
Scalable Monitoring for Multiple Virtualized

Infrastructures for 5G Services
Panagiotis Trakadas1, Panagiotis Karkazis1, Helen-Catherine Leligou1, Theodore Zahariadis1,

Wouter Tavernier2, Thomas Soenen2, Steven van Rossem2, Luis Miguel Contreras Murillo3,
1Synelixis Solutions Ltd., Chalkida, Greece, {ptrak|pkarkazis|nleligou|zahariad}@synelixis.com}
2 University of Ghent, Belgium, {wouter.tavernier|thomas.soenen|steven.vanrossem@ugent.be}

3 Telefonica, Spain, {luismiguel.contrerasmurillo@telefonica.com}

Abstract— This paper presents the high level architecture and

functionality details of the monitoring framework that has been

implemented and integrated within the SONATA project, in

order to support the management of 5G services under the

SDN/NFV paradigm. The innovative framework, extending the

functionality of Prometheus.io, is unique in its support for

multiple types of virtualized infrastructure, supporting multiple

Points of Presence (PoP), is extensible using Websockets, and is

fully available in open-source.

Keywords— NFV/SDN, Cloud Computing, Monitoring, Virtual

Machines, Containers, Network Services

I. INTRODUCTION

In the next years, 5G infrastructure will become a
ubiquitous, flexible, broadband and programmable network
that will be in the core of every social, business, and cultural
process, enabling both economic growth and social prosperity.
In order to achieve this goal, the 5G vision poses significant
technical challenges that must be fulfilled, including the
concept of agile programmability and supporting the
introduction of management mechanisms for the efficient
instantiation of innovative services across heterogeneous
network components, virtualized infrastructures and
geographically dispersed cloud environments.

One of the important issues to be addressed in this new era
of 5G service management is related to network and service
monitoring, demanding for collecting data and metrics on the
performance and usage of the resources involved in the
lifecycle management of 5G services. However, the already
available monitoring tools do not achieve the requirements
stemming from the services envisioned in the 5G landscape,
since they are in most of the cases: (i) intrusive and heavy-
handed for short-lived, lightweight network function instances,
(ii) not able to follow the fast pace of management changes
enforced by continuous dynamic scheduling, provisioning and
auto-scaling, (iii) not covering the requirements of all the
involved emerging technologies, including deployments in
both hypervisor-based and containerized manner, as well as
monitoring data collection from different cloud environments
(OpenStack, VMWare, etc).

This paper presents the monitoring framework that has been
implemented within the SONATA European project, in
compliance with the ETSI NFV MANO specifications,
providing an interactive monitoring framework capable of
offering real-time data collection, processing and alerting to all

stakeholders of an SDN/NFV-enabled service platform, i.e.
service developers, service platform operators and end-users,
under heterogeneous cloud-enabled computing environments.

II. STATE OF THE ART

Network monitoring has been an active research topic for
more than three decades. Well-established protocols such as
SNMP [1] and Netflow/IPFIX [2] are already successfully
applied for gathering network metrics through either passive or
active measurements. However, network metrics in isolation
are not very useful in services-oriented systems; they have to
be aggregated and consolidated with service- and resource-
related information to produce an integrated picture of the
performance of the provided service. Hence, another category
of monitoring tools is mostly focusing on computation, storage
and memory resources of the infrastructure or the deployed
service/application, such as Nagios [3] and Zabbix [4]. One of
the most advanced and modern monitoring tools is Prometheus
[5], that is an open-source service monitoring system, based on
time series database that implements a highly dimensional data
model, where time series are identified by a metric name and a
set of key-value pairs. Moreover, Prometheus provides a
flexible query language, allowing slicing of collected time
series data in order to generate ad-hoc graphs, tables, and
alerts, while it is integrated with visualization tools (Grafana
and PromDash). Most importantly, Prometheus provides
probes that allow bridging of third-party data into Prometheus,
including cAdvisor and collectd in a “pull” fashion, but also
supports “push” through an already implemented gateway.

