c〉 ⇓
#»A 〈C;rmsub1 (c′)〉

(CW-Sub)

〈t,E[(sub [])/C],sub;c〉 ⇑
#»A
∗ 〈c′,Es〉

〈sub(t)/C,E,c〉 ⇑
#»A
∗ 〈c′,Es〉

(CW-Sub-Int)

〈t1,E[[];t2],c〉 ⇓
#»A1 〈c′〉 〈t2,E,c′〉 ⇓

#»A2 〈c′′〉

〈t1;t2,E,c〉 ⇓
#»A1; #»A2 〈c′′〉

(CW-Seq)

〈t1,E[[];t2],c〉 ⇑
#»A
∗ 〈c′,Es〉

〈t1;t2,E,c〉 ⇑
#»A
∗ 〈c′,Es〉

(CW-Seq-Int1)

〈t1,E[[];t2],c〉 ⇓
#»A1 〈c′〉 〈t2,E,c′〉 ⇑

#»A2
∗ 〈c′′,Es〉

〈t1;t2,E,c〉 ⇑
#»A1; #»A2
∗ 〈c′′,Es〉

(CW-Seq-Int2)

〈t,[],c〉 ⇓
#»A 〈•〉

〈t,c〉 ⇓
#»A 〈〉

(CW-Program-Commit)

〈t,[],c〉 ⇑
#»A
A 〈c′,[]〉 〈c′ \ ccp〉 ⇓

#»C 〈•,[]〉

〈t,c〉 ⇓
#»A ; #»C
A 〈〉

(CW-Program-Abort)

〈t,[],c〉 ⇑
#»A
P 〈c′,[]〉 〈c′〉 ⇓

#»C 〈c′′,Es〉

〈t,c〉 ⇓
#»A ; #»C
P 〈c′′,Es〉

(CW-Program-PAbort)

〈t,[],c〉 ⇑
#»A
S 〈c′,Es〉

〈t,c〉 ⇓
#»A
S 〈c′,Es〉

(CW-Program-Suspend)

compensation

〈C〉 ⇓C 〈•,[]〉
(CW-Comp-Action)

〈sub〉 ⇓ε 〈•,[]〉
(CW-Comp-Sub)

〈c〉 ⇓
#»C 〈•,[]〉 〈c〉 ⇓

#»

C′
〈•,[]〉

〈c;c〉 ⇓
#»C ;

#»

C′
〈•,[]〉

(CW-Comp-Seq)

〈ccp#E〉 ⇓ε 〈•,E〉
(CW-Comp-Ccp)

Es 6= [] 〈c〉 ⇓
#»C 〈•,Es〉

〈c;c〉 ⇓
#»C 〈c,Es〉

(CW-Comp-Seq-PAbort1)

Es 6= [] 〈c〉 ⇓
#»C1 〈•,[]〉 〈c〉 ⇓

#»C2 〈c′,Es〉

〈c;c〉 ⇓
#»C1; #»C2 〈c′,Es〉

(CW-Comp-Seq-PAbort2)

Figure 5 Big step semantics of core ContextWorkflow.

H. Inoue, T. Aotani, and A. Igarashi 2:13

3.3 Properties
Here, we state some properties that hold of the semantics. The main aim of this section
is to rigorously give the specification to the language. In particular, giving specifications
about suspension and partial aborts (checkpoints) is important since these are unusual in
the context of workflow languages.

In the following theorems, let pk = Ak/Ck for some k, and we define a function [(t) and
predicates includes and nosub as follows.

Let [(t) be a workflow obtained from t by removing sub, check, cp and cp#E from t.
includes(t,m, n) iff [(t) = pm; · · · ;pn and m ≤ n; or t has no primitive workflows and
m 6≤ n.
includes(E,m, n) = includes(E[check],m, n).
includes(c,m, n) iff c\{sub, ccp#E} = Cm;...;Cn and m ≥ n; or c has no atomic actions
C∗ and m 6≤ n.
nosub(t,m, n) iff includes(t,m, n) and t has no sub-workflow.

Theorems 1 and 2 state about the behaviors under contexts Continue and Abort. These
are the basic properties of Sagas [9].

I Theorem 1 (Workflow commits). If includes(t,m, n) and 〈t, •〉 ⇓
#»A 〈〉 and m ≤ n, then

#»A = Am, · · · An.

I Theorem 2 (Workflow aborts (Successful Compensation)). If nosub(t,m, n) and 〈t, •〉 ⇓
#»A
A 〈〉

and m ≤ n, then #»A = Am, · · · Ai, Ci, · · · , Cm for some i (m ≤ i ≤ n), or #»A = ε.

Theorem 3 states that, even though a workflow is suspended in the middle by Suspend,
the resulting normal actions after its final commit are always the same. Therefore, it ensures
that a suspended workflow actually continues from the suspension point.

I Theorem 3 (Restarted suspended workflow commits). If 〈t, •〉 ⇓
#»A 〈〉 and 〈t, •〉 ⇓

#»

A′

S 〈c, E〉
and 〈E[check], c〉 ⇓

»

A′′ 〈〉, then #»A =
#»

A′,
»

A′′.

Theorem 4 states that if a workflow suspends at a checkpoint by PAbort, it surely did
compensations corresponding to completed normal actions successive to the checkpoint;
moreover, the suspended workflow actually points to the continuation from the checkpoint.

I Theorem 4 (Workflow partially aborts). If nosub(t,m, n) and 〈t, •〉 ⇓
#»A
P 〈c, E〉 and m ≤ n,

then either of the followings hold.
#»A = Am, · · · , Ai, Ci, Ci−1, · · · , Cj and includes(E, j, n) and includes(c, j − 1,m) for some i
and j (m ≤ j ≤ i ≤ n).
#»A = Am, · · · , An and includes(E, 1, 0) and includes(c, n,m).

Moreover, the following conditions hold.
1. (Suspended workflow commits) If 〈E[check], c〉 ⇓

#»

A′ 〈〉, then
#»

A′ = Aj , · · · , An, or
#»

A′ = ε (if
includes(E, 1, 0)).

2. (Suspended workflow aborts) If 〈E[check], c〉 ⇓
#»

A′

A 〈〉, then
#»

A′ = Aj , · · · Ak, Ck, · · · , Cm for
some k (j ≤ k ≤ n) or

#»

A′ = Cj−1, · · · , Cm.

Theorem 5 provides the properties about a complex workflow including a sub-workflow,
checkpoints and PAbort; it describes that a completed sub-workflow is skipped at the
compensation time and a suspended workflow remembers the original program structure
including checkpoints and the sub-workflow.

ECOOP 2018

2:14 ContextWorkflow

I Theorem 5 (Partial abort, checkpoint and nested workflow). Suppose that includes(t,1,n)
and t without check is
p1;...;cp;pk;...;pm;sub(pm+1;...;cp;pj;...;pl)/Ca;pl+1;...;pn and 〈t, •〉 ⇓

#»A
P 〈c,E〉.

1. (Partial abort skips compensations of complete sub-workflows) If Al+1 ∈ {
#»A }, then

#»A = A1, · · · , Ai, Ci, · · · , Cl+1, Ca, Cm, · · · , Ck for some i > l.
2. (A suspended workflow remembers checkpoints in complete sub-workflows) If Al+1 ∈ {

#»A }
and 〈E[check], c〉 ⇓

#»

A′

P 〈c′′, E′〉 and Aj ∈ {
#»

A′} ∧ Al 6∈ {
#»

A′}, then
#»

A′ = Ak, · · · , Ai, Ci, · · · , Cj
for some i such that (j ≤ i ≤ l).

3. (A suspended workflow remembers checkpoints before a sub-workflow) If Cj ∈ { #»A} and
〈E[check],c〉 ⇓

#»

A′

P 〈c′′,E′〉 and Al+1 ∈ {
#»

A′}, then
#»

A′ = Aj , · · · ,Ai,Ci, · · · ,Cl+1,Ca,Cm, · · · ,Ck
for some i > l.

For the robot example, the first and the third items of Theorem 5 are significant;
otherwise, the robot would move back to the whole path at the compensation time, and
forget checkpoints. The second item is important in an example that needs re-calculation of
a complete sub-workflow.

