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Abstract: In this narrative review, the biological/biochemical impact (toxicity) of a large array of
known individual uremic retention solutes and groups of solutes is summarized. We classified
these compounds along their physico-chemical characteristics as small water-soluble compounds
or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin)
affected at least one mechanism with the potential to contribute to the uremic syndrome. In general,
several mechanisms were influenced for each individual solute or group of solutes, with some
impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular
and fibrogenic systems were those most frequently affected and they are one by one major actors in the
high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied.
A scoring system was built with the intention to classify the reviewed compounds according to the
experimental evidence of their toxicity (number of systems affected) and overall experimental and
clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds
[asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein
bound compounds or groups of protein bound compounds [advanced glycation end products
(AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and
3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental
data were provided for the protein bound molecules but for almost half of them clinical evidence was
missing in spite of robust experimental data. The picture emanating is one of a complex disorder,
where multiple factors contribute to a multisystem complication profile, so that it seems of not much
use to pursue a decrease of concentration of a single compound.

Keywords: uremic toxins; uremic toxicity; uremia; Chronic Kidney Disease; CKD; cardiovascular
disease; inflammation; fibrosis; patho-physiology CKD; middle molecules; protein bound uremic
solutes; water-soluble uremic solutes

Key Contribution: This publication contains a comprehensive overview of the current knowledge
on uremic toxicity, as well as an estimation of the degree of toxicity attributed to each individual
toxin, and a classification according to the degree of known toxicity.

1. Introduction

The progressive loss of kidney function in many cases of Chronic Kidney Disease (CKD) is
accompanied by the retention of a host of metabolites [1], due to a decrease in their renal clearance
that is sometimes accompanied by a rise in generation [2]. Many of these solutes have been shown to
exert biological activity, hence affecting the functioning of cells and organs, resulting in the uremic
syndrome [3]. The responsible solutes then are called uremic toxins.
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At the end of 2016, it was decided to dedicate a special issue of the journal “Toxins” to uremic
toxicity. This special issue now comes to an end and contains a number of reviews and original
studies. With this narrative review, it is our intention to consider the whole spectrum of uremic toxicity.
Such comprehensive review has to the best of our knowledge not been published lately with the last of
such initiatives going back to almost 20 years ago [4]. As in the meanwhile much novel data has been
generated, we thought it timely to collect this information again in one single publication.

The knowledge on the identity and the toxicity of the uremic toxins as well as their removal has
grown exponentially in the last few years. Analysis of all publications considered for this review
shows a rapid year by year increase in number (Figure 1). An encyclopedic listing of known uremic
solutes in 2003 identified 90 different compounds [1] and another 56 were added when this effort was
repeated in 2012 [5].
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Figure 1. Number of publications per year of appearance included in the reference list of this article.

The recent acquisitions of metabolomic and proteomic research are enabling to further extend
this list [6–15]. In spite of this almost unlimited possibility for identification it is more difficult and
labor intensive to prove the toxicity of the newly detected molecules [6,7]. Hence, it is impossible to
discuss all uremic retention solutes that are known today and this review is restricted to the most
important ones, either because of their biologic effect or because of their association with clinical
outcomes relevant to uremia.

To distinguish among uremic toxins, generally the classification into three major groups
as proposed by the European Uremic Toxin Work Group (EUTox) and based on their removal
pattern by dialysis is applied [1,16]. It distinguishes between: (1) small water-soluble compounds;
(2) protein bound compounds; (3) the so-called middle molecules, which are mostly small peptides
(Table 1). Although one could imagine other classification systems, e.g., based on the site of
generation, e.g., intestinal or not [17], the currently used approach is preferred because, with the
exception of transplantation, extracorporeal dialysis strategies unequivocally remain the most efficient
interventional options to decrease the concentrations of these molecules. Such subdivision is in part
artificial as in fact there is a continuum in degree of protein binding as well as of molecular weight of
uremic solutes. For some (e.g., asymmetric dimethylarginine—ADMA), the degree of protein binding
remains a matter of debate [18], whereas for others like p-cresyl glucuronide it is variable and so
limited, that not much difference in removal pattern can be expected versus no protein binding [19].
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Table 1. The different classes of uremic toxins as used in this publication.

Class of Molecules MW Range Prototype MW Prototype

Small water-soluble compounds <500 Da Urea 60
Protein bound compounds Mostly < 500 Da Indoxyl sulfate 213.2

Middle molecules ≥500 Da β2-microglobulin 11.818

MW: molecular weight; Da: Dalton.

For preparing this review, a list of all toxins worth discussing was prepared (Table 2) and then a
literature search via PubMed was undertaken with as search terms the name of the toxin as mentioned
in Table 2 on one hand AND toxin/toxicity, uraemic/uremic, CKD or biology, and the literature list
was completed with references from previous review papers. Some toxins (e.g., the guanidines) were
considered as a group, if in literature they were regularly discussed together. All relevant publications
were retained, which implies that some of these point to no toxic effect or even a benefit. Whether the
applied concentrations corresponded to those in uremia was not taken into account, as this implies a
systematic review process [20]. This review was limited to organic solutes and will thus not deal with
inorganic molecules (water, sodium, potassium, phosphorus).

Table 2. List of toxins considered in this publication per class.

Small Water-Soluble
Compounds Protein Bound Compounds Middle Molecules

Guanidine compounds AGEs Adrenomedullin
-Guanidinosuccinic acid AOPPs Adiponectin
-Methylguanidine CMPF Angiogenin
-Guanidine Cresols Atrial natriuretic peptide
-Creatine -P-cresyl sulfate β2-microglobulin
-Guanidino acetic acid -P-cresyl glucuronide β-endorphin
-γ-Guanidino butyric acid Hippurates β-lipotropin
-ADMA -Hippuric acid Cholecystokinin
-SDMA -P-hydroxy hippuric acid Complement factor D

Oxalate -O-hydroxy hippuric acid Complement factor Ba
Phenylacetylglutamate Homocysteine Cystatin C
Methylamines Indoles Interleukin-1β

-(Mono)methylamine -Indoxyl sulfate Interleukin-18
-Dimethylamine -Indoxyl glucuronide Interleukin-6
-Trimethylamine -Kynurenine Tumor Necrosis Factor-α
-Trimethylamine-N-Oxide -Kynurenic acid Interleukin-8

Sulfuric compounds Phenols Interleukin-10
-Lanthionine -Phenyl sulfate Endothelin

Myoinositol -Phenyl acetic acid FGF-23
2PY Quinolinic acid Ghrelin
Polyamines Glomerulopressin

-Acrolein Immunoglobulin light chains
-Putrescine Lipids and lipoproteins
-Spermine Leptin
-Spermidine MCSF

Urea Methionine-enkephalin
Carbamylated compounds Neuropeptide Y
Cyanate Orexin A
Ammonia Parathyroid hormone
Uric acid Pentraxin-3
Xanthine Peptide YY
Hypoxanthine Prolactin

Resistin
Retinol Binding Protein
Visfatin

ADMA: Asymmetric Dimethylarginine; SDMA: Symmetric Dimethylarginine; 2PY: N-Methyl-2-Pyridone-
carboxamide; AGEs: Advanced Glycation End Products; AOPPs: Advanced Oxidation Protein Products; CMPF:
3-Carboxy-4-Methyl-5-Propyl-2- Furanpropionic Acid; FGF-23: Fibroblast Growth Factor 23; MCSF: Macrophage
Colony Stimulating Factor.
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We also constructed comprehensive tables with the most important biological effects and
attributed per toxin a score for the evidence of toxicity (Table 3), whereby arguments in favor of toxicity
from experimental or observational studies and randomized controlled trials were taken into account,
with a counterbalance if there were also arguments for a neutral or beneficial effect. The scoring system
was designed before the literature search was started to avoid bias and to preserve objectivity.

Table 3. System applied for scoring evidence.

Characteristic Points

1–2 experimental studies showing toxicity 1
>2 experimental studies showing toxicity 2
≥25% of retrieved experimental studies showing no toxicity or benefit −1
1–2 clinical studies* showing association with hard outcomes ** 1
>2 clinical studies* showing association with hard outcomes ** 2
≥25% of retrieved clinical studies* showing no association with hard outcomes ** or benefit −1

* Observational studies and Randomized Controlled Trials (RCTs); ** Hard outcomes: mortality, cardio-vascular
events, progression of CKD.

It is acknowledged that the highest clinical level of evidence is obtained from randomized
controlled trials (RCTs). However, for most of the toxins considered in this review,
randomized controlled trials to check their toxicity are impossible because there are no methods to
selectively decrease their concentration. In addition, for the few toxins for which selective concentration
decrease is possible (uric acid, homocysteine, Advanced Glycation End products), the few RCTs gave
sometimes ambiguous results. Therefore, it was decided not to consider RCTs separately in our
scoring system but to account for them together with the observational studies under the common
denominator of “clinical studies.”

The scores for number of affected systems and evidence level were compared per uremic
toxin group using a non-parametric one-way ANOVA followed by a parametric unpaired t-test
(GraphPadPrism 5.01 Software, San Diego, CA, USA). p < 0.05 was considered as significant.

2. Small Water-Soluble Compounds

The upper molecular weight limit for small water-soluble compounds has arbitrarily been defined
as 500 Dalton (Da) (Table 1) and according to their definition protein binding should be minimal.
Complete lack of protein binding cannot be excluded but in general should be negligible so as to have
no influence on their removal by dialysis, which is efficient with any type of dialysis, although in
some cases hampered by kinetic characteristics [21]. Although this removal is dependent on dialyzer
blood and dialysate flow and surface area, those characteristics cannot be increased indefinitely to
enhance adequacy and therefore probably other approaches such as longer or more frequent dialysis
or adsorption should be considered [22].

To the best of our knowledge, the last review on the small water-soluble compounds was published
more than 10 years ago [23].

2.1. Guanidines

Guanidines are widely spread in nature and a considerable number of compounds is present
in humans and retained in uremia [1,5]. The biologic impact of this group of compounds has been
demonstrated since many years and the first studies focused on their neurotoxicity, showing their
contribution to uremic epiphenomena such as neuroexcitation and impaired cognition, activity and
exploratory social behavior [24–27]. Later studies suggested that the guanidines might also be involved
in other uremic complications such as inflammation and inhibition of endothelial cell proliferation,
decreased osteoblast calcification and increased osteoclastogenesis [28,29]. Guanidino succinic acid
suppresses calcitriol synthesis [30].
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Analogous to advanced glycation (see below), guanidines can also promote post-translational
protein modification, which has the potential to alter biological function of those proteins [31].

In spite of an origin analogous to that of urea and a molecular weight in the same range, kinetic and
removal pattern of the guanidines during dialysis differs significantly from that of urea [21,32].

Asymmetric and Symmetric Dimethylarginine (ADMA and SDMA) are two guanidines with
specific biological characteristics [23] that will be discussed separately below.

2.1.1. Asymmetric Dimethylarginine (ADMA)

ADMA has since 1992 been identified as a uremic retention compound with potential
hemodynamic impact because it inhibits nitric oxide synthase (NOS), hence decreasing the endothelial
protective effect of nitric oxide (NO) [33,34]. Of note, ADMA concentration is increased in a
host of settings, many of which are linked to CKD, such as diabetes mellitus, obesity or various
forms of cardio-vascular disease [35]. However, it is not always clear whether in the studies
identifying high ADMA values in these conditions adjustments for kidney function have been
made [35]. ADMA concentration has been linked to cardio-vascular events or mortality in the general
population [36,37], as well as in CKD [38,39].

The rise in concentration of ADMA in CKD can to a large extent be attributed to a decreased
activity of the enzyme dimethylarginine dimethylaminohydrolase (DDAH), which is responsible for
the breakdown of ADMA, rather than to a direct decrease of urinary excretion [18,40].

In healthy volunteers, it was shown that infusing ADMA up to concentrations relevant for uremia
had definite hemodynamic effects [41]. Although several attempts have been made to decrease ADMA
concentration by drugs or other approaches affecting their metabolism, no indisputable removal
method has been identified [35]. Renal denervation in resistant hypertensive patients could decrease
ADMA, pointing to the important effect of sympathetic nerve function on its generation [42].