Recently, the concept of Software Defined Networking
(SDN) and Network Function Virtualization (NFV) in
combination with the advent of Cloud Computing and
containerization of services, has dictated the implementation of
monitoring tools in conformance with the respective
technologies, that will allow the retrieval of SDN-based, per-
flow information directly via the API of the Openflow
controller (e.g. OpenDaylight Statistics REST API [6]), the
collection of monitoring data within Docker containers via
cAdvisor tool [7] as well as the performance monitoring of
cloud infrastructures and instantiated services, such as
Monasca for OpenStack [8]. Following these trends, the
programmability of 5G software network infrastructure will
require a flexible and expandable monitoring tool to
complement the management of the deployed innovative
services, integrating the benefits of the abovementioned tools
in a unified framework. During the last years a remarkable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/159846715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

effort has been made on the development and integration of
such monitoring frameworks under different viewpoints: In [9],
the authors introduce a management solution for cloud
federation that automates service provisioning and achieves
seamless deployment of services across a future internet cloud
federation, while also monitoring the resources and data which
can be aggregated with a common structure; however, this
framework lacks inherent support for NFV deployment. In
[10], the challenges of proper NFV monitoring are discussed,
focusing on the process of collecting NFV Infrastructure
(NFVI) metrics and processing them at Virtualized
Infrastructure Management (VIM) level. Finally, in [11], the
authors present a monitoring and discovery framework for self-
organized network management in virtualized and software
defined networks, that although relevant to the management of
5G services under the SDN/NFV paradigm, it is focusing on
sensor networks.

In a pure programmable network environment, such as in
5G landscape, there are also monitoring metrics associated
with the performance of the service platform itself, such as
Orchestrator signaling throughput and response time, as well as
other requirements, such as the ability for metrics and alerts
modifications during runtime which are currently not covered
by any of the current monitoring frameworks, leading to the
need of implementing a monitoring framework with advanced
capabilities, as described below.

III. MONITORING FRAMEWORK REQUIREMENTS FOR 5G

SERVICES

This section presents the requirements related to monitoring
arising from the use case scenarios of SONATA EU-funded
project [12], acting as the drivers for the monitoring
architecture design that has been followed (see Table 1).

In particular, the fulfillment of VNF specific monitoring
requirement demands the implementation of an HTTP API as
well as a real-time mechanism that will allow developers/users
to monitor performance data related to their deployed Network
Services. Although not specifically mentioned in the above-
mentioned requirements, it is also required that monitoring
system must collect data from VNFs deployed on virtual
machines and containers in different infrastructures.
Additionally, in order to facilitate the resource orchestration
process, SONATA monitoring system must collect and offer
information related to the available resources of the
infrastructure, as mandated by VNF Placement. For example,
the network service developer must be informed whether
special conditions required for the service deployment are
satisfied in a particular NFVI or be able to modify
orchestration parameters. Thus, monitoring system must be
able to collect data from the underlying infrastructures
comprising the SONATA ecosystem. The collection of
information from the above-mentioned components will also
address the requirement of VNF Status Monitor, providing
service status information (e.g. error state). Apart from offering
an API to developers for collecting and processing monitoring
data related to their deployed NS/VNF, the monitoring system
must be able to accommodate VNF-specific alerting rules for
real-time notifications, as described in the Timely alarms for
SLA violation and VNF Real-time Monitoring requirements. In

this respect, the presented SONATA monitoring framework
will offer the capability to developers to define service-specific
rules, whose violation will inform them in real-time. Finally,
there is one requirement related to the Quality of Service that
demands special attention with regards to sampling period and
monitoring accuracy and another one (Service Platform
Scalability) directly related to scalability of the SONATA
monitoring framework with respect to the Service Platform and
respective infrastructures. Hence, the monitoring solution must
comply with the scalability requirement dictated by 5G
network infrastructure and services.

Table 1: Requirements fulfilled by the

SONATA Monitoring Framework
Req. name Description KPIs

VNF

specific

monitoring

SONATA Service Platform

shall expose service and
VNF metrics to the network

application.

Availability of an API

for VNFs capturing

monitoring metrics.

VNF status

monitoring

SONATA should provide a
high level state for each

VNF, e.g., (i) deployment,

(ii) operating, (iii) error.

Provide a dashboard

displaying status data

VNF

placement

and metrics
modification

during

runtime

The programmability

framework shall allow the

customer to deploy VNFs at
arbitrary points into the

network and modify metrics

parameters in runtime.

SLA/QoS metrics

related to deployment

time, cost, etc as well
as interfaces for timely

modification of

metrics and thresholds.

Timely
alarms for

SLA

violation

The monitoring system must
provide alarms for SLA

violations in a timely

manner.

Proven performance

and scalability of the

selected message bus
and websocket

creation

VNF real-
time

monitoring

VNFs will generate in real
time information useful for

monitoring and response.

Monitoring frequency,

time to process alerts.

