-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Dagstuhl Research Online Publication Server

Fault-tolerant Distributed Reactive Programming

Ragnar Mogk

Technische Universitdt Darmstadt, Germany

Lars Baumgartner
Philipps-Universitdt Marburg, Germany

Guido Salvaneschi
Technische Universitdt Darmstadt, Germany

Bernd Freisleben
Philipps-Universitdt Marburg, Germany

Mira Mezini
Technische Universitiat Darmstadt, Germany

—— Abstract

In this paper, we present a holistic approach to provide fault tolerance for distributed reactive
programming. Our solution automatically stores and recovers program state to handle crashes,
automatically updates and shares distributed parts of the state to provide eventual consistency,
and handles errors in a fine-grained manner to allow precise manual control when necessary.

By making use of the reactive programming paradigm, we provide these mechanisms without
changing the behavior of existing programs and with reasonable performance, as indicated by
our experimental evaluation.

2012 ACM Subject Classification Software and its engineering — Software fault tolerance, Soft-
ware and its engineering — Data flow languages

Keywords and phrases reactive programming, distributed systems, CRDTs, snapshots, restora-
tion, error handling, fault tolerance

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2018.1

Funding This work is supported by the European Research Council (ERC, Advanced Grant No.
321217), by the German Research Foundation (DFG, SFB 1053 and SA 2918/2-1), and by the
LOEWE initiative in Hessen, Germany (HMWK, NICER).

Acknowledgements We thank all contributers of REScala and related projects, Julian Haas for
his contributions on CRDTs, and all reviewers of this paper for their comments and suggestions.

1 Introduction

Ubiquitous connectivity together with web, mobile, and Internet of Things (IoT) computing
platforms require software developers to consider distributed execution as an integral part
of reactive applications. In a distributed reactive application, multiple connected devices
update their state and behavior in response to the flow of events and data. Examples include
notifications and messaging (instant messengers, chats), activity streams (social networks),
data visualization applications (e.g., Jupyter), multi-user collaborative applications (e.g.,
Google Docs, Microsoft Office), and multi-player online games.

© Ragnar Mogk, Lars Baumgirtner, Guido Salvaneschi, Bernd Freisleben, and Mira Mezini;
37 licensed under Creative Commons License CC-BY

32nd European Conference on Object-Oriented Programming (ECOOP 2018).

Editor: Todd Millstein; Article No. 1; pp. 1:1-1:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/159847815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2

Fault-tolerant Distributed Reactive Programming

Developing such applications is challenging. Their inverted control flow is typically
modeled in some form of continuation-passing style, resulting in the so-called callback
hell [17]. Designs using continuation-passing style are fragile, hard to maintain, and hard to
reason about. In particular, callback-based communication makes handling of exceptional
conditions during the execution of an application challenging [39]. These issues become
even more apparent in a distributed setting, where the control flow is spread across several
networked nodes and faults occur due to lost connections or shutdowns of remote devices.
For example, a mobile device may get disconnected during a network request (e.g., due to
a weak cellular link or mobility) and may have to eventually shut down due to excessive
battery consumption while trying to reconnect.

State of the art frameworks offering automated fault tolerance (e.g., Spark [49], Flink [6])
are designed for applications that process data without user interaction and that are deployed
on cluster architectures, which are easier to control than mobile wireless systems with
intermittent connectivity. Approaches for building reactive distributed applications (e.g.,
actors [24]) cannot provide restoration or synchronization automatically, because they do
not have knowledge of the overall dataflow in the application. Finally, reactive programming
languages [13, 14, 18, 8], for designing reactive applications in a declarative, modular,
and composable manner [43, 42], do not support (automated) handling of networking or
application faults.

In this paper, we extend REScala [44] to create a fault-tolerant reactive programming
language for developing distributed reactive applications. Our extensions retain the syntax
and functionality of REScala for local devices. REScala has first-class abstractions for events
and signals, collectively called reactives. Events produce distinct occurrences of values, e.g.,
an event corresponding to an input field produces the text a user submits. Events can be
derived from each other using operations such as filters or transformations, and they can be
aggregated into signals. Signals represent time-changing values, such as the latest text a user
submitted. Signals resemble spreadsheet cells where the value of a cell is derived from the
values of other cells and a change causes updates of all derived values. These abstractions
enable developers to program reactive applications without inversion of control. Reactives
and their derivations form a dynamic dataflow graph with nodes corresponding to reactives
and edges corresponding to the dataflow between reactives. The dataflow graph has been
used to automate coordination of message propagation between multiple devices [15, 28, 47].
However, none of the existing approaches provide fault tolerance.

REScala enhances the traditional dataflow graph to support recovery after crashes and
adds a distribution mechanism to cope with unreliable network connections, thus simplifying
the development of fault-tolerant distributed reactive applications. By combining the
declarative dataflow style of reactive programming with structured techniques for eventually
consistent replication [10, 45, 22] and snapshots [6], REScala provides application-wide
fault tolerance with little overhead in terms of both performance and syntactic clutter.
Furthermore, REScala provides language abstractions for propagating and handling errors
at the application level to enable developers to handle faults when the default behavior of
REScala is undesirable and to seamlessly integrate application-level fault handling into the
dataflow graph.

Contributions. We make two high-level contributions. First, we use features of reactive
programming to generalize existing techniques for automated fault handling to work for
distributed reactive applications. Second, we extend distributed reactive programming to
enable declarative fault handling. In detail, we make the following contributions:

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

We extend the update propagation mechanism of reactive programming to support
recovery of managed application state by consistently restarting an application after a
crash as if the crash never occurred (Section 3). The extension is transparent to the
application and produces little overhead in the common case (without crashes).
We integrate eventually consistent data types with reactive programming to cope with
distributed state management across devices in the presence of faults (Section 4). Our
approach maintains strict consistency on a single device, but uses eventual consistency
for every distributed path in the dataflow graph to guarantee availability [21].
We design language abstractions for error propagation and adapt the runtime seman-
tics correspondingly (Section 5), thus enabling developers to programmatically handle
faults when the default behavior of REScala is undesirable, and to seamlessly integrate
application-level fault handling into the dataflow graph.
We provide an implementation of the fault-tolerant runtime and its error propagation
abstractions (Section 6).
We provide empirical evidence that REScala guarantees eventual and crash consistency in
an efficient and transparent way (Section 7). To this end, we evaluate REScala using case
studies to analyze the programming interface, and using microbenchmarks to evaluate
the performance behavior.
The core sections mentioned above are complemented by a high-level presentation of REScala
in Section 2, including an overview of the addressed kinds of faults, and a discussion of
related work in Section 8. Section 9 concludes the paper and outlines areas for future work.

2 REScala from the User Perspective

In this section, we introduce REScala from the point of view of a programmer developing a
simplified shared calendar application. The application tolerates disconnects and crashes, and
users can update their calendar even when they are disconnected. We first discuss the fault
model in detail, and then we introduce REScala by implementing the calendar application.

2.1 Faults

We use the term fault to refer to the origin of a failure and error to refer to the representation
of a fault in the language [25]. REScala tolerates crashes and disconnects. REScala does not
address data corruption (malicious or accidental).

Crashes happen when a device hosting part of the application runs out of battery, reboots
after a crash or update, or runs out of memory, resulting in the OS to terminate the
application. In these cases, the state of the application must be restored — on the same device
— after a crash. Permanent faults are not addressed, because there are no spare devices or
connections in the scenario we consider, i.e., we cannot equip users with new mobile phones.

Disconnects between devices are due to crashes of remote devices or due to broken network
links. Disconnects cause messages to get lost, resulting in an inconsistent state across devices.
REScala addresses the case where faulty devices recover after a crash and broken links are
eventually restored — otherwise, state on the disconnected device is lost.

Current reactive programming approaches [15, 28, 47, 27, 31, 14] do not provide mech-
anisms for any kind of fault tolerance and delegate the responsibility for handling errors
to the language into which the reactive framework is embedded — sidestepping the issue.
In contrast, REScala provides tolerance of the above faults in the reactive programming
paradigm in an automated manner.

1:3

ECOOP 2018

1:4

Fault-tolerant Distributed Reactive Programming

1 val newEntry = Evt[Entry] ()
val automaticEntries: Event[Entry] = App.nationalHolidays()
val allEntries = newEntry || automaticEntries

N}

val selectedDay: Var[Date] = Var(Date.today)
6 val selectedWeek = Signal { Week.of(selectedDay.value) }

s val entrySet: Signal[Set[Entryl] =
9 if (distribute) ReplicatedSet("SharedEntries").collect(allEntries)
10 else allEntries.fold(Set.empty) { (entries, entry) => entries + entry}

12 case class Entry(title: Signal[String], date: Signal[Date])

12 val selectedEntries = Signal {

15 entrySet.value.filter { entry =>

16 try selectedWeek.value == Week.of (entry.date.value)
17 catch { case DisconnectedSignal => false }

18 }

19 }

21 allEntries.observe(Log.appendEntry)
22 selectedEntries.observe(

23 onValue = Ui.displayEntryList,

24 onError = Ui.displayError)

Figure 1 Excerpt of REScala source code for the shared calendar application.