3.4 Discussion
Design Choice of Primitive Workflow with Context Checking. Although A/C is the prim-
itive workflow in the calculus, it does not appear explicitly in the DSL. We regard A/C
preceded by check as a primitive workflow and give another notation A /+ C in the DSL,
representing asynchronous interruption. Actually, another interpretation of A /+ C would be
to put check after A/C. The difference between these interpretations becomes clear when
executing a sub-workflow. Let tk = Ak/+Ck for k = 1, 2. Then, when we execute sub(t1;t2),
is it possible that the resulting action sequence A1,A2,C2,C1 appears? In the former choice
(where A/+C is check; A/C), such a result never occurs – possible sequences of actions are
only •, “A1,C1”, or “A1,A2” – while it may in the latter.

The former choice is looser than the latter in the sense that the whole execution may
commit after the execution though context checking actually occurs during the execution
of an atomic action. Such a behavior is critical in cases where an atomic action must be
performed in the Continue context. For example, suppose that a workflow contains an
atomic action to download something and the context relates to network availability; then
the atomic action must commit only at the time when it is executed in the Continue context;
otherwise, the downloaded file would be incomplete. Therefore, we can regard the latter
choice as transactions.

Since we suppose that many context-aware applications such as robots are not strict,
in our implementation, we adopt the former choice by default. Fortunately, we can switch
between both semantics easily.

Atomic and nonatomic blocks. It is easy to extend with atomic and nonatomic. Their
semantics is similar to sub-workflows and they basically control non-determinism in check.

Abnormal termination. We can consider abnormal termination [9], a stronger notion of
abort that occurs when an atomic action (or a compensation action) fails without even
performing any compensation. Though we do not include abnormal termination here,
it is not difficult to add it; it is enough to add nondeterminism to rules CW-PW and
CW-Comp-Action and the other relation for the abnormal signal. Later, we implement
abnormal termination in the E-DSL, by using exceptions in Scala.

H. Inoue, T. Aotani, and A. Igarashi 2:15

Differences with respect to the calculus [9]. Here, we describe the differences with respect
to the existing calculus [9], by which ours are inspired.

Ours adds the notions of checkpoint, partial abort, and suspension. Technically, our
semantics introduces evaluation contexts in order to capture continuations of workflow
executions.
Ours omits abnormal termination and does not model parallelism.
In ours, an abort inside a nested workflow results in an abort of the parent workflow.
Although this design choice is not usual [12] (where our choice is referred to as upward
abortion propagation), we intend that an abort signal means it is signaled to the whole
workflow, because the workflow is executed on a single thread.

4 Monadic embedding to Scala

Our approach to implementing ContextWorkflow is to embed the language into another
language. We use a free monad transformer for representing and building the abstract syntax
trees and define a monadic interpreter that follows the semantics in Section 3.

There are two differences between the core calculus and the embedding, though they
closely correspond with each other. First, the sub-block is represented by two marks in
the embedding, to indicate the beginning and the end of a block. Second, the semantics of
check is deterministic in the embedding while it is nondeterministic in the core calculus. Our
interpreter checks the context when evaluating check and chooses one branch. We represent
the context by a stream of Context, which is essentially the same as the signal of Context
in Section 2.

The underlying monad of our free monad transformer is a combination of an exception
monad and a reader monad. The exception monad represents aborts, partial aborts, and
suspensions. The reader monad keeps the context that is checked when check is evaluated.
In other words, we develop ContextWorkflow on top of a monadic language that supports
exceptions and readable environments. The monadic interpreter translates ContextWorkflow
programs to monadic programs.

The main contribution of this section is (1) a simple implementation, i.e., clear corres-
pondence between the semantics and implementation, and (2) efficiency in eager languages.
A naive approach would be to extend the compensation monad [47], but it is hard to make
such an extension simple. See Section 5 for a detailed discussion.

We use Scala as the language for demonstration and explanation. Although our imple-
mentation in Scala heavily relies on scalaz [1], we here show language/library-independent
definitions for comprehensibility and generality.

4.1 Free monad transformers
This section gives a brief introduction to the free monad transformers along with the basic
definitions and notations for monadic programming in Scala. Readers who would like to
learn about monads and monadic programming are referred to other papers [43, 58]. Most
of the definitions are simplified; although scalaz uses implicit conversions to use objects as
functors and monads, here we define functors and monads using simple inheritance.

A free monad transformer FreeT[F,M,_] is a monad that is freely constructed from the
given functor F and underlying monad M. One can understand free monad transformers as
abstract syntax trees and therefore the functor F defines the “commands” of the language.
The difference from free monads is that the nodes are some computations of which semantics
is given by the underlying monad.

ECOOP 2018

2:16 ContextWorkflow

Functors and monads are defined by the traits Functor and Monad, respectively. Free
monad transformers are defined by the abstract class FreeT. Functor provides map (fmap in
Haskell) and Monad provides flatMap (»= in Haskell) and point (return in Haskell).

trait Functor[F[_]]{ def map[A,B](f: A => B): F[B] }
trait Monad[M[_]] extends Functor[M]{
def flatMap[A,B](f: A => M[B]): M[B]
def point[A](a: => A): M[A] }

Because Monad provides flatMap, we can use the for-comprehension in Scala, similarly to
the do-notation in Haskell. For example, for values m1 and m2 of the type monad M, the code

for{ a <- m1 ; b <- m2 } yield a + b

is equivalent to the following code.

m1.flatMap(a => m2.map(b => a + b))

FreeT is defined using the auxiliary trait FreeF and provides the two functions iterT
and interpretS.3 Intuitively, FreeT is a list-like structure and iterT works as foldr over
lists. interpretS replaces the “commands” of the language with other “commands.”

class FreeT[F[_],M[_],A](run: M[FreeF[F,A,FreeT[F,M,A]]])
extends Monad[FreeT[F,M,?]]{
def iterT(interp: F[M[A]] => M[A]): M[A]
def interpretS[G[_]](st: ~>[F,G]): FreeT[G,M,A]

}

iterT takes an interpretation of “commands” and translates a “program” of type
FreeT[F,M,A] to that of M[A]. interpretS takes a natural transformation from the func-
tor F to another functor G and translates a “program” of type FreeT[F,M,A] into that of
type FreeT[G,M,A]. The question mark ? in a type parameter means that a surrounding
expression is a type-level anonymous function, e.g., M[A,?] takes one type parameter and
M[A,?,?] takes two.4

The trait FreeF takes three types F, A, and B and has two constructions Pure and
Free. F is the functor that defines “commands.” Pure lifts a pure value of type A to the
“program” represented by the free monad transformer. Free lifts a “command” followed by a
computation of type B to the “program.”

trait FreeF[F[_],A,B]
case class Pure[F[_],A,B](a:A) extends FreeF[F,A,B]
case class Free[F[_],A,B](fb: F[B]) extends FreeF[F,A,B]

4.2 ContextWorkflow Monad

The ContextWorkflow monad CW is a free monad transformer defined as:5

3 Here we borrow iterT from the free package of Haskell. Although iterT can be defined in Scala, it is
not good in practice. We will visit the problem in Sec 4.6.

4 This feature is enabled by kind-projector (https://github.com/non/kind-projector).
5 Again, the definition is simplified from the actual definition just for avoiding unnecessary complexity of
implicit conversions.

https://github.com/non/kind-projector

H. Inoue, T. Aotani, and A. Igarashi 2:17

case class CW[E,M[_],S,A](
run: FreeT[CWT[M,S,?], EitherT[ReaderT[M,Sig,?], InSubL[EV[M[E],S]],?], A])

extends Monad[CW[E,M,S,?]] { /* map, point and flatMap */ }

The type parameter E is for the exception type; M is for the monad that represents effects in the
atomic actions; S is for the suspended workflow type (explained later); and A is for the success-
ful result value type. Sig is the type of the context, which is just an alias of Stream[Context].
A Context is either Continue, Abort, PAbort or Suspend, which are objects that extend
Context. EV is the type of exceptional values that consists of the compensation actions to be
executed and the suspended workflow. InSubL keeps track of the depth of the sub-block to skip
compensation actions. We call EitherT[ReaderT[M,Sig,?], InSubL[EV[M[E],S]], ?] the
underlying monad of CW[E,M,S,A] in the rest of the paper.