With regards to biologic effects that are of relevance to the uremic condition, ADMA has
been linked to polymorphonuclear activation, increased myeloperoxidase release and superoxide
production [40,43], expression of adhesion molecules [29] and neurologic alterations such as depression
and cognitive disturbances [43,44]. Observational clinical studies as well as experimental studies in
wild type CKD mice and in transgenic mice overexpressing DDAH in spite of CKD, suggested also a
role in erythropoietin resistance [45]. ADMA levels were also strongly correlated to fibrinogen levels,
even at multivariate analysis [38]. Finally, overexpression of DDAH also protected against coronary
artery disease in mice with a cardiac graft [46].

2.1.2. Symmetric Dimethylarginine (SDMA)

SDMA is an isomer of ADMA [34] that for a long time has been considered biologically inert [33].
However, during the last decade a number of studies showed that also SDMA was biologically
active [18]. First, in endothelial cells, SDMA appeared to decrease NO production, be it via a
competition for the NOS substrate, L-arginine, whereas reactive oxygen species (ROS) production was
increased [47,48]. In a comprehensive analysis of toxic effects, SDMA appeared to induce inflammation
via a broad array of mechanisms essentially affecting leukocytes [29]. Finally, SDMA was detected in
uremic High Density Lipoprotein (HDL), transforming HDL into an abnormal lipoprotein inducing
endothelial damage [49].

On the clinical level, SDMA was more significantly correlated to serum inflammatory markers
than ADMA [48] and it also correlated to mortality and cardio-vascular events in a post-hoc analysis
of the Hemodialysis (HEMO)-study, be it to a lesser extent than ADMA did [39]. In the general
population, SDMA was associated with mortality, even after adjustment for multiple cardiovascular
risk factors, including CKD [50,51]. In the latter two studies, SDMA was a stronger predictor than
ADMA [50,51]. Like ADMA, also SDMA could be decreased by renal denervation [42].
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In spite of the structural analogies with ADMA, SDMA is not dependent on DDAH for its
clearance from the body [34] as it is largely removed by renal excretion [18], with a highly significant
correlation with eGFR [47].

2.2. Oxalate

Next to the severe oxalate depositions in genetically conditioned primary hyperoxaluria [52],
also kidney failure of any cause is associated with tissue depositions of oxalate [53], which can
be attributed to supersaturation of serum with oxalate, especially in advanced CKD and dialyzed
patients [54]. Very few studies have however assessed the biological impact of oxalate at
uremic concentrations. In endothelial cells, oxalate resulted in an increase of intracellular
calcium [55], leading to disturbed endothelial proliferation and repair [55,56]. Oxalate also decreases
glucuronidation, a detoxifying conjugation process [57].

2.3. Phenylacetylglutamate

Phenylacetylglutamate has since long been recognized as a uremic retention product [58]
generated by the intestinal microbiota [8]. In recent observational studies the compound has been
associated to clinical outcomes relevant to uremia and CKD, such as first cardiovascular event in
hemodialysis patients [59], overall mortality and cardio-vascular disease in CKD stages 1–5 [60] and
cognitive dysfunction in patients receiving dialysis [61]. To the best of our knowledge, however, it has
not been shown whether this compound exerts any direct biological impact. Under certain conditions,
it even seems beneficial and an anti-proliferative effect on cancer cells has been demonstrated [62].
Thus, whether phenylacetylglutamate is a real uremic toxin or merely a marker of retention remains
for the time being unresolved.

2.4. Methylamines

The methylamines (monomethylamine—MMA, dimethylamine—DMA and trimethylamine—
TMA) are since long known as uremic retention solutes and may be held responsible for some aspects
of malodorous uremic breath [63]. Experimental data on the biological effect of these compounds
are very scanty. Preliminary data suggested at least for trimethylamine a link to neurobehavioral
disturbances [64]. Methylamine turnover has been associated to vulnerability to atherosclerosis in
mice [65]. Dimethylamine and trimethylamine are inhibitors of the organic cation transporter 2 (OCT2),
which plays a role in the renal secretion of drugs [66].

In an observational outcome study in hemodialysis patients, methylamine and dimethylamine
were however not related to all-cause mortality [67]. On the other hand, monomethylamine has been
associated with olfactory dysfunction in hemodialysis patients [68].

Also, trimethylamine-N-Oxide (TMAO) was known as a component of uremic biological
fluids [69] already before a boost in studies on this solute occurred from 2011 on when Wang et al.
suggested a substantial link to cardio-vascular disease [70]. Its association to CKD and its
patho-physiologic role based on experimental and clinical data, are discussed extensively in an article
of this special issue [71].

Intriguingly, in spite of the substantial number of data supporting the toxicity of TMAO [71]
(Figure 2B, Supplementary Materials Table S1), the compound is also known as a stabilizer of protein
structures [72]. Equally paradoxical, fish as a notorious source of TMAO is protective to cardiovascular
disease [73].
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number of systems affected by each individual toxin (right, panels (B,D,F). Small water-soluble
compounds (above, panels (A,B)), protein bound compounds (middle—panels (C,D) and middle
molecules (below—panels (E,F)). The systems and solutes are ranked clockwise from 12 h on,
in proportion to the number involved, the largest numbers coming first. Abbreviations—CVD:
cardiovascular disease; CKD-MBD: chronic kidney disease-metabolic bone disease; PEW:
protein energy wasting; ADMA: Asymmetric Dimethylarginine; TMA: Trimethylamine; DMA:
Dimethylamine; TMAO: Trimethylamine-N-Oxide; carbam comp: carbamylated compounds; SDMA:
Symmetric Dimethylarginine; MMA: Monomethylamine; 2PY: N-Methyl-2-Pyridone-carboxamide;
PAG: Phenylacetylglutamine; AGEs: Advanced Glycation End Products, p-OH hippurate:
p-hydroxyhippurate; AOPPs: Advanced Oxidation protein Products; CMPF: Carboxy Methyl
Propyl Furanpropionic Acid; o-OH hippurate: o-hydroxyhippurate; β2M: β2-microglobulin;
PTX-3: pentraxin-3; IL-1β: Interleukin-1β; IL-6: interleukin-6; FGF-23: Fibroblast Growth
Factor-23; L & L: lipids and lipoproteins; CFBa: Complement Factor Ba; IL-10: Interleukin-10;
PTH: Parathyroid Hormone; RBP: Retinol Binding Protein; CFD: Complement Factor D;
IL-18: Interleukin-18; TNF-α: Tumor Necrosis Factor-α; IgLC: Immunoglobulin Light Chains;
Met-Enkephalin: Methionine-Enkephalin; MCSF: Macrophage Colony Stimulating Factor; ANP:
Atrial Natriuretic¨Peptide.; * polyamines, carbamylated compounds, AGEs, AOPPs, kynurenines,
Immunoglobulin Light Chains and lipids and lipoproteins (modified) considered as one
group; ** guanidines considered as one group with the exception of ADMA and SDMA ;
*** modified—post-translational.
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2.5. Sulfur-Containing Compounds

Whereas a significantly increased exhalation of organic sulfated gases has been observed in
uremia [74], a deficiency of the inorganic gas H2S also has been observed [75]. H2S is generally
considered to be vasculoprotective [76,77], thus its deficiency may contribute to uremic vascular
disease [78]. Homocysteine is a sulfur-containing uremic retention solute that will be discussed
below in the section on protein-bound solutes. Also, lanthionine is a sulfur-containing compound
with probably no substantial protein-binding which has been shown to inhibit H2S production [75].
Lanthionine is discussed extensively in one of the reviews of this special issue [79].

2.6. Myoinositol

Myoinositol concentration is increased in cauda equina of uremic patients as compared to healthy
controls [80]. Sciatic nerve conduction velocity was decreased in rats treated with myoinositol [81].
Myoinositol also inhibits the proliferation of Schwann cells [80]. In spite of these early data suggesting
a role in uremic neurotoxicity, subsequent direct assessments of the impact of myoinositol on nervous
function could not confirm this effect [25,82] and some studies even suggest a neuroprotective
effect [83].

2.7. N-Methyl-2-Pyridone-5-Carboxamide (2PY)

2PY has since long been recognized as a uremic retention solute [1] with a potential of toxicity by
inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), an effect possibly impairing DNA replication
and repair [84,85]. The interest in this compound was recently boosted by its manifold increase in
concentration in CKD patients receiving nicotinamide to attenuate hyperphosphatemia [86]. In a
comparative study of nicotinamide with sevelamer, drop-out due to adverse events was 60% higher
with nicotinamide, whereby it has been hypothesized that this effect could in part have been due to
2PY [86]. All relevant aspects regarding this compound are elegantly reviewed in this special issue [85]
and its experimental and clinical impact is further summarized in Table 4 and Supplemental Table S1.

Table 4. Summary of evidence data available on the small water-soluble compounds.

Type of Evidence Points Exp. Toxic. 1-2 Exp. Neutral
or Benefit -1 Clin. Toxic. 1-2 Clin. Neutral

or Benefit -1 Sum 4 (max)

Guanidines * 2 0 0 0 2
ADMA 2 0 2 0 4
SDMA 2 0 2 0 4
Oxalate 2 0 0 0 2

PAG 0 -1 2 0 1
MMA 1 0 0 -1 0
DMA 1 0 0 -1 0
TMA 2 0 0 -1 1

TMAO 2 0 2 -1 3
Lanthionine 1 0 0 0 1
Myoinositol 1 -1 0 0 0

2PY 1 0 0 0 1
Polyamines ** 2 0 0 0 2

Urea 2 0 0 0 2
Carbamylated compounds ** 2 0 2 0 4

Cyanate 2 0 0 0 2
Ammonia 1 0 0 0 1
Uric acid 2 0 2 -1 3
Xanthine 1 0 0 0 1

Hypoxanthine 1 0 0 0 1

Exp.: experimental; clin.: clinical (observational + Randomized Controlled Trials—RCTs); Toxic.: Toxicity;
ADMA: Asymmetric Dimethylarginine; SDMA: Symmetric Dimethylarginine; PAG: Phenylacetylglutamine;
MMA: Monomethylamine; DMA: Dimethylamine; TMA: Trimethylamine; TMAO: Trimethylamine-N-Oxide; 2PY:
N-Methyl-2-Pyridone-carboxamide; * guanidines treated as one group, with the exception of ADMA and SDMA;
** polyamines and carbamylated compounds considered as one group.
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2.8. Polyamines

Although the toxicity of the polyamines has been studied extensively, especially at the end of
previous century, interest has somewhat waned during more recent years.

Several structurally related polyamines such as spermine, spermidine, putrescine and cadaverine,
may be retained in uremia [1]. Most experimental toxicity data (summarized below) have been
accumulated with spermine and spermidine. On the other hand, it has been hypothesized that
the previously argued toxicity of especially spermine may be attributed to its oxidative product,
acrolein [87] that appears in uremia and uremic samples at the expense of spermine by the activity
of the enzyme amine oxidase [88,89]. Recent data indeed show a decrease rather than an increase of
concentration in CKD, especially for spermine and spermidine [5,88]. Some of these polyamines may
be conjugated to proteins [90].

One of the first biological effects of this group of solutes to be described in the context of uremia,
was an inhibition of erythropoiesis [91–93]. Polyamine-protein conjugates accumulate in plasma of
hemodialysis patients and reduce erythropoiesis via inhibition of mononuclear bone marrow cell
proliferation [90]. Spermine also inhibited NOS induction in activated macrophages, which may
contribute to deficient immune response [94], while it induced oxidative stress in smooth muscle
cells, reducing intracellular glutathione and impairing glucose metabolism [95]. Several polyamines
inhibited platelet aggregation [96].

Neurotoxicity of polyamines has repeatedly been assessed. In the earliest studies, this effect
was attributed to interference with the N-Methyl-D-aspartate (NMDA) receptor which plays a
crucial role in channel conductance, leading to neuronal death and neuroexcitation [25,97–99].
However, polyamines also play a role in neurotoxicity via other mechanisms, such as NMDA-receptor
independent death of neuronal cells [100,101] or interaction with calcium channels [25].