2.2 Shared Calendar Application in REScala

A user of the shared calendar application can create new calendar entries and select the
displayed week. The calendar will be synchronized with other users when a connection is
available.

Figure 1 shows our implementation. We refer to it as we introduce REScala’s events,
signals, conversions between events and signals, and how they are relevant for fault tolerance.
The dataflow graph of the application is depicted in Figure 2, where the node labels correspond
to identifiers used for reactives in the code example and edges represent the dataflow between
those. The highlighted part shows all reactives reachable from automaticEntries and to
which changes are automatically propagated. The rest of this section describes how this
graph is created and how it behaves.

Events. Distinct occurrences of values are produced by events in REScala. There are
input events and derived events. Input events are denoted by the keyword Evt (cf. Line 1)
and allow to emit values using evt.fire(value). The imperative firing of events typically
happens as part of an integration with some external event source, such as an imperative Ul
library where a button press triggers a callback that fires the event, and is thus not shown
in the code example. Derived events are defined by filtering or aggregating other events on
which they depend. For example, the || operator combines two events into a new event
that emits all values emitted by either of its dependencies, e.g., allEntries (Line 3) emits
entries whenever generated by the user or from some external data source, such as a stream
of national holidays.

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

automaticEntries selectedDay selectedWeek

| Log.appendEntry

Figure 2 Dataflow graph for the calendar application. Nodes reachable from automaticEntries
are highlighted.

Signals. Values that change over time are represented as signals in REScala. There are input
signals and derived signals. Input signals are denoted by Var. In Line 5, an input signal is used
to represent the currently selected day. The value of a Var can be changed by imperative code,
e.g., selectedDay.set(Date.tomorrow). The Signal keyword uses a user-defined computation
— the signal expression — to express a derived signal. The signal expression can access other
signals, called its dependencies. Accessing dependencies is explicit — using the value method
to syntactically mark accessed dependencies. In Line 6 of our example, the selectedWeek
signal is derived from selectedDay.value. The current value of a derived signal is updated
automatically by executing the given computation whenever its dependencies change, similar
to a formula in spreadsheets. Changes of a signal are automatically propagated to derived
signals that use the signal in their definitions.

Crash-tolerant signals. Signals hold state and are restored after a crash (c.f., Section 3),
either by loading the value from a snapshot, or by recomputation. For example, a user may
have selected a different day than today, thus the selected day has to be stored in persistent
storage. On the other hand, the selected week is recomputed from the selected day. REScala
uses the Scala type system to statically ensure that the values of signals that are included
in snapshots are serializable. For example, the Var[Date] in Line 5 requires that Date is
serializable. Explicit annotations by the programmer are not required due to type inference
and implicit parameters.

Folds and replication. Signals are convertible to events by aggregating individual event
occurrences into an updating signal value — similar to folding over (infinite) lists. We refer
to such signals as fold signals or simply folds. A fold, such as in Line 10, creates a signal
with an initial value and updates it according to the parameter function every time the
event fires. Lines 8 to 10 define a list of all calendar entries as the signal entrySet by folding
over emitted calendar entry events. When the flag distribute is false, in Line 10, the fold
operator aggregates the calendar entries emitted by the allEntries event into a list of all
calendar entries. Line 9 demonstrates a distributed aggregation that has the same behavior
as the local fold, aggregating all entries into a set. However, a ReplicatedSet has a name,
SharedEntries in this case, and elements of the replicated set are shared with other devices
that also use a ReplicatedSet with the same name.

Fault-tolerant folds. Fold signals are particularly interesting for fault tolerance, since they
aggregate state that (a) must be included in a snapshot for restoration after a crash, and
(b) is reliably replicated to other devices. Additionally, a distributed aggregation such as a
ReplicatedSet is also synchronized after a crash to ensure that all devices eventually see the
same set of entries. REScala uses built-in data types based on CRDTs [45] to ensure that

1:5

ECOOP 2018

1:6

Fault-tolerant Distributed Reactive Programming

changes to all replicas eventually become consistent in the presence of crashes and message
losses. The order in which entries are added, however, may be different on every device, and
the intermediate values are visible.

Dynamic dependencies. Until now, all dependencies have been static, i.e., the dataflow
does not change during runtime. However, signals may have a dynamic set of dependencies
to support higher-order signals, i.e., signals whose values contain inner signals. For example,
the entries (Line 12) we have been using in the calendar have a title and a date, both of
which are signals and may change their value. The selectedEntries (Line 14) is derived
by filtering the entrySet (Line 15). The filter function dynamically accesses the inner date
signal of each entry (Line 16).

Interactions with the environment. In addition to firing and setting inputs, events and
signals can be observed to produce side effects. Observing an event executes the side-effecting
handler function every time the event emits a value, e.g., each entry is appended to a log file
in Line 21. Observing a signal bridges between time-changing values and ordinary imperative
state. For example, in (Line 22) the current state of the Ul is overwritten when it becomes
inconsistent with the signal after a signal change. REScala guarantees that the handler
function of a signal observer is always called with the most recent value of the signal after
an update, which allows the application to extend its invariants from the dataflow graph
to external imperative libraries (in this case, the invariant is that the UI always displays
the values held by the selectedEntries signal). Both event and signal observers can take an
additional parameter to observe errors (Line 24), as explained next.

Explicit error handling. Reactives in REScala propagate errors along the dataflow graph.
Errors can be handled as exceptions in signal expressions. For example, in Line 16, if the
network connection fails before an inner date signal is transferred for the first time, then
the access to the unavailable entry date signal throws a DisconnectedSignal exception. The
default error handler postpones further evaluation of the selectedEntries until the signal
is available. Instead of the default behavior, Line 17 explicitly catches the exception and
returns false, causing the filter to drop the entry. Explicit error handling enables the use of
application specific knowledge for more precise control of application behavior.

3 Fault-tolerant Application State

As illustrated in Section 2, crashes of individual devices during the execution of a distributed
reactive application may result in a loss of the state of the reactive subgraph hosted on these
devices. Loss of local device data is problematic since such data often contain important
private or unsynchronized information of the current user. To address this issue, REScala
provides automatic snapshots and recovery.

Snapshot anatomy. Conceptually, a snapshot of an application is a function that maps
unique keys, denoting reactives, to their current values. The REScala runtime performs
an analysis of the dataflow graph to minimize the number of key-value pairs that need to
be stored. Applications often store redundant derived state in memory for efficiency. For
example, a histogram displayed to the user can be recomputed from database entries, but it
would be expensive to repeat this process for every frame the application displays. Local
REScala applications typically consist of many small derived parts of the state (i.e., single

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

reactives) to take advantage of incremental updates. In such a setting, REScala detects
derived state and excludes it from snapshots. Precisely, in REScala, the only reactives that
cannot be derived are vars and fold signals (signals that aggregate event occurrences), since
their state depends on past user interactions. All other reactives are either stateless events
or derived signals that can re-execute their user-defined expression to recompute their state.
We say that vars and fold signals constitute the essential state, and REScala recovers the
state of the dataflow graph from the essential state.

Creating snapshots. Snapshots are created between semantically related changes, such
that ongoing control flow does not interfere. REScala can detect related changes, because
the dataflow graph makes semantic relations in applications explicit as (transitive) edges
between reactives. For example, in Section 2, creating a new entry (a) updates the list of
entries, (b) updates the list of selected entries, and (c) causes the UI to refresh. Explicit
relations are used to determine when the transitive changes caused by an input event are
fully applied to all reachable reactives and a snapshot is created after one such update to the
dataflow graph. As a result, each snapshot corresponds to a single user perceived update,
e.g., all changes of the state triggered by a new calendar entry belong to the same snapshot.

Incremental snapshots. Storing a full snapshot of all the essential state after each update
is wasteful, since an update only affects parts of the application. REScala knows all updated
reactives — they constitute the transitive closure of changed inputs, e.g., the highlighted
reactives in Figure 2, starting with automaticEntries. REScala stores snapshots incrementally,
by only changing the values in the snapshot that correspond to updated reactives. As a
result, the cost of creating snapshots only grows linearly with the size of updates, instead of
linearly with the size of the application. This scaling behavior supports efficiently composing
large applications out of multiple parts, such as network, UI, and background services, in
case the added parts do not increase the size of updates.

Recovering state. For recovery, REScala re-executes the application to restore the dataflow
graph. During this recovery process, the value of each reactive is restored to the state
before the crash. Events do not have state, so no value is restored. Fold signals and vars
recover their values directly from the snapshot. Derived signals recompute their values from
their inputs. The acyclic dataflow graph ensures that inputs are restored before derived
signals, hence they can be used to recompute the derived signals. Like snapshot creation,
the recovery process is incremental as reactives are restored as soon as they are created
during the re-execution of the application. Thus, REScala allows the restored parts of the
application to already handle new interactions, while other parts are still recovering.

Observers. REScala only restores state that is part of the dataflow graph. To ease inte-
gration with external libraries, REScala executes observers on signals during restoration.
For example, when the list of selected entries of the calendar is restored, the observer that
informs the UI about updates is executed. Observers allow the application to implement an
invariant between the state in the dataflow graph and external state. Executing the observers
during recovery allows the application to uphold its invariants, i.e., that the imperative state
that is modified by the handler corresponds to the latest value of the signal. However, it
is ultimately the responsibility of the application to use correct handlers. Events have no
state to be restored (because snapshots are only stored between updates), so the handlers on
event observers are not executed during restoration.