CWT represents the “commands” of ContextWorkflow. Concrete commands and CWT are
defined as follows.

trait CWT[M[_],S,A] extends Functor[CWT[M,S,?]] { /* map */ }
case class Comp[M[_],S,A](comp:M[Unit], a:A) extends CWT[M,S,A]
case class SubB[M[_],S,A](a:A) extends CWT[M,S,A]
case class SubE[M[_],S,A](a:A) extends CWT[M,S,A]
case class Cp[M[_],S,A](a:A) extends CWT[M,S,A]
case class Cpn[M[_],S,A](s:S,a:A) extends CWT[M,S,A]
case class Check[M[_],S,A](a:A) extends CWT[M,S,A]

M is a monad for atomic actions; S is the type of a suspended workflow that corresponds
to the evaluation contexts in the calculus. Comp is for specifying compensation action.
SubB and SubE are the beginning and end marks of a sub-block, respectively. Cp and Cpn
are checkpoints that correspond to cp and cp#E in the calculus, respectively. Cpn has a
suspended workflow, which corresponds to the fact that cp#E has an evaluation context E.
Check corresponds to check in the calculus.

One may wonder why we do not have a command for normal actions while we have one
for compensation actions. This is because the normal actions of type M[A] are handled by
the underlying monad EitherT[ReaderT[M,...],...] of the free monad transformer.

The exception type EV consists of three constructors as follows:

sealed trait EV[ME,S]
case class Aborting[ME,S](e:ME) extends EV[ME,S]
case class Suspending[ME,S](s:S) extends EV[ME,S]
case class PAborting[ME,S](s:Option[S],e:ME) extends EV[ME,S]

The type parameter ME is for the type of compensation actions. Aborting represents that
the workflow is aborted. The field e keeps the compensations to be executed. Suspending
represents that the workflow is suspended. The field s keeps the suspended workflow of type
S. PAborting represents that the workflow is partially aborted. The suspended workflow
s is optional because a workflow may not have a checkpoint and in that case, there is no
suspended workflow.

InSubL represents whether the workflow execution is in the sub-block or not.

sealed trait InSubL[A]
case class InSub[A](n:InSubL[A]) extends InSubL[A]
case class NonSub[A](a:A) extends InSubL[A]

ECOOP 2018

2:18 ContextWorkflow

InSub and NonSub represent that the workflow execution is in a sub-workflow and not,
respectively. Notice that only executions of compensation actions are changed by sub-
workflows and programmable compensations. It is therefore sufficient to wrap only the
exceptional values propagated backwards with InSubL.

Readers may wonder what CW[A] that appeared in Section 2 is. This abbreviates
CW[Unit,IO,Nothing,A]; see Appendix A.1 for further details.

4.3 Auxiliary Definitions
This section gives the auxiliary functions and macros that correspond to the syntax for the
users of ContextWorkflow. For readability and simplicity, we omit the type and implicit
arguments of method invocations necessary to compile if they are clear from the context.

The functions check and checkpoint correspond to check and cp in the calculus,
respectively.

def check[E,M[_],S]: CW[E,M,S,Unit] = CW(liftF(Check(())))
def checkpoint[E,M[_],S]: CW[E,M,S,Unit] = CW(liftF(Cp(())))

liftF lifts the objects of type F[A] for any functor F and type A to a free monad transformer
FreeT[F,M,A] for any monad M.

The primitive workflow A/C in the calculus is written as compL(A,C) where compL is an
auxiliary function defined as follows:

def compL[E,M[_],S,A](na:M[A])(ca:A => M[Unit]): CW[E,M,S,A] = CW{
na.liftM.liftM.liftM.flatMap(x => liftF(Comp(ca(x),x))) }

liftM lifts the monadic values of type G[A] to another monadic value of type H[G,A] where
G and H are a monad and a monad transformer, respectively. We also define another auxiliary
function /+ that corresponds to check;A/C 6.

def /+[E,M[_],S,A](na:M[A])(ca:A => M[Unit]): CW[E,M,S,A] =
check.flatMap(_ => compL(na)(ca))

For the programmable compensations and sub-workflows, we define the two auxiliary
functions subC and sub, respectively. subC takes a workflow and a compensation and sub
takes only a workflow. sub concatenates the beginning mark of the block, the given workflow,
and the end mark of the block. subC additionally concatenates the sub-workflow created
from the given workflow and the given compensation action.

def sub[E,M[_],S,A](cw :CW[E,M,S,A]): CW[E,M,S,A] = CW{ for{
_ <- liftF(SubB(()))
r <- cw.run
_ <- liftF(SubE(()))
} yield r }

def subC[E,M[_],S,A](cw :CW[E,M,S,A])(ca :A => M[Unit]): CW[E,M,S,A] = CW{
sub(cw).flatMap(r => liftF(Comp(ca(r),r))) }

We also define two macros !! and workflow using the Monadless [2] library. The macro
!! takes a workflow and escapes it from the program transformation. The macro workflow
works as a block that specifies the target area of the program transformation. Assignments

6 Though omitted here, to regard /+ as an infix operator, we have to define it using implicit conversions
in Scala.

H. Inoue, T. Aotani, and A. Igarashi 2:19

and sequential compositions in workflow are transformed into a chain of monadic binds. For
example,

workflow { val x = !!(w1); val y = !!(w2); x + y }

is transformed into

w1.flatMap(x => w2.map(y => x + y))

4.4 Types of Suspended Workflows
Before showing the monadic interpreter for the CW monad, we need to fix the type of the
suspended workflows. Clearly, it must be equal to the type of the workflow to be executed,
i.e., S in CW[E,M,S,A] must be again CW[E,M,S,A]. This means that S is a fixpoint of the
functor CW[E,M,?,A] [23, 45]. The data type Fix is parameterized over functors

case class Fix[F[_]](out: F[Fix[F]])

and the type of suspended workflows is represented as Fix[CW[E,M,?,A]].

4.5 Monadic interpreter
Our monadic interpreter of the CW language is the function runCWT from, for any monad M and
type A, CW[Unit,M,Fix[CW[Unit,M,?,A]],A], which is equal to Fix[CW[Unit,M,?,A]], to
MM[A] where MM is the underlying monad defined as follows.

def runCWT[M[_],A](s: Fix[CW[Unit,M,?,A]])
: EitherT[ReaderT[M,Sig,?],InSubL[EV[M[Unit],Fix[CW[Unit,M,?,A]]]],A] = {
type S = Fix[CW[Unit, M, ?, A]] // the type of suspended workflows
type R = EV[M[Unit], S] // the type of exceptional results
type F[X] = CWT[M, S, X] // the term functor
type MM[X] = EitherT[ReaderT[M, Sig, ?], InSubL[R], X] // the underlying monad

def runCWT0(cl: F[MM[A]]): MM[A] = cl match{
case Comp(c, k) => ...
...
}
s.out.run.iterT(runCWT0)

}

The function runCWT0 translates each command of the CW language defined by CWT to the
program of the language given by the underlying monad MM. Because the translation proceeds
from the last terms to the first terms by iterT, each command object has the subsequent
translated program. In other words, the result of the rest of the workflow is always available.

The interpretation of Check follows CW-Check-*. It installs a context check to the
resulting program. If the context is Continue, it returns the result of the subsequent
program. It otherwise throws exceptions. Note that the exceptions are just the values of
type EitherT[...], that is the underlying monad, and we do not use the exception handling
mechanism of Scala.

case Check(k) => { // k: EitherT[ReaderT[M, Sig, ?], InSubL[R], A]
ask.liftM.flatMap{ sig =>
sig.head match {
case Abort => raiseException(InSubL.point(Aborting(M.point(()))))

ECOOP 2018

2:20 ContextWorkflow

case PAbort => raiseException(InSubL.point(PAborting(None, M.point(()))))
case Suspend => raiseException(InSubL.point(Suspending(
Fix(CW(FreeT.roll(Check(k.liftM))))))) // creates the suspended workflow
case Continue => local(_.tail)(k)
}}}

k is the interpretation of the subsequent workflow. The method ask gets a value from the
environment. In our case, they are the context that is represented by the streams of type
Stream[Context]. The variable sig is bound to a stream. If the head, which represents the
current context, is Abort, Aborting of point of the unit value is thrown. This is because
there is no compensation to be executed at this point. If the current context is PAbort,
PAborting of None and point of the unit value is thrown. If the current context is Suspend,
we throw the translated program k as the suspended workflow. If the current context is
Continue, we drop the head of the stream and continue interpreting the workflow.