Putrescine inhibits in vitro cell growth of fibroblast-like cells and alters their mitochondrial,
cytoplasmic and nuclear membrane structures [102]. Spermine cytotoxicity has also been linked to
changes in mitochondrial calcium transport in non-neuronal tissue types such as liver, pancreas and
heart [103,104]. The effect on pancreas may play a role in decreasing insulin sensitivity [104]. Finally,
in immortalized renal tubular cells several of the polyamines inhibited activity of OCT expression [105].

Of note, some studies also showed beneficial effects, such as improvement of ganglion cell
survival and of optic nerve regeneration [106], neuroprotection in brain damage [107] and free radical
scavenging [108]. Although those studies in general were not undertaken with uremic toxicity in mind,
they might support the hypothesis that the toxicity observed with polyamines is rather generated by
metabolites like acrolein [87].

2.9. Urea and Derivatives

Urea, a marker of uremic retention in CKD and of adequacy of intra-dialytic solute removal,
has traditionally been considered to be biologically inert [109]. However, a number of recent
experimental data suggest that urea is toxic at concentrations representative for CKD [110–112].
First of all, at least five studies indicate that urea itself directly induces molecular changes related to
insulin resistance [113,114], free radical production [113–115], apoptosis [116] and disruption of the
protective intestinal barrier [117]. Urea also generates cyanate, ammonia and via cyanate carbamylated
compounds which as such all have been linked to biological changes (see below). The findings above
may increase the patho-physiological underpinning for the validity of KT/Vurea as a marker of dialysis
adequacy. Yet, also the views that the kinetics of urea are not representative for those of several other
uremic retention solutes and that this compound cannot be held responsible for all complex metabolic
and clinical changes of the uremic syndrome still remain valid [109].

Increasing urea (and other solute) removal by raising Kt/Vurea by more than 30% above standard
in an RCT-setting [HEMO-study] could not improve patient outcomes [118] but the results may
have been skewed in that study by the short dialysis times [119], which in the Dialysis Outcomes
Practice Patterns Study (DOPPS)-analysis predict negative outcomes independently of Kt/Vurea [120].
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In addition, in a post hoc analysis of the HEMO data, the impact of the rise in Kt/Vurea on pre-dialysis
concentration of relevant uremic toxins was modest to absent [119,121].

2.9.1. Carbamylated Compounds

The role of carbamylation in CKD has extensively been reviewed elsewhere [122].
Carbamylation is responsible for posttranslational protein modifications resulting in a similar
biochemical process as when Advanced Glycation End Products (AGEs) are generated (see below).
As they are derived from urea [122], we will discuss them here. Carbamylated compounds are
involved in atherogenesis and other functional changes, such as activation of mesangial cells into
a profibrogenic prototype, with a potential to play a role in the progression of kidney failure [123]
and modification of leukocyte response to collagens [124]. Carbamylated LDL dose dependently
induced endothelial cell death and smooth muscle cell proliferation [125] and an increase in monocyte
adhesion to endothelium [126], vascular cell changes of relevance to atherogenesis. Also, high density
lipoprotein (HDL) is carbamylated in CKD and inhibits endothelial repair function [127].

In at least 3 observational clinical studies focusing on independent hemodialysis populations
carbamylated compounds were associated with cardiovascular events and overall and cardiovascular
mortality [128–130].

2.9.2. Cyanate

Cyanate is a free radical in equilibrium with urea, with increased levels in CKD, as a consequence
of the increased availability of urea [131]. Apart from its known link to carbamylation (see above),
cyanate also exerts toxicity by itself. Incubation of coronary endothelial cells in the presence of cyanate
decreased NOS expression and increased thrombogenic tissue factor and plasminogen activator
inhibitor-1 expression [132]. Cyanate also dose-dependently decreased glucose sensitive insulin
secretion by pancreatic islets, by a mechanism independent of that generated by urea [114].

2.9.3. Ammonia

Urea is converted to ammonia by urease which is expressed by a number of intestinal bacteria [133].
In vitro studies evaluating expression of intestinal epithelial tight junction proteins not only showed
their depletion in the presence of urea but also an even more important decrease when urease,
inducing ammonia generation, was added to the medium [117]. This mechanism may contribute
to systemic inflammation of CKD by allowing endotoxin from the intestinal lumen to enter the
blood stream.

2.10. Purines

2.10.1. Uric Acid

Uric acid has been associated with calcitriol metabolism and with inhibition of expression on
monocytes of CD14, a lipopolysaccharide receptor [134–136].

More recently, uric acid has also been linked to pro-inflammatory processes in cells of the vascular
wall, such as monocyte chemoattractant protein-1 (MCP-1) expression by vascular smooth muscle
cell [137], induction of oxidative stress [138], renin angiotensin system stimulation and smooth muscle
cell proliferation [139]. In human umbilical vein endothelial cells (HUVECs), uric acid induces insulin
resistance and suppresses the generation of nitric oxide in response to insulin [140]. Genetic disruption
of the uric oxidase gene in mice generated severe hyperuricemia and urate nephropathy [141].
In a series of rat experiments, induction of mild hyperuricemia caused systemic and glomerular
hypertension, glomerular sclerosis and renal infiltration of macrophages [142]. All those mechanisms
may contribute to hypertension, uremic vascular disease, progression of CKD and thus mortality [143].

In a longitudinal clinical analysis, uric acid was associated with CKD progression, especially
in proteinuric patients, even after adjustment for confounders [144]. Uric acid concentration has
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been associated with parameters of vascular stiffness in participants of the Framingham study [145].
In the National Health and Nutrition Survey (NHANES) study, high uric acid was associated with
overall and cardiovascular mortality but the association disappeared after correction for kidney
function [146]. In a Mendelian randomization study, both uric acid itself as well as a score composed
of a number of genetic polymorphisms associated to high uric acid were associated with multiple
cardiovascular complications [147]. In a systematic review and meta-analysis of CKD-patients, uric acid
levels were significantly associated with mortality, even after adjustment for kidney function [148].
Uric acid has also been associated with the incidence of acute ischemic stroke [149] and mild cognitive
dysfunction [150]. However, in an observational analysis of hemodialysis patients from Taiwan
included in this special issue, an inverse relation was found between uric acid concentration and
mortality [151]. Similarly, in a large hemodialysis patient database, low and not high uric acid was
associated to mortality, especially in those patients with low protein intake [152].

The major problem of observational clinical studies on the impact of uric acid is a risk of
confounding as a number of factors commonly linked to elevated uric acid (obesity, diabetes,
hypertension), are cardiovascular risk factors by themselves. Many studies adjust for several of
those risk factors but residual confounding can never be excluded entirely.

Uric acid takes a unique position among the uremic retention solutes because it is one of the only
compounds of which the concentration can be decreased selectively by specific medication, such as
allopurinol or probenecid. In an observational study in CKD patients, treatment with allopurinol was
associated with improved arterial stiffness, even after correction for confounders [153]. In a Japanese
section of the DOPPS, allopurinol was associated with lower overall mortality in a subpopulation
without previous cardiovascular events [154].

A few RCTs assessing the impact of uric acid lowering drugs on parameters of endothelial function
showed no positive effect [155,156]. On the other hand, in a short-term study, allopurinol was shown
to decrease blood pressure in young adolescents with newly diagnosed essential hypertension [157].
In another RCT, in CKD, the group treated with allopurinol had a lower number of cardiovascular
events and a slower progression of kidney failure but the small sample size of the study was a limitation
factor, so this study needs confirmation [158]. A decrease of uric acid by allopurinol was linked to a
rise in serum calcitriol [135].

Thus, in spite of substantial arguments for the toxicity of uric acid, not all data are consistent,
especially in RCTs applying uric acid decreasing drugs. In addition, it should be taken into account that
the main currently available intervention to lower uric acid, allopurinol, has by itself a considerable
complication profile, so that studies suggesting a positive effect should rather be considered as proof
of concept than as an incentive for treatment, especially in asymptomatic hyperuricemia.

2.10.2. Xanthine and Hypoxanthine

Xanthine and hypoxanthine are two other purines that sporadically have been submitted to
toxicity studies. Both compounds have been linked to inhibition of calcitriol synthesis [134,159] and of
membrane linked expression of the lipopolysaccharide receptor, CD14, on monocytes [136].

2.11. Summary

Small water-soluble uremic retention solutes can no more be considered as irrelevant to
the uremic syndrome, with an average number of affected systems in experimental studies of
2.65 ± 1.89. The systems affected by the largest number of toxins are cardiovascular disease (n = 11),
inflammation (n = 10) and metabolic function (n = 8) (Figure 2A, Supplementary Materials Table S1),
which all are pivotal for clinical condition and survival. The groups of toxins affecting the largest
number of systems are the polyamines (n = 7) and the guanidines (n = 5). For the individual compounds
these are uric acid (n = 6), TMAO (n = 5) and ADMA (n = 4) (Figure 2B, Supplementary Materials
Table S1). However, with regard to some polyamines, there is debate on whether their concentration is
increased or not [5] and whether they all are real toxins [87].
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The average evidence score is 1.75 ± 1.29 (maximum possible = 4). For this aspect, the list is
headed by the carbamylated compounds for the groups (n = 4) and by ADMA and SDMA (n = 4)
followed by TMAO and uric acid (n = 3) for the individual compounds (Table 4).

3. Protein Bound Compounds

The protein bound uremic toxins are a heterogeneous group of generally small solutes, which,
due to their protein binding, are difficult to remove by dialysis. Their protein binding coefficient
is in general low although some compounds may be more stable, especially those generated by
posttranslational modifications, such as the advanced glycation end products (AGEs). Many of the
protein bound solutes are generated by the intestine [160].

For the time being few therapeutic options exist that specifically can decrease the concentration of
this group of solutes and one of these, the orally administered intestinal sorbent AST-120 (KremezinR)
did not impact progression of CKD in RCTs [161,162]. For some solutes, specific strategies exist
to reduce the concentration of only this compound or group of compounds (e.g., folic acid for
homocysteine) and those strategies will be discussed specifically in the subheadings devoted to
those molecules.

To the best of our knowledge, the last review considering a large array of protein bound uremic
toxins was published almost 10 years ago [163]. After that, reviews have been restricted to specific
toxins (e.g., indoxyl sulfate, p-cresyl sulfate) [20,164,165], probably due to the overwhelming number
of novel research data.

3.1. Advanced Glycation End Products (AGEs)

The role of AGEs in CKD has been reviewed extensively elsewhere [166]. AGEs are generated
by the reaction of specific amino acids within the protein structure (both complete proteins and
protein degradation products) with the carbamyl group of reducing sugars, which is then stabilized by
oxidation. AGE compounds and their precursors are numerous and contain N-carboxymethyllysine,
pentosidine, hydroxyimidazolone, 3-deoxyglucosone, malondialdehyde, pyrraline, glyoxal and
methylglyoxal. AGE accumulation has first been identified in diabetes mellitus [167]. Because CKD as
a condition is characterized by inflammation, oxidation as well as retention, AGE accumulation is a
typical feature of CKD [168], irrespective of diabetic status [169].

AGEs bind to a number of receptors, among which advanced glycation end product-specific
receptor (RAGE) plays a central role to impose several deleterious biological effects [170,171].
RAGE expression is increased in many inflammatory conditions [172] and also in CKD [173,174].

AGEs have a negative impact on body functions and overall outcomes via several mechanisms,
among which induction of oxidative stress [175], inflammation [176–178] and endothelial
dysfunction [178–180] including quenching of NO [179], are the most prominent. AGEs have
also been linked to thrombogenicity [181], kidney fibrosis [182], structural bone damage [183] and
neurotoxicity [184].

With all these functional alterations, it is no surprise that on a more global organic level, AGEs are
linked to vascular stiffness, damage and calcification [185–187].

Studies on the links between AGEs and mortality gave conflicting results, with some studies even
showing better outcomes with higher AGE levels [188,189]. Such results may reflect confounding
factors such as better nutritional status resulting in both higher AGEs and higher survival, or the
index AGE may have been a compound with low biological impact or with lower vital tissue
concentration. In contrast, low serum soluble RAGEs, which are actors protecting against AGE
activity, have consistently been linked to cardiovascular risk factors and events [190].