1:7

ECOOP 2018

1:8

Fault-tolerant Distributed Reactive Programming

Abstract dataflow

Dev 1 Dev 2 Dev 4
e o
i€ (5
—

s (]| O|© 0)0

Figure 3 Full dataflow graph of a distributed application (left) and abstract dataflow (right).

Recomputation versus full snapshots. We make two arguments why recomputation is
preferable over storing more values in the snapshot. First, a snapshot is created every time
an update occurs, while restoration only happens when a device fails. Hence, storing only
necessary state has performance benefits if the latter is only a small portion of the overall
state (cf. Section 7.2 for an empirical evaluation). In a previous study [44], we reported
that in a typical reactive application only 14% of the dataflow graph contains essential state.
Second, only the essential parts of the state need to be serializable, thus allowing the use
of data types that cannot be (efficiently) serialized for the rest of the application. REScala
uses the type system together with type inference and implicit parameters to ensure that the
static type of each reactive containing essential state is serializable.

4 Managing Distributed State

This section presents how REScala keeps the application responsive when network connections
are not reliable. The key idea is to make the dataflow graph fault-tolerant and eventually
consistent, instead of handling fault tolerance at the level of individual messages.

Replicated signals. Fault-tolerant dataflow graphs use replicated signals to model shared
state among multiple devices. For illustration, consider Figure 3, which shows a dataflow
graph spanning four devices (left), and the dataflow without distribution that is represented
by this graph (right). Reactives A, B, C are replicated signals representing data shared
across the devices (C is replicated in Dev 2 and Dev 4, A in Dev 1 and Dev 2, and B in Dev
1, Dev 2, Dev 3).

Replicated signals behave as normal signals with regard to device-local dataflow, e.g.,
their state is stored in the local snapshot. However, unlike directed dataflow connections
between reactives on the same device, connections between replicas work in any direction, i.e.,
each device can change the state of its replica independently, even while being disconnected
from the rest. As a result, the state of the replicas of a replicated signal can diverge in
the presence of disconnects. Replicated signals use eventually consistent synchronization
to support fault tolerance, i.e., the state of replicas diverges when disconnected to remain
responsive and eventually converges when connections are available. Replicated signals are
implemented using state-based conflict-free replicated data types (CRDTs) [45]. CRDTs
provide automatic conflict-free merging of diverged state for a wide range of common data
types [45]. For instance, the example in Figure 1 illustrates the usage of a replicated reactive
of type ReplicatedSet:

9 ReplicatedSet("SharedEntries").collect(allEntries)

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

The underlying CRDT of ReplicatedSet is a set with a single commutative, associative, and
idempotent operation, which adds to the set each value associated with an occurrence of the
collected event. The set of entries is synchronized between all devices that use a replicated
signal with the same name and type. Due to the properties above, the state of replicas can
always be synchronized, and eventually all devices will converge to the same set containing
all added elements. In addition to ReplicatedSet, REScala currently supports replicated
counters, last-writer-wins registers, ordered lists, and replicated data types that allow adding
and removing elements from sets and lists. By using conflict-free data types — an existing
technique already known to programmers — we provide simple and intuitive semantics for
sharing state across devices.

Integration with the overall dataflow graph. The well-defined set of operations on CRDTs
enables their integration into the update propagation and enables state restoration, because
operations of each CRDT, and how it changes based on local and remote events, are visible to
REScala. As a result, changes to the state of a replicated signal are immediately propagated
to local derived signals in the same manner as local changes update the whole reachable part
of the dataflow graph at the same time, i.e., each update either is visible by all reactives of
the local device or not visible at all. In contrast, the state of reactives on different devices
can temporarily diverge. For example, consider the graph in Figure 3. An update that affects
reactive A on Dev 2 will immediately affect reactive B on Dev 2 because they are connected
by the local dataflow graph. However, if A is updated on Dev 1, B is only indirectly affected
and synchronization with Dev 2 is required to complete the update. Such an inconsistency,
where an update is applied to A but not yet to a connected reactive B, is called a glitch.
To prohibit distributed glitches, Dev 1 would have to wait for the update on B to arrive,
whenever A is changed. REScala allows distributed glitches in favor of availability.

Replicated signals are stored and restored when a device fails. Replicated signals have
unique names shared between devices, which are used as keys in the snapshot, allowing
multiple devices to include their replica in their snapshot and to synchronize changes after
restoration. Thus, snapshots combined with conflict-free replication allow a device to
disconnect, store and restore local modifications that survive crashes, and merge the local
snapshot with the current state in the replicas on reconnect.

Publishing signals. Using CRDTs to implement replicated signals allows bidirectional
communication, but the changes that one can perform on a signal are limited to the
operations implemented by the CRDT. Alternatively, REScala allows to publish any signal
— not only those based on CRDTs — but the published signal may only be changed by the
publishing device. To prevent conflicting changes, other devices can only read the published
signal. For example, each individual calendar entry (title and date) in the shared calendar
is published by the device that puts the entry into the calendar, thus only the creator of
an entry can change it. Publishing is a special case of eventually consistent replication. To
publish a signal, REScala creates a replicated signal with a last-writer-wins CRDT, a data
type where the merge function always selects the most recent value. Since only one device is
allowed to write, there are no races between writes.

Distributed event propagation. Events are not distributed directly, but have to be con-
verted to signals. However, we leave the responsibility to decide about the concrete conversion
to the programmer, because of the trade-off between reliability and communication overhead
involved in the conversion. For example, the latest(n) operator can be used to create a

1:9

ECOOP 2018

1:10

Fault-tolerant Distributed Reactive Programming

signal containing the latest n occurrences of the event. As a result, the connection can be
lost for the duration of n event occurrences without loss of data. If more than n events occur
when the device is disconnected, the oldest events will be lost. Similar operators can be
used to define time or priority based policies, allowing the application developer to tune the
software behavior as necessary.

5 Error Propagation

REScala uses CRDTs to achieve fault-tolerant replicated state in an automatic way. However,
by default, a disconnect of a CRDT does not trigger any action. The application eventually
receives new updates after the reconnection and the inconsistency is resolved. In some
scenarios, the application cannot simply wait for an eventual update, but has to act sooner.
For this reason, developers should be able to program application-specific behavior in case of
faults. For example, if a connection fails, a different replica may be selected manually, or the
missing values are approximated, e.g., using a default value, if the application can continue
the execution tolerating the inaccuracy. To support custom fault handling, we introduce
errors as a programming abstraction in REScala. Errors are pushed into the dataflow graph
when a device becomes disconnected (such a condition is established using timeouts). Errors
are propagated along the same path as values in the dataflow graph, similar to how exceptions
propagate along the path of the values returned by function calls.

In the following, we describe the API of our error propagation and handling mechanism
from a user’s point of view, and show how to handle errors that occur due to faults in
the underlying distributed system as well as local errors due to faults like missing files or
exceptions in external libraries. The new error-aware semantics of the reactives is a superset
of their original semantics, thus existing code carries over unchanged.

Injecting errors into the dataflow graph. We extend the API of Evt and Var with operations
for firing errors. Evt.admit(error) behaves similar to the existing Evt.fire(value) (similar
for var.set), but it starts the propagation with an error instead of a value. The main use
of this API is to support the integration of existing frameworks, e.g., converting an error
of a networking library to an error in the dataflow graph. Consider an existing networking
library with a callback-based API. When a timeout occurs in the network, the imperative
library callback is converted into a reactive propagation:

val fromNetwork = Evt[NetworkMessages] ()
Network.onTimeout { error => fromNetwork.admit(error) }

Observe and recover. We extend the observer’s API to accept an additional handler
parameter called onError, which is used to observe propagated errors. This handler has the
same purpose as catch blocks, and, similar to the standard observe call, has the goal of
producing a side effect, e.g., displaying an error message. The error handler on observers
can be missing: any unhandled error terminates the program in the same way as traditional
uncaught exceptions. In the calendar example in Figure 1, any error is displayed to the user
by the error handler defined on the signal in Line 22 using the extended observer API:

22 selectedEntries.observe(
23 onValue = Ui.displayEntryList,
24 onError = Ui.displayError)

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

Instead of simply observing errors, the application developer can recover the error inside
the dataflow graph using the recover operator for signals and events, which is parameterized
with a recovery function that converts an error to a normal value. The value is then
propagated as the output of the recover operator. Any normal value that flows through the
recover operator in the dataflow graph is propagated without change. The recover operator
handles errors while they are propagated through the dataflow graph and before they reach
an observer. Recovering from an error is most useful, when errors can be locally converted
back into normal values. This case is relevant in several applications. For example, values
can have local fallbacks, such as an unavailable location service that can be replaced by using
more expensive or inaccurate local data. Another example is a signal holding an UI widget,
where an error can be handled by displaying it to the user.

Signal expressions. A user-defined computation in a signal expression may access any
number of dependencies. When any of the dependencies propagates an error, the error
is raised as a Scala exception by the .value call performing the access. The exception

may be handled by the application using the default Scala exception handling mechanisms.