The interpretation of Comp corresponds to CW-Seq-Int-*, CW-Program-*, CW-
Comp-Action and CW-Comp-Seq-*. The parameters comp and k are the compensation
action and the interpretation of the rest of the workflow, respectively.

case Comp(comp, k) => EitherT {
k.run.map{ ev => ev match {
case \/-(_) => ev // successful execution
case -\/(err) =>
extendSuspending(liftF(Comp(c, ())))(err) match { // at compensation
case NonSub(p) => p match { // binding compensation
case Aborting(cp) => \/.left(NonSub(Aborting(cp.flatMap(res => comp.flatMap(_ => M

.point(res))))))
case PAborting(None, cp) => \/.left(NonSub(PAborting(None, cp.flatMap(res => comp.

flatMap(_ => M.point(res))))))
case Suspending(sp) => \/.left(NonSub(Suspending(sp)))
}
case x => \/.left(x) // skipping compensation of a complete sub-workflow
}}}}

If the result of the subsequent workflow is an exception, the interpreter adds the compensation
command Comp(c, ()) at the head of the suspended workflow in err by extendSuspending.
Following the operational semantics, we skip the compensation actions that (1) are in
sub-workflows and (2) are followed by a checkpoint that is not in any sub-workflow and
the execution is partially aborted after executing the checkpoint. The first condition is
represented by InSubL. The last condition is represented by Option.

Following CW-Checkpoint and CW-Comp-Ccp, the interpretation of Cp (1) puts
the command represented by Cpn at the head of the suspended workflow and (2) puts a
suspended workflow to the exception if it is of type PAborting. The suspended workflow
that corresponds to E of cp#E and ccp#E is just the argument of Cp.

case Cp(k) => EitherT {
k.run.map{r => r match {
case \/-(_) => r
case -\/(err) => {
val s = Fix(CW(k.liftM))
val kp = liftF(Cpn(s, ())) // creates Cpn that is substituted for the Cp
\/.left(setPAbort(s)(extendSuspending(kp)(err))) // set pabort with suspension
}}}}

H. Inoue, T. Aotani, and A. Igarashi 2:21

s is the suspended workflow. The function setPAbort merely replaces the first parameter of
PAborting with s if it is None. The interpretation of Cpn is similar.

The interpretations of SubB and SubE just remove and add InSub layers in the exceptional
values, respectively.

4.6 Stack Safety
Implementations of free monad transformers in eager languages usually need some care to
avoid stack overflow (so-called stack safety) and do not provide iterT. Instead, they provide
a “foldl variant” of iterT [21], namely runFreeT in Purescript and runM in scalaz, which
takes a function from F[FreeT[F,M,A]] to M[FreeT[F,M,A]] and returns a value of type
M[A] for any functor F, monad M and type A.

It is necessary to know whether the subsequent workflow is interrupted or not to perform
compensation actions. We use continuation monads to achieve this as the compensation
monad [47]. We wrap the underlying monad of CW with a continuation monad transformer
ContT.7

case class CW[E,M[_],S,R,A](
run: FreeT[CWT[M,S,?],
ContT[EitherT[ReaderT[M,Sig,?], InSubL[EV[M[E],S]],?], R, ?],
A])

extends Monad[CW[E,M,S,R,?]] { /* map, point and flatMap */ }

The function runCWT0 for runM takes a command followed by an uninterpreted workflow
and returns a continuation monad transformer followed by the workflow left uninterpreted.

def runCWT[M[_],R,A](s: Fix[CW[Unit,M,?,R,A]]) = {
type S = Fix[CW[Unit, M, ?, R, A]]
type F[X] = CWT[M, S, X]
type MM[X] = ContT[EitherT[ReaderT[M, Sig, ?], InSubL[EV[M[Unit], S]], X], R, X]
def runCWT0[M[_],R,A](cl: F[FreeT[F, MM, A]]): MM[FreeT[F, MM, A]]
= ...

}

The change on the definition of runCWT0 is straightforward. All we need to do is just wrap
the exception monad transformer with the continuation monad transformer. For example,
the interpretation of the command CompL is defined as follows.

case Comp(comp, k) = ContT{knt =>
EitherT{
knt(k).run.map{ev => ev match {
... /* the same to the previous definition */
}}}}

4.7 Atomicity
In this section, we extend CWT and the CW monad to support the atomic and nonatomic
blocks.

7 The continuation monad transformer must be stack safe. Unfortunately, neither scalaz nor cats (another
library similar to scalaz) provides it. Our Scala implementation employs a workaround that relies on
Trampoline [8] in the IO monad. In other words, we always use the IO monad as the underlying user
monad of the CW monad.

ECOOP 2018

2:22 ContextWorkflow

We add a command CheckA for active context checking and CheckI for inactive context
checking, whose definitions are similar to that of Check.

case class CheckA[M[_],S,A](a:A) extends CWT[M,S,A]
case class CheckI[M[_],S,A](a:A) extends CWT[M,S,A]

The interpretation of CheckA is similar to that of Check and that of CheckI is just continuing
the evaluation of the subsequent workflow without checking the context.

The two blocks are implemented as two functions, similarly to how sub sub-workflows are
implemented. The functions atomic and nonatomic replace Check with CheckI and CheckA,
respectively, as follows.

def atomic[E, M[_], S, A](cw: CW[E, M, S, A]) : CW[E, M, S, A] = CW {
cw.run.interpretS[CWT[M,S,?]](new (~>[CWT[M,S,?], CWT[M,S,?]]) {
def apply[A](c: CWT[M,S,A]): CWT[M,S,A] = c match {
case Check(a) => CheckI(a)
case _ => c
}})}

4.8 Abnormal Termination and Exceptions in Scala
We have already mentioned abnormal termination in Section 3. In our implementation
in Scala, abnormal termination is realized by exceptions of the language. Basically, if an
exception is thrown in an atomic action, the whole execution stops. However, we sometimes
want to convert an exception in normal action to context, and it can be done using a new
form of primitive workflow (normal /~ compensation). This is mostly the same as /+, but
absorbs some particular exceptions AbortE and PAbortE in the normal action, and raises
the interruption Abort or PAbort. For example:

trait CWException extends Exception
class AbortE extends CWException
class PAbortE extends CWException
val cw0 = {if(...) "success" else throw e} /~ comp

When running cw0, if the exception e is AbortE or PAbortE, it will abort or partially abort;
otherwise, the exception is raised as usual. In both cases, it does not do the corresponding
compensation comp.

/~ is defined as follows.

def /~[E,M[_],S,A](na:M[Try[A]])(comp:A => M[Unit]): CW[E,M,S,A] = for {
tried <- compL(na)(_ match {
case Success(a) => comp(a) // same as /+
case Failure(e) => M.point(()) // skip the compensation comp
})
a <- tried match {
case Failure(AbortE) => throwCWException(Abort) // raise abort
case Failure(RestartE) => throwCWException(PAbort) // raise pabort
case Success(a) => compL(M.point(a))(_ => M.point(())) // same as /+
case Failure(e) => compL(M.point[A]{throw e})(_ => M.point(())) // rethrowing e
}} yield a

The argument na is of the type M[Try[A]]. Try[T] is a Scala’s class that represents a
computation that may either result in an exception (Failure[T]) or return a successfully
computed value (Success[T]). What /~ does is first binding the result of compL to tried of

H. Inoue, T. Aotani, and A. Igarashi 2:23

the type Try[A] and then carry out one of the following: (1) raising Abort or PAbort inside
ContextWorkflow, (2) successfully committing na, or (3) throwing the exception e of Scala.

Readers may wonder that the type of /~ (and also /+) is different from that of actual
use in examples so far. To omit the explicit type constructors of M and Try, we use implicit
conversions. For further details, see Appendix A.1.

5 Related Work

This work is the direct descendant of our previous work [32]. The main differences between
the two are the monadic interpreter, a formalization of semantics, the realization of suspension
and checkpoint, and advanced implementation.

Context-Oriented Programming. The literature on context-oriented programming [30],
which advocates the use of layers to modularize context-dependent behavior, includes several
reports on behavioral change in response to asynchronous context changes [33, 57, 7]. Among
them, the closest to the present work is Flute [7] in that it supports interruptible context-
dependent execution. Interruptions occur when the context changes, and the context is
represented as a reactive value. If the execution of the program is interrupted, it is suspended
and another execution that reflects the new context starts. The main difference from Context-
Workflow is that ContextWorkflow provides a wider variety of reactions to interruptions,
using compensations, sub-workflows, and checkpoints, while Flute emphasizes changing
program behavior according to context change.

Termination and Suspension. Rudys and Wallach [50] argue that in language run-time
systems such as JVM that execute mobile code, it is important to be able to terminate
such code for security reasons. For example, it can be critical to stop executing potentially
buggy or untrusted mobile code. They propose a concept called soft termination to ensure
that mobile code is properly terminated. For example, it makes a program with potentially
infinite loops interruptible. Unlike our approach, theirs automatically transforms mobile
code using code rewriting.