Quality of

service
monitoring

Metrics generation and
degradation detection of

network traffic, should be

supported and reported.

Traffic QoS, packet

loss, delays.

Monitoring

Framework
Scalability

The monitoring framework
must be scalable to support

multiple and heterogeneous
infrastructures and a high

traffic load.

Support for multi-PoP

and multi-tenancy
federated environment.

IV. HIGH-LEVEL ARCHITECTURE AND FUNCTIONALITY OF

MONITORING FRAMEWORK

In a nutshell, the SONATA monitoring framework collects
and processes data from several sources, providing the
developer the ability to activate metrics and thresholds in order
to capture generic or service-specific behaviour. Moreover, the
developer can define rules based on metrics gathered from one
or more VNFs deployed in one or more NFVIs in order to
receive notifications in real time. In general, the developer is
able to subscribe to a message queue or he can get the alert
notifications by email and/or SMS on his smartphone. Most
importantly, monitoring data and alerts are also accessible
through an API or directly accessing a websocket URL. The
internal architecture of Monitoring Framework is depicted in
Figure 1 and explained in the next subsections.

A. Collecting data from several sources

It is of paramount importance to collect monitoring data
from as many as possible sources. In the implemented
framework, there are four different types of sources for
collecting data: 1) container probe which runs inside the
container-based VNFs to collect data related to their
performance, 2) VM probe that collects data from Virtual
Machines (VMs) hosting VNFs, 3) OpenFlow probe which is a
Python software that utilizes OpenDayLight API to collect data
from the OpenFlow controller, and 4) OpenStack probe that
has also been developed as a software module (in Python
language) that uses OpenStack API to collect data from all
OpenStack components.

B. Push Gateway

This component is part of the open source Prometheus
monitoring solution [5] that has been adopted and extended to
cover the needs of SONATA Monitoring Framework. Push
Gateway is utilized so that the probes/sources use HTTP POST
method to “push” monitoring data to the Push Gateway, while
Prometheus server collects the data in a predefined time
interval. The advantage of this approach is that in the case of
the deployment of a new service, there is no need for the
Prometheus monitoring server to search for data related to the
newly deployed VNF, but rather collect them from the
PushGateway.

C. Prometheus Monitoring Server

Prometheus is an open-source service monitoring system,
based on time series database that implements a highly
dimensional data model. A time series entry is identified by a
metric name and a set of key-value pairs. Prometheus has a
sophisticated local storage subsystem (LevelDB), which is

essentially dealing with data on disk and relies on the disk
caches of the operating system for optimal performance.
Prometheus server is responsible for collecting the data and
communicating with the time-series database for retrieving
data upon request.

D. Monitoring Manager

Monitoring manager is a Django-based server that offers
APIs to the users with respect to the monitoring data of their
instantiated 5G services, including: 1) the relation among
services, network functions, NFVIs and users, 2) the ability to
modify rules and thresholds during service/function runtime, 3)
the reconfiguration of Prometheus server, 4) the ability to
define the notification methods in case of alert generation, 5)
the definition of a new websocket to get data in real-time and
many other features. The interested user can find information at
http://sp.int3.sonata-nfv.eu:8000/docs/.

E. Alert Manager

As previously discussed, the Alert Manager is responsible
(along with the implementation of a message queuing
mechanism, such as RabbitMQ) for sending notifications about
firing alerts to the subscribed users. After this notification, the
user can take advantage of the API to further investigate the
fault or activate a websocket to receive real-time monitoring
data.

F. Websocket server

The implementation of websockets (Tornado web server)
allows the user to collect streaming data from VNFs that have
been deployed in the Service Platform. This is highly beneficial
to the developers, as they would be able to monitor the
performance of a new service in real environment. Prior to the
establishment of a new websocket, the user must be aware of
the metrics collected per VNF, the VNFs comprising his
deployed Network Services and other related information and
this information is already provided by the existing Monitoring
Manager API framework, as depicted in Figure 2. After
selecting the VNF and the respective metrics to be sent, the
user requests the creation of a new websocket from the
Monitoring Manager. After checking the validity of the
request, the Monitoring Manager communicates with the
Websocket server that creates and sends a new URL for the
user to connect to and where metric values are pushed.

Figure 2: Websocket interactions.