Unhandled exceptions in a user-defined computation are propagated along the dataflow
graph. The use of Scala exceptions enables our error handling scheme to integrate well with
most libraries in the JVM. For example, the shared calendar in Figure 1 filters the list of
all calendar entries to only include entries of the current week in Line 14, and all entries
containing an error are removed using a Scala try/catch block:

11 val selectedEntries = Signal {

15 entrySet.value.filter { entry =>

16 try selectedWeek.value == Week.of (entry.date.value)
17 catch { case e: NetworkError => false }

When the entry.date() in Line 17 contains an error, the error is thrown as a Scala exception
and handled in the catch by returning false, causing the filter to drop the entry.

Folds. Recall that the fold operation supports converting events into signals. Given an
event e, an initial value init and a function £, which are passed to it as parameters, fold
returns a signal that is initialized with init und gets updated every time e fires by applying £
to the current value of the signal. Thus, unlike other derived reactives, a fold signal accesses

its own current value, i.e., the fold (indirectly) depends on the complete history of the event.

In our example, the signal allEntries (Line 10) is constructed by reading the list of all entries
and appending each read entry to create a value that accumulates all event occurrences:

10 allEntries.fold(Set.empty) { (entries, entry) => entries + entry}

The current accumulated value of the fold is treated like any ordinary dependency. If it
is accessed and it holds an error, the error is thrown as a Scala exception. If the exception
is not handled inside the user-defined computation (i.e., the function body of fold), then
an error is propagated by the fold reactive to other reactives that depend on it. On the
other hand, by handling the exception a developer can resume the computation of the fold
reactive after an error. We present an example for fold with custom error handling next.

1:11

ECOOP 2018

1:12

Fault-tolerant Distributed Reactive Programming

Example: Fold with custom error handling. To illustrate the use of the error handling
API in fault-tolerant REScala, in the following we present and discuss the implementation of
a user-defined operator on events. The operator, called count, is defined in terms of fold.
It counts the number of non-error event occurrences and forwards error event occurrences
without increasing the count. The implementation of count is shown below:

1 def count() = fold(0) { (state, occurrence) =>

2 occurrence // access the (unused) value to propagate potential errors

3 try state + 1 // increase count in non-error case

A catch { case (value, error) => value + 1 } // continue counting after errors

}

The count signal starts with its initial state initialized to zero (Line 1). The folding
function takes the current state of the fold and the incoming event, called occurrence, as
parameters. When occurrence is accessed in Line 2, there are two possibilities: the access
raises an error or a normal value. (a) in case of an error, the execution of the user-defined
computation is aborted (because the access is not enclosed in a try/catch block), the state
of the fold is not increased and the error is stored in the fold for future processing. (b) If the
access of occurrence returns a normal value, the latter is ignored (we only count the number
of non-error occurrences) and the execution attempts to access state in Line 3. If the current
state is a normal value, it is incremented, and the increased count is returned (Line 3). If
the current state is an error, the latter is thrown when state is accessed and immediately
caught in Line 4. The pattern match in the catch block binds the last non-error value stored
in the fold and the current error. Our example handler ignores the error and continues by
incrementing the last non-error state, thus implementing a counter that resumes counting
when a new occurrence arrives after an error.

6 Implementation

Our fault tolerance mechanisms are an extension of REScala, which in turn is implemented as
a Scala library. We added efficient support for fault tolerance while preserving compatibility
with existing applications.

Distribution. REScala uses a custom message passing mechanism for distribution based
on TCP and Websockets (for Web clients); it does not provide any specific mechanism for
peer discovery — the latter has to be implemented by the application. The synchronization
mechanism of REScala supports any topology, e.g., client-server or peer to peer.

The mechanism for detecting changes of replicated signals is the same as the one used
for local propagation of updates, i.e., a change is detected when the value of a signal is
replaced by a new one. Change detection relies on immutability of values in signals, i.e.,
changes via side effects are not detected. When a change is detected, the new value of the
replicated signal is serialized and sent over the network. Values are serialized using Circe®,
which supports type-safe serialization for most built in immutable Scala data types. Custom
serializers can be provided using typeclasses. The serializer for signals is special and causes
the signal to be published as described in Section 4.

! nttp://circe.io/

http://circe.io/

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

Snapshots. Our snapshot and restoration mechanism supports storing snapshots in arbitrary
key-value stores. We have two implementations for in-memory stores: one that writes directly
to disk (for JVM and Android) and another one that uses HTML5 localStorage [3] for web
browsers.

Using fault-tolerant reactives is thread-safe, but care must be taken when reactives are
created in a multi-threaded environment. Snapshots in REScala require unique IDs to identify
reactives, and our current implementation uses thread-local counters to generate IDs, e.g.,
the IDs UI-0 and UI-1 are associated to the first and to the seconds reactive created in the
context of the Ul thread. This ID generation strategy is well suited for applications with a
fixed set of threads, but it cannot cope with the case in which threads are created and used
dynamically in a thread pool, because the IDs generated for those threads do not remain the
same between restarts of the application. REScala requires the developer to explicitly handle
the assignment of IDs to reactives if the automatic mechanism is insufficient. In practice, it
is in most cases sufficient to ensure that dynamically scheduled tasks (e.g., those in thread
pools) are assigned deterministic names to enable correct automatic generation of unique
IDs.

Errors. The error propagation mechanism in integrated into the implementation of the
dataflow graph through the following extensions. First, we extend the types of the values
held by reactives. The REScala implementation (without support for errors) distinguishes
between Changed[T] and Unchanged[T] for the data type of the values held by reactives —
these two different types of values are propagated differently. To support error propagation,
we introduce a third type, Error, and update the case distinctions in the propagation logic,
whenever any of the types is accessed. Second, we modify the reevaluation function such that
any exception thrown during the execution of user-defined computations, is propagated as an
Error. Overall, our implementation strategy for errors induces little performance overhead
when no faults are present, as shown in the empirical evaluation in Section 7.2.

7 Evaluation

Our integration of fault tolerance mechanisms into the reactive language runtime comes with
synergetic effects between the two. On the one hand, snapshots and restoration maintain
the consistency guarantees of reactive programming on individual devices in the presence of
faults, distributed signals bridge dataflow graph across devices, and our error propagation
mechanism enables principled handling of exceptional cases. On the other hand, the dataflow
graph is instrumental in enabling fault tolerance in distributed applications at little cost in
terms of both the burden on the programmer and the performance overhead. Specifically,
the language runtime ensures that (a) the graph is consistent between updates, providing
a point in the execution where snapshots can be taken efficiently, (b) derived values are
automatically and consistently recomputed during restoration and remote updates, and (c)
the application cannot change the state arbitrarily, so snapshots always remain consistent
with the current state and changes are detected and distributed.

In the following, we empirically evaluate the claim that our fault tolerance features come
at little cost in terms of both the burden on the programmer and the performance overhead.

1:13

ECOOP 2018

1:14 Fault-tolerant Distributed Reactive Programming

observe fire change Total L.
Case study Description
ok nok ok nok | ok nok ok nok
CRDTs 9 9 CRDT integration
Datastructures 5 5 Reactive collections
Dividi 1 3 4 P2P distributed ledger
Editor 42 10 1 52 1 | Swing text editor
Examples 39 2 9 19 | 48 21 | Swing/console examples
Mill game 14 7 1 21 1 | Turn based swing Ul
Pong game 3 15 5 4 5 22 10 | Multiplayer swing game
Reactive streams 1 1 Interface integration
Scalafx 3 1 4 JavaFX integration
Scalatags 2 1 3 HTML DOM integration
Swing 2 2 2 2 | Swing integration
RSS 15 4 19 Swing RSS reader
Shapes 1 17 4 1 22 1 | Swing drawing app
Todolist 11 11 TodoMVC app
Universe 1 8 2 9 10 10 | Console simulation
Total 9 1] 180 7| 44 38 | 233 46

Figure 4 Possibly problematic operators in case studies and extensions.

7.1 Non-invasive Fault Tolerance

Our extensions for fault tolerance are non-invasive, meaning that existing applications
implemented with REScala are made fault tolerant with minimal effort. To validate this
claim, we answer the following research questions:
(RQ1) To what extent do snapshots and restoration affect the application semantics?
(RQ2) To what extent does the integration of replicated signals into the dataflow graph
affect the application semantics?
(RQ3) How many changes to a reactive application are necessary to support error
propagation and handling?
To answer these questions, we analyze a set of case studies, consisting of ten applications
(including games, simulations, and GUI applications) and five integrations with external
libraries (e.g., an API to access the HTML DOM, bindings for JavaFX and for Java Flow),
comprising a total of 13.000 LoC?2. The case studies are listed in Figure 4 and their code is
publicly available3.