Several languages provide features to easily realize suspensions, such as first-class con-
tinuations [29, 15], which are supported in languages such as Scheme [55] and Scala [49],
and coroutines [13]. Coroutines are a generalization of subroutines in the sense that they do
not exit but call another coroutine as the caller coroutine suspends, and are supported in
languages such as Lua [16]. We expect that these facilities are also useful for implementing
ContextWorkflow.

Asynchronous Exception. Asynchronous exception, found in, e.g., Haskell [40], Ruby and
OCaml [18], is also used to realize interruption. Java and Scala threads take a so-called
semi-asynchronous approach [40], where asynchronous exceptions are thrown in the thread if
the thread is blocked by sleep(), wait(), or join(); otherwise, an interrupted flag is turned
on and the thread has to manually check the flag. The design of ContextWorkflow is closer
to the former languages in the sense that such a flag to denote interruption is completely
implicit.

Workflow. Workflow is a broadly used notion [22, 12] and is provided in several lan-
guages such as Windows Workflow Foundation [42] in .NET and Windows PowerShell [41].
PowerShell also supports checkpointing for fault tolerance. There are many studies for the

ECOOP 2018

2:24 ContextWorkflow

formalization of workflow [9, 10, 38]. Among them, our core ContextWorkflow is based on
Bruni et al.’s formalization [9].

In a scientific workflow [39], which is an adaptation of the workflow to scientific computa-
tions, a series of heavy computations are executed. In a scientific workflow, checkpoints are
also useful to avoid wasteful recomputation [14]. We suppose that ContextWorkflow can be
used to develop these applications.

Software Transactional Memory. The software transactional memory (STM) [53], provided,
e.g., by Scala [52] and Haskell [26], is a language-level approach to concurrency control, which
is similar to a database transaction. STM provides the atomic block for atomic execution of
all of the loads and stores of a critical section. If multiple atomic blocks are executed on
multiple threads and inconsistency is found by interleaving execution, all the atomic blocks
will be automatically rolled back. Checkpoints and continuations are also introduced in STM
to realize partial aborts without using nested atomic block and gain efficiency [37]. STM is
similar to our ContextWorkflow in the sense that they are automatically rolled back when
some inconsistency occurs, although inconsistency is caused by rather different events (racy
access to memory and context change).

Interruption in Functional Reactive Programming. The ideas of interruption and roll-back
are also found in the context of FRP, such as P-FRP [34]. P-FRP is an FRP language for
real-time systems, based on E-FRP [59]. In E-FRP, discrete events trigger executions of
event handlers, which update reactive values. While E-FRP requires that each event handler
execute atomically, P-FRP introduces priorities between events and allows event handlers to
be interrupted when an urgent event occurs. To realize such an interruption, P-FRP adopts
roll-back mechanisms like STM.

A difference from ours appears in what is rolled back and what kind of effect is removed.
While P-FRP rolls back each event handlers and prevents reactive values from being up-
dated incorrectly, ours rolls back the entire execution of a workflow and may remove any
computational effects.

Compensation and Asynchronous Exception Monads. Ramalingam et al. showed that
workflows with compensating actions can be represented by the compensation monad [47].
Besides the compensation monad, we also got the idea that computations with asynchronous
exceptions can be represented by using the resumption monads [27, 28], which are structurally
equal to the free monad [46].

Modular Exception Handling. Modularization of exception-handling code has been a signi-
ficant concern in aspect-oriented programming [35, 11] because the separation of exception-
handling code from normal code enhances the re-usability of each module. The compensation
approach [60], which we adopt here, regards a pair of a normal code and a compensation as
a unit of reuse instead, and also is modular.

Reversible Programming. Compensation actions can be seen as weak manual inversions
of normal actions. In reversible programming languages [61], programs run forward and
backward, and it is ensured that each direction is the exact inverse of the other. In other words,
if programmers write a normal action in reversible programming languages, its compensation
action is automatically defined. Therefore, integrating reversible programming to Context-
Workflow will be interesting because it can release programmers from the burden of manually

H. Inoue, T. Aotani, and A. Igarashi 2:25

specifying compensation actions. Programming compensations is often cumbersome, but
has an advantage that we may be able to avoid redundant compensation – such as visiting
unnecessary nodes to go back to the start node as we saw in the maze search example in
Section 2.

6 Conclusions

In this work, we have proposed ContextWorkflow for developing interruptible context-aware
applications. ContextWorkflow basically combines the ideas of workflow and FRP and
supports compensations, asynchronous interruption, checkpointing, nested-workflow and
suspension. We also formalized the core idea of our language by developing a big-step
operational semantics. Further, we proposed a method to embed our ContextWorkflow in
existing languages such as Scala and Haskell, mainly using free monads; and the embedded
DSL empowers host languages to treat the above features.

One important direction of future work is to support parallelism as many other workflow
languages do, that is, atomic actions are executed in parallel on several threads. With
parallelism, we expect the semantics of suspension, checkpoints, and sub-workflows to
be changed drastically. A question is, for example, if only one sub-workflow of several
concurrently running sub-workflows has a checkpoint, how does the whole workflow partially
abort? In addition, in a parallel setting, an abort of a sub-workflow need not result in the
abort of the parent workflow.

Another direction of future work is efficient implementation. Currently, since we use
monad transformers naively, our implementation is not efficient; at least, we should unroll
the monad transformer stack as is the standard practice in Haskell programming. It would
also be valuable to develop ContextWorkflow with other implementation techniques such as
first-class continuations and extensible effects [36], which are also introduced in Scala, and
compare different implementations.

One tediousness in ContextWorkflow is that we have to write compensations manually,
while we do not need to do so in database transaction and STM. Therefore, it would be
interesting to develop a method to construct compensation actions from normal actions.
Existing studies such as reversible computing would be helpful to achieve this.

In the current design, programmers can write as long atomic actions as they wish. Since we
suppose that one application of ContextWorkflow is battery-aware software, it is interesting
to automatically estimate how much execution time an atomic action will consume; then
we can perform a kind of verification, e.g., by estimating that 10% of battery level would
be enough to complete any compensations of the workflow. We expect that we can rely on
existing studies about complexity estimation such as Gulwani et al. [25].

References

1 scalaz. URL: https://github.com/scalaz/scalaz.
2 Monadless. URL: http://monadless.io/.
3 Gregory Abowd, Anind Dey, Peter Brown, Nigel Davies, Mark Smith, and Pete Steggles.

Towards a better understanding of context and context-awareness. In Handheld and ubi-
quitous computing, volume 1707 of Springer LNCS, pages 304–307, 1999.

4 Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino Segnan.
Context-aware workflow management. In International Conference on Web Engineering,
volume 4607 of Springer LNCS, pages 47–52, 2007.

5 Steve Awodey. Category Theory. Oxford University Press, Inc., 2nd edition, 2010.

ECOOP 2018

https://github.com/scalaz/scalaz
http://monadless.io/

2:26 ContextWorkflow

6 Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx,
and Wolfgang De Meuter. A survey on reactive programming. ACM Computing Surveys
(CSUR), 45(4):52, 2013.

7 Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lombide Carreton, and
Wolfgang De Meuter. Interruptible context-dependent executions: a fresh look at program-
ming context-aware applications. In Proc. of ACM Onward! 2012, pages 67–84. ACM,
2012.

8 Rúnar Óli Bjarnarson. Stackless scala with free monads. Scala Days, 2012.
9 Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical foundations for com-

pensations in flow composition languages. In Proc. of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages Pages (POPL 2005), pages 209–220.
ACM, 2005.

10 Michael Butler, Tony Hoare, and Carla Ferreira. A trace semantics for long-running transac-
tions. In Communicating Sequential Processes. The First 25 Years, volume 3525 of Springer
LNCS, pages 133–150. Springer, 2005.

11 Nelio Cacho, Fernando Castor Filho, Alessandro Garcia, and Eduardo Figueiredo. EJFlow:
Taming exceptional control flows in aspect-oriented programming. In Proc. of AOSD’08,
pages 72–83, New York, NY, USA, 2008. ACM.

12 Christian Colombo and Gordon J. Pace. Recovery within long-running transactions. ACM
Comput. Surv., 45(3):28:1–28:35, 2013.

13 Melvin E Conway. Design of a separable transition-diagram compiler. Communications of
the ACM, 6(7):396–408, 1963.

14 Daniel Crawl and Ilkay Altintas. A provenance-based fault tolerance mechanism for sci-
entific workflows. In Proc. of Provenance and Annotation of Data and Processes, volume
5272 of Springer LNCS, pages 152–159, 2008.