Figure 1: Monitoring Framework high-level

architecture

V. SCALABILITY AND DISTRIBUTED ARCHITECTURE

One of the cornerstones of the monitoring framework
implementation was to deliver a carrier-grade solution that
would fulfill scalability requirements in a multi-PoP
environment. As can be noticed from Figure 3, several
components of the Monitoring Framework had to be distributed
across the SONATA Points of Presence (PoPs). First, each PoP
must have its own websocket server to accommodate
developers’ demands for streaming data, although the
management of websockets is handled by the Monitoring
Manager instance in a centralized way. Second, Prometheus
Monitoring servers follow a distributed (cascaded) architecture.
The local Prometheus servers collect and store metric data
from the VNFs deployed in the PoP, while only the alerts are
sent to the federated Prometheus server for further processing
and forwarding to the subscribed users. Moreover, the alerting
rules and notifications are based on monitoring data collected
in different PoPs and thus the decision must be made on a
federation level. Another scalability requirement concerns the
large flow of data from the monitoring probes to the
Monitoring Server and its respective database that might affect
the service performance in extreme cases. In this respect, an
architectural decision to address this scalability issue was to
support a distributed architecture regarding the monitoring
server and its database, working in a cascaded fashion along
with proper modifications on component level. In particular,
the functionality of the monitoring probe will change so that it
will not send data to the monitoring server in cases where the
value difference is less than a threshold defined by the
developer. The same will be the case in the communication
between the monitoring server within a NFVI and the
monitoring server in the Service Platform.

VI. CONCLUSIONS AND FUTURE WORK

The innovative SONATA monitoring framework builds
further on state-of-the-art technology like RabbitMQ,
Prometheus and Websockets, enabling a multi-PoP framework
with extensible and user-friendly monitoring of NFV services

involving both containers and Virtual Machines, empowering
service management components to dynamically react on
triggered monitoring alerts. As a future work, in the context of
5G-TANGO EU-funded project (http://5gtango.eu/), the
described Monitoring Framework will be further enhanced by
introducing the concept of autonomic management, as
described in the respective ETSI documents [13].

ACKNOWLEDGMENT

This work has been performed in the framework of the
SONATA and 5GTANGO projects, funded by the European
Commission through the Horizon 2020 and 5G-PPP
programmes.

REFERENCES

[1] J.D. Case, et al., RFC1157 Simple Network Management Protocol
(SNMP), IETF, 1990

[2] B. Claise, Ed, RFC3954, Cisco Systems NetFlow Services Export
Version 9, IETF, 2004

[3] Nagios monitoring solution, https://www.nagios.org/

[4] Zabbix, Enterprise class Open Source Network Monitoring,
http://www.zabbix.com/.

[5] Prometheus open source monitoring solution, https://prometheus.io/

[6] OpenDaylight Statistics REST API, https://www.opendaylight.org/

[7] cAdvisor, Monitor containers, https://hub.docker.com/r/google/cadvisor/

[8] Monasca OpenStack project, https://wiki.openstack.org/wiki/Monasca

[9] Theodore Zahariadis, et al., “FI-Lab: Managing Resources and Services
in a Cloud Federation supporting Future Internet Applications”, 7th
IEEE/ACM International Conference on Utility and Cloud Computing
(UCC 2014).

[10] G. Gardikis, et al., “An Integrating Framework for Efficient NFV
Monitoring”, Proceedings of the IEEE NetSoft Conference and
Workshops, Seoul, Korea, 6-10 June 2016, pp. 1-5.

[11] A. L. V. Caraguay, L. J. G. Villalba, “Monitoring and Discovery for
Self-Organized Network Management in Virtualized and Software
Defined Networks”, Sensors, 2017, 17, 731, DOI: 10.3390/s17040731.

[12] SONATA project, http://sonata-nfv.eu/

[13] ETSI GS AFI 002, v1.1.1, Autonomic network engineering for the self-
managing Future Internet (AFI); Generic Autonomic Network
Architecture, 2013.

Figure 3: Architecture addressing scalability requirements with respect to the monitoring framework.

https://www.nagios.org/
http://www.zabbix.com/
https://hub.docker.com/r/google/cadvisor/
https://wiki.openstack.org/wiki/Monasca

	I. Introduction
	II. State of the ART
	III. Monitoring Framework Requirements for 5G Services
	IV. High-Level Architecture and Functionality of Monitoring Framework
	A. Collecting data from several sources
	B. Push Gateway
	C. Prometheus Monitoring Server
	D. Monitoring Manager
	E. Alert Manager
	F. Websocket server

	V. Scalability and distributed architecture
	VI. Conclusions and Future Work
	Acknowledgment
	References