Many interventional attempts have been made to reduce AGE levels either by extracorporeal or by
drug treatment. Among the removal strategies high efficiency low pro-inflammatory dialysis options
generally turned out to be most efficient but were in general not efficient enough to induce substantial
decreases in concentration [191–193]. AGE-restricted diet may help to reduce their concentration [194].
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None of the tested pharmaceutical options has currently emanated in approved therapies for clinical
use [166]. One of the most recent acquisitions is glyoxylase-1 induction, which in pilot studies in obese
subjects resulted in the breakdown of methylglyoxal, improved glycemic control, an increase in insulin
sensitivity and better vascular function [195,196].

3.2. Advanced Oxidation Protein Products (AOPPs)

Similar to AGEs, also AOPPs are posttranslational protein modifications (of both complete
proteins and protein degradation products) induced by oxidative stress [197,198]. Both AOPPs
prepared in vitro and extracted from plasma of hemodialysis patients have been linked to
pro-inflammatory mechanisms, such as induction of oxidative metabolism of leukocytes [198] and free
radical production by fibroblasts and endothelium in a setting of scleroderma [199].

Although it has been suggested that their concentration progressively increases throughout CKD
to reach a maximum in hemodialysis patients [200] and that these concentrations were predictive of
subsequent cardiovascular events [201], concentration measurements are confounded by co-registration
of other factors with cardiovascular impact such as triglycerides [202]. Yet, the toxic potential of AOPPs
in uremia is less a matter of debate. Of note, RAGE not only interact with AGEs but also with AOPPs,
suggesting that many oxidant products interact through the same signal pathways [203].

In this special issue, Garibaldi et al. demonstrate that AOPPs generate transition of macrophages
into dendritic cells and an increase of their ROS production, which are key mechanisms in
atherogenesis [204].

3.3. Carboxy-Methyl-Propyl-Furanpropionic Acid (CMPF)

3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), a urofuranic fatty acid, is a strongly
lipophilic uremic solute and a major inhibitor of drug protein binding [205]. Next to drugs,
it also decreases protein binding of natural metabolites such as thyroxine [206] and bilirubin [207],
potentially increasing their biologic/toxic impact. This solute inhibits the renal uptake of p-amino
hippuric acid (PAH) in rat kidney cortical slices [208] and competes for renal excretion against various
drugs, metabolites and endogenously produced organic acids [209]. CMPF also inhibits hepatic
glutathione-S-transferase [210], deiodination of T4 by cultured hepatocytes [211], hepatic digoxin
clearance [212] and adenosine diphosphate (ADP)-stimulated oxidation of nicotinamide adenine
dinucleotide (NADH)-linked substrates in isolated mitochondria [213]. There is a correlation between
neurologic abnormalities and the plasma concentration of CMPF [214]. More recently, CMPF has
been associated with inhibition of insulin secretion by pancreatic islets [215,216]. However, in vivo,
no correlation between CMPF and parameters of glucose intolerance was found in subjects with
features of the metabolic syndrome [217].

Since CMPF is virtually 100 percent protein bound, its removal by hemodialysis strategies is
nonexistent but CMPF levels may be lowered with peritoneal dialysis [218]. Since this compound,
as several other organic acids, is excreted by the renal tubules [219], enhancing excretion via this
mechanism may help to reduce their concentration.

3.4. Cresols

3.4.1. P-Cresyl Sulfate

The mother compound of the cresols, p-cresol, was for a long time believed to be a major uremic
toxin [220] but later on this point of view was shown to be the result of an artifact [221]. According to
two almost simultaneous studies, the real major cresols retained in uremia were the conjugates p-cresyl
sulfate and p-cresyl glucuronide [222,223]. Soon after this observation, the exploration started of the
biological effect of the conjugate with the highest concentration, p-cresyl sulfate. This resulted in
extensive data on its toxicity, summarized in a review article in this special issue [164].
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3.4.2. P-Cresyl Glucuronide

P-cresyl glucuronide has far less extensively been studied than p-cresyl sulfate. Although its
total concentration is markedly lower than that of p-cresyl sulfate, free “active” concentration is
similar [221]. In contrast to p-cresyl sulfate, p-cresyl glucuronide as such has no activating impact
on white blood cells but, when added to p-cresyl sulfate, it has an additive effect on leukocyte free
radical production [19]. P-cresyl glucuronide also inhibits mitochondrial respiration and the activity of
renal glucuronyltransferases [57]. In contrast to p-cresyl sulfate, p-cresylglucuronide did however not
trigger insulin resistance and metabolic disturbances [224].

In a longitudinal outcome study in a population with CKD and after adjustment for confounders,
including eGFR, p-cresyl glucuronide showed a similar correlation to overall and cardiovascular
mortality as indoxyl sulfate and p-cresyl sulfate, suggesting a comparable impact on mortality [225].

3.5. Hippurates

3.5.1. Hippuric Acid

Hippuric acid is since long known as an inhibitor of drug protein binding [226] but other biological
effects have been less extensively explored. The compound has been associated with kidney damage
and to proximal tubular injury [227–229], an effect related to organic acid transporter uptake [228].
Of note, also several metabolomic studies linked hippuric acid to renal tubular damage [230–232].
The only other toxic effects that were described were an inhibition of glucose utilization [233] and a
decrease of digoxin uptake by hepatic cells [212].

3.5.2. p-Hydroxyhippuric Acid

p-Hydroxyhippuric acid induced free radical production in renal tubular cells [228], inhibition of
tubular cell proliferation [228] and inhibition of Ca++-ATPase, possibly contributing to uremic bone
disease, disturbed Ca++ homeostasis and hypertension [234]. A similar effect of disturbed cellular
Ca++ efflux had previously been described in uremic plasma filtrate but that study had not been able
to unravel the responsible solute(s) [69]. p-Hydroxyhippuric acid also attenuates leukocyte apoptosis,
which may result in a pro-inflammatory effect [235].

3.5.3. o-Hydroxyhippuric Acid

Also, o-hydroxyhippuric acid induced free radical production in renal tubular cells and inhibition
of tubular cell proliferation [228].

3.6. Homocysteine

Homocysteine (Hcy) is a sulphur-containing amino acid produced by demethylation of
methionine and a cardiovascular risk factor in the general population. Its concentration is markedly
increased in end stage kidney disease (ESKD) [236]. Retention in uremia results in the cellular
accumulation of S-adenosyl homocysteine (AdoHcy), an extremely toxic compound that competes
with S-adenosyl-methionine (AdoMet) and inhibits methyltransferases [237], a mechanism disturbing
epigenetic control of gene expression by provoking DNA hypomethylation [238].

Hcy increases the proliferation of vascular smooth muscle cells, one of the most prominent
hallmarks of atherosclerosis [239]. The administration to rats of excess quantities of the Hcy precursor,
methionine, induces atherosclerosis-like alterations in the aorta [240]. Hcy also disrupts several vessel
wall-related anticoagulant functions, potentially resulting in enhanced thrombogenicity [241].

More recent data have shown that hyperhomocysteinemia also is linked to a decreased
concentration of hydrogen sulfide (H2S), a volatile vasorelaxant [242] and to the increased generation
of lanthionine, a condensate of two homocysteine molecules, which in its turn decreases H2S [75,79].
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Serum homocysteine levels not only depend on kidney function but also on genetic
predisposition [243] and vitamin status [244]. Homocysteine levels can be reduced by the
administration of folic acid, vitamin B6 and/or vitamin B12 [245,246]. CKD patients may be refractory
to regular folate doses as applied to the general population and may require higher quantities than the
non-uremic population.

When analyzing the relation between homocysteine levels and hard outcomes in CKD, two large,
observational studies concluded that low rather than high homocysteine levels were associated with
poor outcomes [189,247] but potential confounders are the frequent inflammatory and malnourished
status of CKD patients. Along this line of thought, one study demonstrated that homocysteine was
directly related to mortality in that part of a hemodialysis population that did not suffer from a
chronic inflammation-malnutrition state (CISM) [248]. This relationship was masked in patients with
CISM [248]. Another carefully conducted analysis, however, found no association between total
homocysteine and cardiovascular disease risk [249].

In four RCTs in CKD vascular events or fatal outcomes were not reduced by homocysteine
lowering therapies with administration of folic acid alone or combined to other B vitamins [250–253].
However, in all but one of these studies the control patients had been subjected to folic acid fortification
in regular food [250–252].

A sub-analysis of a large RCT on the effect of folic acid on stroke in a large population of
hypertensive Chinese [254], showed in the subgroup with CKD, that folic acid combined to enalapril
more efficiently refrained progression of CKD than enalapril alone [255]. This study obviated the bias
of folic acid fortification in the general population but on the other hand was restricted to hypertensive
Chinese, which might have implied specific genetic or metabolic factors.

Two meta-analyses suggested a reduction of cardiovascular disease associated with the application
of homocysteine lowering preparations in CKD [256,257]. This effect was seen especially in
subpopulations that were not or only partially subject to folic acid food fortification, or that showed
a decrease of homocysteine by more than 20% in the treated group, irrespective of folic acid
fortification [257]. Many studies in these meta-analyses were small, which might have detracted
from the credibility of the analysis.

Dialytic removal of homocysteine is thought to be hampered in a similar way as for the other
protein bound uremic toxins. Dialysis with a membrane with very large pores could decrease
homocysteine concentrations, possibly due to a modification of metabolism, rather than to direct
removal [258].

Thus, attempts to study the impact of homocysteine concentration on cardiovascular outcomes
emanated in conflicting results but some of these studies might be subjected to confounding. On one
hand, observational studies may have been confounded by malnutrition and inflammatory status.
On the other, controlled studies with vitamin B preparations may have been confounded by folic acid
fortification in the general population. However, clinical data seem too conflicting to offer convincing
arguments about the role of homocysteine in CKD, possibly because its impact is, in contrast to the
general population, overridden by the toxic effect of other solutes.

3.7. Indoles

Several of the indoles, which are tryptophan metabolites, are retained in CKD. Also,
quinolinic acid, although not properly considered as an indole, is a tryptophan metabolite (see below).

3.7.1. Indoxyl Sulfate

Indoxyl sulfate has in the context of uremic toxicity definitely been the most extensively studied
of all indoles. Although there has been debate whether in those studies the correct concentrations were
used [259], a systematic review found a substantial number of studies applying the right conditions [20].
Clinical evidence of toxicity in humans however is only observational and several studies showed no
association [165]. This special issue contains an extensive review on the toxicity of indoxyl sulfate [165]



Toxins 2018, 10, 33 16 of 57

with an addition to this review in a letter to the editor [260]. This special issue also contains a
publication describing an oxidative effect and inhibition of nitric oxide in endothelial cells by indoxyl
sulfate that is counteracted by uric acid [151] and two other studies respectively assessing the role of
indoxyl sulfate in inhibiting neovascularization [261] and in enhancing coagulation [262].

3.7.2. Indole Acetic Acid

Indole acetic acid in general received less attention in uremia research than indoxyl sulfate but
this trend has changed especially during the last few years. Indole acetic acid has been linked to
cardiovascular disease by induction of pro-inflammatory mechanisms [263,264] and pro-coagulant
tissue factor production [265]. Like for indoxyl sulfate, these effects to a large extent are linked to the
activation of the Aryl Hydrocarbon Receptor (AhR) that seems to play a central role in the biological
action of several indoles [266].

Indole acetic acid also induces proximal tubular injury after uptake via organic acid transporters,
stimulates cellular free radical production [228] affecting cell viability [229] and accelerates progression
of CKD in experimental animal studies [227]. Furthermore, indole acetic acid has been linked
to a number of metabolic effects, such as the inhibition of uptake of digoxin [212] and renal
glucuronidation [57].

In one study indole acetic acid had no pro-oxidant effect [267] but this compound may need to be
oxidized to become biologically active, as suggested by a study in a hematological malignancy setting,
showing a cytotoxic effect of oxidized indole acetic acid [268].

In an observational clinical study, indole acetic acid was associated with increased mortality and
cardiovascular events [263].

3.7.3. Indoxyl Glucuronide

Although it is known since some years that also indoxyl-β-d- glucuronide is retained in
uremia [269], arguments in favor of a biological effect are scanty. Indoxyl glucuronide is one of
the uremic solutes inhibiting the OCT2, which plays a role in the renal secretion of drugs [66].