15 Olivier Danvy and Andrzej Filinski. Abstracting control. In Proc. of Lisp and Functional
Programming, pages 151–160, 1990.

16 Ana Lúcia de Moura, Noemi Rodriguez, and Roberto Ierusalimschy. Coroutines in Lua.
Journal of Universal Computer Science, 10(7):910–925, 2004.

17 William R. Dieter and James E. Lumpp. A user-level checkpointing library for POSIX
threads programs. In Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth
Annual International Symposium on, pages 224–227. IEEE, 1999.

18 Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivara-
makrishnan, and Leo White. Concurrent system programming with effect handlers. In
Proceedings of the Symposium on Trends in Functional Programming, TFP, 2017.

19 Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, pages 263–
273. ACM, 1997.

20 Marc Feeley. Polling efficiently on stock hardware. In Proceedings of the conference on
Functional programming languages and computer architecture, pages 179–187. ACM, 1993.

21 Phil Freeman. Stack safety for free. URL: http://functorial.com/
stack-safety-for-free/index.pdf.

22 Hector Garcia-Molina and Kenneth Salem. Sagas. In Proc. of ACM SIGMOD, pages
249–259, New York, NY, USA, 1987. ACM.

23 Jeremy Gibbons. Datatype-generic programming. InDatatype-Generic Programming, pages
1–71. Springer, 2007.

24 Jim Gray. The transaction concept: Virtues and limitations. In Proceedings of the Seventh
International Conference on Very Large Data Bases, pages 144–154, 1981.

http://functorial.com/stack-safety-for-free/index.pdf
http://functorial.com/stack-safety-for-free/index.pdf

H. Inoue, T. Aotani, and A. Igarashi 2:27

25 Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed: Precise and efficient static
estimation of program computational complexity. In Proc. of ACM POPL, pages 127–139,
New York, NY, USA, 2009. ACM.

26 Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. In Proceedings of the tenth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 48–60. ACM, 2005.

27 William L. Harrison. The essence of multitasking. In International Conference on Algeb-
raic Methodology and Software Technology, volume 4019 of Springer LNCS, pages 158–172.
Springer, 2006.

28 William L. Harrison, Gerard Allwein, Andy Gill, and Adam Procter. Asynchronous ex-
ceptions as an effect. In Proceedings of the 9th international conference on Mathematics
of Program Construction, volume 5133 of Springer LNCS, pages 153–176. Springer-Verlag,
2008.

29 Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and
coroutines. In Proceedings of the 1984 ACM Symposium on LISP and functional pro-
gramming, pages 293–298. ACM, 1984.

30 Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3):125–151, 2008.

31 Paul Hudak. Building domain-specific embedded languages. ACM Computing Surveys
(CSUR), 28(4es):196, 1996.

32 Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi. A DSL for compensable and inter-
ruptible executions. In Proceedings of the 4th ACM SIGPLAN International Workshop on
Reactive and Event-Based Languages and Systems, REBLS 2017, pages 8–14, New York,
NY, USA, 2017. ACM.

33 Hiroaki Inoue and Atsushi Igarashi. A library-based approach to context-dependent com-
putation with reactive values: Suppressing reactions of context-dependent functions using
dynamic binding. In Companion Proc. of the 15th Intl. Conf. on Modularity, pages 50–54,
New York, NY, USA, 2016. ACM.

34 Roumen Kaiabachev, Walid Taha, and Angela Zhu. E-FRP with priorities. In Proceedings
of the 7th ACM & IEEE international conference on Embedded software, pages 221–230.
ACM, 2007.

35 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and
Satoshi Matsuoka, editors, Proc. of ECOOP, volume 1241 of Springer LNCS, pages 220–
242. Springer, 1997.

36 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: An alternative to
monad transformers. In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell,
Haskell ’13, pages 59–70, New York, NY, USA, 2013. ACM.

37 Eric Koskinen and Maurice Herlihy. Checkpoints and continuations instead of nested trans-
actions. In Proceedings of the twentieth annual symposium on Parallelism in algorithms
and architectures, pages 160–168. ACM, 2008.

38 Jing Li, Huibiao Zhu, Geguang Pu, and Jifeng He. Looking into compensable transactions.
In Software Engineering Workshop, 2007. SEW 2007. 31st IEEE, pages 154–166. IEEE,
2007.

39 Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew
Jones, Edward A Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice and Experience, 18(10):1039–1065,
2006.

ECOOP 2018

2:28 ContextWorkflow

40 Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asynchronous
exceptions in Haskell. In Proc. of ACM PLDI, pages 274–285, New York, NY, USA, 2001.
ACM.

41 Microsoft. Powershell documentation. URL: https://docs.microsoft.com/powershell/.
42 Microsoft. Windows workflow foundation. URL: https://docs.microsoft.com/en-us/

dotnet/framework/windows-workflow-foundation/.
43 Eugenio Moggi. Computational lambda-calculus and monads. In Logic in Computer Sci-

ence, 1989. LICS’89, Proceedings., Fourth Annual Symposium on, pages 14–23. IEEE, 1989.
44 N.C. Narendra and S Gundugola. Automated context-aware adaptation of web service

executions. In Proceedings of the IEEE International Conference on Computer Systems
and Applications, pages 179–187. IEEE Computer Society, 2006.

45 Bruno C. d. S. Oliveira and Jeremy Gibbons. Scala for generic programmers: comparing
Haskell and Scala support for generic programming. Journal of functional programming,
20(3-4):303–352, 2010.

46 Maciej Piróg and Jeremy Gibbons. The coinductive resumption monad. In Mathematical
Foundations of Programming Semantics Thirtieth Annual Conference, page 273, 2014.

47 Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via idempotence. In Proc. of
ACM POPL, POPL ’13, pages 249–262, New York, NY, USA, 2013. ACM.

48 Brian Randell, Peter Lee, and Philip C. Treleaven. Reliability issues in computing system
design. ACM Computing Surveys (CSUR), 10(2):123–165, 1978.

49 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delim-
ited continuations by a type-directed selective CPS-transform. In Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming, ICFP ’09, pages
317–328. ACM, 2009.

50 Algis Rudys and Dan S. Wallach. Termination in language-based systems. ACM Transac-
tions on Information and System Security (TISSEC), 5(2):138–168, 2002.

51 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging between object-
oriented and functional style in reactive applications. In Proc. of Intl. Conf. on Modularity,
pages 25–36. ACM, 2014.

52 STM Scala. Expert group. scalastm. web, 2011. URL: https://nbronson.github.io/
scala-stm/.

53 Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

54 Sucha Smanchat, Sea Ling, and Maria Indrawan. A survey on context-aware workflow
adaptations. In Proceedings of the 6th International Conference on Advances in Mobile
Computing and Multimedia, pages 414–417. ACM, 2008.

55 Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler,
and Jacob Matthews. Revised6 report on the algorithmic language Scheme. Journal of
Functional Programming, 19(S1):1–301, 2009.

56 Janis Voigtländer. Asymptotic improvement of computations over free monads. In Proceed-
ings of the 9th International Conference on Mathematics of Program Construction, pages
388–403. Springer-Verlag, 2008.

57 Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented programming:
Beyond layers. In Proc. of Intl. Conf. on Dynamic Languages, pages 143–156, New York,
NY, USA, 2007. ACM.

58 Philip Wadler. Monads for functional programming. In International School on Advanced
Functional Programming, pages 24–52. Springer, 1995.

59 Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In International Sym-
posium on Practical Aspects of Declarative Languages, pages 155–172. Springer, 2002.

https://docs.microsoft.com/powershell/
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/
https://docs.microsoft.com/en-us/dotnet/framework/windows-workflow-foundation/
https://nbronson.github.io/scala-stm/
https://nbronson.github.io/scala-stm/

H. Inoue, T. Aotani, and A. Igarashi 2:29

60 Westley Weimer. Exception-handling bugs in Java and a language extension to avoid them.
In Advanced Topics in Exception Handling Techniques, volume 4119 of Springer LNCS,
pages 22–41, 2006.

61 Tetsuo Yokoyama and Robert Glück. A reversible programming language and its invertible
self-interpreter. In Proc. ACM PEPM, pages 144–153, New York, NY, USA, 2007. ACM.

62 Lukasz Ziarek and Suresh Jagannathan. Lightweight checkpointing for concurrent ML.
Journal of Functional Programming, 20(2):137–173, 2010.