(RQ1) Effects of state snapshotting/restoration on application semantics. Snapshotting
is invisible to an application, since snapshots are automatically created at the end of an
update propagation. Restoration, on the other hand, is visible to the application, since
restoration re-executes the application to restore the dataflow graph (cf. Section 3). The
value of signals may differ between its first (normal) start and a restoration, causing different
application behavior. Furthermore, certain inputs to the dataflow graph may be duplicated
while restoring. For example, if a new calendar entry is added to the shared calendar via
newEntry.fire(startedEntry) during startup of the application, then the startedEntry would

2 Lines are counted with CLOC (cloc.sourceforge.net) excluding comments and blank lines
3 Repository available at www.rescala-lang.com.

cloc.sourceforge.net
www.rescala-lang.com

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

be added every time the application is restored, resulting in multiple such entries in the
list of allEntries, which is obviously not the desired behavior. We refer to problems with
different behavior during restoration as restoration inconsistency.

To quantify the extent of restoration inconsistencies, we inspect all input and output
interactions of imperative code with the dataflow graph in our case studies. These interactions
are easy to localize, since they occur via a well-defined interface of the dataflow graph,
consisting of the operations fire, set, and observe. The columns for fire (input interactions,
also containing set) and observe (output interactions) of Figure 4 summarize our findings.

Firing events on some occurrence in the external world via the fire and set operations
serves the purpose of entering new values into the dataflow graph, e.g., a user clicking a
button, time passing, or receiving a network message. In our case studies, 180 out of 187
fire calls serve such a purpose and are not affected by state restoration. The 7 remaining
calls that do exhibit the restoration inconsistency problem are instances of the same event
usage anti-pattern: they incrementally build state during application startup. For example,
the Pong game initializes the UI elements, and adds them one by one to a list of all Ul
elements, as shown below. As a result, this list would grow after each restoration.

val addElement = Evt[UIElement]
val allUIelements: Signal[List[UIElement]] = addElement.list()
addElement.fire(ball); addElement.fire(playerl); addElement.fire ...

Firing of events must not be misused for initializing reactives. Manual inspection of usages
of the fire method is required to find such misuses.

We also analyzed if observe calls on signals cause inconsistencies during restoration.

We found a total of 10 usages of signal observers in the case studies (event observers are
more common with 150 usages). Out of those 10 signal observers, 9 are not affected by
restoration inconsistencies. 7 of them are in bindings for external libraries and are used to set

properties of Ul toolkits, e.g., the window title as in titleText.observe(UI.window.setTitle).

Triggering these observers during restoration correctly causes the Ul to display the restored
state. Two observers execute cleanup code, which is not affected by restoration either. The
only observer that is affected by restoration inconsistency is in a simulation application
(Universe row in Figure 4). The simulation uses mutable state outside of REScala, and if a
fault occurs during a simulation step, this state is not restored.

We conclude that the state snapshotting/restoration feature of our approach operates
mostly transparently. This means: (a) most of the potentially problematic interactions
(181 out of 189, roughly 96%) are unproblematic in our fault-tolerant runtime, (b) the few
problematic cases can be avoided, if application developers use the correct APIs of the
dataflow graph, and ensure that mutable state outside of REScala is also able to tolerate
faults.

(RQ2) The effect of introducing eventually consistent updates. Eventually consistent
updates may affect the behavior of existing applications in two ways. First, they break the
invariant that each occurrence of an input Evt is handled individually. Instead, after devices
were disconnected for a while, all changes are replicated as a single large change to other
devices. These combined changes cause problems when the application expects each change
individually, e.g., if our shared calendar were to display a notification each time an entry is
added, the notification may be triggered for a group of entries, instead of each individual
entry, and as a result, the notification system has to be able to handle multiple entries at
once.

1:15

ECOOP 2018

1:16

Fault-tolerant Distributed Reactive Programming

Second, they break assumptions that usages of the change operator on signals may make
about its behavior. The change operator is used to reify and handle each individual change of
a signal, and usages of change may assume that every intermediate change of the signal will
occur individually. However, with eventual consistency intermediate changes may be grouped
as described above, hence assumption changes become invalid. For illustration, consider a
simple clock implemented as below. The computation of minutes relies on seconds change
to 0. However, with eventually consistent propagation seconds could change from 59 to 2
skipping the intermediate step, because an aggregated update is received over the network,
resulting in a missed minute.

val tick: Event[Unit] = ... // fires once per second
val seconds = Signal { tick.count() % 60 }
val minutes = Signal { seconds.change.filter(_ == 0).count() % 60 }

To quantify to which extent the introduction of replicated signals affects the application
semantics due to the existence of change operations on signals, we investigate whether the
semantics of our case studies relies on each individual signal change being visible, as opposed
to relying on a notification about its latest change. The results of this analysis are shown in
the change column of Figure 4. Roughly 46% of change operators (38 out of 82 in 7 out of 15
case studies) have different behavior when individual changes are grouped or skipped due to
eventual consistency. The results indicate that replicated signals with eventual consistent
semantics cannot be introduced transparently, which, in fact, is not surprising. One way to
mitigate the problem is to keep computations that require strong consistency on a single
device, and only distribute their results via replicated signals. As discussed in Section 9,
manual handling of network errors has the potential to enforce consistency at the cost of
availability, but this is not currently supported.

(RQ3) Changes to application code needed to propagate and handle errors. The inte-
gration of error propagation into the normal change propagation allows to propagate errors
mostly transparently — additional code is required only at specific places where the developer
wants to handle errors. The key point is that intermediate reactives do not have to be
updated to propagate the error, minimizing the total amount of application code that requires
modification. To demonstrate that error propagation does not “pollute” application code, in
the following, we discuss how we refactored one of the existing case studies — a simple two
player Pong game — to add support for handling application-level errors.

The case study consists of two application windows, one for each player. Without handling
faults, if one player dropped, the game would get stuck or simply terminate. Figure 5 shows
an abstract representation of the dataflow graph of the case study. Altogether, we update
the game at three locations out of the 250 total LoCs.

To evaluate error handling in REScala, we added functionality to allow players to leave
and join the game. When a player disconnects, an error gets inserted into the position signal
of the racket of that player:

UI.onClose{ Racket.pos.admit(PlayerDisconnected) } // set position to error

Following the dataflow of Racket.pos through the dataflow graph of the application, one
can identify the places where the error needs to be handled. There are two such locations:
when displaying the players on the screen and inside the game logic handling cleanup of data
structures for disconnected players.

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

recover

Ops/ms
o
/{

insert error 25 [~ Snapshots —e— -

ULdisplay
No snapshots —*—

0 | | | |
0 0.2 0.4 0.6 0.8 1

Figure 5 Recovering from errors in Pong. Figure 6 The cost of snapshots.

game state

For handling the error when displaying the players, we reused an existing try/catch
block that handled missing game objects and added a handler for the PlayerDisconnected
exception.

case _: NoSuchElementException | _ : PlayerDisconnected =>
// remaining handler unchanged

As a final modification to the code, failed connections are observed and the corresponding
player is removed from the game. To remove the player, a list of disconnected players is
derived from the the list of players, by filtering on the player connection:

val disconnectedPlayers = Signal{ players.value.filter { p =>
Try(p.connection.value).isFailure} }
disconnectedPlayers.observe (Game.removePlayers)

If accessing the connection raises an error (checked with Try(...).isFailure), then the
player is considered disconnected. The resulting list of failed players is observed and these
players are removed from the game (closing the connection and updating the list of players).

7.2 Performance Evaluation

We use microbenchmarks to evaluate the performance of different features of REScala. We
evaluate each feature individually, since they do not influence each other and can be disabled
by applications as required. Specifically, we answer the following questions:*

(RQ4) What is the performance overhead introduced by our snapshotting mechanism?
(RQ@5) What is the performance tradeoff between restoring state from the snapshot versus
recomputing the state?

(RQ6) How does the performance of our recovery mechanism compare to the performance
of the recovery mechanism of an industrial-strength data streaming system?

(RQ7) How does language-integrated error propagation affect application performance?

Experimental setup. We use existing microbenchmarks of the base reactive language,
which are available from the Github repository® in version v0.21.1. The benchmarks are
implemented using the OpenJDK benchmarking framework Java Microbenchmark Harness [4]
version 1.19. We perform 25 iterations of each benchmark and report the average. To reduce
the influence of non-deterministic optimizations, we fork the JVM 5 times, each doing
5 iterations with proper warm-up. Each iteration runs for about 1 second. We run the

4 We do not evaluate the efficiency of our CRDT as we do not contribute performance improvements over
existing work [5, 45].
See www.rescala-lang. com.

1:17

ECOOP 2018

www.rescala-lang.com

1:18

Fault-tolerant Distributed Reactive Programming

2.58 300 B 1 B e 31 s e e 0 B e
P 2 | Restore
9 () estore —*—
2.04 295 & _
n 21 | 2 Derive —e—
= 150 .
) 2,
o o
14 75 |
0 ool vl ad
0 T ~
None Fresh Restore 1 10 100 1000 1000
Figure 7 Cost of restoration. Figure 8 Restoring vs. recomputing lists

of various sizes.

benchmarks on an Intel Xeon CPU E5-2670 @ 2.60GHz, using one core only, since the
benchmarks are not multi-threaded, and we use the OpenJDK 1.8.0_141 Server VM with
default parameters on CentOS Linux (Kernel 3.10).