3.8. Kynurenines

Elements of the kynurenic pathway are increased in CKD, not only because of decreased renal
clearance but also of alterations in their metabolism [270]. They have been shown to interfere with
organic functions, such as causing an increase of leukocyte adhesion to vascular endothelium [271],
activation of AhR [266] and decreased lipopolysaccharide-induced production of Tumor Necrosis
Factor-α (TNF-α) [272]. Injections of kynurenic acid in rats with normal kidney function impaired
their cognitive flexibility [273]. Furthermore they also modify metabolic functions by impairment of
hepatic drug uptake [274], the activity of renal glucuronyltransferases [57] and energy metabolism by
rat cerebral cortex [275].

In the general population, kyurenine levels were associated with all cause, cancer and
cardiovascular mortality [276] and in patients with stable angina and myocardial infarction [277].
In patients with ESKD, the kynurenines were associated with oxidative stress, inflammation and
prevalence of cardiovascular disease [278] and parameters of hypercoagulability [279].

3.9. Phenols

Of the phenols, phenylacetylglutamine, which conceivably is very little bound to protein, has been
discussed above, in the section dealing with the small water-soluble compounds.

3.9.1. Phenyl Sulfate

To the best of our knowledge, the toxic effects of phenyl sulfate in the context of uremia have only
rarely been studied. The solute affected tubular cell viability [229].
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3.9.2. Phenyl Acetic Acid

Phenyl acetic acid as a protein bound uremic toxin does not seem to compete for its protein binding
with other major protein bound uremic toxins like p-cresyl sulfate or indoxyl sulfate [280]. Phenyl acetic
acid has been linked to inhibition of inducible nitric oxide synthase (iNOS) expression [281],
osteoblast proliferation and differentiation [282], enhancement of the formation of oxygen free radicals
in vascular smooth muscle cells [283] and increases of inflammatory response by polymorphonuclear
leukocytes [284]. On the metabolic level, it inhibits renal cellular solute transport pumps [13] and
conjugation by glucuronidation [57]. Finally, in a clinical study, phenyl acetic acid was related to
cognitive dysfunction in dialysis patients [61].

3.10. Quinolinic Acid

Quinolinic acid is an oxidative product of tryptophan metabolism [285]. Also for this compound
concentration may at least in part be increased in CKD by changes in the kynurenine metabolic
pathway [270]. It contributes to the inhibition of erythropoiesis [285] and neurotoxicity [286]. The latter
effect occurs via the intermediate of neuroinflammation [286].

3.11. Summary

Like with the small water-soluble molecules, these data show that also the protein bound solutes
have the capacity to affect a host of biological systems that contribute to the uremic syndrome
(Figure 2C, Supplementary Materials Table S2), with an average number of experimentally affected
systems of 3.69 ± 1.96. The systems affected by the largest number of toxins are inflammation (n = 11),
as can be expected with protein bound solutes metabolic function (n = 11) and cardiovascular damage
(n = 9). The group of toxins affecting the largest number of systems are the AGEs (n = 7) followed
by the kynurenines (n = 5). As far as the individual compounds are concerned the list is headed by
p-cresyl sulfate (n = 7), followed by indoxyl sulfate (n = 6), indole acetic acid and phenyl acetic acid
(n = 5) (Figure 2D).

The average evidence score is 2.31 ± 0.95 (maximum possible = 4). For this aspect, the list
is headed by the groups of the kynurenines (n = 4—the maximum score), followed by the AGEs
(n = 3). The highest scoring individual compounds were p-cresyl sulfate (n = 4) and indoxyl sulfate,
indole acetic acid and phenyl acetic acid (score of 3) (Table 5).

Table 5. Summary of evidence data available on the protein bound compounds.

Type of Evidence Points Exp. Toxic 1-2 Exp. Neutral
or Benefit -1 Clin. Toxic 1-2 Clin. Neutral

or Benefit -1 Sum 4 (Max)

AGEs * 2 0 2 -1 3
AOPPs * 2 0 1 -1 ** 2

CMPF 2 0 1 -1 2
p-Cresyl sulfate 2 0 2 0 4

p-Cresyl glucuronide 1 -1 1 0 1
Hippuric acid 2 0 0 0 2

p-OH hippurate 2 0 0 0 2
o-OH hippurate 2 0 0 0 2
Homocysteine 2 0 1 -1 2
Indoxyl sulfate 2 0 2 -1 3

Indole acetic acid 2 0 1 0 3
Indoxyl glucuronide 1 0 0 0 1

Kynurenines * 2 0 2 0 4
Phenyl sulfate 1 0 0 0 1

Phenyl acetic acid 2 0 1 0 3
Quinolinic acid 2 0 0 0 2

Exp.: experimental; clin.: clinical (observational + Randomized Controlled Trials—RCTs); AGEs:
Advanced Glycation End Products, AOPPs: Advanced Oxidation Protein Products; CMPF: Carboxy Methyl Propyl
Furanpropionic Acid; p-OH hippurate: p-hydroxyhippurate; o-OH hippurate: o-hydroxyhippurate; * AGEs,
AOPPs and kynurenines considered as one group; ** skewed by confounders due to measurement errors (see text).
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Although most of the average evidence scores are not significantly different, the experimental data
for the protein bound compounds seem to be more robust than the clinical ones. Indeed, toxins like
homocysteine and indoxyl sulfate are not covered by unequivocal clinical data, whereas others like
p-hydroxy hippuric acid, indole acetic acid, quinolinic acid and phenyl acetic acid have barely been
studied clinically in spite of fairly robust experimental data.

4. Middle Molecules

The group of the middle molecules is mainly composed of small proteins or peptides that under
normal conditions can cross the glomerular filtration barrier (<58,000 Da). Their minimum molecular
weight has arbitrarily been set at 500 Da although most middle molecules have a molecular weight
of more than 10,000 Da. The group contains both intact molecules and their degradation products.
This degradation has been well described for some compounds (e.g., parathyroid hormone) but for
many others not.

In contrast to the small water-soluble compounds and the protein bound solutes which to a
large extent are intestinal metabolites of nutrition components, most of the middle molecules are
generated endogenously. They are often part of homeostatic mechanisms to correct for other uremic
changes (e.g., parathyroid hormone), or are expressed in response to other toxins (e.g., the cytokines),
whereby their concentration not only depends on retention but also on endocrine and paracrine
corrective mechanisms. A typical example is parathyroid hormone of which the concentration changes
to a large extent are defined by alterations in bone homeostasis.

Because of their high molecular weight, dialytic removal is only possible with membranes with
a large enough pore size (high-flux membranes) that can be used in a diffusive (hemodialysis) or
convective mode (hemodiafiltration). To the best of our knowledge, few strategies exist to decrease
concentration of specific middle molecules. Increasing their unspecific removal by applying large
pore membranes often resulted in conflicting results with a number of clinical studies, even on
hemodiafiltration as the most effective strategy, showing no hard outcome advantage at primary
analysis [287–290]. Other studies showed a survival advantage but were prone to selection bias [291].

4.1. Adrenomedullin

The concentration of adrenomedullin is increased in dialysis patients but decreases when volume
overload is corrected [292], which is suggestive of active secretion in overhydration. The molecule
decreases intestinal epithelial permeability [293] and corrects cardiovascular malfunction [294]. It also
has a mitogenic effect [295], which could be useful in repair function and for immune response but
may also accelerate cell cycle in malignancy. Apart from the latter possibility, there are no manifest
reasons to consider adrenomedullin as a real toxin. It rather seems a beneficial molecule with even a
potential to correct for a number of elements of the uremic syndrome.

4.2. Adiponectin

Adiponectin is one of the adipokines of which the concentration is increased in CKD [1,5]. It is
one of the compounds discussed in a review of this special issue on the cytokines [296]. However,
the latter publication contains ample arguments stressing the uncertainties regarding the toxicity of
this compound.

4.3. Angiogenin

Angiogenin is a member of the ribonuclease (RNAse) superfamily that next to stimulating
angiogenesis, e.g., in cancer but also in wound repair [297], has been linked as well to inhibition
of polymorphonuclear leukocyte degranulation [298], cytotoxicity and inhibition of protein
synthesis [299].
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4.4. Atrial Natriuretic Peptide

Atrial natriuretic peptide (ANP) as well as its sequence homologue, brain natriuretic peptide
(BNP), are retained in uremia [1] and are independently linked to left ventricular mass and function
and to overall and cardiovascular mortality in dialysis patients [300]. Yet, experimental studies on its
physiologic impact not necessarily point to deleterious actions, as some data rather seem to suggest
counter regulatory effects neutralizing a number of elements potentially contributing to the uremic
syndrome. Enhanced ANP secretion has been suggested to play a role in the adaptive increase of
sodium excretion per nephron in CKD [301] and decreases catecholamine release from nerve growth
factor-treated rat pheochromocytoma cells by inducing a neuromodulatory effect [302]. When infused
in rats with hypoxia-induced pulmonary hypertension, ANP attenuated pulmonary hypertension
and reduced pulmonary vascular remodeling [303] and it also has been attributed a blood pressure
lowering effect [304]. ANP also increases insulin levels in vivo [305], while in isolated rat pancreatic
cells it inhibits glucagon secretion [306]. Both effects have the potential to restore at least in part the
disturbed response to insulin in uremia. Maybe the only somewhat negative action we could retrieve is
the inhibition of Follicle Stimulating Hormone (FSH) induced maturation of pig oocytes [307]. Of note,
N-terminal pro-B-type natriuretic peptide (NT-proBNP) is an independent marker of renal anemia
but is generally considered biologically inactive [308]. All data together suggest that atrial natriuretic
peptide is a marker of negative outcomes, rather than a cause.

4.5. β2-Microglobulin

The interest in β2-microglobulin, the water-soluble extrinsic light chain of the Major
Histocompatibility Class I (MHC I) molecules, was raised when it was demonstrated to be a major
constituent of bone and joint amyloid deposits, which are at the origin of a devastating disorder of
the locomotor system in renal patients, especially in those treated by dialysis [309]. Although the
disease essentially has been linked to long-term renal replacement therapy, lesions were shown
at the end of previous century to be present already from the second year of dialysis on, both in
hemodialysis [310] and peritoneal dialysis patients [311]. Especially increased patient age at the
onset of dialysis and the use of small pore complement activating cellulosic dialysis membranes
as compared to large pore biocompatible AN69 membranes, seemed to affect the frequency of the
disorder [312]. Interestingly, prevalence tended to decrease over the years following the detection of
the problem [313]. This evolution was attributed to the introduction of large pore dialyzers and even
more, to the improvement in quality of dialysis water [313].

A specific role in amyloid generation is attributed to the glycosylation of β2-microglobulin by
e.g., imidazolone [314] and Nε-carboxymethyllysine [315]. Glycosylated β2-microglobulin, in contrast
to the naïve molecule, had a pro-inflammatory impact on human monocytes, with the potential to
lead to bone and joint destruction [316]. More recent studies assessed the mechanisms of deposition of
amyloid fibrils and point to the generation of specific component species prone to aggregation [317]
and conformational changes attributable to the binding of calcium [318]. β2-microglobulin fibrils then
further affect function and/or viability of osteoblasts, osteoclasts and chondrocytes [319].

In various observational studies both in non-dialyzed [320] and dialyzed CKD patients [321–324]
and even in populations not specifically selected because of CKD [325–327] β2-microglobulin has
been associated to hard outcomes or to surrogate outcomes like parameters of inflammation [323],
vascular stiffness [323,324] or bone remodeling [326,327]. Although in some of these studies
adjustments were made for GFR [320,325], it is difficult to support unequivocally the causative role of
β2-microglobulin from these data as the concentration of the molecule may sometimes have functioned
as a surrogate for (residual) renal function.