A Appendix

A.1 Hiding Type Parameters for Simplicity
The type CW[A] in Section 2 is in fact an abbreviation of CW[Unit,IO,Nothing,A]. The
important point is to fix M to IO and S to Nothing. In Scala, Nothing is a subtype of every
other type.

The monad IO is the standard way to treat effectful code in monadic programming, but
explicit use of the IO monad constructor is redundant and not kind to many programmers.
Therefore, we hide the explicit appearance of IO using implicit conversions of Scala. For
example, the way a /+ c is converted to the corresponding monadic value is that (1) a of
the type A is converted to a special object of the type CWOps that contains a field of the type
IO[A] by implicit conversions, and then (2) the method /+ of the special object is invoked.
It takes an argument of the type A => Unit and returns a value of the type CW[A]. Here is
the definition of the implicit conversion and the class CWOps:

implicit def toCWOps[A](proc: => A): CWOps[A] = new CWOps[A](IO(proc))
class CWOps[A](t: IO[A]) {
def /+ (comp: => A => Unit): CW[A] = /+(t)(a => IO(comp(a)))

}

toCWOps is the definition for the implicit conversion. IO(a) is the IO monad constructor.
We define the method /+ in class CWOps using the function /+ that appeared in Section 4.

The reason for using Nothing as the suspended workflow type is that, to treat CW as a
monad, type parameters except for A must be fixed or parameterized. Although the latter
approach appears good, it would become redundant in Scala. For example, let CWS[S,A] be
CW[Unit,IO,S,A], and let us combine two CWS:

def testU[S]: CWS[S,Unit] = ...; def testI[S]: CWS[S,Int] = ...
def testUI[S]: CWS[S,Int] = testU[S].flatMap(_ => testI[S])

We would have to use def and then type parameter S would appear everywhere, since Scala’s
value is not polymorphic. While such definitions can be treated well in Haskell, we would
have to manually parameterize it one by one in Scala. Instead, we fix S to Nothing and cast
Nothing to a proper suspended workflow type Fix[CW[Unit,IO,?,A]] at run time.

ECOOP 2018

2:30 ContextWorkflow

A.2 Derivation Example

Let tk = Ak/Ck for k = a, b, 1, 2, ...

subgoal 1: 〈sub {sub {t1;cp;sub(t2)/Ca;check}/cb;t3};t4, [], •〉 ⇑A1,A2
P 〈ca;ccp0;c1;sub;sub, []〉

PW
〈A1/C1, E0[[];cp;sub(t2)/Ca;check], sub;sub〉 ⇓A1 〈C1;sub;〉

CP
〈cp, E1, C1;sub;sub〉 ⇓ε 〈ccp0;C1;sub;sub〉 (subgoal2)

Seq-Int2
〈cp;sub(t2)/Ca;check, E0, C1;sub;sub〉 ⇑A2

P 〈c0, []〉 Seq-Int2
〈t1;cp;sub(t2)/Ca;check, E0, sub;sub〉 ⇑A1,A2

P 〈c0, []〉 Sub-Int
〈sub(t1;cp;sub(t2)/Ca;check)/Cb, sub([];t3);t4, sub〉 ⇑A1,A2

P 〈c0, []〉 Seq-Int1
〈sub(t1;cp;sub(t2)/Ca;check)/Cb;t3, sub([]);t4, sub〉 ⇑A1,A2

P 〈c0, []〉 Sub-Int
〈sub(sub(t1;cp;sub(t2)/Ca;check)/Cb;t3), [];t4, •〉 ⇑A1,A2

P 〈c0, []〉 Seq-Int1
〈sub(sub(t1;cp;sub(t2)/Ca;check)/Cb;t3);t4, [], •〉 ⇑A1,A2

P 〈c0, []〉

subgoal 2: 〈sub(t2)/Ca;check, E0, ccp0;C1;sub;sub〉 ⇑A2
P 〈Ca;ccp0;C1;sub;sub, []〉

PW
〈A2/C2, E2, sub;ccp0;C1;sub;sub〉 ⇓A2 〈C2;sub;ccp0;C1;sub;sub〉 Sub

〈sub(t2)/Ca, E0[[];check], ccp0;C1;sub;sub〉 ⇓A2 〈c0〉
Check-PAbort

〈check, E0, Ca;ccp0;C1;sub;sub〉 ⇑εP 〈c0, []〉 Seq-Int2
〈sub(t2)/Ca;check, E0, ccp0;C1;sub;sub〉 ⇑A2

P 〈Ca;ccp0;C1;sub;sub, []〉

goal: 〈sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4〉 ⇓A1,A2,Ca

P 〈C1;sub;sub, sub(sub([];cp#E1;sub(t2)/Ca;check)/Cb;t3);t4〉

(subgoal1)

Comp-Action
〈Ca〉 ⇓Ca 〈•, []〉

Comp-Ccp
〈ccp#E1}[[];cp#E1}]〉 ⇓ε 〈•, E1[[];cp#E1]〉 Comp-Seq-PAbort1

〈ccp0;C1;sub;sub〉 ⇓ε 〈C1;sub;sub, E1[[];cp#E1]〉 Comp-Seq-PAbort2
〈c0〉 ⇓Ca 〈C1;sub;sub, E1[[];cp#E1]]〉 Program-PAbort

〈sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4〉 ⇓A1,A2,Ca

P 〈C1;sub;sub, E〉

where

E0 = sub(sub([])/Cb;t3);t4
E1 = E0[[];sub(t2)/Ca;check] = sub(sub([];sub(t2)/Ca;check)/Cb;t3);t4
E2 = E0[(sub [])/Ca;check] = sub(sub((sub [])/Ca;check)/Cb;t3);t4
ccp0 = ccp#E1[[];cp#E1]
c0 = Ca;ccp0;C1;sub;sub
E = E1[[];cp#E1] = sub(sub([];cp#E1;sub(t2)/Ca;check)/Cb;t3);t4

Figure 6 A derivation of an execution of sub{sub{t1;cp;sub(t2)/Ca;check}/Cb;t3};t4

with pabort at check.

A.3 Proofs of Properties
In the following theorems, let pk = Ak/Ck for some k, and we define the functions as follows.

[(t) be a workflow that is obtained by removing sub, check, cp and cp#E from t.
includes(t,m, n) iff [(t) = pm; · · · ;pn and m ≤ n; or t has no primitive workflows.
includes(E,m, n) iff includes(E[check],m, n).
includes(c,m, n) iff c\{sub, ccp#E} = Cm;...;Cn and m ≥ n; or c has no atomic actions
C∗.
nosub(t,m, n) iff includes(t,m, n) and t has no sub-workflows.

I Lemma 1 (Commit). If includes(t,m, n) and 〈t, E, c〉 ⇓
#»A 〈c′〉, then #»A = Am, · · · , An (if

m ≤ n) or #»A = ε (otherwise).

Proof. By straightforward induction on the derivation. J

I Lemma 2 (Abort). If nosub(t,m, n) and 〈t, E, c〉 ⇑
#»A
A|P 〈c

′, []〉, then #»A = Am, · · · , Ai and
includes(c′, i,m) for some i such that m ≤ i ≤ n (when m ≤ n), or #»A = ε ∧ includes(c′, 0, 1)
(otherwise).

H. Inoue, T. Aotani, and A. Igarashi 2:31

Proof. By straightforward induction on the derivation. J

I Lemma 3 (Compensation). If c = Cm, · · · , Cn and 〈c〉 ⇓
#»C 〈•, []〉, then #»C = Cm, · · · , Cn.

Proof. By straightforward induction on the derivation. J

I Lemma 4 (Checkpoint). Suppose nosub(t,m, k) and t has no cp#E∗ and 〈t, E, c〉 ⇓
#»A

〈c′, []〉 and includes(E, k + 1, n) and includes(c,m − 1, l) and l ≤ m and ccp#Es 6∈ c and
ccp#Es ∈ c′ and ccp#Es comes just after Cj (or just before Cj+1, so c′ usually becomes
Ck,...,Cj+1,...,ccp#Es,...,Cj...,Cm) and m− 1 ≤ j ≤ k.
1. If m− 1 ≤ k ≤ n ∧m ≤ n, then includes(Es, j + 1, n).
2. If n ≤ k < m, then includes(Es,m, k).