(RQ4) Overhead of snapshots. Snapshots happen after every update to the dataflow graph
and affect the overall application performance. Snapshot overhead consists of the internal
overhead for determining all the updated state and of the overhead for serializing that state.
The snapshot is stored in an in-memory database, because we do not want to measure time
spent writing to disk, since this overhead is not specific to our solution. We quantify the
snapshot overhead as a function of the number of folds in an application, since only the state
of fold signals is included in a snapshot. For this purpose, we parameterize our benchmarks
with the number of fold signals in the graph.

Figure 6 shows the throughput for a dataflow graph consisting of a single input event
with 100 reactives derived from it, on the z-axis is the percentage of folds out of these
derived reactives, the other reactives are stateless. We selected this topology since it allows
us to create a full snapshot of all fold reactives with a single input change. To factor out
the influence of computations not involved in snapshotting, user-defined computations of
both folds and stateless derived reactives only do simple integer arithmetics with negligible
overhead. We executed the benchmark twice, with and without snapshots enabled. The
relative throughput is on the y-axis of Figure 6 (higher is better).

We observe that the throughput of the benchmark with snapshotting is overall lower
than without and further decreases when the number of fold signals is higher. In the best
case, i.e., there are no fold signals, the overhead is minimal; our solution incurs performance
overhead only when state is actually stored, i.e., there is no overhead for an active but unused
feature. In the worst case, i.e., when every reactive is a fold, the throughput of the run with
snapshots is still about 58% of that with no snapshot. For typical reactive programs, however,
which contain roughly 14% fold signals [44], the relative throughput is 85%. Moreover, the
numbers reported so far are rather conservative and the real average throughput is higher,
because typically only part of the graph, i.e., only a subset of the folds in each benchmark
configuration, changes its state during an update. To recap, we consider the overhead of our
snapshot mechanism reasonable.

(RQ5) Restoring from snapshots versus recomputing. We first quantify the overall cost
that recovery adds when restarting the application (1). We also quantify the tradeoff between
taking minimal snapshots versus taking bigger snapshots (2).

Regarding (1), Figure 7 shows the results of measuring the cost of recovery for the graph
from (RQ4). Each bar on the z-axis shows the throughput of creating a graph (a) without

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

3
1.00 .08 1.00 .
2.36
1.00 6 ;
- 0.86 0.86 0.80 203 h
2.0.75 z 2 !
5" 0.58)
£0.50 &
& Flink !
0.25
RP
0. 0 — '
none 1000ms 100ms 10ms none 30% 100% Wrapped Internal
Figure 10 Integrated error propaga-
Figure 9 Flink vs. REScala snapshot performance. tion versus Try-based solution.

any support for fault tolerance, (b) with support for fault tolerance but when restoring from
an empty (fresh) snapshot, as is the case when an application is started for the first time,
and (c¢) when restoring the graph from an existing fully populated snapshot. The overhead
we observe in the last case is the result of creating the initial snapshot and restoring the
(serialized) values from the snapshot. We conclude from Figure 7 that while restoration
has a certain overhead, the cost is comparable to normal application startup times, since
REScala restores the graph of 100 reactives twice per millisecond, compared to starting the
application, which is performed 2.5 times per millisecond.

Regarding (2), as already mentioned, our approach minimizes the amount of state that
is stored in snapshots, hence we tradeoff restoring derived state against recomputing it.
Intuitively, one would assume that our restoration has higher overhead compared to one that
starts from a maximal snapshot, as it has to recompute more. However, a small experiment
indicates that this does not necessarily have to be the case. In the experiment, we run two
versions (labeled Restore and Derive) of a benchmark with a dataflow graph that stores
a list containing integers 1 to V. In the Restore version the list is part of the snapshot,
while in the Derive version the snapshot only contains the size of the list and the list itself
is recomputed during restoration. The graphs in Figure 8 show the results, with N in the
x-axis and throughput in the y-axis. We observe that (a) both restoring and recomputing
derived state get linearly more expensive with the size of N and (b) recomputing the list
given its size is faster than restoring from a complete snapshot of it. This indicates that our
approach of deriving as much state as possible from minimal snapshots during recovery does
not only make snapshotting efficient, but can also be beneficial to restoration performance.

(RQ6) Comparison to an industrial-strength data streaming system. Our objective in
this experiment is to compare the performance of our prototype implementation for snapshots
and recovery to a functionally similar industrial-strength system. The objective is to measure
an upper bound for the performance of our system. We chose Flink [6], a state-of-the-art,
industrial strength, big data processing engine for real-time analytics used, among the others,
in the Alibaba real-time search ranking, in Zalando’s business process monitoring and in
Netflix’s complex event processing system [2]. Flink is suitable as a reference due to the
following reasons: (a) it is functionally similar to reactive applications in that it also manages
state inside of a dataflow graph (a property it shares with other streaming systems), (b) it is
implemented in Scala, hence the runtime environment is similar to ours, (c¢) it is well known
for its focus on fault tolerance, (d) it is also possible to enable/disable snapshots, and (e)
both Flink and REScala serialize snapshots to memory.

We implemented a similar graph structure as in (RQ4) for Flink. However, Flink and
REScala target different usage scenarios, where REScala immediately reacts to individual
occurrences of input events, such as button clicks, Flink processes and aggregates complete

1:19

ECOOP 2018

1:20

Fault-tolerant Distributed Reactive Programming

input streams of data. Hence, we do not compare the absolute performance of Flink and
REScala, but only measure the relative overhead of creating snapshots.

In Figure 9, we show the throughput relative to execution without snapshots (checkpoints
in Flink terminology). Snapshots in Flink are created periodically instead of after each
update (we have created them every 10 ms, 100 ms, and 1000 ms, respectively), and always
include the complete state of the system. While the overhead of REScala is higher when a
full snapshot is created, in the case when only 30% of the dataflow graph is stored in the
snapshot — which is the realistic case — the relative overheads of both systems are similar.

We conclude that the performance of our snapshot algorithm is comparable to Flink. Yet
our prototype is a proof-of-concept, and has not been extensively optimized. This observation
is an indication of the benefits of exploiting features of the reactive programming paradigm,
specifically automatically managed state, in the design of REScala.

(RQ7) Performance effects of language-integrated error propagation. In Section 5, we
motivated the need for language-integrated error propagation for the quality of application
design. By answering RQ3, we empirically provided evidence that our approach to error
propagation indeed barely pollutes the application code. The experiments presented below
analyze the potential performance effects of this non-invasive error handling. Specifically, we
analyze (a) the potential performance tradeoffs of the language-integrated error propagation
compared to programmatic error handling, and (b) the overhead of the error propagation
system in the absence of errors.

These experiments show that there is no additional cost. As discussed in Section 6, this is
due to the tight integration of errors into the existing runtime. Moreover, language-integrated
error propagation exhibits better application performance compared to programmatic error
handling.

For (a), we implemented a reactive program with programmatic error handling by using
Scala’s Try to propagate errors, so every Signal[A] becomes a Signal[Try[A]]. Using Try is
the idiomatic way to represent errors as values in Scala, similar to the Maybe data type in
Haskell. As shown in Figure 10, our solution outperforms the solution that uses Try-wrappers.
This improvement is due to the fact that language integration merges error propagation into
the internal data structures of the language runtime, while Try-wrappers require an additional
layer of indirection; in addition, the solution that uses wrappers requires unwrapping code at
every signal expression®. The first line of code below just adds two values, compared to the
second line of code where adding two values becomes unwieldy when nested Try expressions
need to be unwrapped, even when using Scala’s special for syntax:

Signal { a.value + b.value } // without wrapper
Signal { for (av <- a.value; bv <- b.value) yield av + bv } // wrapped in Try

For (b), we use the REScala benchmark natural graph, a graph with 25 reactives that are
connected in a way to mimic real applications [44], to show how the performance of an average
application is affected. All user-defined computations only perform arithmetic additions to
minimize the amount of work that is spent on actual computation and maximize the relative
overhead of the error propagation. We did not measure any performance degradation when
error propagation is enabled but the application does not use it, thus developers only have
to pay for what they use.

5 Other representations of errors are possible, but they all have to share the same pattern of Try, both
values and errors need to be represented in a single data type, and the application developer has to
manually differentiate the two cases in signal expressions.

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

7.3 Threats to Validity

There are both internal and external threats to the validity of our results. Internal threats
are due to the inspection of case studies for analyzing the non-invasiveness of our approach,
as what is non-invasive is subjective and depends on our experience in developing REScala
applications. Also, the results are not confirmed by subjects without experience with REScala.

An external threat is that the benchmarks may be too small and not sufficiently diverse
to be representative of reactive programming applications for the results to be generalizable.
Unfortunately, at the time being there are no standard benchmarks for reactive programming
languages. Given the lack of any widely accepted benchmark suite (to the best of our
knowledge), our selection of the benchmarks is strongly based on our experience with
REScala applications. Extending the benchmark suite with more, diverse and larger-scale
case studies will be addressed in future work.

8 Related Work

Languages for reactive applications. Non-distributed languages for traditional desktop
applications are usually concerned with I/O errors during execution, but typically do not
provide facilities to snapshot or restore program state. In the object-oriented paradigm,
reactive software is often developed using the Observer design pattern. This approach,
extensively discussed in the literature [17, 27, 31, 13], leads to the inversion of the control
flow, which complicates code analysis and induces highly error-prone broadly scoped side-
effecting operations: since observers do not return a value, computational results need to be
passed through imperative state changes, prohibiting all of the techniques for fault tolerance
discussed in this paper.