From these observations, the question arises whether, apart from its role in renal amyloidosis,
β2-microglobulin should be considered as a toxin by itself or just simply as a marker of renal
failure. A number of studies point in the direction of a biological (toxic) effect. In a proteomic
study searching for a biomarker of peripheral artery disease, plasma β2-microglobulin came out
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as a significant discriminator [328]. Kidney function was however lower in the affected patients,
so that also in this study it remained unclear whether β2-microglobulin was a patho-physiologic
player, or whether it merely acted as a marker of kidney function, resulting in an only indirect link to
vascular disease. An in vitro study showed a link between β2-microglobulin and modifications in the
molecular structure of the red blood cell plasma membrane, potentially affecting erythrocyte shape and
their removal from the circulation [329]. In vivo and in vitro experimental studies showed an impact
on osteoclast formation [330] and upregulation of TNF-α and Interleukin-6 (IL)-6 generation [330],
epithelial-to-mesenchymal transition, be it in a cancer model [331] and a neurotoxic effect [332].
In a milestone study assessing functional neurologic changes during ageing, β2-microglobulin was
identified as a pro-ageing factor, impairing hippocampal cognitive and regenerative function [333].
However, in a study assessing the immunologic impact of β2-microglobulin by using a commercially
available β2-microglobulin batch, the originally found strong pro-inflammatory effect disappeared
after purification of the β2-microglobulin solution by in vitro dialysis [334], suggesting a contaminant
in the commercially available product. Hence, any finding of a biological effect of β2-microglobulin
and by extension of any uremic toxin, should be regarded with care.

β2-microglobulin is considered as a prototypic middle molecule and is traditionally used as
a marker of middle molecule removal, although both in pre-dialysis CKD [335] as in dialysis
patients [336], β2-microglobulin behavior did not necessarily conform with that of other middle
molecules. Removal in a hemodialysis setting can only be obtained by using large pore membranes
(so-called high-flux dialyzers) [337,338]. Removal can be further increased by adding convection
(hemodiafiltration) [339–341] but also by extending the length of dialysis [342]. A strong decline in
pre-dialysis β2-microglobulin was obtained when several of these features were combined in extended
daily hemodiafiltration [343].

Overall, the clinical suggestion of a link between β2-microglobulin and negative outcomes is
strong but may be confounded by (residual) renal function and selection bias. Also in view of the not
too extensive biochemical proof of negative action of the compound, some may remain not completely
convinced regarding the toxicity of β2-microglobulin.

4.6. β-Endorphin

β-Endorphin concentrations are increased in uremia [344]. In analogy to cholestatic colitis,
uremic pruritus has been linked to stimulation of central µ-opioid receptors by accumulated
endorphins, a hypothesis strengthened by the improvement of uremic itching in a randomized
cross-over trial by the administration of the µ-opioid receptor blocker naltrexone [345]. This study
was however never confirmed [346] and both pre- and post-dialysis plasma β-endorphin levels could
not be correlated to clinical itching scores in dialysis patients [347]. For the rest, there is only limited
data on the biological impact of β-endorphin. In rat adrenal gland cells, an in vitro study from 1981
showed that β -endorphin induced aldosterone generation [348].

4.7. β-Lipotropin

β-Lipotropin is the precursor of β-endorphin and is also retained in uremia [344].
Consequently very likely all above conclusions about β-endorphin can also be extended to β-lipotropin,
including its effect on the adrenal gland [348].

4.8. Cholecystokinin

Cholecystokinin has been associated to disturbed appetite of uremia and thus
malnutrition [349,350]. In PD patients, the molecule measured in fasting state was correlated
to a feeling of fullness and a lack of hunger perception [351]. In contrast, another study in PD
patients found no difference in cholecystokinin levels between anorexic and non-anorexic patients and
cholecystokinin levels were positively related to surrogate markers of nutritional status, such as serum
albumin or triglycerides [352].



Toxins 2018, 10, 33 21 of 57

4.9. Complement Factors D and Ba

Complement factor D as one of the elements of the complement cascade is retained in
uremia [1,353] and has since long been considered to be one of the factors contributing to the
pro-inflammatory status of uremia [1,2]. Retention is at least in part linked to a failure of renal
catabolism [354]. In ESKD, extra-corporeal treatment over large pore membranes (hemofiltration) could
remove a substantial fraction of complement factor D [355], which in part may be related to adsorption,
as demonstrated for the polyacrylonitrile dialysis membrane [356]. Also, the immunosuppressive
complement factor Ba is retained in uremia [357] and also this compound is removed by large pore
extracorporeal strategies [355]. In view of this parallel retention and removal of a pro-inflammatory
and an immunosuppressive factor, the final impact on the immunological balance of these complement
factors remains unclear.

4.10. Cystatin C

Cystatin C is best known as marker of kidney function and cystatin C based estimated GFR values
have been shown to better correlate to hard outcomes than creatinine-based formulations [358–360].
Although originally considered as being unconfounded by other conditions, later studies showed
several demographic confounding factors [361,362]. Cystatin C is also produced by hematologic cell
lines [255] and has been proposed as a biomarker of aggressive hematologic tumors [363]. To the best
of our knowledge, there are almost no data pointing to a toxic effect of cystatin C in a uremic setting.
It is a major regulator of protease activity, prevents tumor metastasis and is neuroprotective [255].
In the context of Alzheimer, it protects against amyloid β cytotoxicity [364] although it also seems to
play an amyloidogenic role [255].

4.11. Cytokines

The cytokines are extensively reviewed in another article of this special issue [296].
That publication summarizes studies on the uremic toxicity of IL-1β, IL-6 and TNF-α with data
up to the level of RCTs and on IL-18 and IL-8 with data up to the experimental and/or clinical
observational level [296]. IL-10 is an anti-inflammatory cytokine and should not be considered as a
uremic toxin [296]. However, because of this property it may be involved in the uremic propensity to
infection. This review furthermore also contains information on the adipokines leptin, resistin and
adiponectin that are discussed elsewhere in the present review.

4.12. Endothelin

Endothelins are strong vasoconstrictors [365]. Their concentration was shown to be increased
in CKD [366]. Endothelin-1, via activation of one of its receptors, the endothelin-A (ETA) receptor,
plays a deleterious role by increasing blood pressure and causing renal inflammation, oxidative stress,
vascular shear stress, arterial stiffness, endothelial dysfunction and atherosclerosis [367,368].
Vascular endothelin production in CKD may be attenuated by antihypertensive treatment [369].
Renal production of endothelin-1 is however only reduced by angiotensin receptor blockade,
a mechanism that may contribute to the renal protective effect of these drugs [369]. In experimental
studies in CKD, specific blockade of the endothelin receptors reduced smooth muscle cell
proliferation [370] and increased endothelial capillary density [371]. In a short term randomized
cross-over study in CKD patients, Endothelin-A receptor blockade resulted in decreases of plasma
urate, ADMA, proteinuria, hypertension and vascular stiffness [372,373]. Doubts on the long-term
use of these agents was however raised when 3 to 6 months of treatment were not only associated
with a reduction of proteinuria but also with a rise in mortality due to fluid retention [374] but maybe
these problems could be overcome in future by using lower doses or more selective blockers [375].
Nevertheless, in spite of the contradictory results of hard outcome studies, enough proof-of-concept
data have been provided to point to endothelin as a compound with major negative biological impact.
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4.13. Fibroblast Growth Factor-23 (FGF-23)

The toxicity of FGF-23, a relative newcomer in the field of uremic toxicity research, is reviewed
in depth in the current special issue [376]. Interestingly, this compound that in observational studies
appeared to correlate extensively with negative outcomes, has now been shown to exert direct toxicity
as well [376]. Hence, FGF-23 is not a mere marker of CKD and its hard outcomes but it can now also
be considered as one of the potential culprits of the uremic syndrome.

4.14. Ghrelin

Ghrelin levels have definitely been shown to be increased in CKD [377–380]. Ghrelin is known
as an orexigen playing a role in meal initiation [381] and as such seems to oppose the trend
for malnutrition of most CKD patients. However, the molecule has also been linked to several
other negative biological activities, such as restricted insulin release [382] and blunted insulin
sensitivity [383], increases in triglyceride content in the liver [384], mitochondrial oxidative enzyme
activities [384], anxiogenic response to stress [385], increase in serum corticosterone levels [385],
release of growth hormone [386] and increases in sodium reabsorption [387,388]. On the other hand,
ghrelin also has been linked to a rise in cardiac index and stroke volume index [389].

Clinically, low ghrelin levels have been associated with inflammation and cardiovascular risk
in hemodialysis patients [390]. On the other hand, ghrelin correlated negatively with body mass
index [377]. In PD patients weight gain over time was associated to a decrease of ghrelin levels [377].
In another study, ghrelin levels were inversely correlated to nutritional makers suggesting increases
in ghrelin at low dietary intake [380]. The acute response to oral feeding in CKD was however
markedly blunted versus controls [379]. A possible explanation for the seeming paradox between
uremic malnutrition and elevated ghrelin can be found in the finding that ghrelin is present in the
body in two forms, the orexigen acylated ghrelin and desacylated ghrelin which induces a negative
energy balance by decreasing food intake and gastric emptying [391]. The balance between these
two forms has repeatedly been shown to be disrupted in CKD, with more prominent retention of
desacyl ghrelin [378,392,393]. Plasma desacyl ghrelin was significantly higher in anorexic hemodialysis
patients [392].

4.15. Glomerulopressin

The only functional effect of glomerulopressin that could be found was an increase of glomerular
filtration rate and potassium excretion [394].

4.16. Immunoglobulin Light Chains

Although typical for multiple myeloma and other hematologic malignancies [395],
the concentration of the immunoglobulin light chains is also above normal in patients with CKD
not suffering from those conditions [396,397]. These molecules have been depicted as markers to
inflammation but possibly also as pathogenetic factors [398,399]. Experimental studies applying
immunoglobulin light chains at concentrations as observed in CKD demonstrated that they decreased
polymorphonuclear glucose uptake and chemotaxis [400] but also leukocyte apoptosis, a factor possibly
contributing to chronic inflammation [401]. After their filtration by the glomeruli, immunoglobulin
light chains are incorporated via the cubilin receptors into the renal proximal tubular cells [402] where
they are catabolized [403] and where they tend to accumulate if the system is overloaded [404]
to cause morphologic changes [405] and kidney injury [406], be it essentially at the extremely
high concentrations of hematologic malignancies [407]. Their toxicity may be further enhanced
by glycosylation [408]. In observational studies in CKD, their concentration has been associated
to inflammation and vascular calcification in one study [409] and mortality in another one [396],
although in the first study adjustment for well-known cardio-vascular risk factors abolished the
link to mortality [409]. In ESKD, immunoglobulin light chains can only be removed by dialysis
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via large pore high-flux membranes, although treatment does not reduce levels to normal [397,410].
Substantially better removal could be obtained by using extremely open high cut-off (HCO) dialyzer
membranes but at the expense of considerable albumin losses [411]. The novel medium cut-off
(MCO) membranes are an intermediate between classical high-flux and HCO, allowing better albumin
conservation. For removal of immunoglobulin light chains, they are more efficient in a hemodialysis
mode than classical high-flux membranes in hemodiafiltration [412].

4.17. Modified Lipids and Lipoproteins

Oxidation does not only modify proteins but also lipids and next to oxidation, there are also
other post-translational lipid modifications at play in CKD, such as glycation and carbamylation.
As summarized by a review in this special issue, they play a role in inflammation, apoptosis, endothelial
dysfunction and accelerated atherosclerosis [413].

4.18. Leptin

Leptin is a satiety hormone that is part of the review on the cytokines in this special issue [296].
In spite of ample experimental arguments in favor of its biological activity [414], clinical data are
contradictory and not convincing, leading to the conclusion in the above mentioned publication that
its status as a uremic toxin is debatable [296].

4.19. Macrophage Colony Stimulating Factor

Macrophage Colony Stimulating Factor (or Colony Stimulating Factor-1—CSF-1) was originally
described as a promotor of proliferation and differentiation of hematologic progenitor cells [415] but
soon appeared to stimulate also the activity of mature leukocytes, by stimulating neutrophil metabolism
and cytotoxicity [416,417] as well as monocyte cytokine production [418]. Hence, Macrophage CSF
might be a key factor in inflammatory conditions [419], including CKD [420]. However, also beneficial
effects have been attributed to it, such as regression of atherosclerotic lesions [421], recovery from
leukocytopenia [422] and kidney repair from ischemia [423]. After addition of this component as an
adjuvant to a hepatitis B vaccine, an improved response to vaccination was observed in hemodialysis
patients [424].

4.20. Methionine-Enkephalin

Methionine-enkephalin is another opioid of which the concentration is increased in CKD [425,426].
Methionin-enkephalin plays a role in suppressing the feeling of pain [427,428], enhances the secretion
of several hormones [429], suppresses renal nerve activity [430] and inhibits jejunal fluid secretion [431].