Proof. Proof by induction on the derivation of 〈t, E, c〉 ⇓
#»A 〈c′, []〉. We show only main

cases for the first item.
Case CW-Checkpoint: Es = E[[];cp#E] j = m− 1
It is the case that k = m− 1, and so includes(E,m, n). Clearly, includes(Es,m, n), finishing
the case.
Case CW-Seq: t = t1;t2 〈t1, E[[];t2], c〉 ⇓

#»A1 〈c′′〉
〈t2, E, c′′〉 ⇓

#»A2 〈c′〉
We get includes(t1,m, i) and includes(t2, i+1, k) for some i s.t.m−1 ≤ i ≤ k. The induction
hypothesis finishes the case. J

I Lemma 5 (Partial Abort). Suppose nosub(t,m, n0) and t has no cp#E∗ and 〈t, [], •〉 ⇑
#»A
P

〈c′, []〉 and #»A = Am, · · · , An and includes(c′, n,m) and 〈c′〉 ⇓
#»C 〈c′′, Es〉.

If m ≤ n, then #»C = ε and includes(Es,m, n) and includes(c′′, n,m), or #»C = Cn, · · · , Ck+1
and includes(Es, k + 1, n) and includes(c′′, k,m) for some k s.t. m− 1 ≤ k < n.
If m > n, then #»C = ε and includes(Es,m, n) and includes(c′′, n,m).

Proof. Proof by induction on the derivation of 〈c〉 ⇓
#»C 〈c′, Es〉, using Lemma 4. J

I Lemma 6 (Suspend). Suppose includes(t,m, k) and 〈t, E, c〉 ⇑
#»A
S 〈c′, Es〉 and includes(E, k+

1, n).
1. If m − 1 ≤ k ≤ n ∧m ≤ n, then #»A = Am, · · · , Ai for some i such that m ≤ i ≤ k and

includes(Es, i+ 1, n), or #»A = ε and includes(Es,m, n).
2. If n ≤ k < m, then includes(Es,m, k).

Proof. Proof by induction on the derivation. We show only main cases for the first item.
Case CW-Check-Suspend:
It is the case that k = m− 1, and so includes(E,m, n), finishing the case.
Case CW-Sub-Int: t = sub(t′)/c

We can get includes(t′,m, k) and includes(E[(sub [])/c], k + 1, n). Then, the induction
hypothesis finishes the case.
Case CW-Seq-Int1: t = t1;t2

We get includes(t1,m, j) for some j s.t., m− 1 ≤ j ≤ k. We also get includes(E[[];t2], j +
1, n). Then, the induction hypothesis finishes the case.

ECOOP 2018

2:32 ContextWorkflow

Case CW-Seq-Int2: t = t1;t2 〈t1, E[[];t2], c〉 ⇓
#»A1 〈c′′〉

〈t2, E, c′′〉 ⇑
#»A2
S 〈c′, Es〉

We get includes(t1,m, j) for some j s.t., m− 1 ≤ j ≤ k. By Lemma 1, #»A1 = Am, · · · , Aj−1
(when m ≤ j), or #»A1 = ε (when j = m − 1). We also get includes(t2, j + 1, k) from
includes(t,m, k) and includes(t1,m, j). We still have includes(E, k, n).

Then, by the induction hypothesis, #»A2 = Aj , · · · , Ai for some i such that j ≤ i ≤ k and
includes(Es, i+ 1, n), or #»A2 = ε and includes(Es,m, n).

Finally, we can finishes the case concatenating #»A1 and #»A2. J

I Theorem 1 (Workflow commits). If includes(t,m, n) and 〈t, c〉 ⇓
#»A 〈〉 and m ≤ n, then

#»A = Am, · · · An.

Proof. By Lemma 1 and CW-Program-Commit. J

I Theorem 2 (Workflow aborts (Successful Compensation)). If nosub(t,m, n) and 〈t, c〉 ⇓
#»A
A 〈〉

and m ≤ n and c = Ck,...,Cl, then
#»A = Am, · · · Ai, Ci, · · · , Cm, Ck, · · · , Cl for some i s.t.

m ≤ i ≤ n.

Proof. By Lemmas 2 and 3 and CW-Program-Abort. J

I Theorem 3 (Restarted suspended workflow commits). If 〈t, •〉 ⇓
#»A 〈〉 and 〈t, •〉 ⇓

#»C
S 〈c, E〉

and 〈E[check], c〉 ⇓
#»

C′ 〈〉, then #»A = #»C ,
#»

C′.

Proof. By Theorem 1, Lemma 6 and CW-Program-Suspend. J

I Theorem 4 (Workflow partially aborts). If nosub(t,m, n) and 〈t, •〉 ⇓
#»A
P 〈c, E〉 and m ≤ n,

then either of the followings hold.
#»A = Am, · · · , Ai, Ci, Ci−1, · · · , Cj and includes(E, j, n) and includes(c, j − 1,m) for some i
and j (m ≤ j ≤ i ≤ n).
#»A = Am, · · · , An and includes(E, 1, 0) and includes(c, n,m).

Moreover, the followings hold.
1. (Suspended workflow commits) If 〈E[check], c〉 ⇓

#»

A′ 〈〉, then
#»

A′ = Aj , · · · , An, or
#»

A′ = ε (if
includes(E, 1, 0)).

2. (Suspended workflow aborts) If 〈E[check], c〉 ⇓
#»

A′

A 〈〉, then
#»

A′ = ε (if j = m), or
#»

A′ =
Cj−1, · · · , Cm.

Proof. By Lemma 2, Lemma 5 and CW-Program-PAbort.
1. By Theorem 1.
2. By Theorem 2. J

I Theorem 5 (Partial abort, checkpoint and nested workflow). Suppose that includes(t,1,n)
and t\check =
p1;...;cp;pk;...;pm;sub(pm+1;...;cp;pj;...;pl)/Ca;pl+1;...;pn and 〈t, •〉 ⇓

#»A
P 〈c,E〉.

1. (Partial abort skips compensations of complete sub-workflow) If Al+1 ∈ {
#»A }, then #»A =

A1, · · · , Ai, Ci, · · · , Cl+1, Ca, Cm, · · · , Ck for some i > l.
2. (A suspended workflow remembers checkpoints in a sub-workflow) If Al+1 ∈ {

#»A } and
〈E[check], c〉 ⇓

#»

A′

P 〈c′′, E′〉 and Aj ∈ {
#»

A′} ∧ Al 6∈ {
#»

A′}, then
#»

A′ = Ak, · · · , Ai, Ci, · · · , Cj for
some i s.t. j ≤ i ≤ l.

3. (A suspended workflow remembers checkpoints before a sub-workflow) If Cj ∈ { #»A} and
〈E[check],c〉 ⇓

#»

A′

P 〈c′′,E′〉 and Al+1 ∈ {
#»

A′}, then
#»

A′ = Aj , · · · ,Ai,Ci, · · · ,Cl+1,Ca,Cm, · · · ,Ck
for some i > l.

H. Inoue, T. Aotani, and A. Igarashi 2:33

Proof. Let E0 = [];cp#E0;pk;...;sub(...;cp;...)/Ca;...;pn and
E1 = cp#E0;sub([];cp#E1;...)/Ca;...;pn.

1. Straightforwardly from the derivation, using Lemma 1 and Lemma 2. Notice that the
CW-Sub deletes the cp inside the sub and installs the other compensation Ca.

2. We can get E = E0 from the derivation tree. Then, the conclusion follows straightforwardly
from the derivation of 〈E[check], c〉 ⇓

#»

A′

P 〈c′′, E′〉 using Lemma 1 and Lemma 2.
3. We can get E = E1 from the derivation tree. Then, the conclusion follows straightforwardly

from the derivation of 〈E[check], c〉 ⇓
#»

A′

P 〈c′′, E′〉 using Lemma 1 and Lemma 2. J

ECOOP 2018

	Introduction
	Contributions

	ContextWorkflow Constructs.
	Example: Explorer Robot
	Interruptible and Compensable Workflow
	Interruption and Context
	Nested Workflow and Programmable Compensations
	Checkpoint
	Blocking Context Checking

	Operational Semantics of Core ContextWorkflow
	Syntax
	Big-Step Semantics
	Properties
	Discussion

	Monadic embedding to Scala
	Free monad transformers
	ContextWorkflow Monad
	Auxiliary Definitions
	Types of Suspended Workflows
	Monadic interpreter
	Stack Safety
	Atomicity
	Abnormal Termination and Exceptions in Scala

	Related Work
	Conclusions
	Appendix
	Hiding Type Parameters for Simplicity
	Derivation Example
	Proofs of Properties