Functional reactive programming (FRP) [18] models time-changing values, whose denota-
tions are functions focusing on the problem of formally modelling continuous time. FRP has
been used in a number of areas, including robotics [23], network switch programming [20, 48],
wireless sensor networks [36], and reliable software for spacecraft [37]. In general, FRP seems
to be a natural fit for distributed applications [29, 40, 41, 15, 11], with events representing
messages from the network or user input. However, many functional reactive languages
and frameworks do not provide support for unreliable networks. Typically, reactive lan-
guages [27, 31, 14] simply delegate the responsibility for error handling to the host language,
and ultimately to the programmer. In distributed reactive programming [15, 28, 47], reactives
on different devices are connected to each other and update messages are sent over the
network whenever a remote dependency changes. In the presence of faulty devices and
unreliable connections, such update messages may get lost causing several problems, such
as (a) glitches, (b) changes that are visible on one host but not on another host, or (c)
application unresponsiveness when new changes cannot be processed while messages are
being resent to a device that failed and is restored.

Unreliability has been partially investigated in the context of some FRP derivates.
Timeouts have been introduced to a distributed runtime and dataflow [35]. ReactiveExten-
sions (Rx) [26] integrate and propagate errors into the dataflow. However, to the best of
our knowledge, no solution exists to automatically restore and reconnect a dataflow graph
after a crash. DREAM [28, 29] is a middleware for distributed reactive programming, which
lets the programmer choose among different levels of consistency guarantees in distributed
reactive systems, including FIFO consistency, causal consistency, glitch freedom and atomic
consistency. However, none of these approaches provides the consistency guarantees of
REScala automatically. Ur/Web [12] is a multitier programming language that uses reactive

1:21

ECOOP 2018

1:22

Fault-tolerant Distributed Reactive Programming

programming to update the client UI. However, to the best of our knowledge, there is no
integration of RPC errors and the reactive part, hindering application-wide reasoning and
lacking common abstractions for distribution and reactivity.

Actor and cloud languages. Actors [1, 7, 9, 33, 46, 24] are well-known abstractions to model
concurrent and distributed systems. Actors do not share mutable state and communicate
only via message passing. The result is a loose application structure that makes automatic
reasoning about overall system consistency very hard. Furthermore, we consider message-
passing to be rather an implementation mechanism for enabling communication, which is
by no means a proper substitute for providing first-class composable and programmable
abstractions in the language, as it is the case with REScala.

Languages such as Erlang and Akka support restarts of crashed actors, possibly on a
different device, but it is the responsibility of the application logic to be robust against such
crashes. Otherwise, state on restarted actors is lost, and application properties are violated.
Orleans [9] and extensions to Akka [1] can automatically restore the state of single actors
after a crash. However, state is stored without consistency guarantees between multiple
actors, and it is still difficult to reason about application properties. Akka additionally
requires manual changes to each actor that requires fault-tolerant state, making it impossible
to reuse existing actors developed without support for fault tolerance.

AmbientTalk [46] is an actor language specifically designed for mobile ad hoc networks,
and Direst [34] builds on top of AmbientTalk and adds reactive abstractions and automatic
eventually consistent state distribution. However, Direst uses a centralized replica to provide
eventual consistency, hindering any communication between devices when the centralized
replica is unavailable. Furthermore, applications in Direst cannot dynamically reconfigure
their dependencies — a necessary concept for existing dynamic applications. Hence, Direst
cannot support common reactive patterns, such as dynamically selecting the current view of
an application at runtime, thus limiting reusability of components.

MBrace [16] extends F# with expressions for cloud computations. The use of immutable
global references allows the distributed runtime to automatically re-execute tasks on failed
devices without causing inconsistencies. Errors that are raised during the evaluation of cloud
expressions, e.g., because a remote resource is unavailable, are transparently propagated along
the dataflow path of the expression, even across the distribution boundaries, allowing non-
localized error handling. However, since the distributed state is immutable, the abstractions
are not well suited to reactive applications where the program state changes dynamically in
response to input from the user or the execution environment/context.

Batch and stream processing languages. Frameworks for big data processing, such as
Spark [49] and Flink [6], handle crashes of worker machines to minimize lost work when
machines fail. They have recently also adapted syntax similar to FRP, but are not suited for
reactive applications. Running in cluster environments with full control of communication and
distribution of work among machines, Spark and Flink can offer abstractions for distribution
and fault tolerance with suitable correctness guarantees. However, to provide these guarantees,
applications are written in specific DSLs, and the execution runtime is not connected to
the embedding application. The use of a DSL limits the capability to integrate with other
libraries, and the DSL is not designed for reactive applications.

Building blocks for distributed applications. Several approaches provide building blocks
to develop applications in distributed systems.

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

The counterpart of observers in non-distributed software are pub-sub systems in dis-
tributed software, with similar problems [19, 38, 30].

Eventual consistent data types such as CRDTs [45] or CloudTypes [10] are important
building blocks providing well-understood tradeoffs between consistency and responsiveness.
In case of connection failures, eventual consistent data types become out of sync with other
replicas, but when the failures are only temporary, a consistent state can be automatically
restored. However, on their own these data types cannot provide any application-wide
correctness guarantees.

Function passing [32] is a style of distributed programming that defines a graph of
immutable values and operations over these values. The result is a graph similar to Spark
RDDs, but using arbitrary Scala functions instead RDD transformations, combining an
abstraction for distributed systems with reusability of most Scala functions. However, since
fault tolerance and reactivity are not part of the language, the language cannot enforce or
check any properties.

9 Conclusion

In this paper, we presented REScala, a reactive programming language to support the
development of fault-tolerant distributed reactive applications. REScala automatically
handles crashes and disconnects between devices, supporting application specific recovery
strategies. The fault tolerance mechanism provided by REScala is mostly transparent to the
programmer, it preserves strong consistency on local devices in the presence of faults, and
it ensures eventual consistency across distributed devices. It has no performance overhead
when no faults occur and acceptable overhead otherwise. Our evaluation shows that creating
snapshots and recovering from them has comparable overhead to similar existing solutions.

There are several areas for future work. We have discussed distributed glitch freedom
in Section 4. In future work, we plan to adapt the propagation algorithm of Drechsler
et al. [15] to detect such glitches and to use the error propagation mechanism to enable
developers to compromise between availability and correctness. Finally, we plan to formalize
our programming model to provide rigorous guarantees about application correctness in the
presence of crashes and disconnects.

—— References

1 Akka documentation, 2017. URL: http://akka.io/docs.

2 Flink success stories, 2017. URL: https://cwiki.apache.org/confluence/display/
FLINK/Powered+by+Flink.

3 HTML5 localStorage, 2017. URL: https://www.w3schools.com/html/html5_
webstorage.asp.

4 Java microbenchmark harness, 2017. URL: http://openjdk.java.net/projects/
code-tools/jmh/.

5 Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh, and Pascal
Urso. Evaluating CRDTs for Real-time Document Editing. In Proceedings of the 11th ACM
Symposium on Document Engineering, DocEng ’11, 2011. doi:10.1145/2034691.2034717.

6 Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian
Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann,
Mathias Peters, Astrid Rheinldnder, Matthias J. Sax, Sebastian Schelter, Mareike Hoger,
Kostas Tzoumas, and Daniel Warneke. The Stratosphere Platform for Big Data Analytics.
The VLDB Journal, 23, 2014. doi:10.1007/s00778-014-0357-y.

1:23

ECOOP 2018

http://akka.io/docs
https://cwiki.apache.org/confluence/display/FLINK/Powered+by+Flink
https://cwiki.apache.org/confluence/display/FLINK/Powered+by+Flink
https://www.w3schools.com/html/html5_webstorage.asp
https://www.w3schools.com/html/html5_webstorage.asp
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://dx.doi.org/10.1145/2034691.2034717
http://dx.doi.org/10.1007/s00778-014-0357-y

1:24

Fault-tolerant Distributed Reactive Programming

10

11

12

13

14

15

16

17

18

19

20

21

22

Joe Armstrong. Erlang. Communications of the ACM, 53, 2010. doi:10.1145/1810891.
1810910.

Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn Mostinckx,
and Wolfgang de Meuter. A Survey on Reactive Programming. ACM Computing Survey,
45(4), 2013. doi:10.1145/2501654.2501666.

P. Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Orleans: Dis-
tributed Virtual Actors for Programmability and Scalability. Technical report, (MSR-TR-
2014-41, 24), 2014. URL: http://aka.ms/Ykyqft.

Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Benjamin P. Wood. Cloud
Types for Eventual Consistency. In European Conference on Object-Oriented Programming
(ECOOP), 2012.

Andoni Lombide Carreton, Stijn Mostinckx, Tom Van Cutsem, and Wolfgang De Meuter.
Loosely-coupled Distributed Reactive Programming in Mobile Ad Hoc Networks. In Pro-
ceedings of the 48th International Conference on Objects, Models, Components, Patterns,
TOOLS’10, 2010. URL: http://dl.acm.org/citation.cfm?id=1894386.1894389.
Adam Chlipala. Ur/Web: A Simple Model for Programming the Web. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, 2015. doi:10.1145/2676726.2677004.