4.21. Neuropeptide Y

Neuropeptide Y, a known major orexigen [349,350,432], is retained in CKD [433,434]. In peritoneal
dialysis patients, low neuropeptide Y levels are associated with anorexia [352]. In the nervous system,
neuropeptide Y inhibits the release of the neurotransmitter acetylcholine in nodose neurons [435].
Neuropeptide Y also acts as a renal vasoconstrictor by suppression of adenylate cyclase activity,
a regulator of a wide array of cellular processes in vascular smooth muscle cells [436]. Likewise,
neuropeptide Y also inhibits cardiac adenylate cyclase [437] and the combination of high leptin,
peptide YY and neuropeptide Y together with low ghrelin has in the hemodialysis population been
linked to hypertension, inadequate vasodilation and cardiac hypertrophy and hence could predispose
to cardiovascular events [438]. In an observational study, neuropeptide Y predicted cardiovascular
complications in ESKD [439].
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4.22. Orexin A

Orexin A is another orexigen [440] of which the messenger RNA expression is suppressed in
CKD [441]. It was difficult to find data on its concentration in CKD and also the data on the biological
impact are scarce, especially in uremia. Studies with normal kidney function and usually after
central injection show a stimulation of testosterone production [442] and a rise in blood pressure and
tachycardia in stressful conditions [443].

4.23. Parathyroid Hormone (PTH)

Disturbances in concentration of PTH, phosphate and FGF-23 are strongly linked to each other
whereby changes in one factor impact generation of the other, often following an adaptive response
mechanism [444,445]. The biological impact of PTH has extensively been studied and summarized
and covers multiple aspects such as peripheral neuropathy, carbohydrate metabolism, hypertension,
mitochondrial respiration and cardiac hypertrophy [445]. Yet, due to inherent PTH-resistance in
CKD, PTH levels need to be more elevated than with normal kidney function before generating an
effect [445]. In observational studies, both low and high PTH levels have been linked to increased
mortality, with a more pronounced relationship for the low levels [445,446], which are linked to
adynamic bone disease. Hence, the validity of parathyroid hormone as a marker of bone turnover and
generator of cardiovascular disease has been questioned [447]. In two RCTs, parathyroid hormone
lowering treatment with the calcimimetic Cinacalcet did not impact the primary endpoints of the
studies [448,449] but influenced a number of surrogate endpoints such as vascular and cardiac valve
calcification [448]. In a secondary analysis of one of these two trials, the EValuation Of Cinacalcet
Hydrochloride (HCl) Therapy to Lower CardioVascular Events (EVOLVE) study, Cinacalcet appeared
to lower FGF-23 and these reductions were linked to a lower number of cardiovascular events and
death [450]. As the rise in FGF-23 precedes the rise in parathyroid hormone and serum phosphate,
the question may be raised whether the rise in FGF-23 is not the primary pathophysiologic event
in the development of secondary hyperparathyroidism [451]. However, FGF-23 neutralization with
antibody in mice with kidney failure improved hyperparathyroidism but increased mortality [452].
All data taken together, the pathophysiologic role of parathyroid hormone in CKD cannot be
supported unequivocally.

4.24. Pentraxin-3

Pentraxin-3 is an acute phase protein produced by a variety of cells in response to inflammatory
signals [453]. The pentraxins are considered to be useful biomarkers of systemic inflammation [454].
Pentraxin-3 levels have repeatedly been shown to be increased in CKD [455–457]. Direct proof of
a biological effect is scarce. One study linked Pentraxin-3 to epithelial-to mesenchymal transition
and renal fibrosis [458]. In addition, pentraxin-3 was found in foam cells of advanced atherosclerotic
lesions and in leukocytes infiltrating atherosclerotic plaque [459]. However, most studies linking
Pentraxin-3 to negative outcomes are clinical observational and associate the molecule to endothelial
dysfunction [457,460], cardiovascular disease [455–457,460,461], protein energy wasting [455,457] and
in a study focusing on the elderly, also incident CKD [462]. In unselected hypertensive diabetics,
antihypertensive treatment improved flow-mediated vessel dilation and normalized proteinuria but
normalized Pentraxin-3 as well [463,464]. Moreover, in hypertensive type 2 diabetics, the improvement
in flow-mediated vasodilation related to antihypertensive treatment was independently associated with
Pentraxin-3 concentration [464]. Yet, in animal experiments in mice, Pentraxin-3 infusion attenuated
renal damage in diabetic nephropathy [465], whereas knock-out mice lacking pentraxin-3 showed more
vascular inflammation and macrophage accumulation within atherosclerotic plaque [466]. In obese
CKD patients pentraxin-3 levels were low in spite of enhancement of other inflammatory markers [467].
In a functional ex vivo study, subcutaneous fat tissue pentraxin-3 mRNA was inversely correlated to
ADMA concentration and basal resistance artery tone [468]. The latter studies suggest that in some
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circumstances, pentraxin-3 may play a counter regulatory role in endothelial damage. On the other
hand, in the observational arm of the same study, adipose pentraxin-3 mRNA was increased in CKD
patients with cardiovascular disease but the association disappeared after adjustment [468]. Overall,
there seem to be as much arguments in favor as in disfavor of the biological toxicity of pentraxin-3.

4.25. Peptide YY

Peptide YY is an anorexigen [469,470] and inhibitor of gastric motility [471]. Elevated levels have
been recorded in CKD patients on peritoneal dialysis [472] and on hemodialysis [438], although its
postprandial secretion was markedly decreased as compared to healthy controls [472]. Studies on
biological effects are scanty. Infusion of peptide YY was shown to decrease glomerular filtration rate,
plasma renin activity and aldosterone levels, whereas urinary sodium excretion was raised [473].
It has been hypothesized that the combination of high leptin, peptide YY and neuropeptide Y
together with decreased ghrelin would predispose to hypertension, impaired vasodilation and cardiac
hypertrophy [438], although the decrease of renin and aldosterone mentioned above [473] may cast
some doubts on the contribution of peptide YY into this. On the other hand, on the pancreatic level,
peptide YY seems to be essential for beta cell survival, insulin secretion and glycemic control [474,475].

4.26. Prolactin

Hyperprolactinemia is common in CKD and has been observed since many years [476–479].
As a hormone involved in reproductive behavior [480] it could play a role in sexual dysfunction of
uremia [481] but treatment with bromocryptin could suppress prolactin but did not correct sexual
dysfunction in hemodialysis patients of both genders [479]. There are only limited data on the
biological action of prolactin, which has been linked to platelet activation [482]. On the other hand,
under physiologic non-uremic conditions, prolactin has a homeostatic role, e.g., in maintenance of
immune function, osmoregulation, suppression of angiogenesis and by extension possibly also in tumor
genesis [480]. One observational clinical study linked prolactin to markers of endothelial dysfunction
and cardiovascular morbidity and mortality [476]. A similar relation with major cardiovascular events
has also been observed in males without CKD but with erectile dysfunction [483].

4.27. Resistin

Resistin is included in the review on cytokines which is part of this special issue [296] but is
not considered a uremic toxin. In spite of a few suggestive experimental studies, no link with hard
outcomes in CKD could as yet be demonstrated [296].

4.28. Retinol Binding Protein

Retinol binding proteins are not only transporters of retinoids but also function as regulators
of retinoid metabolism and disposition [484]. They have extensively been studied in CKD and were
repeatedly shown to be elevated [485–489], although levels do not correlate as well with GFR than
Cystatin C or β2-microglobulin [335,490]. Contradictory biological functions have been attributed
to this molecule. On one hand, retinol binding protein has been shown to induce apoptosis and
inflammatory reaction in human endothelial cells [491,492]. On the other hand, retinol binding
protein isolated from acute kidney failure patients inhibited polymorphonuclear cell function and
apoptosis [401]. Quite a number of observational studies in specific populations not necessarily
suffering from CKD link retinol binding protein to cardiovascular disease [493], carotid intima
thickness [494], the metabolic syndrome [495–497] and obesity [496]. Only a few observational studies
assessed links of retinol binding protein with outcomes in specific populations suffering from CKD.
In one study serum levels were associated to components of the metabolic syndrome [488]. In a
population of type 2 diabetics with and without CKD, serum retinol binding protein was however
not related to carotid intima thickness [498]. On the other hand urinary retinol binding protein was
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inversely related to kidney function and cardiovascular risk factors [499] and was also increased in
proportion with the degree of renal radiation damage in mice [500].

4.29. Visfatin

Visfatin is included in the review on cytokines which is part of this special issue [296]. Also,
this molecule was discarded as a potential uremic toxin, because of contradictory clinical data [296].

4.30. Summary

Like with the two other large groups of uremic retention solutes, these data show that also the
middle molecules have the capacity to affect a number of biological systems that contribute to the
uremic syndrome. The average number of experimentally affected systems (2.34 ± 1.57) is significantly
lower (P = 0.012) than for the protein bound compounds but comparable to the small water-soluble
compounds. The systems affected by the largest number of toxins are cardiovascular system (n = 21),
inflammation (n = 16) and fibrosis (n = 12) (Figure 2E, Supplementary Materials Table S3). Of note,
protein energy wasting, without directly involved molecules within the two other groups, appeared to
be affected by 4 of the middle molecules, pointing to the many peptidic structures that function as
an anorexigen. There are relatively few middle molecules that have been demonstrated to affect
more than 4 biological systems (Figure 2F, Supplementary Materials Table S3), suggesting a relative
scarcity of experimental studies in this group of molecules. The molecules with the largest impact are:
β2-microglobulin (6 affected systems) and ghrelin, leptin and parathyroid hormone (all n = 5).

The average evidence score (Table 6) is 2.06 ± 1.19 (maximum possible = 4). For this characteristic,
the list is headed by β2-microglobulin, interleukin-6, TNF-α and FGF-23 (all n = 4).

Table 6. Summary of evidence data available on the middle molecules.

Type of Evidence Points Exp. Toxic 1-2 Exp. Neutral
or Benefit -1 Clin. Toxic 1-2 Clin. Neutral

or Benefit -1 Sum 4 (max)

Adrenomedullin 1 -1 0 0 0
Adiponectin 0 0 2 -1 1
Angiogenin 2 0 0 0 2

ANP 1 -1 1 0 1
β2-microglobulin 2 0 2 0 4

β-endorphin 1 -1 1 0 1
β-lipotropin 1 -1 1 0 1

Cholecystokinin 0 0 2 -1 1
Complement factor D 2 0 0 0 2
Complement factor Ba 2 0 0 0 2

Cystatin C 1 -1 2 0 2
Interleukin-1β 2 0 0 0 2
Interleukin-18 2 0 1 0 3
Interleukin-6 2 0 2 0 4

TNF-α 2 0 2 0 4
Interleukin-8 2 0 1 0 3

Interleukin-10 2 0 1 -1 * 2
Endothelin 2 0 2 -1 3

FGF-23 2 0 2 0 4
Ghrelin 2 0 2 -1 3

Glomerulopressin 0 0 0 0 0
IgLC ** 2 0 2 -1 3

Lipids & lipoproteins **,*** 2 0 1 0 3
Leptin 2 0 0 0 2
MCSF 2 -1 1 0 2

Methionine-enkephalin 2 -1 0 0 1
Neuropeptide Y 2 -1 2 0 3

Orexin A 1 -1 0 0 0
Parathyroid hormone 2 0 2 -1 3

Pentraxin-3 2 -1 2 -1 2
Peptide YY 1 -1 0 0 0

Prolactin 1 -1 2 0 2
Resistin 2 0 0 0 2

Retinol Binding Protein 2 0 2 -1 3
Visfatin 0 0 2 -1 1

Exp.: experimental; clin.: clinical (observational + Randomized Controlled Trials—RCTs); ANP: atrial natriuretic
peptide, TNF-α: Tumor Necrosis Factor-α, IgLC: Immunoglobulin Light Chains; MCSF: Macrophage Colony
Stimulating Factor; * paradoxically correlated to consequences of inflammation whereas the biological action
is anti-inflammatory; ** immunoglobulin light chains and lipids and lipoproteins considered as one group;
*** modified—posttranslational.
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5. Discussion

This review summarizes the current knowledge about the biological impact (toxicity) of uremic
retention compounds. From this analysis, it appears that there is a plethora of compounds that exert
some degree of toxicity. In total 8 groups of compounds and 63 individual compounds (20 small
water-soluble, 16 protein-bound and 35 middle molecules) are reviewed of which 66 (93%) are
modifying the activity of at least one functional system. Hence, the uremic syndrome is, with regards
to the patho-physiologic impact of the retained solutes, a multifactorial condition. It seems highly
improbable that one day a “golden bullet” would be identified, of which the removal would solve
the entire problem. We are rather confronted with groups of compounds depending on various
characteristics (protein bound vs. not; high molecular weight vs. low; hydrophilic vs. hydrophobic;
intestinally generated vs. not; secreted by the renal tubules vs. not) that should be handled together if
it comes to decrease their concentration.

When we consider the number of functional systems disturbed per molecule, the highest score of 7
on 11 systems considered is reached by one group of small water-soluble compounds (the polyamines),
one group of protein bound solutes (the AGEs) and one individual protein bound compound (p-cresyl
sulfate) and no middle molecule. The second highest score of 6 is reached by one small water-soluble
compound (uric acid), one protein bound compound (indoxyl sulfate) and one middle molecule
(β2-microglobulin). Obviously, it is easier to reach a high score for solutes that are considered as a
group (e.g., the AGEs and the polyamines) than for the other solutes that are considered individually.
In addition, the score per solute depends on the frequency a solute or group of solutes was studied
and per physico-chemical type, on the number of solutes or groups of solutes included in that category.
Taking these into account, it could be concluded that the number of high scores is limited for the middle
molecules in spite of the fact that it actually happens to be the largest group of individual entries
(n = 35). This impression is confirmed by the, be it not always significant lower average score for the
number of affected systems (2.34 ± 1.57 vs. 2.65 ± 1.95 and 3.69 ± 1.96 for the small water-soluble
compounds and the protein bound compounds, respectively—Table 7). This points to the relatively
low number of experimental studies on the middle molecules in general, either due to a low intrinsic
number of investigations, maybe since their toxicity is automatically taken for granted, or to a reporting
bias with negative results remaining unpublished. On the other hand, the superiority of protein bound
solutes with regards to experimental data seems largely lost when the overall evidence score is taken
into account (Table 7).

Table 7. Mean scores for each major toxin group for the number of affected systems in experimental
studies and for the average evidence score (experimental + clinical).

Number of Affected Systems in
Experimental Studies Average Evidence Score

Small water-soluble compounds 2.65 ± 1.85 1.75 ± 1.29
Protein bound solutes 3.69 ± 1.96* 2.31 ± 0.95

Middle molecules 2.34 ± 1.57 2.06 ± 1.19

Original data on which the calculations are based are shown in Figure 2, Tables 4–6 and Supplemental Tables S1–S3.
* p = 0.012 vs. middle molecules.

Thus, our data suggests that the number of experiments assessing the biochemical impact of
individual retention compounds might be increased, especially for the middle molecules and to a
certain extent also for the small water-soluble compounds. Indeed, whereas the protein bound solutes
have largely been neglected until the mid-nineties of previous century, their analysis has received
a substantial boost since then. In addition, however, we also stress the importance, for researchers,
to report negative results and for journals, to publish them.

In this context, it should also be noted that, whereas most uremic toxin research has up to now
focused on single toxins, in real life they are present together in the body. The problem of mutual
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interaction of toxins can only be solved by studying solute panels, although this approach may be
hampered by problems of solubility if several molecules are combined together and correct uremic
concentrations have to be obtained [501].

For a total number of 71 solutes or solute groups, a negative effect per functional system was
reported for 41 molecules or groups on the cardiovascular system (58% of considered solutes),
followed by 37, 26, 23 and 15 molecules (52%, 37%, 32% and 21%) for inflammation, metabolic function,
fibrosis and neurotoxicity respectively. All these findings point to a multifactorial disintegration of
some of the key elements which define morbidity and mortality of our patients on dialysis and already
a long time before dialysis is initiated (cardiovascular damage, inflammation and fibrosis as a cause
of heart failure and progression of CKD). However, because of this patho-physiologic importance,
these systems may also have been assessed more frequently, hence leading to an underrepresentation
of the other systems, although they are important as well for the quality of life of CKD patients.
In general, it seems that we could retrieve for this review only few studies that assessed quality of life
or factors defining quality of life in uremia (e.g., pruritus, insomnia). This lack of patient-centered
analyses is another shortcoming that could be corrected in future.

A direct effect on protein energy wasting (PEW) was conveyed only 4 times but some of the other
frequently reported systems (inflammation, cardiovascular disease, neurotoxicity, infection) as such
are an indirect cause of protein energy wasting.

For the overall evidence score (experimental + clinical, with correction for results indicating no
effect or a beneficial effect) the maximum score of 4 was reached by 3 small water-soluble compounds
or groups of compounds (ADMA, SDMA and the carbamylated products) and 4 middle molecules
(β2-microglobulin, TNF-α, interleukin-6 and FGF-23) but only in two protein bound solutes or solute
groups (p-cresyl sulfate and the kynurenines) (Table 8). In part, the latter finding could be linked to
the number of protein bound solutes considered which is lower than that of the two other groups. Yet,
this figure is markedly low as compared to the experimental data that were retrieved. Hence, our data
point to a relative shortage of clinical hard outcome studies on some of the protein bound uremic
toxins (e.g., indole acetic acid, phenyl acetic acid, p-OH hippuric acid). On the other hand, the score
was also often downgraded because of too many observational studies showing no association with
hard outcomes. Such neutral results might be real but may also be the consequence of insufficiently
powered studies or confounding by unrecognized or unknown factors. This is the reason why in
Table 8 summarizing the highest scoring solutes we also included solutes with score 3.

Table 8. Uremic toxins with the highest toxicity score.

Evidence Score: 4 Exp. Score Evidence Score: 3 Exp. Score

p-Cresyl sulfate 7 AGEs 7
β2-Microglobulin 6 Indoxyl sulfate 6

ADMA 5 Uric acid 6
Kynurenines 5 Ghrelin 5

Carbamylated compounds 3 Indole acetic acid 5
FGF-23 3 Parathyroid hormone 5

Interleukin-6 3 Phenyl acetic acid 5
TNF-α 3 TMAO 5
SDMA 2 Retinol binding protein 4

Endothelin 3
IgLC 3

Interleukin-1β 3
Interleukin-8 3

Neuropeptide Y 3
Lipids & lipoproteins 2

Exp.: experimental; ADMA: Asymmetric Dimethylarginine; FGF23: Fibroblast Growth Factor-23; TNF-α:
Tumor Necrosis Factor; SDMA: Symmetric Dimethylarginine; AGEs: Advanced Glycation End Products; TMAO:
Trimethylamine-N-Oxide; IgLC: Immunoglobulin Light Chains.
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When listing the highest ranking molecules with regards to their toxicity (overall evidence
score ≥3, experimental score ≥5) the following molecules or groups of molecules could be retained
(Table 8): for the small water-soluble compounds, ADMA, uric acid and TMAO; for the protein bound
compounds, p-cresyl sulfate, kynurenines, AGEs, indoxyl sulfate, indole acetic acid, phenyl acetic acid;
for the middle molecules, β2-microglobulin, ghrelin, parathyroid hormone.

RCTs are currently accepted to offer the highest level of evidence for a given impact.
Although there are some RCTs on interventions to decrease the concentration of specific toxins,
they are few, largely due to the low number of available interventional therapies that specifically
can change concentration of a given uremic toxin. In view of the multifactorial pathophysiology
that can be understood from this and other reviews [3], one may wonder whether it makes much
sense to further consider specific interventional trials to decrease one single solute in the context of
uremia, unless to offer proof of concept of toxic effects. In addition, such therapies are not always
innocent. Allopurinol e.g., may reduce uric acid but any positive effect that is generated might be
partially offset by its complications, such as Stevens-Johnson syndrome or leukocytopenia. Hence,
it might be more useful to try to influence the concentration or metabolic impact of groups of molecules
with similar characteristics. Thus, we still remain in need of randomized controlled trials in the
area of CKD, or alternatively, of observational trials with optimized corrective strategies for residual
confounding but they should preferentially be focused on larger groups of molecules. Observational
studies might have an advantage on controlled studies by better mimicking real life conditions, in an
area where many randomized controlled trials turned out negative at primary analysis for hard
outcomes [161,162,287–289,338,449,502,503].

This is the first analysis of the biological capacity of the majority of currently known uremic
compounds since almost two decades. Not only data from the nephrologic literature but also a large
array of non-nephrologic journals were taken into account. In addition, when neutral or beneficial
results had been reported, these were also taken into consideration in our scoring systems.

This analysis, although comprehensive, also has a number of drawbacks. First, we may have
failed to include some compounds. However, as we started from existing uremic databases [1,5] the
risk that this would have been the case is relatively low and if it happened, it is unlikely that one
of the currently known major contributors to the uremic syndrome will have been missed. Second,
we may have overlooked a number of studies showing a biological impact, since this analysis is not
based on a systematic review. Systematic reviews are strenuous endeavors, simultaneously involving
several researchers for substantial time periods, so that for practical reasons they are to be restricted to
a limited number of toxins [20] and should be considered as an inappropriate tool for a comprehensive
review such as the present one. In addition, if some references are missing, it is more likely to have
occurred for those solutes that have been studied extensively, than for those with a limited number of
data. For that reason, it is improbable that substantial shifts would occur in the scores of the individual
solutes and even more in the global assessment per large group of solutes if the literature base for their
analysis would have even been larger than it already is with close to 500 publications included in the
reference list. However, in future, it might be useful to consider more in depth systematic analysis
of solutes scoring high in this assessment, to see whether their present score was justified. Likewise,
we did not check whether in all cited studies the correct concentrations as observed in uremia were
applied, which would be another element to be assessed by a systematic review. However, we are
convinced that this review and especially the classification offered in Table 8, will be helpful in future
to select the most important toxins if such systematic reviews were planned. Finally, the perception
emanating from this review may be confounded by publication bias. On one hand, negative results
may have retained insufficient attention, on the other hand the impression of the toxicity of some other
solutes may seem overwhelming, because they were more frequently the subject of studies.
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6. Conclusions

We thus believe that this review will offer a useful reference work giving a better insight in the
complex picture of uremia to those interested and at the same time hope it is a stimulus to fill in the
gaps in knowledge that still exist and that it could serve as a good reference work for future uremic
toxicity analyses and for selecting mechanisms for future drug development in the treatment of the
uremic syndrome. Our ranking system may also be of help for defining the target molecules in removal
studies and for developing novel methods improving this removal or removing molecules that up till
now received insufficient attention.

The scores are also likely to stimulate clinical and/or translational research on specific uremic
toxins or groups of toxins by clarifying for which compounds and for which physiologic systems data
are abundant and for which not.

We demonstrated a kaleidoscopic picture of the many compounds involved in defining the
pathophysiologic process that ultimately results in the uremic syndrome. We summarize the
biological/biochemical and clinical impact of 71 uremic retention solutes that have been assessed over
the past half of a century. A complex picture emerges whereby almost all considered solutes affect
one or more functions that contribute to the uremic syndrome and its complications, leading to the
increased morbidity and mortality of CKD. Of the affected mechanisms, especially the susceptibility to
cardiovascular damage, inflammation and fibrosis appeared to be targeted but these systems have
presumably also been studied most extensively. Some discrepancies between experimental and clinical
data became apparent, leading sometimes to a downgrade of positive looking experimental scores.
In addition, it became clear that the quantity of experimental data for the middle molecules and to
a certain extent also for the small water-soluble compounds could be larger, whereas clinical data
are missing for several of the protein bound solutes in spite of quite robust experimental data being
available. In view of the apparently multifactorial nature of uremia, it seems illusory to think that
decreasing the concentration of one single solute will improve outcomes and probably attention should
concentrate on decreasing the concentration of groups of solutes. More attention could be paid to
quality of life aspects.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/10/1/33/s1,
Table S1: Experimental effects observed for the small water-soluble compounds, Table S2: Experimental effects
observed for the protein bound compounds, Table S3: Experimental effects observed for the middle molecules.
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