Gregory H. Cooper and Shriram Krishnamurthi. Embedding Dynamic Dataflow in a Call-
by-value Language. In Proceedings of the 15th European Conference on Programming Lan-
guages and Systems, ESOP, 2006. doi:10.1007/11693024_20.

Evan Czaplicki and Stephen Chong. Asynchronous Functional Reactive Programming for
GUIs. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, 2013. doi:10.1145/2491956.2462161.

Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. Distributed REScala:
An Update Algorithm for Distributed Reactive Programming. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA, 2014. doi:10.1145/2660193.2660240.

Jan Dzik, Nick Palladinos, Konstantinos Rontogiannis, Eirik Tsarpalis, and Nikolaos Vathis.
MBrace: Cloud Computing with Monads. Proceedings of the Seventh Workshop on Pro-
gramming Languages and Operating Systems, 2013. doi:10.1145/2525528.2525531.
Jonathan Edwards. Coherent Reaction. In Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and Applications,
OOPSLA, 2009. doi:10.1145/1639950.1640058.

Conal Elliott and Paul Hudak. Functional Reactive Animation. In Proceedings of the
Second ACM SIGPLAN International Conference on Functional Programming, ICFP, 1997.
doi:10.1145/258948.258973.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2), 2003. doi:10.1145/
857076.857078.

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer Rexford,
Alec Story, and David Walker. Frenetic: A Network Programming Language. In Proceedings
of the 16th ACM SIGPLAN international conference on Functional programming, ICFP,
2011. doi:10.1145/2034773.2034812.

Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. ACM SIGACT News, 33(2), 2002. doi:10.
1145/564585.564601.

Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental Consis-
tency Guarantees for Replicated Objects. USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2016. arXiv:1609.02434.

http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1145/1810891.1810910
http://dx.doi.org/10.1145/2501654.2501666
http://aka.ms/Ykyqft
http://dl.acm.org/citation.cfm?id=1894386.1894389
http://dx.doi.org/10.1145/2676726.2677004
http://dx.doi.org/10.1007/11693024_20
http://dx.doi.org/10.1145/2491956.2462161
http://dx.doi.org/10.1145/2660193.2660240
http://dx.doi.org/10.1145/2525528.2525531
http://dx.doi.org/10.1145/1639950.1640058
http://dx.doi.org/10.1145/258948.258973
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/2034773.2034812
http://dx.doi.org/10.1145/564585.564601
http://dx.doi.org/10.1145/564585.564601
http://arxiv.org/abs/1609.02434

R. Mogk, L. Baumgartner, G. Salvaneschi, B. Freisleben, and M. Mezini

23

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38

39

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, Robots, and
Functional Reactive Programming. In Lecture Notes in Computer Science, volume 2638,
2003.

Rajesh K. Karmani and Gul Agha. Actors. In Encyclopedia of Parallel Computing. Springer,
2011. doi:10.1007/978-0-387-09766-4_125

Jean-Claude Laprie. Dependable Computing: Concepts, Challenges, Directions. Interna-
tional Symposium on Fault-Tolerant Computing, FTCS, 1995.

Jesse Liberty and Paul Betts. Programming Reactive Extensions and LINQ. Apress, 2011.
Ingo Maier and Martin Odersky. Deprecating the Observer Pattern with Scala.react. Tech-
nical report, EPFL, 2012.

Alessandro Margara and Guido Salvaneschi. We Have a DREAM: Distributed Reactive
Programming with Consistency Guarantees. In Proceedings of the 8th ACM International

Conference on Distributed Event-Based Systems, DEBS, 2014. doi:10.1145/2611286.

2611290.

Alessandro Margara and Guido Salvaneschi. On the Semantics of Distributed Reactive
Programming: The Cost of Consistency. IEEE Transactions on Software Engineering,
2018.

R. Meier and V. Cahill. Taxonomy of Distributed Event-based Programming Systems. In
22nd International Conference on Distributed Computing Systems Workshops, 2002. doi:
10.1109/ICDCSW.2002.1030833.

Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: A Programming Lan-
guage for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA, 2009.
doi:10.1145/1640089.1640091.

Heather Miller, Philipp Haller, Normen Miiller, and Jocelyn Boullier. Function Passing:
A Model for Typed, Distributed Functional Programming. In Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward!, 2016. doi:10.1145/2986012.2986014.

Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. Concurrency Among Strangers.
In Proc. Int. Symp. on Trustworthy Global Computing. Springer, 2005. doi:10.1007/
11580850_12.

Florian Myter, Tim Coppieters, Christophe Scholliers, and Wolfgang De Meuter. I Now
Pronounce You Reactive and Consistent: Handling Distributed and Replicated State in
Reactive Programming. In Proceedings of the 3rd International Workshop on Reactive and
FEvent-Based Languages and Systems, REBLS, 2016. doi:10.1145/3001929.3001930.
Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. Handling Partial Failures in
Distributed Reactive Programming. 4th Workshop on Reactive and Event-based Languages
& Systems, 2017.

Ryan Newton, Greg Morrisett, and Matt Welsh. The Regiment Macroprogramming System.
In 2007 6th International Symposium on Information Processing in Sensor Networks, 2007.
doi:10.1109/IPSN.2007.4379709

Ivan Perez. Fault Tolerant Functional Reactive Programming. International Conference
on Functional Programming (ICFP), 2018.

Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-based Middleware
Architecture. In Proceedings. 22nd International Conference on Distributed Computing
Systems Workshops, 2002. doi:10.1109/ICDCSW.2002.1030837.

J. Ploski and W. Hasselbring. Exception Handling in an Event-Driven System. In Avail-
ability, Reliability and Security. ARES., 2007. doi:10.1109/ARES.2007.85.

1:25

ECOOP 2018

http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1145/2611286.2611290
http://dx.doi.org/10.1145/2611286.2611290
http://dx.doi.org/10.1109/ICDCSW.2002.1030833
http://dx.doi.org/10.1109/ICDCSW.2002.1030833
http://dx.doi.org/10.1145/1640089.1640091
http://dx.doi.org/10.1145/2986012.2986014
http://dx.doi.org/10.1007/11580850_12
http://dx.doi.org/10.1007/11580850_12
http://dx.doi.org/10.1145/3001929.3001930
http://dx.doi.org/10.1109/IPSN.2007.4379709
http://dx.doi.org/10.1109/ICDCSW.2002.1030837
http://dx.doi.org/10.1109/ARES.2007.85

1:26

Fault-tolerant Distributed Reactive Programming

40

41

42

43

44

45

46

47

48

49

José Proenca and Carlos Baquero. Quality-Aware Reactive Programming for the Internet
of Things. In Fundamentals of Software Engineering - 7th International Conference, FSEN,
2017.

Bob Reynders, Dominique Devriese, and Frank Piessens. Multi-Tier Functional Reactive
Programming for the Web. In Proceedings of the 2014 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming & Software, Onward!, 2014.
doi:10.1145/2661136.2661140.

G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini. On the Positive Effect of Re-
active Programming on Software Comprehension: An Empirical Study. IEEE Transactions
on Software Engineering, 43(12), Dec 2017. doi:10.1109/TSE.2017.2655524.

Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini. An Empirical Study
on Program Comprehension with Reactive Programming. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE, 2014.
doi:10.1145/2635868.2635895.

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging Between Object-
oriented and Functional Style in Reactive Applications. In Proceedings of the 13th Interna-
tional Conference on Modularity, MODULARITY, 2014. doi:10.1145/2577080.2577083.
Marc Shapiro, Nuno Pregui, Carlos Baquero, and Marek Zawirski. A Comprehensive Study
of Convergent and Commutative Replicated Data Types. Technical report, INRIA, 2011.
Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: Programming Re-
sponsive Mobile Peer-to-peer Applications with Actors. Computer Languages, Systems &
Structures, 40(3-4), 2014. doi:10.1016/j.c1.2014.05.002.

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie Dedecker, and Wolfgang
De Meuter. AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad Hoc
Networks. Proceedings - International Conference of the Chilean Computer Science Society,
SCCC, 2007. doi:10.1109/SCCC.2007.4396972.

Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A Language for High-level
Reactive Network Control. In Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN, 2012. doi:10.1145/2342441.2342451.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J. Franklin, Scott Shenker, and Ton Stoica. Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, NSDI, 2012. URL:
https://www.usenix.org/system/files/conference/nsdil2/nsdil2-final138.pdf.

http://dx.doi.org/10.1145/2661136.2661140
http://dx.doi.org/10.1109/TSE.2017.2655524
http://dx.doi.org/10.1145/2635868.2635895
http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1016/j.cl.2014.05.002
http://dx.doi.org/10.1109/SCCC.2007.4396972
http://dx.doi.org/10.1145/2342441.2342451
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

	Introduction
	REScala from the User Perspective
	Faults
	Shared Calendar Application in REScala

	Fault-tolerant Application State
	Managing Distributed State
	Error Propagation
	Implementation
	Evaluation
	Non-invasive Fault Tolerance
	Performance Evaluation
	Threats to Validity

	Related Work
	Conclusion

